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SUMMARY

In this thesis we study topology of symplectic fillings of contact manifolds

supported by planar open books. We obtain results regarding geography of the sym-

plectic fillings of these contact manifolds. Specifically, we prove that if a contact

manifold (M, ξ) is supported by a planar open book, then Euler characteristic and

signature of any Stein filling of (M, ξ) is bounded. We also prove a similar finite-

ness result for contact manifolds supported by spinal open books with planar pages.

Moving beyond the geography of Stein fillings, we classify fillings of some lens spaces.

In addition, we classify Stein fillings of an infinite family of contact 3-manifolds

up to diffeomorphism. Some contact 3-manifolds in this family can be obtained by

Legendrian surgeries on (S3, ξstd) along certain Legendrian 2-bridge knots. We also

classify Stein fillings, up to symplectic deformation, of an infinite family of contact

3-manifolds which can be obtained by Legendrian surgeries on (S3, ξstd) along certain

Legendrian twist knots. As a corollary, we obtain a classification of Stein fillings of

an infinite family of contact hyperbolic 3-manifolds up to symplectic deformation.

viii



CHAPTER I

INTRODUCTION AND STATEMENT OF RESULTS

The objects of study in this thesis are contact manifolds in dimension 3 and their

symplectic fillings. Given a smooth, closed, oriented 3 manifold M , a co-orientable

contact structure on M is a maximally non integrable plane field ξ. It is a classical

result due to Thom that any closed 3-manifold M is a boundary of a smooth 4-

manifold X. A natural question to ask then is: can any contact 3-manifold (M, ξ)

be obtained as boundary of some 4-manifold X? This question as stated is not

meaningful. First we need to put some restrictions on X. The first natural condition

here is that X be symplectic. A closed 2-form ω (i.e. dω = 0) on a 4-manifold is called

symplectic if ω ∧ ω > 0. We will denote the symplectic manifold by (X,ω). Even

with this restriction one needs certain compatibility condition between the symplectic

structure on X and the contact structure on M . To see a compatibility condition

we recall a few more notions. A Liuville vector field on (X,ω) is a vector field such

that Lvω = ω, where L denotes the Lie derivative. A symplectic manifold (X,ω) is

called a strong symplectic filling of a contact manifold (M, ξ) if ∂X is diffeomorphic

to M , there exists a Liouville vector field v in the neighbourhood of ∂X such that v

is transverse pointing out of ∂X and the contact structure ξ is given by i∗(iv(ω)).

There is a “strictly ”stronger notion of fillability called Stein fillability which we

recall now. A Stein domain X is a complex manifold (X, J) such that there is a

biholomorphic embedding of (X, J) in CN for some N ∈ N. Here J denotes the

almost complex structure associated to the complex structure on X. An almost

complex structure on a 4 manifold X is an endomorphism J : TX → TX such that

J2 = −Id. A Stein domain (X, J) is said to be a filling of (M, ξ) if ∂X is diffeomorphic
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to M and ξ is given by complex tangencies i.e. ξ = J(TM)∩ TM . For other notions

of symplectic fillings and more on Stein fillings we refer the reader to Chapter 7.

Now we can ask the fillability question again. Given a contact manifold (M, ξ), is

it fillable (Stein or symplectic)? If (M, ξ) is fillable, how many “different ”fillings does

it have? Can we say anything about the algebraic topology of the fillings of (M, ξ)?

In this thesis we will study these and related questions.

For notions of open book decompositions and their relations to contact structures

we refer the reader to Chapter 5. For notion of Legendrian surgery we refer the reader

to Chapter 4.

In all the theorems stated below we talk about planar open book. Here planar

refers to a planar surface i.e. a sphere with a finite number of open disks removed

from the interior. We denote the sphere with n+ 1 disks removed by Dn.

We start by trying to understand the algebraic topology of Stein fillings. If we

denote the Euler characteristic and signature of X by χ(X) and σ(X), respectively,

then the geography problem is to determine the following set

C(M,ξ) = {(σ(X), χ(X))|X is a Stein filling of (M, ξ)}.

In particular, it is interesting to know whether this set is finite. It has been a

conjecture of Stipsicz [69], that C(M,ξ) is finite for any (M, ξ). Although, the conjecture

in full generality has been recently proven to be false by Baykur and Van Horn-

Morris [5], we prove it is true for contact structures supported by planar open books.

Theorem 1.0.1. Let (M, ξ) be a tight contact manifold supported by planar open book.

Then the set C(M,ξ) is finite. In particular, there exists a positive integer N such that

signature and Euler characteristic of X satisfy, |σ(X)| < N and |χ(X)| < N for any

Stein filling (X, J) of (M, ξ).

Remark 1.0.2. After the paper was submitted, Jeremy Van Horn-Morris pointed out

to the author that Plamenevskaya had proved finiteness of Euler characteristic in her
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paper [65]. The author was unaware of this result.

A generalization of the notion of open books is spinal open book [53]. We have a

corresponding theorem as above in the case of contact manifolds supported by spinal

open books with planar pages.

Theorem 1.0.3. Let (M, ξ) be a contact structure supported by spinal open book with

connected planar pages. Then C(M,ξ) is finite. In particular, there exists a positive

integer N such that for any Stein filling (X, J) of (M, ξ), |χ(X)| < N and |σ(X)| <

N .

In addition, we use the methods developed in this thesis to get an explicit upper

bound on the Euler characteristic of a particular contact structure. Let C = C1 ∪

C2 ∪ · · · ∪ Cn denote a configuration of symplectic spheres in a symplectic manifold

(X,ω) intersecting ω-orthogonally according to a connected plumbing graph Γ with

negative definite intersection form Q = (qij) = [Ci] · [Cj]. We assume that there

are no edges connecting a vertex to itself. Suppose that for each row in Q, we have

a non positive sum
∑

j qij ≤ 0. It follows from a result of Gay and Mark [29],

that any neighbourhood of such a configuration of symplectic spheres C contains a

neighbourhood (Z, η) of C with strong convex boundary. The boundary M of (Z, η)

has a natural contact structure which we denote by ξpl.

Theorem 1.0.4. Let (M, ξpl) be contactomorphic to the boundary of (Z, η) which

is a plumbing of spheres as defined above. If (X, J) is a strong symplectic filling of

(M, ξpl), then χ(X) ≤ χ(Z).

This theorem answers a special case of a question raised by Starkston. See Ques-

tion 6.2 in [67].

Moving beyond the geography of symplectic fillings, we study classification prob-

lem. More precisely, given a contact 3-manifold (M, ξ) we would like to know set of all
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possible symplectic fillings (X,ω) up to a diffeomorphism of X or symplectomorphism

of (X,ω).

This in general is a very hard problem. Only partial progress has been made

in some very special cases. In this thesis we prove classification results some up

to diffeomorphism and some up to symplectomorphism. In this regard we have the

following:

Theorem 1.0.5. Let ξ be a contact structure on lens space L(p(m+ 1) + 1, (m+ 1)).

If ξ is:

1. Virtually overtwisted, then ξ has a unique Stein filling upto symplectomorphism.

2. Universally tight and p 6= 4, 5, . . . , (m + 4), then ξ has a unique Stein filling

upto symplectomorphism.

3. Universally tight and p = 4, 5, . . . , (m+ 4), then ξ has at least two Stein fillings

upto symplectomorphism.

In a joint work with Youlin Li [44], we have proved some more classification results.

We state these theorems below. All the theorems stated below are based on our joint

work.

In (S3, ξstd), let L be a Legendrian twist knot, K−2p, with Thurston-Bennequin

invariant −1 and rotation number 0, where 2p denotes the number of left-handed

half twists. If p = 1, then it is a right handed trefoil. See Figure 1 for one of its

front projections. According to [18], such a Legendrian twist knot L is unique up to

Legendrian isotopy. Let n, k ≥ 1 be two integers such that n ≥ k. Let Sn−k+ Sk−1
− (L) be

the result of n−k positive stabilizations and k−1 negative stabilizations of L. Figure 1

depicts a Legendrian link in (S3, ξstd) one of whose components is Sn−k+ Sk−1
− (L). The

other components are all Legendrian unknots with Thurston-Bennequin invariant −1,

pushed off mi times, where mi is a non-negative integer for i = 1, . . . , k−1, k+1, . . . , n
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if k > 1 or n > k. Let (M ′, ξ′) denote a contact structure obtained by performing

Legendrian surgery along all the components of the link given in Figure 1. Then we

prove the following theorem.

mk+1 − 1 mk−1 − 1

mn − 1 m1 − 1

Figure 1: A Legendrian link one of whose components is a Legendrian twist knot
K−2p, where the box consists of 2p − 2 Legendrian tangle. There are k − 1 upward
cusps of the Legendrian K−2p each of which hooks mi − 1 Legendrian unknots for
i = 1, . . . , k − 1. There are n − k downward cusps of the Legendrian K−2p each of
which hooks mi − 1 Legendrian unknots for i = k + 1, . . . , n.

Theorem 1.0.6. The contact 3-manifold (M ′, ξ′) has a unique Stein filling up to

diffeomorphism.

This theorem follows from a more general theorem (see Theorem 9.0.3) we will

state and prove in Chapter 9. Another application of the Theorem 9.0.3 is classifying

Stein fillings of manifolds obtained by Legendrian surgeries along some Legendrian

2-bridge knots. Figure 2 depicts a 2-bridge knot B(p, q), where p, q are positive

intergers. If q = 1, then it is the twist knot K−2p.

Theorem 1.0.7. There is a Legendrian 2-bridge knot B(p, q) with Thurston-Bennequin

invariant −1 and rotation number 0, such that the Legendrian surgery on (S3, ξstd)

along any of its stabilization yields a contact 3-manifold with unique Stein filling up

to diffeomorphism.
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−2q

−2p

Figure 2: A 2-bridge knot B(p, q) with p, q > 0. The boxes containing −2p and −2q
denote 2p and 2q negative half twists, respectively.

In addition to classifying Stein fillings up to diffeomorphism, we can classify Stein

fillings of Legendrian surgeries along some Legendrian twist knots up to symplectic

deformation. Even though these manifolds admit open books considered in Theo-

rem 9.0.3, we include a separate proof here because the notion of symplectic defor-

mation is stronger than that of diffeomorphism.

Theorem 1.0.8. If L is a Legendrian twist knot K−2p with Thurston-Bennequin in-

variant −1 and rotation number 0, then the Legendrian surgery on (S3, ξstd) along any

stabilization of L yields a contact 3-manifold with unique Stein filling up to symplectic

deformation equivalence.

If p > 1, then the twist knot K−2p is hyperbolic. By the hyperbolic Dehn surgery

theorem in [71], Legendrian surgery on (S3, ξstd) along a Legendrian hyperbolic twist

knot with sufficiently many stabilizations yields a contact hyperbolic 3-manifold. So,

immediately, we have

Theorem 1.0.9. There are infinitely many contact hyperbolic 3-manifolds admitting

unique Stein filling up to symplectic deformation equivalence.

One important aspect of these classification is that the techniques developed for

classifying. In general, we can classify more symplectic fillings and the technique

developed here serve as tools that can be used in future for other classification.
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CHAPTER II

BACKGROUND

In this chapter we give background on basics of contact geometry. Contact geometry

has its origins in physics and geometric optics. In last few years the field has grown

with the advent of new techniques. In this background chapter we try to give a flavour

for various notions involved.

2.1 Contact Geometry

Let us fix a smooth odd dimensional manifold M2n+1. Let ξ denote a smooth codi-

mension 1 sub-bundle of the tangent bundle TM . Sometimes this is called hyperplane

distribution.

Lemma 2.1.1. Let M be an orientable manifold. Then Locally ξ can be written as

the kernel of a differential 1-form α. Moreover, it is possible to write ξ = ker(α)

globally if and only if ξ is co-orientable.

Proof. Fix a metric g on M . The orthogonal complement ξ⊥ satisfies TM = ξ ⊕ ξ⊥.

Around any point p, there is a neighbourhood U such that the line bundle ξ⊥ is

trivial. Let X be a non-zero section of ξ⊥ in U and define α = g(X,−) in U . Then

clearly ξ|U = ker(α).

Now we prove the second part of the lemma. Saying that ξ is co-orientable is

equivalent to ξ⊥ being trivial. In that case X as constructed above exists globally

and hence the 1-form α is also defined globally. Conversely, if ξ = ker(α) is defined

globally then one can find a globally defined section of ξ⊥ such that g(X,X) = 1 and

α(X) > 0. This gives the required co-orientation for ξ⊥.
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For rest of this thesis we will assume that our hyperplane fields are co-oriented.

We define contact structures which are objects of study in this thesis.

Definition 2.1.2. A co-orientable contact structure ξ = ker(α) on M2n+1 is a totally

non-integrable hyperplane distribution, in other words α ∧ (dα)n 6= 0.

A positive contact structure on an oriented manifold M is a hyperplane distribu-

tion such that α ∧ (dα)n defines a volume form defining the given orientation on M .

We will always talk about positive contact structures in this thesis. Before moving

forward we give a couple of illustrative examples of contact structures.

Example 2.1.3. Let M = R3 with coordinates (x, y, z) define a 1 form α = dz−ydx.

One can check that α∧dα = dx∧dy∧dz. So ξstd = ker(α) defines a contact structure

on R3. One can draw this contact structure as below.

Figure 3: The contact structure ξstd on R3. Picture by Patrick Massot.

Example 2.1.4. On M = R3 with cylindrical coordinates (r, θ, z) define a contact

structure as ξot = ker(cos(r)dz + rsin(r)dθ). As above it is easy to check that this

defines a contact structure. We draw this contact structure below.

Example 2.1.5. Let M = S3. Think of S3 as a unit sphere in R4 with coordinates

(x1, y1, x2, y2). Define a plane distribution by ξstd = ker(x1dy1−y1dx1+x2dy2−y2dx2).

Again it is easy to check that this defines a contact structure.
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Figure 4: The contact structure ξot on R3. Picture by Patrick Massot.

Now it is not clear if the two contact structures given in the first two examples

above are “equivalent ”or if they are different. To make this notion of equivalence

precise we define:

Definition 2.1.6. Let ξ1 and ξ2 be two contact structures on a manifold M . We

say ξ1 is contactomorphic to ξ2 if there exists a diffeomorphism φ of M such that

φ∗ξ1 = ξ2.

One can prove that (S3−{pt}, ξstd|S3−pt) considered in Example 2.1.5 is contacto-

morphic to (R3, ξst) considered in Example 2.1.3. It follows from work of Bennequin [6]

that on R3 the contact structures ξstd and ξot are not contactomorphic. A reason for

this is that in ξot one can see an embedded disk given by D = {r = π, z = 0}. One can

easily check that the contact planes along the ∂D do not twist at all. It is obvious as

the contact planes along ∂D are given by span{∂x, ∂y}. Such a disk can not exist in

ξstd. Existence of such a disk is a fundamental phenomenon in 3 dimensional contact

geometry due to foundational work of Eliashberg [10].

Definition 2.1.7. A contact 3-manifold (M, ξ) is overtwisted if it contains an embed-

ded disk D, called the overtwisted disk, such that ξ|∂D = TD|∂D and the characteristic

foliation of D contains a unique singular point at the origin. If (M, ξ) does not contain
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an overtwisted disk then it is called tight.

We will come back to this point later. But we first prove Gray’s stability theorem,

which is very widely used in contact topology.

Theorem 2.1.8 (Gray stability theorem). Let ξt, for t ∈ [0, 1], be a smooth family

of contact structures on a closed manifold M . Then there is an isotopy (ψt)t∈[0,1]) of

M such that (ψt)∗(ξt) = ξ0.

Proof. The idea is to assume that ψt is a flow of some time dependent vector field

vt. Then the desired isotopy equation translates in an equation for vt. If this can be

solved, then we can find the isotopy by integrating vt. This is the idea of Moser’s

technique. Towards that end, let ξt = ker(αt) for a smooth family of 1-forms αt.

Then we want to find a family of diffeomorphisms ψt : M → M and a family of

functions λt : M → R+ such that

ψ∗tαt = λtα0. (1)

Differentiating the left hand side with respect to t yields,

d

dt
(ψ∗tαt) = lim

h→0

ψ∗t+hαt+h − ψ∗tαt
h

= lim
h→0

ψ∗t+hαt+h − ψ∗t+hαt + ψ∗t+hαt − ψ∗tαt
h

= lim
h→0

ψ∗t+h
αt+h − αt

h
+ lim

h→0

ψ∗t+hαt − ψ∗tαt
h

= ψ∗t (α̇t + Lvtαt).

Now differentiating Equation 1 we get,

ψ∗t (α̇t + Lvtαt) = λ̇tα0 =
λ̇t
λt
ψ∗tαt.

By Cartan’s formula L = d ◦ ix + ix ◦ d we get

ψ∗t (α̇t + d(αt(vt)) + ivtdαt) = ψ∗t (νtαt).
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where νt := d
dt

(logλt) ◦ ψ−1
t .

Let vt ∈ ξt. Then d(αt(vt)) = 0. Now multiplying by (ψ−1
t )∗ and then plugging the

Reeb vector field (i.e. the unique vector field Rt satisfying αt(Rt) = 1, iRtdαt = 0 )

in the equation gives,

α̇t(Rt) = νt

This determines vt ∈ ξt uniquely by non-degeneracy of dαt|ξt .

We now prove an important theorem which shows that locally all contact manifolds

look the same. The proof of this result is similar to the proof above using Moser’s

technique. We will skip it here.

Theorem 2.1.9 (Darboux). Every contact 2n + 1 manifold (M, ξ) locally looks like

(R2n+1, ξst), i.e., for all p ∈ M there exists an open neighbourhood U of p in M and

V of 0 in R2n+1 and a contactomorphism φ : (U, ξ) → (V, ξst),such that φ(p) = 0.

Here ξst = ker(dz −
∑
yidxi) is the standard contact structure on R2n+1, where we

choose co-ordinates (x1, y1, x2, y2, . . . , xn, yn, z).

This theorem implies that there are no local invariants of contact manifolds. In

our study of contact manifolds and their fillings we will not be particularly concerned

with this aspect.

We now return to the notion of overtwistedness. The tight vs. Overtwisted di-

chotomy has been influential in driving contact geometry research. This dichotomy

exists because the existence of overtwisted disk guarantees flexibility as is evident

from the following theorem of Eliashberg.

Theorem 2.1.10. Let Ξot(M, δ) denote the space of co-oriented, positive contact

structures on M that contain a standard overtwisted δ and let Dist(M, δ) denote the
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space of co-oriented plane distributions on M that are tangent to δ at the at the center

of δ. Then the inclusion map

iδ : Ξot(M, δ)→ Dist(M, δ)

is a weak homotopy equivalence.

Recall that a weak homotopy equivalence between two topological spacesX,X ′ is a

continuous map from X to X ′, that induces a bijection between the path components

of the spaces X,X ′ and isomorphism πk(X)→ πk(X
′), k ∈ N on all homotopy groups.

This in effect says that the isotopy classification of overtwisted manifolds is same

as homotopy classification of the underlying plane fields. So overtwisted manifolds in

some sense are easy to understand and in particular any 3 manifold admits infinitely

many overtwisted contact structures.

Tight contact structures on the other hand are hard to understand, but they

interact nicely with the underlying topology of the 3 manifold. So a first natural

question is whether any closed 3 manifold admits a tight contact structure? The

answer is no as shown by following theorem of Etnyre and Honda [24].

Theorem 2.1.11 (Etnyre-Honda). The Poincare homology 3 sphere Σ(2, 3, 5) with

reversed orientation does not carry a tight contact structure.

More example were given by Lisca and Stipsicz [51]. These examples are obtained

as surgeries along torus knots in S3. So now a natural question is to ask which closed

3 manifolds admit tight contact structures. This question is still not answered. In

particular, it is not known whether every hyperbolic 3 manifold admits tight contact

structure. But the existence question was completely resolved for Seifert fibered 3

manifolds by Lisca and Stipsicz [52]

Theorem 2.1.12 (Lisca-Stipsicz). Let Mn denote the closed 3 manifold obtained

by 2n − 1 surgery along torus knot T2,2n+1 in S3. A closed oriented Seifert fibered
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3 manifold Y either carries a tight contact structure or is orientation preserving

diffeomorphic to Mn for some n ≥ 1.

Another important question is of the classification of tight contact structures on

a fixed 3 manifold M up to contactomorphism or isotopy. Eliashberg proved that S3

carries a unique tight contact structure ξstd. Other classification results are known

on lens spaces L(p, q) due to Honda [42] and Giroux [35], on some Seifert fibered

spaces [80, 33, 34].

A couple of related notions we will need in this thesis are virtually overtwisted

and universally tight.

Definition 2.1.13. A contact structure ξ on M is called universally tight if the pull

back of ξ to the universal cover of M is tight. It is called virtually overtwisted if

pullback of ξ to some finite cover is overtwisted.

With this preliminary introduction to contact geometry we move onto basics of

convex surface theory which will be lurking in the background for a lot of results used

in this thesis.
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CHAPTER III

CONVEX SURFACES

Let (M, ξ) be a contact 3 manifold and let S be an oriented embedded surfaces. Since

a contact distribution is a 2 plane distribution, ξp ∩ TpS is a line field except for the

points at which ξp and TpS are identical. So we get an induced foliation on the surface

S with some singularities i.e. points where ξp = TpS.

Definition 3.0.14 (Characteristic Foliations). The characteristic foliation Sξ of a

surface S in (M, ξ) is the singular 1-dimensional foliation of S defined by the dis-

tribution (TS ∩ ξ|S)⊥. Here ⊥ denotes the symplectic complement with respect to

the symplectic structure dα on ξ. At points p ∈ S where TpS ∩ ξp is 1 dimensional

(TpS ∩ ξp)⊥ = TpS ∩ ξp.

It is a standard fact (see [31] Lemma 2.5.20) that Sξ can also be given by a vector

field X in TS, such that iXΩ = α|S where Ω is volume form on S. It is also not very

hard to see that the equivalence class of X depends only on S and ξ. Two vector

fields X and X ′ on the surface S are called equivalent if there is a smooth function

f : S 7→ R+ such that X ′ = fX. Note that at point p ∈ S, αp(Xp) = Ω(Xp, Xp) = 0.

Hence, Xp ∈ ξp and Xp = 0 if and only if ξp = TpS. The second statement follows

easily from the fact that Ω is a volume form on S and hence is non-degenerate. The

following lemma gives a characterization of the vector fieldsX defining a characteristic

foliation on the surface S.

Lemma 3.0.15. A vector field X on S defines a characteristic foliation Sξ for some

contact structure ξ on S × (−ε, ε) if and only if Xp = 0 implies divΩ(X) 6= 0 at p.

Now suppose that S0 and S1 are two surfaces in a contact manifold (M, ξ) such

that there is a diffeomorphism φ : S0 → S1 taking characteristic foliation of S0 to
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the characteristic foliation of S1. Giroux proved that one can then extend φ to a

contactomorphism of a neighbourhood N(S0) of S0 to a neighbourhood N(S1) of S1.

For the proof of this fact we refer the reader to Geiges’s book [31].

Given a generic singular foliation induced by a vector field X we now proceed to

study the singularities of the vector field and see how they are useful. A generic such

vector field X will have isolated singularities. So in a local neighbourhood around

the singular point p we can assume that p = (0, 0) in R2 with are form dx ∧ dy. If

X = f ∂
∂x

+g ∂
∂y

then the foliation is given by the flow lines γ̇ = Xγ(t). The linearisation

is given by

A =

fx fy

gx gy

 .
In this local co-ordinate chart divergence is given by fx + gy. We define a singular

point to be elliptic if det(A) > 0 and hyperbolic if det(A) < 0. In the case that

the foliation is induced by a contact structure we can additionally define sign of each

critical point. In this case we define sign of p to be the sign of divXΩ. It follows

from the discussion above that the sign of p is +1 if and only if TpS and ξp have the

same orientation. If p is elliptic then the sign of p is +1 for a source and −1 for a

sink. If p is hyperbolic then the sign of the hyperbolic point is given by the sign of

the eigenvalue of A which has bigger magnitude.

Definition 3.0.16 (Morse-Smale foliation). A foliation is Morse-Smale if the singu-

larities and the closed orbits are nondegenerate, α− and ω− limit set of each flow line

(i.e. the set of limit points γti with ti → −∞ or →∞ ) is either a singular point or

a closed orbit, and there are no flow lines connecting pairs of hyperbolic singularities.

We will see that the Morse-Smale foliations are important in the study of convex

surface theory.

Theorem 3.0.17. Given a closed, orientable surface S ⊂ (M, ξ), there is a C∞-small

perturbation S ′ of S, so that S ′ξ is Morse-Smale.
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We are ready for the definition of convex surface.

Definition 3.0.18. A contact vector field v is a vector field on M whose flow pre-

serves ξ. A surface S ⊂ (M, ξ) is called convex if there is a contact vector field

transverse to S.

Note that if we write ξ = ker(α), then the fact that the flow φt of v preserves the

contact structure implies φ∗tα = ftα for some ft. Now it follows that v is contact if

and only if Lvα = gα for some g. An example of a contact vector field is Reeb vector

field. We now tie this to the Morse-Smale foliations defined above.

Theorem 3.0.19. If a surface S ⊂ (M, ξ) has a Morse-Smale characteristic foliation

then S is convex.

We still have not seen why convex surfaces are important. The point of convex

surface theory developed by Giroux is that to describe the contact structure in a

neighbourhood of a surface one needs very little information. Specifically one only

needs to now some curves on the surface and not the whole characteristic foliation.

First we try to characterize neighbourhoods of convex surfaces.

Theorem 3.0.20. A surface S ⊂ (M, ξ) is convex if and only if there is an embedding

φ : S ×R 7→M with S = φ(S × {0}), such that φ∗(ξ) is invariant in the R direction.

Another important piece of information about convex surface is carried by dividing

set.

Definition 3.0.21 (Dividing Set). Let S be a surface with singular foliation F . A

multi-curve Γ ⊂ S that is transverse to F is said to divide S if S admits a volume

form ω and a vector field v directing F such that S\Γ = S+ ∪ S− with ±Lvω > 0 on

S± and v points out of S+ along Γ.

If S is convex, then in a vertically invariant neighbourhood (guaranteed by the

above theorem), the contact form can be written as α = β + fdt for some smooth
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function f : S → R and 1-form β on S. The contact condition can be expressed now

as

fdβ − df ∧ β > 0

on S. Now take as the volume form Ω = fdβ − df ∧ β and X to be the vector field

such that iXΩ = β. Such a vector field exists because of nondegeneracy of Ω. This

vector field directs the characteristic foliation Sξ. So

S± = {p ∈ S| ± f(p) > 0}.

Thus the curves given by

ΓS = f−1(0)

are easily checked to divide Sξ and are called the dividing curves.

So using the model neighbourhood S×R as above and the contact vector field ∂
∂t

,

we have that vp ∈ ξp if and only if f = 0. This gives another way of characterizing

the dividing set as

ΓS = {p ∈ S|vp ∈ ξp}.

As said before it is the dividing set that carries information about the contact

structure in a neighbourhood of convex surface. This is captured in the following

theorems.

Theorem 3.0.22. Let S ⊂ (M, ξ) be an orientable surface with Legendrian boundary.

Then S is convex if and only if the characteristic foliation Sξ admits dividing curves.

We already have proved the forward direction. We will skip the proof of the

reverse direction. The next theorem shows flexibility of dividing curves.

Theorem 3.0.23. Let S be a convex surface with two dividing sets Γ0 and Γ1. Then

Γ0 and Γ1 are isotopic through curves transverse to Sξ.
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Theorem 3.0.24 (Giroux flexibility). Let i : S 7→ M be an embedding of S into

(M, ξ) with convex image. Let F be a foliation on S divided by i−1(ΓS). Given any

neighbourhood U of i(S) in M , there is an isotopy φs : S → M supported in U so

that φ0 = i, each φs(S) is convex with dividing set ΓS, φs fixes i−1(ΓS) for all s, and

φ1(F) is the characteristic foliation of φ1(S).

So one can achieve any foliation as a characteristic foliation, once we know the

dividing curves dividing the foliation. In particular, the precise characteristic foliation

does not matter. Finally we state Legendrian realization principle which will be

implicitly used in open book decompositions later. This is originally due to Kanda [45]

and proved in full generality by Honda [42]. We say a knot is Legendrian if it is tangent

to the contact planes.

Theorem 3.0.25 (Legendrian Realization Principle). Let S ⊂ (M, ξ) be a convex

surface and let C ⊂ S be a multicurve which is transverse to ΓS. Suppose that every

component of S\C intersects ΓS. Then there is an isotopy φs of S through convex

surfaces, supported in an arbitrarily small neighbourhood of S and fixing ΓS, so that

φs(C) is always transverse to ΓS and φ1(C) is Legendrian.

Using the Legendrian realization principle one can characterize tightness of neigh-

bourhoods of convex surfaces in terms of dividing curves.

Theorem 3.0.26 (Giroux’s criterion). Let S ⊂ (M, ξ) be a convex closed surface.

Then S has a tight neighbourhood if and only if S = S2 and ΓS is connected or S 6= S2

and ΓS has no contractible components.

To do any justice to the far reaching effect of convex surface theory in contact

topology would take us too far away from the main topic of this thesis. We just

remark that convex surface theory has been used extensively in the classification of

tight contact structures.
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CHAPTER IV

KNOTS IN CONTACT MANIFOLDS

As in the study of the topology of 3 manifolds, the study of knots plays an important

role in the topology of contact 3 manifolds. Recall that given a 3 manifold M , a knot

K in M is an embedding γ : S1 ↪→ M such that Image(γ) = K. In the context of

contact 3 manifolds (M, ξ), one can talk about two different kinds of knots. If the

TpK ⊂ ξp for any part p ∈ K, then we call the knot Legendrian. We call a knot K

transverse if TpK is transverse to ξp for all p ∈ K.

We call two Legendrian knots K1 and K2 Legendrian isotopic if they are isotopic

through Legendrian knots. Similarly we can define transverse isotopy for transverse

knots. For the purposes of this thesis we will be working mainly with knots in (S3, ξstd)

which is the one point compactification of (R3, ξstd) as observed before. This gives

a way of visualising Legendrian knots by taking projections in R3. For this we fix

a parametrization γ : S1 → R3 which is given by θ 7→ (x(θ), y(θ), z(θ)). Since

ξstd = ker(dz − ydx) and γ′(θ) ∈ ξγ(θ) we have z′(θ) − y(θ)x′(θ) = 0. Now we talk

about the front projection.

Π : R3 → R2 : (x, y, z)→ (x, z)

The image Π(K) of K under this map is called front projection of K. Note that

Π ◦ γ parametrizes the projection Π(K). We also have that z′(θ) = y(θ)x′(θ). Note

that x′ must never vanish, as vanishing of x′ implies y(θ)→∞. So we can conclude

that Π(K) must not have any vertical tangencies. Note that we can always recover

y co-ordinate by setting y(θ) = z′(θ)
x′(θ)

as long as x′ is not zero. It is easy to convince

oneself that for any generic C1 Legendrian embedding in R3, x′(θ) can only vanish

at isolated points. At these isolated points there is a well defined tangent line in the
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front projection. These points are called cusps.

The discussion above completely characterizes a Legendrian knot in terms of its

front projection, we observe another property of these projections. Note that in a

front projection y-axis points into the page. So we conclude that in a front projection

the slope of an overcrossing is less than the slope of an undercrossing. We draw a few

examples to illustrate front projections below.

Figure 5: The front projection of a Legendrian unknot on the left and the front
projection of a Legendrian right handed trefoil on the right.

Just like in case of smooth knots in S3, there is a version of Legendrian Reide-

meister moves. But their discussion will lead us far from the main topic of this thesis,

so we refer the reader to [21, 31]. We also leave the topic of transverse knots to these

references.

4.1 Classical invariants of Legendrian knots

The obvious classical invariant of a Legendrian knot K is its knot type. Since a Leg-

endrian isotopy is, in particular a smooth isotopy, this implies that any two isotopic

Legendrian knots should be smoothly isotopic.

The second classical invariant is an integer called the Thurston-Bennequin number

of a Legendrian knot. Intuitively this integer measures twisting of the contact planes

around the knot K. To make this more precise, a trivialization of the normal bundle

ν to K is an identification of ν with K × R2 and is called the framing of the knot

20



K. Since the contact planes ξx and the normal bundle νx intersect transversely, we

get a line lx = ξx ∩ νx for any x ∈ K. The line bundle l gives a canonical choice of

normal in the contact planes or in other words a canonical framing. This framing

is called the Thurston-Bennequin framing of the knot K. We will denote this by

tbf(K). Let v be a non-vanishing vector field in ν ∩ ξ. Let K ′ be a copy of K pushed

in the direction given by v. Then the Thurston-Bennequin number of K is defined

by tb(K) = lk(K,K ′). Here lk denotes the linking number.

We finally describe the rotation number of an oriented null-homologous Legendrian

knot. Since the knot is assumed null-homologous it bounds an oriented surface, the

so called Seifert surface, Σ. Since any orientable two plane bundle over a surface with

boundary is trivial, ξ|Σ is a trivial two plane bundle. This trivialization induces a

trivialization of ξ|K = K × R2. Now we can let v to be a non-vanishing vector field

in the direction of the orientation along the knot and let the rotation number of K

be winding number of this vector field.

We mention following important theorem which is fundamental in theory of Leg-

endrian knots.

Theorem 4.1.1 (Eliashberg 1991, [13]). Let (M, ξ) be a tight contact 3-manifold.

Let K be a Legendrian knot in M with Seifert surface ΣK. Then,

tb(K) + |rot(K)| ≤ −χ(ΣK)

Our next goal is to figure out the classical invariants from the front projection

of a given Legendrian knot K in (R3, ξstd). We start by describing the rot(K). Let

w = ∂
∂y

. We can use this vector field to trivialize ξK as this is a non-vanishing section

of ξstd. To compute the rotation number we need to find how many times a non-

vanishing section v of ξ pointing in the direction of K winds around origin in R2.

This is equivalent to how many times v and w point in the same direction. The sign

of intersection is defined to be +1 for when v passes w in a counter clockwise fashion
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and −1 for clockwise. In the front projection, v and ±w point in the same direction at

the cusps and the intersection is positive when going down and negative when going

up. Thus we get that in the front projection

rot(K) =
1

2
(D − U).

Here D is the number of down cusps and U is the number of up cusps in the front

projection.

Now we try to find a formula for the Thurston-Bennequin number of a Legendrian

knot in the front projection. Towards that end, let w = ∂
∂z

, a vector field which is

transverse to any Legendrian knot in (R3, ξstd) and in particular to the Legendrian

knot K. From the discussion above about the Thurston-Bennequin number, we know

that tb(K) = lk(K,K ′) where K ′ is a copy of K slightly pushed in the direction given

by w. The linking number in this context is just half the signed count of intersection

between these copies. The sign convention used is demonstrated in Figure 6.

+ −
Figure 6: The sign convention used in computing linking numbers in R3. A positive
crossing is shown on the left and a negative crossing is shown on the right.

It is straightforward to see that at every positive crossing of the knot K, there will

be two positive crossings in the computation of linking number above and similarly for

the negative crossing. At the right or left cusps there will be a negative intersection.

So we can compute the Thurston-Bennequin number of the knot K from its front

projection Π(K) as:
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tb(K) = writhe(Π(K))− 1

2
(number of cusps in Π(K)).

We now describe an operation on Legendrian knots called stabilization. If a strand

of a Legendrian knot K, in a front projection of K is as shown in the middle of the

Figure 7, then a positive or negative stabilization of K is obtained by adding ”zig-

zags” to the strand as shown on the right or left the Figure 7. If down cusps are

added we call it the positive stabilization and if up cusps are added then we call

it the negative stabilization. We denote positive stabilization by S+(K) and the

negative stabilization by S−(K). It follows easily from the above definitions of tb and

rot that

tb(S±(K)) = tb(K)− 1

and

rot(S±(K)) = rot(K)± 1.

Even though we have described stabilization of a knot in terms of front projections,

this describes stabilizations of Legendrian knots in any contact 3 manifold. This

follows from Darboux’s theorem, since the stabilizations are done locally. One should

also note that stabilization is a well defined operation. This is not obvious at all. We

refer the reader to [23] for the proof. For (R3, ξstd) it was proved in [28].

S+S−
Figure 7: Stabilizing a Legendrian knot in (R3, ξstd). In the middle we show a strand
of a Legendrian knot, the right picture shows adding a down cusp and the left picture
shows adding up cusp.
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4.2 Surgeries along Legendrian knots

Before describing surgeries along Legendrian knots, we define surgery on smooth

knots. Let K be an oriented knot in S3. Let νK denote the normal neighbourhood

of the knot K in S3. Since any orientable D2 bundle over S1 is diffeomorphic to

S1 ×D2, we know that νK is diffeomorphic to S1 ×D2. Let C denote the closure of

the complement S3\ν(K). It is a standard fact from algebraic topology that H1(T 2) ∼=

Z ⊕ Z. Here we are identifying T 2 with the oriented boundary ∂ν(K) ∼= ∂(C). On

T 2 there are two distinguished isotopy classes of curves up to isotopy.

• The meridian µ is defined to be the curve that bounds a disk in ν(K).

• The preferred longitude λ is the unique (upto isotopy) curve which bounds a

surface in C.

An application of the Meyer-Vietoris sequence implies that H1(T 2) ∼= H1(ν(K))⊕

H1(C). This in turn implies that H1(C) ∼= Z. With the convention above we can

characterize this isomorphism by sending µ 7→ (0, 1) and λ 7→ (1, 0).

A Dehn surgery along K means that we remove a neighbourhood ν(K) of K and

glue back a solid torus S1 × D2 via a diffeomorphism of the boundary torus. If we

write µ0 for the meridian ∗× ∂D2 of S1×D2, and λ0 for the longitude S1×∗. Then

the gluing diffeomorphism can be described by µ0 7→ pµ+ qλ, λ0 7→ mµ+ nλ withp m

q n

 ∈ GL(2;Z).

It is a standard fact that the effect of Dehn surgery along a knot K is completely

described by the image pµ+ qλ of µ0. It follows that we can talk about a surgery by

prescribing the slope p
q
∈ Q.

The following result shows the importance of studying surgeries along knots and

links (embedded copies of the finite disjoint union
∐
S1).
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Theorem 4.2.1 (Lickorish [48], Wallace [73]). Any closed, connected orientable 3-

manifold can be obtained from S3 by surgery along a link.

Now we introduce the contact structure into the picture. We start by describing

a model normal neighbourhood of Legendrian knots. We have the following contact

neighbourhood theorem. For the proof see Corollary 2.5.9 of [31].

Theorem 4.2.2 (Contact neighbourhood theorem). If Ki ⊂ (Mi, ξi), i = 0, 1 are

diffeomorphic closed Legendrian submanifolds, then they have contactomorphic neigh-

bourhoods.

Now given any Legendrian knot K in a contact 3 manifold (M, ξ) to describe

a model of neighbourhood for K we consider S1 × R2 with the contact form α =

cos(θ)dx−sin(θ)dy, where θ is the co-ordinate on S1 and (x, y) are standard Cartesian

co-ordinates on R2. It is easy to see that L = S1 × {(0, 0)} is a Legendrian knot in

this contact manifold. By the contact neighbourhood theorem we have a model

neighbourhood of any Legendrian knot K in (M, ξ) given by L in (S1 × R2, ξ =

ker(α)).

One can observe that the radial vector field given by v = x∂x + y∂y is a contact

vector field. Recall that a contact vector field means a vector field whose flow preserves

the contact form i.e. Lvα = α and L denoting the Lie derivative.

One can also note that the vector field v above is transverse to a torus given by

x2 + y2 = δ for any δ > 0, in this standard model S1 × R2 and thus the torus is a

convex torus. So we get that a neighbourhood of a Legendrian knot is S1 ×D2 and

whose boundary torus is convex.

The dividing curves are.

Γ(θ) := {(θ,±δsin(θ),±δcos(θ))}

It is easy to check that v is tangent to ξ along Γ.
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We are now in a position to define contact surgery. Let K be a null-homologous

Legendrian knot in (M, ξ). There are two natural framings for this knot: the Seifert

framing λS and the Thurston-Bennequin framing λtb. These framings are related by

λtb = tb(K)µ̇+ λS.

Definition 4.2.3 (Contact Surgery). Let K ⊂ (M, ξ) be a Legendrian knot. A

contact p
q
-surgery on K is constructed by performing p

q
-surgery on K with respect to

the contact framing and extending the contact structure on M\N(K) across S1×D2

by a tight contact structure on S1 ×D2.

If p
q

= 1
n
, then we get a uniquely defined contact structure. To see this, using the

gluing diffeomorphism to send {∗}×∂(D2) to µ+nλtb and S1×{∗} to µ+(n−1)λtb,

we can see that the curve on S1 × D2 sent to λtb is ({∗} × ∂D2) − (S1 × {∗}).

Thus the contact structure on S1 ×D2 has two dividing curves of slope −1. By the

classification due to Kanda [45], there is exactly 1 tight contact structure with this

convex boundary. So a 1
n

contact surgery is uniquely defined. We will only need 1
n

contact surgery in our discussions in this thesis, so we do not discuss the complications

involved in other p
q

surgeries.

Definition 4.2.4 (Legendrian Surgery). A Legendrian surgery on a Legendrian knot

K ⊂ (M, ξ) is a contact (−1)-surgery along K.

In this context we have the following contact version of the Lickorish-Wallace

Theorem. It was proved by Ding and Geiges [9].

Theorem 4.2.5. Let (M, ξ) be a closed, connected contact 3 manifolds. Then (M, ξ)

can be obtained by contact (±)1-surgery along a Legendrian link in (S3, ξstd).

26



CHAPTER V

OPEN BOOK DECOMPOSITIONS

In our discussion of contact manifolds, we have never checked the classes of manifolds

that admit contact structures. We address this issue now and on the way introduce

the important concept of open book decompositions of contact manifolds, which is a

basis for much of work done in this thesis. We start by proving the following theorem

which states that any closed, oriented 3 manifold admits a contact structure. It

was originally proved by Martinet [57]. We give a proof here due to Thurston and

Wilkelnkemper [70]. Before giving the proof of the theorem we make an important

definition.

Definition 5.0.6 (Open Book Decomposition). An open book decomposition for a

closed, oriented 3 manifold M is a pair (L, π) where, L is an oriented link in M

called the binding and π is a fibration of the link complement π : M\L → S1 such

that the fiber Sθ = π−1(θ) for any θ ∈ S1 is an oriented surface diffeomoerphic to

a fixed surface S, with ∂Sθ = L. The fibers Sθ are called the pages of open book

decomposition.

Note that M\ν(L) being a fibration over S1, can be written as a mapping torus

Mφ =
S × [0, 1]

(x, 1) ∼ (φ(x), 0)

for a diffeomorphism φ : S → S, such that φ is isotopic to identity on a neighbourhood

of ∂S. One way to see this is as follows. Note that any fibration over the interval

[0, 1] is trivial as [0, 1] is contractible. We also know that M\ν(L) is obtained from

a fibration S × [0, 1] over [0, 1] by identifying the ends S × {0} and S × {1}. The

identification is given by the diffeomorphism φ of the compact surface S. Now the
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fibers being pages of the open book decomposition puts a restriction that φ is isotopic

to identity on a neighbourhood of the boundary of S.

It is clear that all we need to know to describe the open book decomposition is

the surface S and the diffeomorphism φ.

Definition 5.0.7 (Abstract open book decomposition). An abstract open book de-

composition of a closed, orientable, connected manifold M is a pair (S, φ) such that

S is a surface with non-empty boundary and φ is a diffeomorphism of S restricting

to identity in a neighbourhood of ∂S, and M is diffeomorphic to

Mφ ∪ψ (∂S ×D2)

Here Mφ being the mapping torus and the map ψ is given as follows. For each bound-

ary component l of S, the map ψ : ∂(S1×D2)→ l×S1 ⊂Mφ is defined to be a unique

up to isotopy diffeomorphism that takes S1 × {p} to l where p ∈ ∂D2 and {q} × ∂D2

to ({q′} × [0, 1]/ ∼) ∼= S1.

The map φ in the definition above is called the monodromy of the open book

decomposition and the surface S is called the page of the open book decomposition.

Theorem 5.0.8. Every closed, oriented 3-manifold M admits a contact structure.

Proof. Alexander showed in the 1920s that any closed, oriented 3 manifold M admits

an open book decomposition as defined above. We will construct a contact form on

M\ν(L) and the show how to extend it over the binding.

Now since S is an oriented compact surface, we let ω be an area form on S with

total area given by 2π|∂S| and ω = dt ∧ dθ on a neighbourhood [0, 1] × S1 of each

boundary component of S. Here t denotes the parameter on [0, 1], θ denotes the

variable on S1 and |∂S| denotes the number of boundary components (≥ 1) of S. Let

α be a 1-form on S which is equal to (1 + t)dθ near boundary ∂S. Note that ω − dα

vanishes near ∂S. Also note that,
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∫
S

ω − dα = 2π|∂S| −
∫
∂S

α = 0.

Note that we have used the fact that t = 0 on the boundary ∂S in the above

computation. It follows from De Rham’s theorem that ω − dα = dβ for some 1-form

β which vanishes on the neighbourhood of the boundary. Let λ = α + β. This has

the property that λ = α near the boundary and dλ = ω. One can easily check that

the set of 1-forms λ satisfying these conditions is non-empty and convex. It is also

easy to check that if λ is in this convex set then so is φ∗λ. Here φ is the monodromy

as defined above. Now define a 1-form on the mapping torus by λs = sλ+ (1− s)φ∗λ

and set αφ = λs +Kds. Then αφ ∧ dαφ = Kdλs ∧ ds. This is a volume form for large

enough K as dλs is an area form on Ss. Moreover, αφ = (1 + t)dθ +Kds near ∂Mφ.

To finish the construction we need to find a contact structure on solid torus D2 × S1

which is equal to −(1 + t)dθ + Kdψ near the boundary. Here r = 1 + t. Here (r, ψ)

are co-ordinates on D2 and θ is the co-ordinate on S1. Near center of D2 we take

the contact form α = dθ + r2dψ and in between we take α = f(r)dθ + g(r)dψ. The

contact condition then becomes fg′ − g′f > 0 with (f, g) = (1, r2) near r = 0 and

(f, g) = (−r,K) near r = 1. One can easily find functions f and g satisfying these

properties. Hence, we have extended the contact form α from mapping torus Mφ to

the closed manifold M .

It turns out that not only does any closed, oriented 3 manifold admits a contact

structure, it admits infinitely many contact structures.

Theorem 5.0.9. Every cooriented tangent 2-plane field on a closed, orientable 3-

manifold is homotopic to a contact structure. In particular, for any even element

e ∈ H2(M ;Z) there is a contact structure ξ on M with the Euler class of the contact

structure e(ξ) = e.
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The contact structures arising out of the construction of Thurston and Wilkelnkem-

per are special.

Definition 5.0.10. A contact structure ξ on a closed, oriented 3-manifold is said to

be supported by the open book decomposition (L, π) of M , if there is a 1-form α such

that ξ = ker(α) and

• The 2-form dα induces an area form on each page defining the orientation on

S and inducing the given orientation on L.

• The 1-form α induces a positive volume form on L = ∂S.

Example 5.0.11. Consider S3 as the unit sphere in C2 with the standard contact

form α = r2
1dφ1 + r2

2φ2 where (r1, φ1, r2, φ2) are polar coordinates on C2. We set the

binding to be L = {(z1, z2) ∈ C2|z1 = 0} and consider the fibration

π : S3\L→ S1 ⊂ C

(z1, z2) 7→ z1

|z1|

This is equivalent to the map (r1e
(iφ1), r2e

(iφ2)) 7→ φ1 ∈ S1. This shows that (L, π) is

an open book decomposition with disk pages given by {|z2| < 1 : z1 =
√

1− |z2|2eiφ1}

and monodromy map given by identity. It is easy to see that the contact 1-form α

restricts to dφ2 along L and dα to r2dr2 ∧ dφ2 along the pages.

Example 5.0.12. Consider S3 and α as above. Set L′ = {(z1, z2) ∈ S3 : z1z2 = 0}.

This set L′ is the union of two knots Ki = {(z1, z2) ∈ S3 : zi = 0}, i = 1, 2. We

think of Ki as boundary of the disk Di = {(z1, z2) ∈ D4 : zi = 0}, i = 1, 2. The link

L′ = K1 ∪K2 is called the positive Hopf link. Consider the fibration given by

π′ : S3\L′ → S1

(z1, z2) 7→ z1z2

|z1z2|
.
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In polar co-ordinates this is given by π′ : (r1e
iθ1 , r2e

iθ2) 7→ θ1 + θ2. One can easily

see that this open book supports the contact structure (S3, ξ = ker(α)) where α =

r2
1dφ1+r2

2φ2. It takes a bit more effort to show that open book decomposition is given by

an annulus and the monodromy of this open book decomposition is the diffeomorphism

given by the right handed Dehn twist about the core of the annulus.

It is easy to see from the proof of Theorem 5.0.8, that the contact structure

constructed there is supported by the open book decomposition. Now we know that

given an open book decomposition, one can find a contact structure ξ supporting it.

The next proposition proves that the this contact structure in essentially unique. We

follow the proof from [31].

Proposition 5.0.13. Let ξ1 and ξ2 be contact structures supported by the same open

book decomposition (L, π). Then ξ1 is isotopic to ξ2.

Proof. Let α1, α2 be contact forms representing ξ1, ξ2, respectively. Let ∂S×D2
ε be a

neighbourhood of the binding. In terms of coordinates (θ, r, φ) on a neighbourhood

of any binding component we have αi(
∂
∂θ

) > 0. Now choose a function f(r) such that

f(0) = 0, f ′ ≥ 0, f(r) = r2 near r = 0 and f ≡ 1 outside ∂S ×D2
ε/2. For any R > 0,

let

αi,R = αi +Rf(r)dφ.

Then it is easy to compute αi,R∧dαi,R = αi∧dαi+Rf(r)dφ∧dαi+Rf ′(r)αi∧dr∧dφ.

By the orientation assumptions it is easy to check that this defines a contact form for

any R ≥ 0. Now Gray’s theorem implies that for a fixed i, ker(αi,R) are all isotopic

contact structures.

Observe that f(r)dφ∧ dαi,R > 0 away from the binding and αi ∧ f ′(r)dr ∧ dφ > 0

near binding. Now it is straightforward to compute that (1−t)α1,R+tα2,R is a contact

form for any t ∈ [0, 1] for large enough R. Then again Gray’s theorem implies that

ξ1 and ξ2 are isotopic as contact structures.
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Definition 5.0.14 (Contact cell decomposition). A contact cell decomposition of

(M, ξ) is a CW-decomposition of M such that the 1-skeleton is Legendrian and each

2-cell D satisfies tw(∂D,D) = −1 and the restriction of ξ to any 3-cell is tight.

The natural question is, does any contact 3 manifold admit a contact cell decom-

position? The next proposition shows exactly this.

Proposition 5.0.15. Let (M, ξ) be a closed contact 3-manifold. Then (M, ξ) admits

a contact cell decomposition.

Proof. The manifold M being compact implies that we can cover M with finitely

many Darboux balls. We can take a triangulation T that is fine enough so that

every 3-cell is contained in a Darboux 3 ball. Then a C0 perturbation of 1-skeleton

is Legendrian. We need to prove that tw(∂D,D) = −1. The Thurston-Bennequin

inequality given in Theorem 4.1.1, tells us that tw(∂D,D) ≤ −1 for each 2-cell. It

is a theorem of Kanda [46], that if Σ is any surface in a contact 3 manifold (M, ξ)

with Legendrian boundary satisfying tw(γ,Σ) ≤ 0 for all boundary components γ,

then Σ may be C0 small perturbed near the boundary and then C∞ perturbed on the

interior so as to become convex. So we can perturb D to make it convex. Now if some

face satisfies tw(∂D,D) < −1, then since D lives in a Darboux ball its dividing set

ΓD consists of −tw(∂D,D) ≥ 2, properly embedded arcs. We can find non-isolating

multicurve C ⊂ D such that each component of D\C contains exactly 1 component

of ΓD. By Legendrian realization principle we can make C Legendrian. We add C to

the 1-skeleton. This splits D into convex faces Di such that tw(∂Di, Di) = −1.

The 1-skeleton of a contact cell decomposition is a Legendrian graph G. Given a

graph like this one can find a surface S embedded in M such that G is a retract of

S. One can moreover arrange that TpS = ξp if and only if p ∈ G. We let L = ∂S and
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impose the condition that L is a transverse link. A surface satisfying these conditions

is called the ribbon of G.

Now the first step in proving the Grioux correspondence is to prove that L is the

binding of an open book decomposition of M with pages S. Then one proves that

this open book indeed supports with (M, ξ). Proving any of these propositions will

take us far from the topic of this thesis. Instead we refer the reader to [22] for their

proof. With this set up we can state one of the main results which we will use in this

thesis.

Theorem 5.0.16. Given any Legendrian knot K ⊂ (M, ξ), there is an open book

decomposition (L, π) such that L lies on one of the pages Sθ such that the framing

given by the page and the contact structure ξ agree.

Proof. Since K is a Legendrian knot, we can form a contact cell decomposition of

(M, ξ) which contains K in its 1-skeleton G. Then the Giroux’s construction proves

that L sits on a page of an open book decomposition supporting ξ.

Definition 5.0.17. Let (S, φ) be an abstract open book decomposition supporting

(M, ξ). A positive stabilization of (S, φ) is an open book decomposition of the form

(S ′, φτ̇c), where S ′ is obtained from S by attaching a 1-handle h along its boundary

and τc is a right handed Dehn twist along a curve c ⊂ S ′ which intersects co-core of

h exactly once.

Proposition 5.0.18. Let (S ′, φ′) be a positive stabilization of (S, φ). Then both

(S ′, φ′) and (S, φ) support the same contact structure.

Sketch of proof. We define the notion of plumbing of open books first. Let O1 =

(S1, φ1) and O2 = (S2, φ2) be two open books. The plumbing of these open books,

denoted O1 ∗O2 is defined as follows: Let ai ⊂ Si, i = 1, 2 be two properly embedded
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arcs with product neighbourhoods Ri = ai × I. Then O1 ∗ O2 is an open book

decomposition with page S = S1 ∪R1=R2 S2 glued together by a diffeomorphism so

that ai×{−1, 1} = ∂ai+1× [−1, 1] and the monodromy is φ1 ◦φ2. It is possible to see

that the plumbing supports a contact structure on manifold obtained by the connect

sum of contact manifolds.

It can be proved that positive stabilization is the same as the plumbing of the

existing open book with the one given by (A, τ), where A is an annulus and τ is the

Dehn twist about the core of the annulus. As seen in Example 5.0.12 above (A, τ)

supports the standard contact structure on S3. Connect summing with (S3, ξstd) does

not change the contact structure. So we see that positive stabilization preserves the

contact structure.

Theorem 5.0.19 (Giroux). Any two open books supporting (M, ξ) are related by

positive stabilizations.

We will need a way of stabilizing a knot on the page of the open book decompo-

sition. It is shown in the Figure 8.

The proof of this fact is easy to see, once we realise that the core curve of the

Hopf band gets a framing of −1 from the page.

One last piece we will need in our proofs of the classification of certain symplectic

fillings is the following thereom that relates the Legendrian surgery to open book

decompositions.

Theorem 5.0.20. Let (S, φ) be an open book decomposition supporting (M, ξ). If L is

a Legendrian knot sitting on a page of this open book decomposition so that the contact

framing and the page framing agree, then the contact manifold (M ′, ξ′) obtained by

performing contact (±)1 surgery along L is supported by open book decomposition

(S, φ ◦ τ∓L )
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Figure 8: Stabilizing a Legendrian knot on the page of an open book decomposition.
In the middle we show a Legendrian knot sitting on a page of open book decomposi-
tion, the right picture shows a positive stabilization of the knot and the left picture
shows a negative stabilization of the knot.

It is not too hard to see that topologically the manifold given by the new open

book decomposition (S, φ ◦ τ∓L ), is obtained by ±1 surgery along L. We just need to

check the contact structure is the one given by the Legendrian surgery. We refer the

reader to [22] for a detailed proof.

We finally mention that notion of open book has been extended to a more general

class by Lisi, Van Horn-Morris and Wendl. We briefly sketch the important ideas.

A spinal open book is a generalization of the standard open book decomposition

where the binding is allowed to be
∐n

1 (S1 × Σi) where Σi can be any surface with

boundary. In a standard open book decomposition the binding is
∐m

1 (S1 ×D2). An

abstract spinal open book is given by a 5-tuple (M, F̂ , φ̂, Σ̂, G). Here is M is the

3-manifold, F̂ is the fiber (can be disconnected), φ̂ is orientation preserving diffeo-

morphism of F̂ fixing boundary pointwise, Σ̂× S1 is the binding and G is a bijection

taking ∂F̂ to ∂Σ̂. If the contact manifold is fixed we will just denote the support-

ing spinal open book decomposition by (F̂ , φ̂, Σ̂, G). Roughly speaking, spinal open

books provide the right contact boundary for Lefschetz fibrations over non disk bases.
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One constructs the original manifold back from this data as follows. Form a surface

bundle over S1 with fiber F̂ and monodromy φ̂ and the trivial bundle S1 × Σ̂. We

glue the resulting boundaries together by the bijection G to identify the components

in such a way that the oriented boundary of a fiber F̂ is a collection of S1 fibers in

S1× Σ̂. It is also known that spinal open books under additional restrictions support

a unique contact structure. For the purposes of this thesis, we will assume that the

F̂ , Σ̂ are both connected.

We refer the reader to articles [53, 5] for details on spinal open books.
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CHAPTER VI

MAPPING CLASS GROUPS

In this section we recall basic notions from mapping class groups. We refer the reader

to [26] for more comprehensive introduction and proofs of results stated here. Let

(S, ∂S) be a pair such that S is a compact, orientable surface with boundary ∂S. The

mapping class group of the pair (S, ∂S) is defined by

Map(S, ∂S) = π0(Diffeo+(S, ∂S)).

Here Diffeo+(S, ∂S) denotes the set of orientation preserving diffeomorphisms

of S fixing the set ∂S pointwise. The set Map(S, ∂S) forms a group under com-

position. In other words Map(S, ∂S) is the group of isotopy classes of elements of

Diffeo+(S, ∂S), where isotopies fix the set ∂S pointwise.

A few examples are in order. The first example is that of a closed disk D2. It is

not too hard to see that Map(D2, ∂D2) is trivial. The second example is that of an

annulus. Let A denote an annulus, then Map(A, ∂A) ∼= Z. The mapping class group

of the annulus is generated by a particular diffeomorphism called the Dehn twist. We

proceed to define Dehn twist now.

Definition 6.0.21 (Dehn Twist). Let A denote the annulus S1 × [0, 1] with co-

ordinates (θ, t). Let T : A → A denote the twist map which can be written in terms

of the above co-ordinates as T (θ, t) = (θ + 2πt, t). It is easy to see that T is an ori-

entation preserving diffeomorphism of A which restricts to identity on the boundary.

This defines a Dehn twist on an annulus. For an arbitrary surface S and α a closed,

embedded curve in S, choose N to be a regular neighbourhood of α. The neighbourhood

N is orientation preserving diffeomorphic to an annulus. Denote the diffeomorphism
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by φ. We get the Dehn twist about α as:

τα(x) =

 φ ◦ T ◦ φ−1 if x ∈ N

x if x ∈ S\N

From the definition it is clear that the Dehn twist is identity outside the neigh-

bourhood N of the curve α. The isotopy class of the Dehn twist does not change

by an isotopy of the curve. So we can talk about the Dehn twist of an isotopy class

of curves without ambiguity. We now collect a few basic facts about intersection

numbers and Dehn twists. We refer the reader to Chapter 3 of [26] for the proofs of

these facts.

Fact 6.0.22. Let a and b be arbitrary isotopy classes of essential simple closed curves

on a surface and let k be any integer. Then,

i(τ ka (b), b) = |k|i(a, b)2

Here i denotes the geometric intersection number. Given any two curves α and β

we will assume that they are in minimal position i.e. α and β have been isotoped so

that they intersect minimally.

From this it is easy to see that Dehn twists have infinite order in the mapping

class group and in particular that Dehn twists are non-trivial elements of mapping

class groups.

Fact 6.0.23. Let {a1, a2, . . . , an} be a collection of pairwise disjoint simple closed

curves on a surface and let M =
∏n

i=1 τ
ei
ai

. Suppose ei > 0 for all i or ei < 0 for all

i. If b and c are arbitrary simple closed curves, then

|i(M(b), c)−
n∑
i=1

|ei|i(ai, b)i(ai, c)| ≤ i(b, c)

After these facts about intersection numbers, we collect some basic facts about

Dehn twists.
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Fact 6.0.24. Given any two curves a and b, τa = τb if and only if a = b.

Fact 6.0.25. For any element f of a mapping class group of a surface and any simple

closes curve a in S

τf(a) = fτaf
−1

Fact 6.0.26. For any element f of a mapping class group of a surface and any simple

closed curve a in S, f commutes with τa if and only if f(a) = a.

It is not clear till now whether the mapping class group of a surface is finitely

generated or not. This is given to us by the following theorem. Let Srg,n denote

an orientable surface of genus g ≥ 0,with n ≥ 0 boundary components and r ≥ 0

punctures.

Theorem 6.0.27. The mapping class group of Srg,n is finitely generated by Dehn

twists.

This theorem for closed surfaces in due to Dehn and Lickorish. We refer the

reader to [26] for the proof of this theorem. In fact more is true, the mapping class

group is a finitely presented group. An explicit set of generators for mapping class

group is given in [72]. For the purposes of this thesis we will need to know explicit

presentation only for planar surface (i.e. surface of genus 0) with a finite number of

boundary components. For this we use an explicit presentation given by [56]. We

proceed to describe the presentation now. In the following discussion Dn will denote

a disk with n open disks removed from interior.

We assume the boundary components are arranged at vertices of a regular n-gon.

We call a curve convex, if it is isotopic to the boundary of a convex hull of a collection

of boundary components. A Dehn twist about a convex curve is called convex Dehn

twist. According to [56], the mapping class group of Dn is generated by convex twists.

The relations are given by
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1. Let A and B be convex curves and τA, τB denote convex Dehn twists about

them. Then τAτB = τBτA if and only if A is disjoint from B.

2. Lantern relations τAτBτCτA∪B∪C = τA∪BτB∪CτA∪C, where A,B, C are disjoint

collection of boundary components and Dehn twists are convex Dehn twist

about them. In addition, we require that the boundary components are ordered

such that the cyclic clockwise ordering of boundary components in A followed

by those in B followed by those in C induces the the cyclic clockwise ordering

of boundary components in A ∪ B ∪ C.

6.0.1 Nielsen-Thurston classification of surface diffeomorphisms

One of the major results in mapping class group theory is the Nielsen-Thurston

classification of surface diffeomorphisms. We state the result first and then define

the terms involved.

Theorem 6.0.28 (Nielsen-Thurston). Let g, n ≥ 0 and Sng denote a genus g surface

with n punctures. Each f ∈Map(Sng ) is either periodic, reducible or pseudo-Anosov.

Furthermore, pseudo-Anosov mapping classes are neither periodic nor reducible.

We now proceed to define the different kinds of mapping classes.

Definition 6.0.29 (Periodic mapping classes). A periodic element of the mapping

class group is an element that has finite order.

Definition 6.0.30 (Reducible mapping classes). An element f ∈ Map(S) is called

reducible if there is a nonempty set {c1, c2, . . . , cn} of disjoint essential simple closed

curves such that {f(ci)} = {ci}. The collection of the curves is called the reduction

system for f .

Examples of reducible mapping classes are given by Dehn twists. Note that any

Dehn twist about an essential simple closed curve α fixes at least α.
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Now we define the pseudo-Anosov mapping class element. Before defining we

introduce the notion of measured foliation.

Let F be a (singular)foliation on a surface S. Let α and β be smooth arcs in S

transverse to F . Here transverse arc means that the arc misses the singular points

and the arc is transverse to leaves of F at each interior point.

A leaf preserving isotopy from α to β is a map H : I × I → S such that

• H(I × {0}) = α and H(I × {1}) = β.

• H(I × {t}) is transverse to F for all t ∈ [0, 1].

• Each arc H({0} × I) and H({1} × I) is contained in a single leaf of F .

A transverse measure µ on the foliation F is a function that assigns a positive real

number to each smooth arc transverse to F such that µ is invariant under a leaf

preserving isotopy and µ is regular with respect to the Lebesgue measure.

A measured foliation (F , µ) on a surface S is a singular foliation F of S equipped

with a transverse measure µ. We say two measured foliations (F1, µ1) and (F2, µ2)

are transverse if the leaves of the foliations are transverse away from the singularities.

Now we are finally ready to define pseudo-Anosov mapping class elements. Here we

restrict to either closed surfaces or surfaces with punctures. An element f ∈Map(S)

is called pseudo-Anosov if the surface admits two transverse measures foliations, the

stable foliation (Fs, µs) and the unstable foliation (Fu, µu), on S, and there is a

number λ > 1 called the stretch factor of f and a homeomorphism φ isotopic to a

representative of f , such that

φ ◦ (Fu, µu) = (Fu, λµu),

φ ◦ (Fs, µs) = (Fs, λ−1µs).

The map φ is called a pseudo-Anosov homeomorphism. This map is a diffeomor-

phism away form the singularities of stable and unstable foliations. The definition of
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pseudo-Anosov homeomorphism is not natural for surfaces with boundary. So when

thinking about pseudo-Anosov homeomorphism for surfaces with boundary we think

of it as homeomorphism that restricts to a pseudo-Anosov homeomorphism of sur-

face with punctures obtained by filling the boundary components with disks with

punctures.

In the proof of one of our theorems we will use an explicit construction of pseudo-

Anosov homeomorphism due to Thurston [71, 26]. We state the theorem here. In our

theorems we will use only the last part of this theorem.

Theorem 6.0.31 (Thurston). Suppose A and B are multicurves in S such that A∪B

fill the surface S. There is a real number µ and a representation ρ : 〈τA, τB〉 →

PSL(2;R) given by

τA 7→

1 µ1/2

0 1

 , τB 7→
 1 0

µ1/2 1


such that

• An element f ∈ 〈τA, τB〉 is periodic, reducible, or pseudo-Anosov according to

whether ρ(f) is elliptic, parabolic, or hyperbolic.

• When ρ(f) is parabolic f is a multitwist.

• When ρ(f) is hyperbolic, the stretch factor of f is equal to the larger of the two

eigenvalues of ρ(f).

In the special case when A and B are single curves α and β respectively, the

number µ is equal to i(α, β)2.

One would hope that the open book supporting a contact structure should carry

the information about tightness or overtwistedness explicitly in terms of the page

and the monodromy. In particular, information about the action of the monodromy

on the surface (which is a page of the open book decomposition), should have some

42



information about the overtwistedness of the manifold. This is given by following

characterization due to Honda, Kazez and Matic [43].

First we define the notion of right veering open books. Let S be a surface with

boundary and φ ∈Map(S, ∂S) a diffeomorphism which fixes the boundary. We call φ

right veering if for every x ∈ ∂S and every properly embedded arc α on S with an end

point at x, after isotoping β = φ(α), fixing the end points, to intersect α transversely

and minimally, the vectors β′(0), α′(0) form an oriented basis for TxS.

Theorem 6.0.32 (Honda-Kazez-Matic). A contact manifold (M, ξ) is tight if and

only if every supporting open book is right veering.

The notion of right veering is relevant to us because of the following important

theorem.

Theorem 6.0.33 (Honda-Kazez-Matic). The set V eer(S, ∂S) of right veering dif-

feomorphisms of the surface is a monoid under composition. Moreover, every right

handed Dehn twist in right veering.
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CHAPTER VII

SYMPLECTIC FILLINGS OF CONTACT MANIFOLDS

We finally begin our study of symplectic fillings of contact manifolds. The notion of

symplectic fillings require definition of symplectic manifolds. In our study of symplec-

tic fillings there is a nice interaction between symplectic manifolds with boundary and

Lefschetz fibrations with boundary. We start by describing generalities of symplectic

manifolds and Lefschetz fibration in the first subsection.

7.1 Symplectic manifolds and Lefschetz fibrations

Let M be a 2n dimensional manifold. A symplectic form ω on M is a closed (i.e.

dω = 0), nondegenerate differential 2-form such that ωn 6= 0. In other words, ωn is a

volume form on M . The 2-form ω is called a symplectic structure on M . We give a

few examples of symplectic manifolds.

Example 7.1.1. On R2n with co-ordinates (x1, y1, x2, y2, . . . , xn, yn), let

ωstd =
n∑
i=1

dxi ∧ dyi.

It is easy to check that dωstd = 0 for this 2-form. It is a simple linear algebra exercise

to check the nondegeneracy of ω.

An analogous statement of Darboux theorem holds for symplectic manifolds.

Theorem 7.1.2 (Symplectic Darboux theorem). Let (M2n, ω) be a symplectic mani-

fold. Then any point p ∈M has a neighbourhood U such that there is a diffemorphism

φ : V → U , where V an open set in R2n, such that φ?(ω) =
∑n

i=1 dxi ∧ dyi.

The content of the Darboux theorem is that, any symplectic manifold is locally

symplectomorphic to (R2n, ωstd).
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Any volume form on a surface is a symplectic form. So we know that all surfaces

admit a symplectic forms. One can ask whether every even dimensional manifolds

admit symplectic structures. The answer is no, as shown by following example.

Example 7.1.3. Let S4 denote the 4-dimensional unit sphere. As is well known,

H2(M) = 0. So if there was a 2 form ω such that dω = 0, that would imply that ω is

also exact i.e. there is a 1-form λ such that dλ = ω. So now the volume of sphere is

given by
∫
S4 ω ∧ ω =

∫
S4 dλ ∧ dλ =

∫
S4 d(λ ∧ dλ) =

∫
∂S4 λ ∧ dλ = 0. A contradiction.

So S4 does not admit a symplectic structure.

In the light of this example, one would hope that there is a characterization of

manifolds that admit a symplectic structure. The characterization, is given in terms of

Lefschetz fibrations. We define Lefschetz fibrations for the special case of 4 manifolds

below. First we define a few notions which will be needed later on.

Definition 7.1.4. Given a 2n dimensional manifold M , an almost complex structure

J on M is an automorphism J : TM → TM such that J2 = −Id on the tangent

space TpM for every p ∈M . We denote the space of almost complex structures on a

manifold M by J (M).

Given a symplectic manifold (M,ω), an almost complex structure J ∈ J (M) is

called compatible with ω if, ω(Jv, Jw) = ω(v, w) for all v, w ∈ TpM and ω(v, Jv) > 0

for all 0 6= v ∈ TpM . If only the second condition holds then the almost complex

structure J is called ω-tame. If J is a compatible almost complex structure then

gJ(v, w) = ω(v, Jw) defines a metric on M . We denote the space of compatible

almost complex structures by J (M,ω) and the tame almost complex structures are

denoted by Jτ (M,ω). The following is an important theorem which we record for the

sake of completeness here.

Theorem 7.1.5 (See [61]). The spaces Jτ (M,ω) and J (M,ω) are both non empty

and contractible.
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As with any study of manifolds, we will see that study of submanifolds of sym-

plectic manifolds will play an important role in our discussion. We define the two

important notions:

Definition 7.1.6. A submanifold S of a symplectic manifold (X,ω) is

1. Lagrangian: If dim(S) = 1
2
dim(X) and ω|S = 0.

2. Symplectic: If ω|S is non degenerate.

Definition 7.1.7. Let M4 be a 4 dimensional manifold and S be a compact surface

(possibly with non-empty boundary). Then a Lefschetz fibration is a smooth locally

trivial fibration π : M → S, with finitely many isolated critical values p1, p2, . . . , pn ⊂

int(S). Each critical point of π has an orientation preserving chart on which π is

given by π(z1, z2) = z1z2. For t 6= p1, . . . , pn, the fiber Ft = π−1(t) is called a regular

fiber. Otherwise it is called singular fiber.

Note that in a local co-ordinate chart around each critical point, the unique crit-

ical value is 0 and π−1(0) = {(z1, z2) : z1 = 0 or z2 = 0} is a pair of intersecting

planes. This is called the nodal singularity. Thus each singular fiber is an immersed

surface and each critical point corresponds to a positive transverse self intersection.

The nearby fibers which are all non-singular are obtained from the singular fiber by

resolving the intersection. Here by resolving the intersection we mean removing the

intersecting disks and replacing them with an annulus z1z2 = t. Equivalently each

singular fiber is obtained by pinching a circle in a nearby regular fiber, called the

vanishing cycle.

A Lefschetz fibration can be described combinatorially by means of their mon-

odromy. For a Lefschetz fibration π : E → B with fibers diffeomorphic to a surface

S, define the monodromy representation Ψ : π1(B − critical values) → Map(S) as

follows. Fix an identification φ of S with the fiber over a base point b in B. For
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each loop γ : S1 → B the bundle πγ : γ∗(E) → S1 is canonically given by an ele-

ment f ∈ Map(S), since γ∗(E) is diffeomorphic to S × [0, 1]/ ∼. Here ∼ is given

by (x, 0) ∼ (f(x), 1). Note that here we need a fixed identification φ of π−1
γ (0) and

π−1
γ (1) with S. Thus we obtain an element Ψ(γ) ∈Map(S).

Now we restrict to the case of Lefschetz fibrations over D2, π : X → D2. To

describe the topology of the Lefschetz fibration we recall some notions from topology.

We refer the reader to [37] for details.

Definition 7.1.8 (k-handle). A n-dimensional k-handle, 0 ≤ k ≤ n, is topologically

homeomorphic to Dk ×Dn−k. A k-handle is attached to the boundary of n-manifold

Mn, by an embedding f : ∂Dk ×Dn−k → ∂M . The new manifold will be written as

M ∪f h. The integer k is called the index of the handle h. We call Dk × 0 the core

of the handle h, 0 × Dn−k the cocore of h, f the attaching map, ∂Dk × Dn−k the

attaching region and 0× ∂Dn−k the belt sphere.

First note that for any Lefschetz fibration π : X → D2, the function |π|2 : X →

[0, 1] is a Morse function away from 0, with the same critical points as π. This gives us

a way of building X as a handlebody. First we start out by showing that a Lefschetz

critical point corresponds to a 4-dimensional 2 handle attached along a vanishing

cycle. Recall that near a critical point we can write π as π(z1, z2) = z1z2. It can

be easily checked that z1z2, is equivalent by a conformal change of co-ordinates to

z2
1 + z2

2 . So we can assume that near critical point we have a local chart such that

π(z1, z2) = z2
1 + z2

2 . So a regular fiber is given by z2
1 + z2

2 = t. We can assume that

t > 0 after multiplying π by a unit complex number. The intersection of the real part

of C2 with co-ordinates (x1, x2, y1, y2), with the fiber gives x2
1 + x2

2 = t in R2. This

circle bounds a disk Dt in R2. This is called the Lefschetz thimble. As t → 0, Dt

shrinks to a point in R2. Thus ∂Dt = Ft ∩ R2 is the vanishing cycle of the critical

point. So we see the singular fiber F0 is created from Ft by collapse of vanishing

cycle. Thus a regular neighbourhood νF0 is obtained from νFt by attaching a regular
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neighbourhood of Dt. A regular neighbourhood of Dt is a 2 handle h. It is easy

to see from this discussion that the attaching circle is the vanishing cycle. Now we

describe the framing of h. Suppose ∂νFt contains a disk Ds for some s < t. The core

of the 2-handle h is Ds and attaching circle is the vanishing cycle ∂Ds ⊂ ∂νFt. At a

point (
√
scos(θ),

√
ssin(θ), 0, 0) ∈ ∂Ds, vector w = (−sin(θ), cos(θ), 0, 0) is tangent

to ∂Ds. Note that v(θ) = (0, 0,−sin(θ), cos(θ)) on ∂Ds is also tangent to Fs since Fs

is a complex submanifold. Note that v and w are orthogonal. So v provides a normal

to ∂Ds in Fs. This framing has to be compared with the one we get by considering a

parallel copy of the attaching circle in the 2-handle. Note that in the tangent space

of 2-handle we can choose the corresponding vector field to be (0, 0, 0, i). This shows

that the two choices differ by 1. By taking orientation into account one can conclude

that the framing has to be −1.

We now describe the monodromy around each critical value for a general Lefschetz

fibration π : X → S. Let D be a disk contained in S. As observed before if D does

not contain any critical values, then π|D is trivial. Now assume that D contains a

unique critical value. From the above description of attaching map it is easy to verify

that the monodromy around the critical value is a positive Dehn twist about the

vanishing cycle.

Now we piece together all this data. Let π : X → D be a Lefschetz fibration over a

disk with n critical points lying in distinct fibers Fi = π−1(pi), i = 1, . . . , n. Choose a

regular fiber F0 = π−1(p0) and embedded arcs a1, . . . , an ⊂ D, where ai connects p0 to

pi. The arcs ai are disjoint except at p0. The arcs are cyclically ordered by travelling

counterclockwise around p0. Note that π−1(ai) determines a map gluing νFi to νF0.

Now the union is all of X except for a collar. So we can describe X as D2 × F0 with

n 2-handles h1, . . . , hn attached with the framing −1 to the vanishing cycle for Fi. In

the same way the monodromy can be described by an ordered n-tuple (φ1, . . . , φn)

of right handed Dehn twists of F such that φi is monodromy around pi. The total
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monodromy is given by φn ◦ φn−1 ◦ · · · ◦ φ1. The Lefchetz fibration π : X → D2 is

completely determined by the collection (φ1, . . . , φn) aside from cyclic permutation of

the indices and conjugation of the all the elements φi by a fixed element of Map(F )

and different choices of the arcs ai. Given two choices of {ai}, it is possible to go

between them by a sequence of moves, each of which changes the pair (φi, φi+1) to

(φi+1, φ
−1
i+1 ◦ φi ◦ φ1

i+1). This move is called the Hurewitz move.

Now if the base surface S is a sphere S2, then by assuming that all the critical

values are contained in upper hemisphere, we see that the total monodromy over

the upper hemisphere has to be trivial, as we can split up the original Lefschetz

fibration as fibration over the upper hemisphere and a Lefschetz fibration over lower

hemisphere. The fibration over lower hemisphere is trivial. So we see that the total

monodromy of the Lefschetz fibration over upper hemisphere has to be identity to get

a Lefschetz fibration over a sphere. We will not discuss Lefschetz fibrations over other

surfaces here. But the discussion above essentially describes Lefschetz fibrations over

arbitrary surfaces.

The theory of Lefschetz fibration ties up nicely with the symplectic geometry

due to following result, whose forward implication was proved by Donaldson and the

reverse implication is due to Gompf.

Theorem 7.1.9. A closed 4-manifold X admits a symplectic structure if and only if

it admits a Lefschetz fibration after finitely many blow-ups.

We have not formally defined blow-ups. For a smooth, oriented 4 manifold X, the

connect sum X ′ = X#CP 2 is called the blow-up of the manifold X. It is known that

if X admits a symplectic structure then so does X ′.

7.2 Symplectic Fillings

Before we actually begin our study of symplectic fillings, let us give some motiva-

tion. Recall, that any 3-manifold can be the boundary of a 4-manifold. To consider
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analogous statements for contact 3 manifolds we have to restrict to the class of “ap-

propriate”symplectic 4 manifolds which we will define shortly. In this context we

have the following theorem due to Eliashberg and Gromov.

Theorem 7.2.1 (Eliashberg-Gromov). Any weakly fillable manifold (M, ξ) is tight.

This already shows that there are obstruction to having a 4-manifold bound a

given contact 3-manifold in a symplectic way. Even if a contact 3 manifold bounds a

symplectic 4-manifold, there is a sever restriction on which symplectic 4 manifolds it

can bound. This is shown by following theorem of Gromov [39] and its strengthening

due to Eliashberg [11].

Theorem 7.2.2. The only symplectic filling of (S3, ξstd) is (B,ωstd) up to symplecto-

morphism and blow ups.

This is very different from smooth case and is unexpected. To begin our study of

symplectic fillings, we start by defining contact type hypersurfaces.

Definition 7.2.3. A vector field v on a symplectic manifold (X,ω) is called Liouville

vector field if Lvω = ω. A hypersurface Y ⊂ X of codimension 1 is of contact type if

there is a Liouville vector field, defined on a neighbourhood of Y that is transverse to

Y .

The Liouville vector field is also called a symplectic dilation. Note that Y being a

hypersurface determines a line bundle LY = TY ⊥, here the orthogonal complement

is the symplectic complement of TY in TM . This is a line bundle contained in TY .

We give a characterization of contact type hypersurfaces due to Weinstein [76].

Lemma 7.2.4. A submanifold Y ⊂ X is contact type if and only if there is a 1-form

α on Y such that dα = ω|Y and α|LY is never zero.

Proof. Suppose Y is a hypersurface of contact type and v is a symplectic dilation

transverse to Y . Then α′ = ivω is a 1-form defined in a neighbourhood of Y . By
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definition, ω = Lvω = (div + ivd)ω = dα′. Thus the 1-form α = i∗α′ satisfies the

first condition. For the second condition, suppose H : M → R is a function that

defines Y i.e. Y = H−1(c) for some regular value c of H. This allows us to define a

unique vector field vH such that dH = ivHω. One can check that the line bundle LY

is spanned by vH . Then α′(vH) = (ivω)(vH) = ω(v, vH) = −dH(v) 6= 0.

Suppose Y is a hypersurface and α is a 1-form on Y satisfying the given conditions.

One can extend the 1-form α to a 1-form α′ on a neighbourhood of Y so that dα′ = ω.

Since ω is nondegenerate, we get a vector field v so that ivω = α′.

It turns out that the symplectic structure is uniquely determined by, the Liouville

vector field v and the contact structure ξ = ker(α), in the tubular neighbourhood

of the surface Y . It is relatively easy to check that this is symplectomorphic to the

manifold Y × R with the symplectic structure given by ω = d(etα). The manifold

Y × R is called symplectisation of the contact manifold Y .

Definition 7.2.5 (ω-convexity). We say a codimension 0 submanifold U ⊂ X in

(X,ω) is ω-convex, if ∂U is contact type and the Liouville vector field point out of

∂U .

Definition 7.2.6 (Strong symplectic fillings). A contact 3 manifold (M, ξ) is called

strongly symplectically fillable if it is the ω-convex boundary of a symplectic 4-manifold

(X,ω).

Examples of symplectic manifolds with ω-convex boundaries can be found easily.

This is evident from following results. See [19] for proofs.

Theorem 7.2.7. Let S be a Lagrangian submanifold in a symplectic manifold (X,ω).

Then S has a tubular neighbourhood with ω-convex boundary. Moreover, if Si is

Lagrangian submanifolds of (X,ω), for i = 1, . . . , n with each pair of Si’s intersecting

ω-transversely, then ∪ni=1Si has a neighbourhood with ω-convex boundary.
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Interestingly the case for symplectic submanifolds is very different compared to

the Lagrangian case in the theorem above. For example consider, two symplectic

2 spheres in a symplectic manifold such that each has self intersection number −1

and a single transverse point of intersection between them. A neighbourhood N of

these spheres has boundary S1 × S2. After blowing down one of the −1 spheres we

get D2 × S2. If this boundary is convex we would get a strong symplectic filling of

S1 × S2 by D2 × S2. By a theorem of Eliashberg [11], this is never the case.

There are stronger notions of fillability of a contact manifold (M, ξ).

Definition 7.2.8 (Exact fillings). A strong symplectic filling (X,ω) of a contact man-

ifold (M, ξ) is called an exact filling if the Liouville vector field v is defined everywhere

on the manifold X. Another equivalent way of saying this is that ω is an exact 2 form

on the whole of X.

In the following discussion we will only say convex boundary instead of ω-convex

boundary. When the vector field v points into the manifold, we will call the boundary

concave. The importance of symplectic convexity is due to the fact that it can be

used in symplectic cut and paste operations.

Theorem 7.2.9 (Symplectic cut and paste). Let Ui ⊂ (Xi, ωi) be codimension 0

manifolds with ωi-convex boundaries (Mi, ξi) = ∂Ui. If there is a contactomorphism

f : (M1, ξ1)→ (M2, ξ2) then the manifold (X\U1)∪f U2 admits a symplectic structure.

Proof. Let αi = iviωi denote the contact forms on Yi and suppose f ∗α1 = gα2 where

g : M1 → R is a nonzero. By rescaling α2 we can assume that 0 < g < 1. In the sym-

plectization M1×R of (M1, ξ1), we have Y1
∼= M1×{1} and M2

∼= graph(ln(g)). Each

of these is a contact type hypersurface and has a neighbourhood Ni symplectomorphic

to a neighbourhood of ∂Ui. We can arrange that the neighbourhoods Ni cobound a

region T in the symplectization M1 ×R. Now we use the symplectomorphisms given

above, to get a new manifold:
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X = (X1\U1) ∪ T ∪ U2.

It is obvious that this manifold has a symplectic form and is diffeomorphic to

(X1\U1) ∪ U2.

One of the most interesting special cases of the symplectic cut and paste operation

is gluing a Weinstein 2-handle. We give a proof of the fact that a 2 handle can be

attached symplectically to a convex symplectic 4-manifold. This is originally due to

Weinstein [77]. Let ωstd = dx1 ∧ dy1 + dx2 ∧ dy2 denote the standard symplectic form

on R4. Let H denote the region defined by the inequalities

f = x2
1 + x2

2 −
1

2
(y2

1 + y2
2) ≥ −1

and

g = x2
1 + x2

2 −
ε

6
(y2

1 + y2
2) ≤ ε

2
.

The gradient of f is 2x1
∂
∂x1
− y1

∂
∂y1

+ 2x2
∂
∂x2
− y2

∂
∂y2

. It is easy to check that

Lvω = divω = ω. So v = ∇f is a Liouville vector field and is transverse to the

hyperplane f−1(−1) since 〈∇f, v〉 = |v|2 > 0, ∇f points out of H. Similarly, it is a

straightforward calculation to check that v is transverse to g−1( ε
2
) and points into H.

Hence v points out of H along g−1( ε
2
) and points into H along f−1(−1). Note that

the attaching circle

K1 = {x1, x2 = 0, y2
1 + y2

2 = 2} ⊂ f−1(−1) ∩ ∂H

is a Legendrian knot. Indeed, at a point(0, 0, y1, y2) it has a tangent vector w =

−y2
∂
∂y1

+ y1
∂
∂y2

. The contact form on the boundary is given by α = ivω = 2x2dy1 +

y1dx1 + 2x2dy2 + y2dx2. So we see that α(w) = 0. So we see that K1 is a Legendrian

knot. Similarly

K2 = {x2
1 + x2

2 =
ε

2
, y1 = y2 = 0} ⊂ g−1(

ε

2
) ∩ ∂H

is a Legendrian knot.
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Theorem 7.2.10 (Weinstein handle attachment). Let (M, ξ) be a ω-convex boundary

of (X,ω) and let L ⊂ M is a Legendrian knot. Then we can attach 2-handle H to

X along L so that the resulting manifold X ′ = X ∪H is symplectic with a symplectic

structure ω′ and the boundary ∂X ′ is ω′-convex.

Proof. We know from above discussion that K is a Legendrian knot in ∂H. Since

L ⊂M is also Legendrian both of them have contactomorphic neighbourhoods. This

follows from Legendrian negihbourhood theorem. Now the theorem follows in a sim-

ilar way to the symplectic cut and paste theorem.

This handle will be called Weinstein handle. Note that this handle attachment

replaces the neighbourhood N(L) of L in Y , with neighbourhood g−1( ε
2
) of K in

H. So Y ′ is obtained from Y by a surgery along a Legendrian knot. The following

theorem tells us the exact surgery framing.

Theorem 7.2.11. Attaching a Weinstein 2-handle to (X,ω) along a Legendrian knot

L in its ω-convex boundary M gives a symplectic manifold (X ′, ω′) whose boundary

M ′ is ω′-convex and is obtained by performing a Legendrian surgery along L.

Proof. The contact framing of L is a non zero section of ξ|L which is transverse to

TL. The attaching circle K has tangent bundle TK spanned by −y2
∂
∂y1

+y1
∂
∂y2

. Since

α = y1dx1 + y2dx2 along K, the contact framing is easily seen to be −y2
∂
∂x1

+ y1
∂
∂x2

.

The framing used to do surgery can be taken to be the constant vector field ∂
∂x1

.

It is easy to see that the the vector field −y2
∂
∂x1

+y1
∂
∂x2

makes full positive twist with

respect to ∂
∂x1

, as we travel along K. So we see that the framing we get by pushing

K off of itself in H is one less than the contact framing. The result follows.

This shows that Legendrian surgery preserves strong symplectic fillability. Now

we discuss even stronger notion of fillability called Stein fillability. There are several

equivalent ways of defining the Stein fillings of a contact manifold.
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Definition 7.2.12 (Stein manifold). A Stein manifold X is a complex manifold which

admits proper holomorphic embedding into Cn for some n. A (complex) two dimen-

sional Stein manifold is called a Stein surface. Another characterization of Stein

manifolds due to Grauert [38] is that, they are precisely the ones which admit an ex-

hausting strictly plurisubharmonic function f . A strictly pluri-subharmonic function

on (X, J) is a function f : X → R for which ω = −d(df ◦ J) is a symplectic form

that defines a metric gf (v, w) = ω(v, Jw) and for which the level set f−1(−∞, c] are

compact.

So we know that a Stein manifold admits a symplectic structure given by ω in the

above definition. We denote it by ωf to explicitly show the dependence on the function

f . Let ∇f denote the gradient vector field for the function f . Then by definition

of gradient vector field, i∇fgf = df . So i∇fωf (·, ·) = ωf (∇f , ·) = −gf (∇f , J ·) =

−J∗gf (∇f , ·) = −J∗df . So we can compute L∇fωf = di∇fωf + i∇fdωf = di∇fωf =

−dJ∗df = ωf . So we see that gradient vector field of a plurisubharmonic function

is a symplectic dilation. We also note here that the contact structure induced on

a hypersurface Y = f−1(c) for some regular value c is contactomorphic to the one

induced by complex tangencies i.e. ξ = TY |Y ∩ J(TY )|Y .

Definition 7.2.13 (Stein fillings). A complex two dimensional manifold (X, J) is

called a Stein filling of a contact 3 manifold, (M, ξ), if (X, J) is a Stein surface

such that (M, ξ) is contactomorphic to ωf -convex boundary f−1((−∞, c]) for some

regular value c where f is the strictly plurisubharmonic function associated to the

Stein manifold (X, J). The manifold f−1((−∞, c]) is called a Stein domain with

boundary M .

Eliashberg [12], proved that Weinstein handle attachment can also be done in the

category of Stein domains.

Theorem 7.2.14 (Stein 2-handle attachment). If (X, J) is a Stein domain with
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boundary M , then the complex structure on X and the plurisubharmonic exhausting

function f : X → R can be extended across the handle h, so that X ′ = X ∪ h is a

Stein manifold and M ′ = ∂(X ∪ h) is the level set of a regular value.

It follows that Legendrian surgery preserves Stein fillability. Using this Eliashberg

gave a characterization of Stein manifolds [12, 36].

Theorem 7.2.15 (Stein characterization). An oriented 4-manifold is a Stein man-

ifold if and only if it has a handle decomposition with all handles of index less than

or equal to 2 and each 2-handle is attached to a Legendrian knot L with the framing

on L being the (−1)-framing with respect to the contact planes.

The importance of Stein and strong symplectic fillings is given by the fact that

they can be used in symplectic cut and paste as described above. Symplectic cut

and paste is an important operation in constructing interesting symplectic manifolds.

Apart from these there is an important type of filling of a contact manifold.

Definition 7.2.16. A contact manifold (M, ξ) is called weakly symplectically fillable

if there is a symplectic manifold (X,ω) such that ∂X = M and ω|ξ > 0.

The importance of definition of weak symplectic filling has origins in a theorem

due to Eliashberg and Thurston [15], which states that any taut foliation on a 3-

manifold M can be perturbed to be a contact structure that is weakly fillable and

Theorem 7.2.1.

With all these different notions of symplectic fillability of contact manifolds we

have following implications which are obvious from the definitions and above discus-

sion.

(Stein filling)⇒ (Strong filling)⇒ (Weak filling)⇒ (Tight)

Let (Stein fillable), (Exactly fillable), (Strongly fillable), (Weakly fillable) and

(Tight Structures) denote the sets of contact manifolds that are Stein fillable, ex-

actly fillable, strongly fillable, weakly fillable and tight, respectively. In light of
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the above implications we would like to know if the inclusions (Stein fillable) ⊂

(Exactly fillable) ⊂ (Strongly fillable) ⊂ (Weakly fillable) ⊂ (Tight Structures)

are strict? Note that we have used the Eliashberg-Gromov theorem stated at the

start of this section to conclude that fillable implies tight. We now proceed to state

examples which show that each of these inclusions is strict.

Tight not Weakly fillable contact structure: Examples of tight but now

fillable contact structures were first given by Etnyre and Honda [25]. They prove that

the Seifert fibered spaces S(−1
2
, 1

4
, 1

4
) fibered over S2 carries a tight but not fillable

contact structure. The proof relies on a result due to Lisca [49] that S(−1
2
, 1

3
, 1

4
) does

not carry any symplectically fillable contact structure and that symplectic fillability

is preserved under Legendrian surgery. They prove that the Seifert fibered space

S(−1
2
, 1

3
, 1

4
) is obtained from S(−1

2
, 1

4
, 1

4
) by a Legendrian surgery, thus proving the

existence of non fillable contact structure. We remark that there are plethora of

examples of tight, but not fillable contact structure now with the advent of new

techniques [58, 79, 62, 4].

Weak but not strongly fillable contact structures: First examples of weakly

but not strongly fillable tight contact structures were given by Eliashberg [16]. Re-

call that we have a family of contact structures on T 3 given by ξn = ker(αn) =

ker(cos(nθ)dx+ sin(nθ)dy). Here we (x, y, θ) are co-ordinates on T 3. All these con-

tact structures are tight as they have universal covering (R3, ξstd). We can prove

easily that these are all weakly fillable. The form αεn = (1 − ε)dθ + εαn is a contact

form on T 3. By Gray’s theorem all of them are isotopic to αn for each ε > 0. Let

X = T 2 × D2 be a symplectic manifold with the symplectic structure given by the

product symplectic structure coming from T 2 and D2. Note that the tori T 2 × {p},

p ∈ ∂D2 contained in the boundary 3-torus T 2 × ∂D2 are symplectic and are given

by dθ = 0. These tori satisfy ω|T 2×{p} > 0. Now symplectic being an open condition,

ω does not vanish on ker(αεn) for small enough ε . So we get that every αn is weakly
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symplectically fillable.

Eliashberg [16] proves that the contact structures ξn are not strongly fillable for

n > 1. We present the argument here. Let T = {|z1| = 1, |z2| = 1} ⊂ C2. This torus

is easily seen to be Lagrangian with the standard symplectic strucutre on C2. We

claim that a small neighbourhood N of T has convex boundary ∂N = T 3. To see

this, one notes that T 2 ×D2 is a unit cosphere bundle of T 2. It is easy to check that

the radial vector field in the cotangent bundle is the Liouville vector field for this

symplectic manifold and so induces a contact structure ξ1 on ∂N . By the Lagrangian

neighbourhood theorem, we know that there is a neighbourhood of any Lagrangian

L that is symplectomorphic to a unit bundle of L in T ∗L. The contact structure

ξ1 = ker(α1), on ∂N is the standard contact structure given by complex tangencies

and the contact structure is contactomorphic to ξ1. Let Y = C2\int(N). We endow

both Y and N with symplectic restrictions of the standard symplectic structure ω.

The torus T 3 is the symplectically concave boundary of Y and convex boundary of

N . For any n there is a n-sheeted cyclic cover qn : Yn → Y , such that its restriction

to the boundary coincides with the covering pn : T 3 → T 3 and the contact structure

on Yn is αn. Here the covering map on the boundary is such that the S1 factor given

by θ is covered n times. The noncompact manifold (Yn, ωn = q∗n(ω)) has n ends, and

each of them is symplectomorphic to (R4, ωstd) at infinity. It has concave boundary

(T 3, ξn). If (T 3, ξn) is strongly symplectically fillably we obtain, by symplectic cut

and paste, a manifold which has n ends all of them symplectomorphic to (Rn, ωstd).

This is not possible for n > 1, due to a theorem Mcduff [60], which states that if

(S3, ξstd) is a convex boundary component of any symplectic manifold (S,Ω) with

convex boundary, then the boundary is connected. Hence, we know that n = 1 and

for n > 1 the contact structures are not strongly fillable.

These examples were generalized by Ding and Geiges [8] to some torus bundles over

the circle. On a torus bundle TA over a circle with monodromy A ∈ SL2(Z), tr(A) 6=
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−2, they construct infinitely many fillable contact structures. They also prove that

only finitely many of them are strongly fillable. This is done by finding a Legendrian

surgery on a knot in TA which gives T 3 with the one of the contact structures that

Eliashberg shows are not strongly fillable.

Strongly fillable but not Stein fillable contact structure: These examples

were first found by Ghiggini [32]. The manifolds are obtained by 1
(n+1)

surgery on

the trefoil. Ghiggini proves that a particular contact structure on these manifolds is

not Stein fillable for n ≥ 2 and even, but is strongly fillable. The manifolds can be

understood as 0 surgery on the trefoil and a −(n + 1) surgery on its meridian. The

3-manifold obtained by 0-surgery along the trefoil is a torus bundle over S1. The mon-

odromy of this torus bundle is well understood and is the ones used by Ding-Geiges

in their examples mentioned above. These contact structures are all weakly fillable

in a similar way as proved for T 3 above. Now the manifold of interest is obtained as

a (n+ 1) surgery along meridian of this knot. Ghiggini proves that this meridian can

be realized as a Legendrian knot with twisting −n and hence the manifold is obtained

as a Legendrian surgery, in the 0 surgered manifold. The resulting manifold is an in-

tegral homology sphere as can be verified by simple intersection matrix computation.

It is weakly fillable as Legendrian surgery preserves weak fillability. On homology

spheres Eliashberg [14] proves that any weak symplectic filling can be perturbed to a

strong symplectic filling. Therefore, we have a strongly fillable contact manifold. To

prove that this is not Stein fillable Ghiggini uses Heegaard-Floer homology. See [32].

Exactly fillable but not strongly fillable: These examples were found by

Bowden [7] and build upon the examples of Ghiggini. Take a symplectic manifold

which has two convex boundary components, one of which is the example given by

Ghiggini. Such examples exist by a construction of McDuff [60] and Geiges [30].

Now one attaches a Weinstein 1 handle along the boundary components. This gives

a symplectic manifold with connected convex boundary and the boundary is the
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connect sum of the original boundary manifolds. If it were Stein fillable, a theorem of

Eliashberg [11] would imply each of the individual contact structure was Stein fillable.

A contradiction. Now one proves that the new manifold obtained is exactly fillable

by looking at long exact sequence in homology.

In the light of all these results it is important to ask when are any of these notions

equivalent? It follows from a result of Eliashberg [14], that one can perturb any

weak symplectic filling of a rational homology sphere to a strong symplectic filling.

Ghiggini’s examples mentioned above show that on rational homology spheres, one

cannot perturb any strong filling to a Stein filling. Wendl’s theorem [78], on which

a large portion of this thesis is based says that this is possible in the case of contact

manifolds supported by planar open books. We state the theorem now.

Theorem 7.2.17 (Wendl [78]). If (M, ξ) is a manifold supported by a planar open

book decomposition, then any strong symplectic filling of (M, ξ), is a blow up of a

Stien filling.

A generalization of this theorem to weak fillings was done by Wendl and Niederkruger [62]

Theorem 7.2.18 (Wendl-Niederkruger). If (M, ξ) is a contact manifold supported

by planar open book, then every weak filling of (M, ξ) can be deformed to a blow up

of a Stein filling.

The main goal of this thesis is to understand what can we say about the set of

Stein fillings of a given contact manifold? In particular, we would like to classify the

Stein fillings up to either symplectomorphism or diffeomorphism.

7.2.1 Lefschetz fibrations and Stein fillings

Let π : X → D2 be a Lefschetz fibration with fiber a surface S. Recall from topolog-

ical construction of Lefschetz fibrations that we construct the Lefschetz fibration by

attaching 2-handles to S×D2, along knots given by the vanishing cycles with framing
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−1. Now it follows from theorem of Eliashberg and its extension by Gompf that this

manifold is Stein. Note that the boundary of a Lefschetz fibration is a contact mani-

fold with open book decomposition given by (S, φ) where φ is the total monodromy of

the Lefschetz fibration π. One would like to know whether the converse hold, i.e, can

every Stein surface be given the structure of a Lefschetz fibration? This is a theorem

of Akbulut-Ozbagci [1] and independently due to Loi-Piergallini [54]

Theorem 7.2.19. If (X, J) is a Stein domain then X admits a Lefschetz fibration

such that the vanishing cycles are homologically essential.

We will not give a proof of this theorem. We refer the reader to the papers men-

tioned above for the proofs. Now if (X, J) is a Stein domain, then ∂X has a natural

contact structure as a boundary of a Stein domain. Also since, this Stein domain

admits a Lefschetz fibration structure, the boundary gets an induced open book de-

composition. It is not clear whether this open book decomposition is compatible with

the contact structure induced on the boundary ∂X. It turns out this is the case, due

to a theorem of Plamenevskaya [64]

This gives a characterization of Stein fillings in terms of supporting open book

decomposition.

Theorem 7.2.20 (Giroux). A contact manifold (M, ξ) is Stein fillable if and only if

there is an open book decomposition for (M, ξ) whose monodromy is written a product

of right-handed Dehn twists.

Proof. Suppose that φ = τa1 . . . τan is a positive factorization about homologically non

trivial curves in a surface Sg,n. Then the positive Lefschetz fibration with monodromy

φ given by a positive factorization, gives a Stein filling of (M, ξ). Given (M, ξ), any

Stein filling of (M, ξ) can be constructed as a Lefschetz fibration π′ : X ′ → D2 and

thus induces an open book compatible with the contact structure (M, ξ).
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Note that the proof says that any Stein fillings of (M, ξ) comes from a positive

factorization of the monodromy of some open book decomposition supporting ξ. So to

find all Stein fillings of a given contact structure we must find all positive factorizations

of the positive monodromies for every possible compatible open book. We remark

here that, there are examples of open book decompositions supporting a Stein fillable

contact structure whose monodromy cannot be factored as a product of positive Dehn

twists. These examples were first found by Baker, Etnyre, and Van Horn-Morris [3]

and independently by Wand [74].

In the case of planar open books, we have the following result of Wendl, which

states that any Stein filling of (M, ξ) extends to a Lefschetz fibration with the same

page.

Theorem 7.2.21 (Wendl). Suppose (X,ω) is a strong symplectic filling of a planar

contact manifold (M, ξ) and (B, π) is a planar open book decomposition supporting

ξ. Then there is an enlarged filling (X ′, ω′) obtained by attaching a trivial symplectic

cobordism to X, such that X ′ admits symplectic Lefschetz fibration Π : X ′ → D for

which Π|∂X′\B = π. Moreover, Π : X ′ → D is allowable if X is minimal.

A Lefschetz fibration is called allowable if the vanishing cycles are homologically

essential curves in the fibers. As a corollary we get the following result.

Corollary 7.2.22. If (M, ξ) is a contact manifold supported by a planar open book

(Σ, φ), then it is strongly fillable (thus Stein fillable) if and only if φ is isotopic to a

product of positive Dehn twists.

Proofs of these theorems require the machinary of pseudo-holomorphic curves and

will take us too far away from the main topic of this thesis. But the important

implication for us is that to classify Stein fillings of a contact manifold supported by

a planar open book, we need to find all positive factorization of a given monodromy

up to a global diffeomorphism of the page and Hurewtiz moves. This is our strategy to
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understand and classify Stein fillings of some planar contact manifolds. This strategy

was used by Plamenevskaya and Van Horn-Morris [66] to classify Stein fillings of some

contact structures on lens spaces.

7.3 Classification of Stein fillings:

In this section we describe all the known results about the classification of Stein

fillings for any contact manifold. We have a theorem of Gromov.

Theorem 7.3.1 (Gromov). Every Stein filling of (S3, ξstd) is diffeomorphic to 4-ball.

Eliashberg [11] extended this to show that the filling is symplectomorphic to the

symplectic ball in C2.

Following this McDuff [59] proved a classification of Stein fillings of the universally

tight contact structure on the lens spaces L(p, 1). We remark here that by a result

of Honda [42] and Giroux [35] any lens space has exactly 1 universally tight contact

structure up to contactomorphism. We will denote this structure by ξstd.

Theorem 7.3.2 (McDuff). Any lens space (L(p, 1), ξstd) has a unique Stein filling

except when p 6= 4 up to diffeomorphism. When p = 4 it has exactly 2 Stein fillings

up to diffeomorphism.

This theorem of McDuff was improved to symplectic deformation equivalence by

Hinds [41]. Classification, up to diffeomorphism, of Stein fillings of any lens space

(L(p, q), ξstd) was given by Lisca [50].

Ohta and Ono classified Stein fillings of certain links of isolated singularities. By

a link of isolated singularity we mean intersection of a hypersurface given by non

constant polynomial f(z1, z2, z3) = 0 with a sphere S5
ε of a small radius ε centered

around a point which is an isolated critical point of f . We denote this by Lε. If the

sphere is not centered around a critical point the intersection is diffeomorphic to 3

sphere. A link of isolated singularity Lε carries a natural contact structure given by

complex tangencies.
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A simple singularity is an isolated singularity of one of the following polynomial:

xn+1 + yz, x2y+ yn−1 + z2, x4 + y3 + z2, x3y+ y3 + z2, x3y+ y3 + z2, x5 + y3 + z2. A

minimal symplectic filling is a filling which is not a blow up of another filling. Ohta

and Ono prove the following theorem [63].

Theorem 7.3.3 (Ohta-Ono). Let X be any minimal symplectic filling of a link of

simple singularity. Then the diffeomorphism type of X is unique. Moreover, the

symplectic deformation type of X is unique.

Stipsicz [68] classified Stein fillings of T 3 with the uniquely Stein fillable contact

structure. He proved that the Stein filling is homeomorphic to T 2 × D2. Later

Wendl [78] proved that up to symplectomorphism T 2×D2 is a unique Stein filling of

T 3.

After this using Wendl’s result on planar open books, Plamenevskaya and Jeremy

Van Horn-Morris [66] classified Stein fillings of virtually overtwisted lens spaces L(p, 1).

Theorem 7.3.4 (Plameneskaya-Van Horn-Morris). Let ξ denote a virtually over-

twisted contact structure on the lens space L(p, 1), then (L(p, 1), ξ) has a unique Stein

filling up to symplectic deformation.

We remark here that there are examples of manifolds with infinitely many Stein

fillings. See for example [2].
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CHAPTER VIII

GEOGRAPHY OF STEIN MANIFOLDS AND

CLASSIFICATION FOR LENS SPACES

In this section we prove theorems about the geography problem for Stein fillings of

contact structures supported by planar open books. In addition, we also classify

Stein fillings of some lens spaces. We start out by characterizing lantern relation in

the mapping class group.

8.1 Characterization of lantern type relations.

The aim of this section is to give a characterization of the lantern relation. Along

with the combinatorial arguments in Section 8.2 this gives us the ingredients required

for the proofs of our theorems on the classification of symplectic fillings of lens spaces

and the geography.

We will denote the geometric intersection number of curves and arcs by i. For this

to be well-defined we assume all curves are isotoped to have minimal intersections.

Recall the classical lantern relation which states states that τb1τb2τb3τb4 = τατβτγ.

Here α, β, γ are curves as shown in Figure 9 and b1, . . . , b4 denote the curves isotopic

to the boundary component as shown.

Lemma 8.1.1. Let α′, β′ ∈ D3 be curves that enclose the same set of boundary

components as α, β respectively and satisfy τατβ = τα′τβ′. Then there is N ∈ Z such

that α′ = τNγ (α) and β′ = τNγ (β).

Proof. Observe that τατβ = τα′τβ′ = τb1τb2τb3τb4τ
−1
γ .

We will use the following characterization of multitwists due to Margalit [55] and

independently due to Hamidi-Tehrani [40]. By a multitwist we mean product of Dehn
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Figure 9: Classical Lantern relation.

twists about disjoint curves.

Proposition 8.1.2. Let S be any surface and let α1 and α2 be curves in S that

intersect minimally and non trivially. If τα1τα2 = M , where M is a multitwist be a

non-trivial relation in Map(S), then the given relation is a lantern relation, that is,

a regular neighbourhood R of α1 ∪ α2 is a sphere with 4 open disks removed from the

interior, and M = τb1τb2τb3τb4τ
−1
α3

. Here b1, . . . , b4 are curves isotopic to the boundary

components of R and α3 is a (non-unique) curve on R with geometric intersection

number 2 with both α1 and α2.

Hence we know that i(α′, β′) = 2. Similarly we get the following relations between

intersection numbers i(α′, γ) = i(γ, β′) = 2.

Since curves α and α′ are homologous, there exists a diffeomorphism φ1 which

takes the curve α to α′. Similarly, there exists a diffeomorphism φ2 which takes

the curve β to β′. We claim that after isotopy the support of each of φ1 and φ2 is

contained in the subsurface bounded by the curve γ. If φi is not a diffeomorphism

supported in the subsurface bounded by γ, then we will show that each of the curves

α′ = φ1(α) and β′ = φ2(β) must intersect curve γ at least six times contradicting the

computation of intersection numbers above. One way to see this is by thinking of the
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curves enclosing two different boundary components as represented by an arc joining

the two boundary components. We can impose the condition that these arcs minimize

the intersections with the boundary parallel curves corresponding to the boundary

components they connect. We have shown the arcs representing the curves α, β, and

γ in the Figure 9 and are denoted by a, b, and c, respectively. In this case, arcs a

and b do not intersect the arc c. Now if φ1 were a diffeomorphism not supported in

the subsurface bounded by the curve γ, then φ1(a) will intersect the arc x shown in

Figure 9 non-trivially. Otherwise we could find a diffeomorphism φ′1 whose support

is contained in the subsurface bounded by the curve γ such that φ′1(a) is isotopic to

φ1(a). Since φ1(a) intersects x nontrivially, it also intersects the arc c non-trivially.

If not then, one can isotope the arc φ1(a) to have no intersection with arc x. Since

φ1(a) represented the curve α′ this implies that the i(α′, γ) ≥ 6.

Since any diffeomorphism which is supported in subsurface bounded by the curve

γ is written as a product of Dehn twists given by τγ, τb2 , τb3 , we get that φ1 = τN1
γ

and φ2 = τN2
γ . Here we have neglected the boundary Dehn twists τb2 and τb2 as they

act trivially on curves α and β.

Now to prove the lemma we need to show that N1 = N2. Towards that end we

recall following criterion on intersection numbers (see [26]).

Proposition 8.1.3. Let A,B,C be any simple closed curves in a surface S and let

n ∈ Z. Then following holds,

|n|i(A,B)i(A,C)− i(τnA(C), B) ≤ i(B,C)

We apply this proposition with curves A = γ,B = β, C = α. Let us assume that

N1 > N2.

Note that 2 = i(α′, β′) = i(τN1
γ (α), τN2

γ (β)) = i(τN1−N2
γ (α), β). Applying the

proposition we get,
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|N1 −N2|i(γ, β)i(γ, α)− i(τN1−N2
γ (α), β) ≤ i(β, α) = 2.

So we see that,

4|N1 −N2| − 2 = |N1 −N2|i(γ, β)i(γ, α)− i(β, α) ≤ i(τN1−N2
γ (α), β).

This gives a contradiction unless |N1 − N2| = 0 or 1. Now we are only left to

prove that the case N1 − N2 = 1 cannot happen. First we prove this when N1 = 1

and N2 = 0. This implies that β′ ∼= β and α′ ∼= τγ(α). In particular, α′ � α. From

the hypothesis we have, τατβ = τα′τβ and hence τα = τα′ . This in turn implies that

α′ ∼= α, which is a contradiction.

Now let us assume that N1 = N2 + 1 and N2 6= 0. From the hypothesis τατβ =

τ
τ
(N2+1)
γ (α)

τ
τ
N2
γ (β)

= τb1τb2τb3τb4τ
−1
γ . Conjugating by τ−N2

γ on both the sides we see that

ττγ(α)τβ = τb1τb2τb3τb4τ
−1
γ = τατβ. Hence we have reduced the problem to the case

when N1 = 1 and N2 = 0, in which case we already have proved the contradiction.

So we get that N1 = N2.

Now we prove the uniqueness of curves giving a lantern relation in the following

lemma.

Lemma 8.1.4. Let α, β, γ be curves as shown in Figure 9 and α′, β′, γ′ be curves which

enclose the same set of boundary components as α, β, γ, respectively. In addition,

suppose that τατβτγ = τα′τβ′τγ′. Then there exists a diffeomorphism ψ of D3 such that

γ′ ∼= ψ(γ), α′ ∼= ψ(α), and β′ ∼= ψ(β).

Proof. Since γ′ and γ enclose the same set of boundary components, there exists

a diffeomorphism λ taking γ′ to γ. Conjugating by λ still gives a factorization of

τα′′τβ′′τγ = τατβτγ as τb1τb2τb3τb4 commutes with every diffeomorphism. Here, α′′ =

λ(α) and β′′ = λ(β). Now we can apply Lemma 8.1.1 above to conclude that α′′ ∼=
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τNγ (α), β′′ ∼= τNγ (β). Hence, if we let ψ = τNγ λ, we get that α′ = ψ(α), β′ = ψ(β), γ′ =

ψ(γ). This proves the lemma.

8.2 Combinatorial arguments

In this section we give the combinatorial arguments needed in proofs of our re-

sults. Given a diffeomorphism Φ = τα1τα2 . . . ταm of a surface Dn, written as a

product of Dehn twists about curves α1, α2, . . . , αm. ands another factorization of

Φ = τγ1τγ2 . . . τγk we try to pin down the number of Dehn twists τγi and the boundary

components, the curves γ1, γ2, . . . , γk can enclose.

Before proceeding further we define homomorphisms from Map(Dn, ∂Dn) to Z,

which define multiplicities associated to Dehn twists. Let Φ ∈ Map(Dn, ∂Dn) be a

diffeomorphism. Let bi and bj be any boundary components of Dn.

Definition 8.2.1 (Joint Multiplicity). Capping off all the boundary components

of Dn except bi and bj and the outer boundary with disks and capping off boundary

components bi and bj with disks we obtain a map to Z ⊂ Map(D2, ∂D2) ∼= Z3, which

just counts the number of Dehn twists about the curve parallel to the outer boundary.

We call this the joint multiplicity of boundary components bi and bj and denote it by

Mij(Φ).

Definition 8.2.2 (Mutiplicity). Cap off all the boundary components except bi and

the outer boundary. This induces a map from Map(Dn, ∂Dn) to Map(D1, ∂D1) ∼= Z

and the map counts the Dehn twists about the boundary parallel curve. We call this

the multiplicity of boundary component bi. Denote it by Mi(Φ).

Remark 8.2.3. These homomorphisms were also defined and used in the paper by

the author in [44]. Our definition of multiplicity differs slightly from the one defined

in [66]. The multiplicity (denoted mi(Φ)) defined there is Mi(Φ) −
∑
Mij(Φ). It is

also clear that these are invariants of any factorization of Φ.
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Lemma 8.2.4. Let Φ = τb1τb2 . . . τbn+1, where the curve bi is parallel to the ith bound-

ary component, be an element of Map(Dn.∂Dn). Let Φ′ = τα1τα2 . . . ταm be any other

positive factorization of Φ. Then:

1. If n ≤ 2 or n ≥ 4, then m = n + 1 and each of the curves αi is a boundary

parallel curve bj for some j.

2. If n = 3, then either Φ′ is Hurewitz equivalent to τb1τb2 . . . τbn+1 or Hurewitz

equivalent to τα1τα2τα3, where α1 encloses boundary components b1 and b2, α2

encloses boundary components b1 and b3 and α3 encloses boundary components

b2 and b3.

Proof. Observe that Mij(Φ) = 1 for all i, j and Mi(Φ) = 2 for all 1 ≤ i ≤ n.

Let li be the number of curves that enclose boundary component bi and at least

one more boundary component in the factorization Φ′ of Φ. Also let nj, 1 ≤ j ≤ li

denote the total number of boundary components enclosed by each of these li curves.

It follows from the definition of Mi and the fact that Mi(Φ) = 2 that for each i,

1 ≤ li ≤ 2, in any positive factorization of Φ. We will prove that if li = 1 for some

i, then li = 1 for all i. To prove this, without loss of generality we can assume that

l1 = 1. This means that there exactly one curve enclosing the boundary component b1

and at least one more boundary component. Let us call the curve α. Since M1i(Φ) = 1

for all i, we conclude that α encloses all the boundary components b1, b2, . . . , bn. Now

by the fact that Mij(Φ) = Mij(Φ
′) = 1 for all i, j, we see that α is the unique curve

enclosing all the boundary components. In this case all joint multiplicities of all the

boundary components are satisfied. Hence, in the factorization of Φ all other Dehn

twists are about boundary parallel curves. Hence we get that, li = 1 for all i. Since

all the curves involved are boundary parallel, this factorization is the same as the

original.

Now let us assume that li = 2 for all i. This means there are exactly two curves, α1

70



and α2, enclosing the boundary component b1. If i 6= 1 and the boundary component

bi is enclosed by α1, then the boundary component bi cannot be enclosed by the

curve α2. This is because M1i(Φ
′) = 1. Hence we see that curves α1 and α2 have

only the boundary component b1 in common. Let us assume that curve α1 encloses

k boundary components (k < n). Without loss of generality, we can assume that α1

encloses boundary components b1, b2, . . . , bk and α2 encloses boundary components

b1, bk+1, . . . , bn. Now we make an assumption that n > 3. In this case, as l2 = 2 and

M2j = 1 for all j ≤ n, we can conclude that there is a curve α3 enclosing boundary

components b2, bk+1, . . . , bn. This contradicts the fact that Mk+1,n = 1 as in this case

α2 and α3 are curves containing both the boundary components. If k + 1 = n, then

instead of the boundary components b2 we apply the same argument to boundary

component bn. In this case, α3 will enclose boundary components b2, . . . , bn which is

a contradiction to the fact that M2(n−1) = 1, unless n = 3. In the case that, n = 2

there is nothing to prove as M12 = 1 would imply that there is a unique curve. This

proves part 1 of the lemma.

When n = 3 and li = 2, we see that there is a configuration of curves, α1 enclosing

boundary components b1 and b2, α2 enclosing boundary components b1 and b3 and

curve α3 enclosing boundary components b2 and b3, satisfying the given multiplicities

conditions. In this case all the multiplicities, Mij and Mi are satisfied for all i and j.

Observe that a priori we do not know the order in which τα1 , τα2 and τα3 appear

in the factorization of Φ′. We can always rearrange the terms such that Φ′ is given

by τα1τα2τα3 . For example, if Φ′ = τα2τα1τα3 , then we can rearrange this as Φ′ =

τα1τ
−1
α1
τα2τα1τα3 = τα1ττ−1

α1
(α2)τα3 . Noting that conjugating by τ−1

α1
does not change the

boundary components enclosed by the curve α2, we still call this new curve α2. This

proves part 2 of the lemma.

Remark 8.2.5. As seen in the proof above, we can always reorder the elements in
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factorization upto conjugation since we are only concerned with factorizations up to

Hureqitz equvalence. Henceforth, we will assume that the Dehn twists are arranged in

the order as in the statement of theorems.

Now we give a generalization of this lemma. Here we assume that n ≥ 3. It is very

easy to see, from the proof of the lemma above, that when n ≤ 2 there is a unique

positive factorization of any given element of the mapping class group as every Dehn

twist is boundary parallel.

Lemma 8.2.6. Assume that n ≥ 3. Let Φ = τ rb1τb2τb3 . . . τbn+1, where r > 1, be an

element of Map(Dn.∂Dn). If Φ′ is any other positive factorization of Φ, then following

holds:

1. If r ≥ n− 2, then the factorization Φ′, up to Hurewitz equivalence, is given by

τ rb1τb2τb3 . . . τbn+1 or by the product of following Dehn twists τα1 , τα2 , . . . , ταn−1 , τγ, τ
(r−n+2)
b1

where αi are curves enclosing boundary components b1 and bi+1 only and γ is a

curve which encloses boundary components b2, b3, . . . , bn.

2. If r < n − 2, then the factorization Φ′, up to Hurewitz equivalence, is given by

product of following Dehn twists τ rb1 , τb2 , τb3 , . . . , τbn+1.

Proof. We proceed as in the proof of previous lemma. Let Φ′ = τγ1τγ2 . . . τγm be

any other positive factorization of Φ. Let li be the number of curves enclosing the

boundary component bi and at least one other boundary component, for every i.

We know from the given factorization that Mij(Φ) = Mij(Φ
′) = 1 for all i, j and

Mi(Φ) = Mi(Φ
′) = 2 for all i > 1. We get the following set of relations as before

1 ≤ li ≤ 2 for all i ≥ 2

1 ≤ l1 ≤ (r + 2)

If li = 1 for some i, then we will prove lj = 1 for all j ≥ 2. Let βi be the unique

curve enclosing the boundary component bi. By counting multiplicities (joint and
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individual) we see that this curve must include all the n boundary components in the

disk. Again all the joint multiplicities are satisfied and so only other curves enclosing

boundary components bj for j 6= i are the boundary parallel curves. Hence lj = 1 for

all j. So we get the unique factorization in this case, by adding the needed boundary

Dehn twists.

Now assume that li = 2. Let β1, β2 be the curves which enclose boundary compo-

nent bn. As argued in the proof of previous lemma, β1 and β2 have only the boundary

component bn in common. Without loss of generality, we can assume that β1 en-

closes boundary components bn, b1, b2, . . . , bk and β2 encloses boundary components

bk+1, . . . , bn−1, bn. Here k < (n − 1). Let us assume first that k > 1. So at least the

boundary component b2 is enclosed by β1. From the fact that l2 = 2 we get that there

has to be a curve, say β3 enclosing boundary components b2 and bk+1, . . . , bn−1. This

contradicts the fact that M(k+1)(n−1) = 1 except when (k+ 1) = (n− 1). In this case,

as M(n−2)1 = 1, we conclude that either curve β3 encloses boundary component b1

also or there is another curve β4 enclosing boundary components bn−1 and b1. Note

that β4 can enclose more boundary components than only these two boundary com-

ponents. In first case we get a contradiction to the fact that M12 = 1. In the second

case, we get a contradiction to the fact that l(n−1) = 2.

Now assume that β1 encloses boundary components bn and b1. In this case, from

conditions on multiplicities of boundary components and li, it is easy to see that there

has to be curves γ1, γ2, . . . , γn−2 such that γi encloses boundary components b1 and

bi+1 only. This is possible only if r + 2 ≥ n. This proves the lemma.

Refer to Figure 10 for the notations used in following lemma.

Lemma 8.2.7. Let α and β be curves as shown in Figure 10. Assume that k < n.

Let

Φ = τατβτ
r1
b1
τ r2b2 . . . τ

r(k−1)

b(k−1)
τ
r(k+1)

b(k+1)
. . . τ rnbn
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be an element of Map(Dn, ∂Dn). Here ri ≥ 0 for all i 6= k. If Φ′ is any other positive

factorization of Φ, then Φ′ is given by product of following Dehn twists

τα′ , τβ′ , τ
r1
b1
, τ r2b2 , . . . , τ

r(k−1)

b(k−1)
, τ

r(k+1)

b(k+1)
, . . . , τ rnbn

such that α′, β′ enclose the same set of boundary components as α, β respectively.

α

β

b1

bk

bn

a1

a2

ak−2

c1

c2

cn−k−2

Figure 10: Figure shows the configuration of curves used in Lemma 8.2.7. The arcs
ai and bi can be cut along to get a disk with 3 boundary components in the proof of
Theorem 8.2.9.

Proof. Let li be the number of curves enclosing at least 2 boundary components, each

containing boundary component bi. Following the argument given in Lemma 8.2.6,

we get 1 ≤ li ≤ (ri + 1) for all i 6= k and 1 ≤ lk ≤ 2. We have the multiplicities

Mij = 1 for all i, j satisfying i, j < k or i, j > k, Mij = 0 for all i < k, j > k and

Mi = ri+ 1 for all i, and Mki = 2 for all i. Now we focus on the boundary component

bk. There are two cases:

1. lk = 1: Let us call the curve γ. Since, Mik = 1 for all i, we deduce that γ

encloses all the boundary components in the disk. This is a contradiction as

M1n = 0.
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2. lk = 2: Let us call the curves γ1 and γ2. Let us assume that γ1 encloses boundary

components bk, bi, bj such that i < k and j > k. This is a contradiction to the

fact that Mij = 0 as observed before. So we can assume that γ1 encloses

boundary components bk, bi1 , . . . , bir , such that ij < k for all j ∈ 1, . . . , r. If γ1

does not enclose all the boundary components b1, . . . , bk, we can assume without

loss of generality that γ1 does not enclose boundary component b1 at least. In

this case, γ2 will have to enclose boundary components b1, bk, bk+1, . . . , bn. A

contradiction as M1(k+1) = 0. So we get that γ1 encloses boundary components

b1, . . . , bk and similarly γ2 encloses boundary components bk, . . . , bn.

So we get that any factorization of Φ′ has positive Dehn twists about curves α′

and β′ as in the statement. We are left to prove that li = 1 for all i 6= k. If not, then

without loss of generality we can assume that l1 ≥ 2. So the boundary components

b1 is enclosed by curves α′ and at least one more curve, γ. By assumption γ has to

enclose at least one more boundary component, say br, other than b1. It is clear that

r > k. But this is a contradiction as M1r = 0. So we get that li = 1 for all i 6= k.

Now the statement follows by simple count of multiplicities.

Remark 8.2.8. This is a generalization of Lemma 2.1 of [66]. It is also straight-

forward to see that the lemma holds in general for finitely many curves rather than

just 2 i.e. if α1, . . . , αr are curves such that any, αi, αj have exactly one bound-

ary component in common (call it bk) for every i and j, then any factorization of

Φ = τα1τα2 . . . ταrτ
s1
b1
. . . τ

s(k−1)

bk−1
τ
s(k+1)

bk+1
. . . τ snbn is of the form

Φ′ = τα′1τα′2 . . . τα′rτ
s1
b1
. . . τ

s(k−1)

bk−1
τ
s(k+1)

bk+1
. . . τ snbn

such that α′i encloses the same set of boundary components as αi.

Now we are ready to prove the main theorem, which will be used to classify the

Stein fillings of lens spaces in Theorem 1.0.5.
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Theorem 8.2.9. Let α and β be the curves as shown in Figure 10. Let

Φ = τατβτ
r1
b1
τ r2b2 . . . τ

r(k−1)

bk−1
τ
r(k+1)

bk+1
. . . τ rnbn

be a monodromy such that ri ≥ 1 for all i. Let Φ′ be any other positive factorization

of Φ. Then there exists a diffeomorphism ψ such that Φ = ψΦ′ψ−1.

Proof. By Lemma 8.2.7 above we have that Φ′ = τα′τβ′τ
r1
b1
τ r2b2 . . . τ

r(k−1)

bk−1
τ
r(k+1)

bk+1
. . . τ rnbn

such that α′, β′ enclose the same set of boundary components as α, β respectively.

Since the boundary Dehn twists do not change in any factorization, we need to find

all possible choices for α′ and β′ to get all factorizations of Φ. Note that τατβ = τα′τβ′ .

Since curves α and β do not intersect any of the arcs ai, 1 ≤ i ≤ k − 2 and cj, 1 ≤

j ≤ n− k − 2 which are shown in Figure 10, we know that τατβ does not move arcs

ai and cj. Hence it follows that τα′τβ′ does not move them.

We claim that curves α′ and β′ do not intersect arcs ai and cj. To see this, we

proceed by contradiction. Without loss of generality we can assume that β′ intersects

arc say a1. In this case the arc a1 will be moved strictly to the right by τβ′ . This

follows from the fact that any positive factorization is right veering, see [43] for details.

Since τα′τβ′ does not move the arc a1, it will have to be moved left by the other factor

τα′ in τα′τβ′ . This is not possible as every factor is positive and hence right veering.

So we get a contradiction. Similarly we can prove that α′ and β′ do not interest any

of the arcs ai and cj. Hence, α′ and β′ live in the complement of arcs ai and cj. So

we can cut the surface along ai and cj to specify α′ and β′. Now the result follows

from lantern characterization in Lemma 8.1.1.

Using this theorem, we can prove the classification of the Stein fillings of virtually

overtwisted contact structures on L(p, 1) due to Plamenevskaya and Van Horn-Morris.

In addition we can also reprove the classification of the Stein fillings on universally

tight L(p, 1) due to McDuff [59].
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Corollary 8.2.10. Let ξ be any tight contact structure on L(p, 1). Then

1. The contact structure ξ has a unique Stein filling if p 6= 4 upto symplectomor-

phism.

2. The universally tight contact structure on L(4, 1) has exactly two Stein fillings

upto symplectomorphism.

3. The virtually overtwisted contact structure on L(4, 1) has a unique Stein filling

upto symplectomorphism.

Proof. First consider the case when the contact structure is virtually overtwisted. For

this we draw the open book decomposition as shown in Figure 12. We describe the

open book first. The left picture shows annulus open book supporting (S3, ξstd) where

the dotted curve α is the Dehn twist curve. The solid curve is the Legendrian unknot

tb = −1, sitting on the page of this open books. Now one can stabilize this unknot

p times as shown in the right by curve β. Dotted curves are the stabilization curves

which intersect the co-cores on the 1-handles attached exactly once. By isotoping the

whole surface we see that this is exactly the surface described by Figure 10. Now it

is easy to see that, monodromy for the contact structures on the lens spaces is given

by

Φ = τατβτb1τb2 . . . τbk−1
τbk+1

. . . τbn

where α and β are curves as shown in Figure 10 with n = (p − 1). Hence the last

statement of the theorem follows from Theorem 8.2.9.

Now consider the case when the contact structure is universally tight on L(p, 1).

In this case monodromy is given by Φ = τb1τb2 . . . τbnτbn+1 and n = (p − 1). By

Lemma 8.2.4, if Φ′ is any positive factorization of Φ, then Φ′ is Φ except when p = 4.

When ξ is a universally tight contact structure on L(4, 1). Then we know that

either Φ = τb1τb2τb3τb4 which by lantern relation is same as τατβτγ, with α, β, γ as
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shown in Figure 9. By Lemma 8.2.4 we know that any other factorization of Φ is of

the form τα′τβ′τγ′ where α′ is a curve that encloses boundary components b1 and b2, β′

is a curve that encloses boundary components b1 and b3 and γ′ is a curve that encloses

boundary components b2 and b3. In the second case the lantern charazterization given

in Lemma 8.1.4, implies that there exists a diffeomorphism ψ ∈ Map(D3, ∂D3) such

that α′ = ψ(α), β′ = ψ(β), γ′ = ψ(γ). Hence, we get that there are exactly two

factorizations of Φ upto diffeomorphism and exactly two Stein fillings upto symplec-

tomorphism.

After proving the known results using our techniques, we classify the Stein fillings

of any contact structure on L(p(m+ 1) + 1, (m+ 1)).

(−1)
(−1)

(−1)

m K

r

(−1)

Figure 11: Surgery diagram for lens spaces L(p(m+1)+1,m+1). In the diagram K
is the maximal tb unknot stabilized positively r times and negatively p− r− 1 times.
As we vary r from 0 to p− 1 we get all the contact structures on these lens spaces.

Proof of Theorem 1.0.5. From the classification given in [42], we can draw the Leg-

endrian surgery diagram for various contact structures on L(p(m + 1) + 1, (m + 1))

as shown in Figure 11. Now we draw the open book decomposition corresponding
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to this contact manifold. This is exactly the same as described in Corollary 8.2.10.

Figure 12 shows the open book. The boundary parallel curves which are not dotted

are m Legendrian unknots with tb = −1. We see that this is exactly the surface

described by Figure 10.

When r = 1, the contact structure is universally tight. For the universally tight

contact structure the monodromy is Φ = τm+1
b1

τb2 . . . τbn and the page of the open

book decomposition is Dn with n = p − 1. By Lemma 8.2.6 above, we have that

any other factorization Φ′ is τm+1
b1

τb2 . . . τbn when p > m + 4. Hence, we get the

uniqueness of the Stein filling as the factorization is unique. When p ≤ m+4, we have

by Lemma 8.2.6, that there is another factorization Φ′ = τα′1τα′2 . . . τα′p−2
τγ′τ

(r−p+3)
b1

,

where α′i are curves enclosing boundary components b1 and bi for every i and γ′ is

a curve enclosing boundary components b2, b3, . . . , bp−1. So we have at least 2 Stein

fillings. This finishes the proof.

The open book decomposition for virtually overtwisted contact structures is given

by Figure 12 with monodromy Φ = τατβτb1τb2 . . . τbk−1
τbk+1

. . . τm+1
bn

, where n = p− 1

and α and β are curves as shown in Figure 12. In this case, the uniqueness of the

Stein filling follows exactly in the same way as above.

8.3 Finiteness of Euler Characteristics and Signature

In this section we prove Theorem 1.0.1 and Theorem 1.0.3.

Proof of Theorem 1.0.1. Let (X, J) be a Stein filling of a contact manifold (M, ξ)

supported by planar open book (Dn,Φ). The number of 2-handles is given by the

number of vanishing cycles. Hence it follows from Wendl’s theorem that, if we bound

the number of vanishing cycles we will have a bound on the Euler characteristic of

the given Stein filling. In other words, if we can bound the number of Dehn twists in

any positive factorization of Φ we get an upper bound on the Euler characteristic of
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α

β

α

m

Figure 12: Open book for (S3, ξstd) on left and open book supporting the lens space
L(p(m+ 1) + 1, (m+ 1)) is shown.

(X, J).

Let Mi denote the multiplicity of each boundary component, as defined in Sec-

tion 8.2, in this factorization. By the definition of multiplicity of a boundary compo-

nent, in any factorization Φ′ of Φ there cannot be more than Mi positive Dehn twists

about curves enclosing the boundary component bi. Hence, M1 +M2 + · · ·+Mn gives

an upper bound on the number of two handles attached. This gives an upper bound

on χ(X).

Now we are left to bound the signature of the Stein filling. Recall that Euler

characteristic of a Stein manifold X can be written as χ(X) = 1− b1(X) + b+
2 (X) +

b−2 (X)+b0
2(X). Using Theorem 4.1 of [20], which states that for a manifold supported

by planar open book any Stein filling has vanishing b+
2 and b0

2, we get that χ(X) =

1−b1(X)+b−2 (X). Hence, σ(X)+χ(X) = 1−b1(X)+b+
1 (X). Now for the 4-manifold

X, a simple homology computation shows that |H1(X)| ≤ n and so 1 − b1(X) is

bounded. It follows that |σ(X) + χ(X)| < M for some M . Now by finiteness of
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χ(X) we get that |σ(X)| < M + |χ(X)|. Hence, there exists a constant N such that

|σ(X)| < N and |χ(X)| < N . It follows that C(M,ξ) is finite.

Remark 8.3.1. After proving the above theorem, the author found another proof of

this result. Stipsicz [69] proved that C(M,ξ) is finite for any manifold (M, ξ) for which

every Stein filling has b+
2 = 0. Now the above mentioned theorem of Etnyre [20]

implies that for any manifold supported by planar open book b+
2 = 0. Hence, the

theorem follows by combining these two results.

For proving Theorem 1.0.3 we need a version of Wendl’s theorem for spinal open

books. If the fibers F̂ of a spinal open book has a planar component, then Wendl’s

theorem can be generalised.

Theorem 8.3.2 (Lisi-Van Horn-Morris-Wendl, [53]). If the spinal open book (F̂ , hatφ, Σ̂, G)

has a planar component to F̂ , then any symplectic filling of the contact manifold

(M, ξ) supported by (F̂ , φ̂, Σ̂, G) admits a Lefschetz fibration whose boundary is (F̂ , φ̂, Σ̂, G).

Before we prove the finiteness results for spinal open books, we recall a theorem

of Wand [75] and state it in a more general form suitable for applications to our

purposes. The proof essentially is the same as given by Wand in [75] but we give a

sketch here for completeness.

Proposition 8.3.3. Let (M, ξ) be a contact manifold supported by a spinal open book

with connected binding Σg,r and connected fibers Σ0,b. If (X1, J1) and (X2, J2) are any

two Stein fillings of (M, ξ), then χ(X1) + σ(X1) = χ(X2) + σ(X2).

Proof. Let us denote by Xh
g,λ, a Lefschetz fibration over a closed surface Σh with fibers

Σg and λ is factorization of identity in Map(Σh, ∂Σh). If λ′ is obtained from λ by

r-substitution (r is a relator in the mapping class group of the surface Σg), then a

result of Endo and Nagami [17] gives:

σ(Xh
g,λ)− σ(Xh

g,λ′) = I(r)
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where I(r) is the signature of the relator r defined in [17].

With this set-up we can prove following statement which is essentially Theorem

4.4 of [75].

Lemma 8.3.4. Let Σ = Σg,b be a surface with boundary. Let XΣ,λ and XΣ,λ′ be

Lefschetz fibrations over Σh,m such that λ′ is an r-substitution of λ. Then

σ(XΣ,λ)− σ(XΣ,λ′) = I(r).

Proof of lemma. Starting with a Lefschetz fibration over non-closed surface Σh,m we

can construct the closed Lefschetz fibrations Xh
ḡ,λ1

and Xh
ḡ,λ′1

with genus of fibers

ḡ > g, such that λ′1 is obtained by an r-substitution from λ1 in mapping class group

of Σḡ. To see this, let Σ0,b+1 be a sphere with 1 more boundary component than the

fibers Σg,b. Let Σ′′ = Σg,b ∪ Σ0,b+1 where we glue the boundary components and let

Σ̂ denote the surface obtained by capping off the boundary component of Σ′′ with

a disk. As Σg,b is a subsurface of Σ′′ extending by identity on Σ′′\Σg,b, both λ and

λ′ extend to mapping classes on Σ′′. We still call the extensions λ and λ′ in the

new surface. These extensions are also related by r-substitution in the new mapping

class group. It is a well known fact that, any positive mapping class Φ in a genus p

surface with 1 boundary component can be written as Φ = τNδ Φ̂, where τδ is Dehn

twist about the boundary component and N > 0 and Φ̂ is a negative mapping class,

that is, given as factorization in terms of negative Dehn twists only. Applying this

fact gives us λ = τNδ λ̂ and so λ ◦ λ̂−1 = τNδ . Hence, λ1 = λ ◦ λ̂−1 gives a positive

factorization of identity in Map(Σ̂) and hence a Lefschetz fibration Xh
ḡ,λ1

. Similarly,

λ′1 = λ′ ◦ λ̂−1 gives a Lefschetz fibration Xh
ḡ,λ′1

. We note that, in getting the closed

Lefschetz fibrations Xh
ḡ,λ1

and Xh
ḡ,λ′1

, we have added the same compact 4 manifold Y .

We have,
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σ(Xh
ḡ,λ1

)− σ(Xh
ḡ,λ′1

) = I(r).

So by Novikov additivity we have, I(r) = σ(Xh
ḡ,λ1

) − σ(Xh
ḡ,λ′1

) = σ(XΣ,λ) + σ(Y ) −

σ(XΣ,λ′)− σ(Y ) and the result follows.

To get the result for spinal open books with planar fibers, we apply Theorem 8.3.2,

and note that any relator in a planar surface is a concatenation of lantern relator.

See [17] for calculations of signatures of various relators in mapping class groups.

From these computation we know that for a lantern relator the signature I(r) = 1

or −1, depending on the particular substitution performed. If the lantern relator has

signature 1, the Euler characteristic of the new manifold changes by −1. In the other

case, the Euler characteristic changes by 1. In either case one sees that the following

equality holds for each lantern substitution.

σ(XΣ,λ)− σ(XΣ,λ′) = χ(XΣ,λ′)− χ(XΣ,λ).

Since any relator in a planar surface is a concatenation of lantern relators, we see

that the above equality holds at each stage.

Now we are ready to prove the finiteness of the Euler characteristic and the signa-

ture of the Stein filling of spinal open books. Just as in the proof of Theorem 1.0.1, we

will bound the number of 2-handles to get an upper bound on the Euler characteristic

of Stein filling (X, J).

Proof of Theorem 1.0.3. The monodromy of a Lefschetz fibration over a genus g sur-

face with fiber Σh is given by

w =
m∏
i=1

τvi

g∏
j=1

[αj, βj]

where α1, . . . , αg, β1, . . . , βg are images of generators of fundamental group inMap(Σh, ∂Σh)

and τv1 , . . . , τvm are Dehn twists about vanishing cycles. To construct this manifold,
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we start with a surface bundle over the g surface. This is described by the mon-

odromy
∏g

j=1[αj, βj]. This manifold has a finite Euler characteristic independent of

αj and βj. To get the Lefschetz fibration we attach 2-handles along the vanishing

cycles prescribed by curves vi. Hence to bound the Euler characteristic again we need

to bound the number of vanishing cycles. In the abelianization of the mapping class

group of a planar surface w has an image τ̄v1 , . . . , ¯τvm , where τ̄vi is image of the Dehn

twist in the abelianization. So to bound the Euler characteristic of the Stein filling, it

suffices to bound the number of terms in the factorization τ̄v1 , . . . , ¯τvm . This is done

in exactly the same way as in the proof of Theorem 1.0.1. So we get the finiteness of

χ(X). Now from Proposition 8.3.3 we see that σ(X) is also bounded.

8.4 Euler characteristic of sphere plumbings

In this section we prove Theorem 1.0.4. Gay and Mark [29] explicitly write down the

open book decomposition for the boundary of a plumbing of spheres. The open book

decomposition for (M, ξpl) which is contactomorphic to boundary of (Z, η) which is a

neighbourhood of spheres C = C1 ∪ C2 ∪ · · · ∪ Cn, intersecting ω-orthogonally, along

the negative definite graph Γ is given as follows. Recall from Chapter 1, that we

assume that the row sum satisfies si =
∑

j qij ≤ 0, where Q = (qij = [Ci] · [Cj] is

the intersection matrix. Let S be the result of connect summing |si| copies of D2 to

each Ci and then connect summing these surfaces according to Γ. It is clear from

this construction that S is a disk with a finitely many open disks removed from the

interior when Ci are all spheres. Let {c1, c2, . . . , ck} be the collection of simple closed

curves on S consisting of one curve around each connect sum neck. It is clear from

the construction that ci are all disjoint. Let τ denote the product of Dehn twists

along these curves. The following theorem is proved in [29].

Theorem 8.4.1. Any neighbourhood of C contains a neighbourhood (Z, η) of C with
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strongly convex boundary, that admits a symplectic Lefschetz fibration π : Z → D2

having regular fiber S and exactly one singular fiber S0 = π−1(0). The vanishing

cycles for π are c1, . . . , ck and the induced contact structure ξpl on ∂Z is supported by

the induced (S, τ).

To prove the Theorem 1.0.4, we first prove following fact about positive factoriza-

tions in planar mapping class group.

Theorem 8.4.2. Assume that φ ∈ Map(Dn, ∂Dn) can be written as a product of

positive Dehn twists about disjoint curves, i.e. φ = τc1τc2 . . . τck , such that ci are all

disjoint. If τd1τd2 . . . τdm is any other positive factorization of φ, then m ≤ k.

Proof. The proof is by induction on the number of holes, n, of the disk and the

number of curves k.

We start by proving the base cases. There are two base cases to be checked.

• Disk with 1 hole: Let us denote the hole by b1. Now Φ = τ pb1 for some p ∈ Z≥0.

Any other positive factorization has to be Dehn twists about the hole b1. So

the argument is trivial in this case.

• Disk with n > 1 holes and k = 1: In this case φ = τα for some curve α.

We can assume that the curve α encloses the boundary components b1, b2, . . . , bl

for some l ≤ n. If l = n then the curve α is boundary parallel to the outer

boundary component bn+1 and so a positive factorization of φ is unique. So we

can assume l < n. In this case the joint multiplicity of Mij = 0 for i ≤ l and

j > l. So a positive factorization of φ cannot include Dehn twists about curves

enclosing any of the holes bl+1, . . . , bn. Also since the multiplcity Mi = 1 of each

holes b1, . . . , bl, we know that there can be no more than one curve enclosing

holes any of the holes b1, . . . , bl in any positive factorization of φ. In addition,

since the joint multiplicity of all these holes is 1, so there must be exactly 1

curve enclosing the holes b1, . . . , bl in any positive factorization of φ.
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Now by induction we assume that the theorem is true for:

1. All planar surfaces with n− 1 holes.

2. Any φ in Map(Dn, ∂Dn), with a positive factorization such that the Dehn twists

are about k − 1 disjoint curves in the surface Dn.

In the surface Dn, let φ = τc1τc2 . . . τck be an element of the mapping class group

such that ci’s are all disjoint. Let us assume that there is a positive factorization of φ

given by τd1τd2 . . . τdm with m > k. If there is any hole bi with multiplicity 0, then we

can cap off the hole bi and this gives a contradiction to the induction hypothesis 1.

So we can assume that multiplicity of each of the holes b1, . . . , bn is at least 1. Let

us start by looking at the hole b1. If there is a boundary parallel Dehn twist τb1

in both the factorizations of φ given above, then we can cancel the boundary Dehn

twist and get a contradiction to the induction hypothesis 2. So τb1 can never appear

in both the factorizations of φ. Let us assume that τb1 appears in the factorization

τc1τc2 . . . τck . In this case we can cap off the hole b1 and get a contradiction to the

induction hypothesis 1, as capping off the hole b1 reduces the number of factors in

τc1τc2 . . . τck by 1, but does not reduce the number of factors in τd1τd2 . . . τdm . Now we

argue that there is at least one factor of τb1 in the positive factorization τd1τd2 . . . τdm .

If not then by capping off the hole b1 we will not reduce the number of factors in both

the factorizations of φ. Again a contradiction to the induction hypothesis 1. The

same exact argument holds for each of the holes b1, . . . , bn+1. So we know that there

is at least 1 factor of τbi for each i ∈ {1, . . . , n+ 1} in the factorization τd1τd2 . . . τdm .

This implies that Mij ≥ 1 for every 1 ≤ i, j ≤ n since there is a Dehn twist about

the outer boundary component bn+1 in τd1τd2 . . . τdm .

Now since there are no Dehn twists about boundary parallel curves in τc1τc2 . . . τck ,

we know that there is a curve α in c1, . . . , ck which encloses a proper subset of holes.

Without loss of generality we can assume that α enclosed holes b1, . . . , bl for some
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l < n. Since the curves c1, . . . , ck are disjoint there is no curve enclosing any of the

holes b1, . . . , bl and at least one of the holes bl+1, . . . , bn. If there is such a curve β,

then β will intersect α non trivially, which is not possible. So we can find at least

two holes, amongst b1, . . . , bn, which are never enclosed together by any of the curves

c1, . . . , ck. So there is a pair of holes, call them bl1 and bl2 , such that Ml1l2 = 0. A

contradiction to the fact that Mij ≥ 1 for every 1 ≤ i, j ≤ n observed above.

Proof of Theorem 1.0.4. If (X, J) is any other strong symplectic filling of (M, ξpl),

then it has an open book decomposition with page S constructed above and the

monodromy which is a positive factorization τd1τd2 . . . τdm of τ . So we conclude that,

χ(X) = 1 + (n − 1) + m. By the construction of Z as described in the beginning of

this section, we know that χ(Z) = 1 + (n− 1) + k. We know from the theorem above

that m ≤ k. The proof follows easily.
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CHAPTER IX

STEIN FILLINGS OF MANIFOLDS OBTAINED BY

LEGENDRIAN SURGERIES ALONG KNOTS

In this chapter we prove our results about surgeries along knot families that are

mentioned in Chapter 1. All these results are based on joint work with Youlin Li.

The contact manifolds we are going to consider are supported by particular open

books, which we describe now. Let Σ be a compact planar surface with n+ p+ q+ 1

boundary components c0, c1, . . . , cn+p+q as shown in Figure 13, where n, k, p, q ≥ 1

and n ≥ k. Let Φ be a diffeomorphism which is a composition of right handed Dehn

twists written as

Φ = τm1
1 τm2

2 . . . τ
mn+q−1

n+q−1 τ
mn+q+1

n+q+1 . . . τ
mn+p+q
n+p+q τB1τB2 ,

where τi is the positive Dehn twist about a simple closed curve parallel to the bound-

ary component ci, mi ≥ 0, and τB1 , τB2 are positive Dehn twists along the simple

closed curves B1 and B2 shown in Figure 13.

Theorem 9.0.3. Let (M, ξ) be the contact 3-manifold supported by the open book

(Σ,Φ). Then the contact 3-manifold (M, ξ) admits a unique Stein filling up to diffeo-

morphism.

9.1 Classification of Stein fillings

We begin by observing a purely combinatorial lemma. The purpose of this lemma is

to get restrictions on the curves which can appear in any positive factorization of the

given monodromy in terms of Dehn twists. Refer to Figure 13 for the notation used

below.
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0

1k − 1

k

k + q − 1

k + q n+ q − 1

n+ qn+ q + 1n+ q + p

B1

B2

Figure 13: A compact planar surface Σ with n+ q + p+ 1 boundary components.

Lemma 9.1.1. Any positive factorization of Φ must be given by the product of Dehn

twists τm1
1 , τm2

2 , . . . , τ
mn+q−1

n+q−1 , τ
mn+q+1

n+q+1 , . . . , τ
mn+p+q
n+p+q , and the Dehn twists τB′1 and τB′2

where B′1 encloses the same holes as B1, and B′2 the same holes as B2.

Proof. Recall from Section 8.2 that, Mi,j denotes the joint multiplicity of the mapping

class Φ about the ith and jth boundary components, and Mi denotes the multiplicity

of the mapping class Φ about the ith boundary component.

Since Mn+q = 2 and Mi,n+q = 2 for i ∈ {k, k + 1, . . . , k + q − 1}, there are

exactly two monodromy curves, say B′1 and B′2, enclosing cn+q and ci for i ∈ {k, k +

1, . . . , k + q − 1}. Since Mn+q,j = 0 for j ∈ {n + q + 1, n + q + 2, . . . , n + q + p},

Mr,n+q = 1 for r ∈ {1, . . . , k−1, k+ q, . . . , n+ q−1}, and Ms,t = 0 for s ∈ {1, . . . , k−

1} and t ∈ {k + q, . . . , n + q − 1}, the two monodromy curves B′1 and B′2 enclose

{c1, . . . , ck, ck+q−1, cn+q} and {ck, . . . , cn+q−1, cn+q} respectively.

For j ∈ {n + q + 1, n + q + 2, . . . , n + q + p}, Mj = mj and Mi,j = 0 for any

i ∈ {1, 2, . . . , n + q + p} and i 6= j. So cj is enclosed solely by mj boundary parallel
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monodromy curves.

For i ∈ {1, . . . , n+ q− 1}, there are no non-boundary-parallel monodromy curves,

other thanB′1 andB′2, enclosing ci. Suppose otherwise, then for some j, h ∈ {1, . . . , n+

q − 1}, there is a monodromy curve, other than B′1 and B′2, enclosing cj and ch. If

either j or h do not belong to {k, k + 1, . . . , k + q − 1}, then j and h cannot belong

to {1, . . . , k − 1} and {k + q, . . . , n + q − 1}, respectively. So Mj,h ≥ 2. However,

from the original positive decomposition of Φ, we have Mj,h = 1. So we arrive at a

contradiction. If both j and h belong to {k, k + 1, . . . , k + q − 1}, then Mj,h ≥ 3.

However, also from the original positive decomposition of Φ, we have Mj,h = 2. So

we arrive at a contradiction as well.

Hence for i ∈ {1, . . . , n+q−1}, there are mi boundary parallel monodromy curves

enclosing ci.

Remark 9.1.2. With the notation as in the lemma above, any other factorization of

Φ can be written as τm1
1 τm2

2 . . . τ
mn+q−1

n+q−1 τ
mn+q+1

n+q+1 . . . τ
mn+p+q
n+p+q τB′1τB′2 up to Hurwitz equiv-

alence. To see this, recall that since boundary Dehn twists commute with every dif-

feomorphism we can move them all to the left in the factorization as written above.

Now the product of Dehn twists τB′1 and τB′2 is on the right side of this positive fac-

torization. Hurwitz move on the product of Dehn twists can potentially change the

homotopy class of both the curves B′1 and B′2, to say B′′1 and B′′2 . But still B′′i enclose

the same set of holes as B′i for i = 1, 2. With abuse of notation we still call these new

set of curves as B′1 and B′2, as Lemma 9.1.1 only specifies the curves B′1 and B′2 up to

the set of holes enclosed by each of these holes. So using commutativity of boundary

parallel Dehn twists and Hurwitz moves one can arrange the factorization as above.

In our case, since we only have two non boundary parallel monodromy curves, a

Hurwitz move is also a global conjugation.
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9.1.1 The positive factorizations.

In this subsection, we prove that τB1τB2 has at most 2 different positive factorizations,

up to a global conjugation, in Map(Σ, ∂Σ) for some simple cases of the surface Σ.

We will reduce the above factorization to problem to these simple cases later.

In proving these results, first step will be to get restrictions on intersection number

of curves B′1 and B′2. To make sense of intersection numbers of curves, we assume for

the rest of the thesis that any two curves are isotoped to intersect minimally.

Lemma 9.1.3. Let Σ be the surface in Figure 13 with k = 1 and n = 1. Suppose

p = q = 1. Then τB1τB2 ∈ Map(D3, ∂D3) has at most two positive factorizastions up

to a global conjugation.

Proof. Since k = n = 1, there is no hole which is enclosed by B2 but not by B1, and

there is no hole which is enclosed by B1 but not by B2.

By Lemma 9.1.1, any positive factorization of τB1τB2 is τB′1τB′2 up to a global

conjugation, where B′1 and B′2 enclose the same set of holes as B1 and B2, respectively.

We assume that each of the boundary components is filled by a disk with one

puncture. To avoid confusion, we will still call this surface D3. Note that the curves

B1 and B2 fill the surface D3. As explained in [27, Exposé 13], one can construct a sin-

gular flat Euclidean structure and a representation of the subgroup of Map(D3, ∂D3)

generated by τB1 and τB2 . Now Thurston’s theorem 6.0.31, implies τB1 has affine

representative given by

1 4

0 1

, and τB2 has an affine representative

 1 0

−4 1

. Thus,

we obtain an affine representative for τB1τB2 . It is

−15 4

−4 1

. This matrix has trace

−14, so τB1τB2 has a pseudo-Anosov representative with stretch factor the larger of

the absolute values of the two eigenvalues, that is 7 + 4
√

3. Note that the stretch

factor of a pseudo-Anosov representative of a pseudo-Anosov diffeomorphism is in
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fact an invariant of the pseudo-Anosov diffeomorphism. This is because two homo-

topic pseudo-Anosov representatives are conjugate by a diffeomorphism isotopic to the

identity ([27, Théorème 12.5]), and any two conjugate pseudo-Anosov representatives

have the same stretch factors ([26, Page 406]).

Since τB′1τB′2 = τB1τB2 , is also pseudo-Anosov, B′1 and B′2 have to intersect and fill

the surface D3. Otherwise there is a non-boundary-parallel simple closed curve which

is invariant by τB′1τB′2 . This is impossible for a pseudo-Anosov diffeomorphism.

Assume that I(B′1, B
′
2) = z, where z is a non-negative integer. As above we

obtain the affine representative for τB′1τB′2 . It is

1 z

0 1


 1 0

−z 1

 =

1− z2 z

−z 1

.

Since τB′1τB′2 = τB1τB2 , they have the same stretch factors. So 1
2
(z2−2 + z

√
z2 − 4) =

7 + 4
√

3, and z = 4.

Now we conjugate τB′1τB′2 by a diffeomorphism which takes B′1 to B1, and B′2 to

a curve B′′2 . We know that B′′2 and B1 intersect in exactly 4 points. Since B′′2 and

B2 represent the same homological classes in H1(D3), we know that the algebraic

intersection number of B′′2 and B2 with each nontrivial arc in the surface is the same.

In particular, for the arc γ shown in the left of Figure 14, the algebraic intersection

number of B′′2 and γ is 0, and the geometric intersection number of B′′2 and γ is even.

If I(B′′2 , γ) = 0, then it is easy to see that B′′2 is isotopic to B1. This is impossible

by the above argument.

0

1 23

γ

0

3

1 2

Figure 14: Arc γ along which the surface is cut open is shown in the left picture.
The right picture shows the cut open surface.
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Suppose I(B′′2 , γ) ≥ 2. We cut the surface D3 open along the arc γ, and think of

the resulting surface as a pair of pants with the outer boundary drawn as a rectangle.

See the right of Figure 14. Under this operation, B′′2 is cut into a collection of properly

embedded arcs which are pairwise disjoint. Each of these arcs is one of the following

three types.

• Type I: Both end points of the arc are on the left edge of the rectangle.

• Type II: Both end points of the arc are on the right edge of the rectangle.

• Type III: The arcs have one end point on the left edge and the other on the

right edge of the rectangle.

Since B1 is parallel to the outer boundary of the rectangle, each of Type I, II and

III arcs intersects the curve B1 in 2 points or is disjoint with B1. It is easy to see

that each of Type I, II, and III arcs intersects the curve B1 in exactly 2 points.

For B′′2 to be a simple closed curve enclosing holes c1 and c2, there is at least one

arc of Type I and at least one arc of Type II. Since I(B′′2 , B1) = 4, B′′2 is cut open

into a Type I arc and a Type II arc.

If the Type I arc encloses the hole c1 with the left edge of the rectangle, and the

Type II arc encloses the hole c2 with the right edge of the rectangle, then some power

of τB1 will send B′′2 to be the one which is formed by the two arcs shown in the right

of Figure 14. Hence τB1τB′′2 is conjugate to τB1τB2 .

If the Type I arc encloses the hole c2 with the left edge of the rectangle, and

the Type II arc encloses the hole c1 with the right edge of the rectangle, then some

power of τB1 will send B′′2 to be the one which is formed by the two arcs shown

in the left of Figure 15. So there are at most two choices for the curve B′′2 up to

conjugation. Hence, there are at most two different factorizations of τB1τB2 up to a

global conjugation.
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0

1 2

3

0

3

12

Figure 15: Another choice of the arc for the curve B′′2 shown in the left. The right
one is obtained from the left one by a diffeomorphism moving the hole c1 to the right
and the hole c2 to the left.

Lemma 9.1.4. Let Σ be the surface in Figure 13 with k = 1 or 2, and n = 2. Suppose

p = q = 1. Then τB1τB2 ∈ Map(D4, ∂D4) has at most two positive factorizations up

to a global conjugation.

Proof. If k = 1 and n = 2, then there is no hole which is enclosed by B2 but not by

B1, and there is one hole which is enclosed by B1 but not by B2. If k = n = 2, then

there is no hole which is enclosed by B1 but not by B2, and there is one hole which

is enclosed by B2 but not by B1. By symmetry, we can only prove for the first case.

By Lemma 9.1.1, any positive factorization of τB1τB2 is τB′1τB′2 up to a global

conjugation, where B′1 and B′2 enclose the same set of holes as B1 and B2, respectively.

The curves B1 and B2 fill the surface D4. Following exactly the same argument

we get that B′1 and B′2 intersect in exactly 4 points. Now we conjugate τB′1τB′2 by a

diffeomorphism which takes curve B′1 to B1. This will change τB′1τB′2 to τB1τB′′2 , where

B′′2 is a curve which encloses the same set of holes as B2.

Let γ be an arc connecting holes c4 and c0, see the left of Figure 16. Then, by

the proof of Lemma 9.1.3, B′′2 intersects γ in 2 points minimally. We cut the surface

D4 open along the arc γ, and think of the resulted surface with the outer boundary

drawn as a rectangle. See the right of Figure 16. So B′′2 becomes two arcs one of

which has two endpoints belong to the left edge and encloses one hole of c1 and c3,

and the other of which has two endpoints belong to the right edge and encloses the

other hole of c1 and c3.
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Exactly as in the proof of Lemma 9.1.3, we get that up to a diffeomorphism

preserving orientation and commuting with τB1 , there are at most two choices for the

curve B′′2 . Hence, there are at most two different positive factorizations of τB1τB2 up

to a global conjugation.

0

1

2

34

γ

0

4

1 2 3

Figure 16: Arc γ along which the surface is cut open is shown in the left picture.
The right picture shows the cut open surface.

Lemma 9.1.5. Let Σ be the surface in Figure 13 with k = 2 and n = 3. Suppose

p = q = 1. Then τB1τB2 ∈ Map(D5, ∂D5) has at most two positive factorizations up

to a global conjugation.

Proof. Since k = 2 and n = 3, there is one hole which is enclosed by B2 but not by

B1, and one hole which is enclosed by B1 but not by B2.

0
1

2

3

45

γ2

γ1

0

5

1 2 3 4 1

γ1
1 γ2

1

γ1
2 γ2

2

Figure 17: Arcs γ1 and γ2 along which the surface is cut open is shown in the left
picture. The right picture shows the cut open surface, where γ1

i and γ2
i are two copies

of γi, for i = 1, 2.

By Lemma 9.1.1, any positive factorization of τB1τB2 is τB′1τB′2 up to a global

conjugation, where B′1 and B′2 enclose the same set of holes as B1 and B2, respectively.
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The curves B1 and B2 fill the surface D5. Following exactly the same argument

as in the proof of Lemma 9.1.3, we get that B′1 and B′2 intersect in exactly 4 points.

Now we conjugate τB′1τB′2 by a diffeomorphism which takes curve B′1 to B1. This will

change τB′1τB′2 to τB1τB′′2 , where B′′2 is a curve which encloses the same set of holes as

B2.

If we fill each hole of D5, including the outer boundary, by a disk with a marked

point, then we get a 2-sphere with 6 marked points. The two curves B1 and B′′2 give

a cell decomposition of the 2-sphere. It has four vertices, eight edges and six 2-cells.

Each 2-cell contains a boundary component of D5. There are four 2-cells which are

bigons containing c0, c2, c4, and c5, respectively. There are two 2-cells which are

squares containing c1 and c3, respectively. Each square has exactly one common edge

with each of the four bigons. So there is a properly embedded arc γ′1 in S which

connects holes c1 and c5, has exactly one intersection point with the common edge of

the square containing c1 and the bigon containing c5, and is disjoint with B1. There

is a properly embedded arc γ′2 in S which connects holes c1 and c0, has exactly one

intersection point with the common edge of the square containing c1 and the bigon

containing c0, and is disjoint with B1. Note that γ′1 and γ′2 correspond to two coedges

of the cell decomposition. It is easy to make sure that we can choose the arcs γ′1 and

γ′2 to be disjoint.

There is a diffeomorphism of D5 which takes γ′1 and γ′2 to γ1 and γ2, respectively,

where γ1 and γ2 are as shown in the left of Figure 17 and keeps B1 invariant. Such a

diffeomorphism exists because the arcs γ′1 and γ′2 chosen are disjoint from the curve B1.

We denote the image of B′′2 under this diffeomorphism by B′′2 still. Then I(B′′2 , γi) = 1

for i = 1, 2.

We cut the surface D5 open along γ1 ∪ γ2, and think of the resulted surface with

the outer boundary drawn as a rectangle. To avoid confusion with other terminology

used, we will denote this cut open surface by R. See the right of Figure 17. The
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curve B′′2 is cut open into two arcs. One of them has both endpoints in the left edge

of R, and the other of them has both endpoints in the right edge of R. Since B1 is

parallel to the outer boundary of R, each of the two arcs are either disjoint with B1

or has exactly two intersection points with B1. Since I(B1, B
′′
2 ) = 4, both of the two

arcs have exactly two intersection points with B1. One of them encloses one hole of

c2 and c4 with a subarc of the left edge of R. The other of them encloses the other

hole of c2 and c4 with a subarc of the right edge of R.

Just as in the proofs of Lemma 9.1.3 and Lemma 9.1.4, we get that there are at

most two choices for B′′2 . Hence, τB1τB2 has at most two positive factorizations up to

a global conjugation.

9.1.2 Stein fillings of certain planar open books

Now we go back to the proof of Theorem 9.0.3.

Proof. If p = q = 1, then by Lemma 9.1.1, any other positive factorization of Φ must

be the product of τm1
1 , τm2

2 , . . ., τmnn , τ
mn+2

n+2 , τB′1 and τB′2 , where curves B′1 and B′2

enclose the same set of holes as curves B1 and B2, respectively. In particular, either

τB1τB2 = τB′1τB′2 or τB1τB2 = τB′2τB′1 . Without loss of generality, we assume that

τB1τB2 = τB′1τB′2 .

Suppose a1, . . . , ak−1 are k−1 properly embedded pairwise disjoint arcs in Σ which

satisfy that: 1) ai connects the boundary components ci and ci+1, 2) ai is disjoint

with B1 and B2. Suppose bk+q, . . . , bn+q−2 are n− k − 1 properly embedded pairwise

disjoint arcs in Σ which satisfy that: 1) bi connects the boundary components ci and

ci+1, 2) bi is disjoint with B1 and B2.

Since the curves B1 and B2 do not intersect any of the arcs ai, the diffeomorphism

τB1τB2 does not move them. It follows that the diffeomorphism τB′1τB′2 does not move

any of the arcs ai as well. We claim that the curves B′1 and B′2 do not intersect

any of the arcs ai. Suppose one of the curves B′1, B
′
2 did intersect arcs ai for some
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Figure 18: The left two figures indicate the two choices of the curve B′′2 . The upper
left figure is (Σ, τ1τ2τ3τ5τB1τB′′2 ). The lower left figure is (Σ, τ1τ2τ3τ5τB1τB′′2 ) which is
conjugate to (Σ, τ1τ2τ3τ5τB′′2 τB1). The right two figures are their corresponding Kirby
diagrams for the Stein filling, where each dotted circle is a 4-dimensional 1-handle,
and all other circles have surgery coefficients −1. These two Kirby diagrams denote
two diffeomorphic 4-manifolds.

i. Without loss of generality we can assume that curve to be B′2. In this case, since

any positive Dehn twist is right veering(see [43]), the diffeomorphism τB′2 will move

the arc ai strictly to the right. Hence, τB′1 should move the arc ai strictly to the left,

which is impossible. Similarly, the curves B′1 and B′2 do not intersect any of the arcs

bi.

Since the arcs ai and bi are not moved by the diffeomorphism τB′1τB′2 , we can

cut along arcs ai and bi. If we do that we are left with the surface D3, D4 or D5,

depending on k and n. We still denote the curves by B1, B2, B
′
1, B

′
2 in this new surface.

As before, there is a diffeomorphism which sends B′1 to B1, and B′2 to B′′2 . Now from

Lemmas 9.1.3, 9.1.4 and 9.1.5 it follows that there are at most two factorizations,
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up to a global conjugation, of the monodromy given by two different choices for the

curve B′′2 .

From the Kirby diagrams, see Figure 18 for an example, we know that for both

of these two choices of the curve B′′2 , the manifold supported by the open book

decomposition

(Σ, τm1
1 τm2

2 . . . τmnn τ
mn+2

n+2 τB1τB′′2 )

is diffeomorphic to the original oriented 3-manifold, and their corresponding Stein

fillings are diffeomorphic. According to Theorem 7.2.17, Theorem 9.0.3 holds in this

special case.

Now we are left to prove the general case. Any other factorization of Φ is

τm1
1 τm2

2 . . . τ
mn+q−1

n+q−1 τ
mn+q+1

n+q+1 . . . τ
mn+p+q
n+p+q τB′1τB′2

up to a global conjugation, where B′1 and B′2 enclose the same boundary components

as B1 and B2, respectively. In particular, either τB1τB2 = τB′1τB′2 or τB1τB2 = τB′2τB′1 .

Without loss of generality, we assume that τB1τB2 = τB′1τB′2 .

Suppose un+q+1, . . . , un+q+p−1 are p− 1 properly embedded pairwise disjoint arcs

in Σ which satisfy that: 1) ui connects the boundary components ci and ci+1, 2) ui is

disjoint with B1 and B2. Suppose vk, . . . , vk+q−2 are q−1 properly embedded pairwise

disjoint arcs in Σ which satisfy that: 1) vi connects the boundary components ci and

ci+1, 2) vi is disjoint with B1 and B2.

Note that the diffeomorphism τB1τB2 does not move any of the arcs un+q+1, . . . ,

un+q+p−1, vk, . . . , vk+q−2 and so τB′1τB′2 does not move these arcs either. By the

same argument as in previous paragraph, the curves B′1 and B′2 do not intersect

arcs un+q+1, . . . , un+q+p−1, vk, . . . , vk+q−2.

Hence, to factorize Φ we need to specify curves B′1 and B′2 in the complement of

arcs un+q+1, . . . , un+q+p−1, vk, . . . , vk+q−2. So, we cut the surface along arcs un+q+1, . . . ,

un+q+p−1, vk, . . . , vk+q−2. Thus we are left with a planar surface with n+ 3 boundary
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components. Also, there is a diffeomorphism which sends B′1 to B1, and B′2 to B′′2 .

By Lemma 9.1.3, Lemma 9.1.4, Lemma 9.1.5, there are at most two factorizations,

up to a global conjugation, of the monodromy given by two different choices for the

curve B′′2 . Considering the Kirby diagrams, we know that the two Stein fillings are

diffeomorphic. This finishes the proof by Theorem 7.2.17.

9.1.3 Proofs of the theorems

0

n

k + 1

1k − 1

n+ 2n+ p+ 1

k

n+ 1

Figure 19: An embedded open book decomposition supporting (S3, ξstd) with a twist
knot K−2p and some unknots on a page.

Proof of Theorem 1.0.6. Let L be a Legendrian twist knot K−2p with Thurston-

Bennequin invariant −n and rotation number n − 2k + 1. According to [47], we

can embed the Legendrian link in Figure 1 into an page of an embedded open book

supporting (S3, ξstd). See Figure 19.

The embedded open book supporting (S3, ξstd) can be transformed into an abstract

version (Σ, φ) with q = 1 and

φ = τ1τ2 . . . τk−1τkτk+1 . . . τnτn+2 . . . τn+p+1τB1 .
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So the contact structure (M ′, ξ′) is supported by the open book (Σ,Φ) with q = 1

and

Φ = τm1
1 τm2

2 . . . τ
mk−1

k−1 τkτ
mk+1

k+1 . . . τmnn τn+2 . . . τn+p+1τB1τB2 ,

where mi ≥ 1 for i = 1, . . . , k − 1, k + 1, . . . , n.

By Theorem 9.0.3, (M ′, ξ′) admits a unique Stein filling up to diffeomorphism.

Proof of Theorem 1.0.7. The open book

(Σ, τ1τ2 . . . τn+q−1τn+q+1 . . . τn+p+qτB1)

corresponds to (S3, ξstd). If we transform it to the embedded version which is sim-

ilar to Figure 19, then B2 can be realized as a Legendrian 2-bridge knot B(p, q)

topologically shown in Figure 2. It is the result of n − k positive stabilizations and

k − 1 negative stabilizations of a Legendrian 2-bridge knot B(p, q) with Thurston-

Bennequin invariant −1 and rotation number 0. So by Theorem 9.0.3, the contact

3-manifold which is obtained by Legendrian surgery on (S3, ξstd) along the Legendrian

B2 admits a unique Stein filling up to diffeomorphism.

9.1.4 Uniqueness of certain Stein fillings up to symplectic deformation
equivalence

Proof of Theorem 1.0.8. Since L is a Legendrian twist knot K−2p with Thurston-

Bennequin invariant −1 and rotation number 0, according to [47], we can embed

Sn−k+ Sk−1
− (L) into a page of an embedded open book decomposition supporting (S3, ξstd)

as in Figure 19, where the page is a compact planar surface with n+ p+ 2 boundary

components. We transform this embedded open book decomposition into an abstract

version (Σ, φ) with q = 1 and

φ = τ1τ2 . . . τnτn+2 . . . τn+p+1τB1 .

The Legendrian surgery on (S3, ξstd) along the stabilization Sn−k+ Sk−1
− (L) yields a

contact structure ξk on the 3-manifold S3
−1−n(K−2p), which is supported by the open
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book decomposition (Σ,Φ) with q = 1 and

Φ = τ1τ2 . . . τnτn+2 . . . τn+p+1τB1τB2 .

By Lemma 9.1.1, any positive factorization of Φ has to be the product of τ1, τ2,

. . ., τn, τn+2, . . ., τn+p+1, τB′1 , τB′2 , where B′1 and B′2 enclose the same set of holes as

B1 and B2, respectively.

The open book decomposition

(Σ, τ1τ2 . . . τnτn+2 . . . τn+p+1τB′1)

also supports (S3, ξstd). We think of B′2 as a knot in (S3, ξstd).

We claim that B′2 is isotopic to the twist knot K−2p. There is an element f ∈

Map(Σ, ∂Σ) which sends B′1 to B1. We denote f(B′2) by B′′2 . According to the

proof of Theorem 9.0.3, the given monodromy Φ has at most two different positive

factorizations, up to a global conjugation, depending on the two choices for B′′2 . Both

of the two choices of B′′2 are isotopic to the twist knot K−2p. So B′2 is isotopic to the

twist knot K−2p.

We compute the page framing of B′2 in the open book decomposition

(Σ, τ1τ2 . . . τnτn+2 . . . τn+p+1τB′1).

To this end, we compute the linking number of B′′2 and its push-off in the page of

open book decomposition

(Σ, τ1τ2 . . . τnτn+2 . . . τn+p+1τB1)

shown in Figure 19. For both of the two choices of B′′2 , it is routine to check that the

linking numbers of B′′2 and its push-off in the page are −n. So B′2 has page framing

−n with respect to the Seifert framing.

Since B′2 is not null-homologous in Σ, we can Legendrian realize it. According

to the definition of open book decomposition, we know that the Thurston-Bennequin

102



invariant of B′2 is the difference between the page framing and the Seifert framing,

that is, −n. .

Therefore, the Lefschetz fibration X over D2, with fiber Σ, corresponding to the

positive factorization τ1τ2 . . . τnτn+2 . . . τn+p+1τB′1τB′2 of Φ is diffeomorphic to D4, with

its standard complex structure, and a 2-handle attached along a (−1 − n)-framed

twist knot K−2p. Also, X has a Stein structure that arises from the Legendrian

surgery along the Legendrian realized B′2. By a theorem of Eliashberg [12], we can

extend the Stein structure uniquely to this new manifold. Since there is a unique

Legendrian twist knot K−2p with Thurston-Bennequin invariant −n and rotation

number n− 2k+ 1, [18], we know that the only Legendrian twist knot K−2p that can

produce (S3
−1−n(K−2p), ξk) is Sn−k+ Sk−1

− (L). This implies that all Stein structures on

X are symplectic deformation equivalent. So X has a unique Stein structure up to

symplectic deformation.

According to Theorem 7.2.17, every Stein filling of (S3
−1−n(K−2p), ξk) is symplectic

deformation equivalent to a Lefschetz fibration compatible with the given planar open

book decompsition (Σ,Φ). So there is a unique Stein filling on (S3
−1−n(K−2p), ξk), up

to symplectic deformation.
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phic curves,” Ann. Sci. Éc. Norm. Supér. (4), vol. 44, no. 5, pp. 801–853, 2011.

[63] Ohta, H. and Ono, K., “Simple singularities and symplectic fillings,” J. Dif-
ferential Geom., vol. 69, no. 1, pp. 1–42, 2005.

[64] Plamenevskaya, O., “Contact structures with distinct Heegaard Floer invari-
ants,” Math. Res. Lett., vol. 11, no. 4, pp. 547–561, 2004.

[65] Plamenevskaya, O., “On Legendrian surgeries between lens spaces,” J. Sym-
plectic Geom., vol. 10, no. 2, pp. 165–181, 2012.

[66] Plamenevskaya, O. and Van Horn-Morris, J., “Planar open books, mon-
odromy factorizations and symplectic fillings,” Geom. Topol., vol. 14, no. 4,
pp. 2077–2101, 2010.

[67] Starkston, L., “Symplectic fillings of seifert fibered spaces.” Submitted.

[68] Stipsicz, A. I., “Gauge theory and Stein fillings of certain 3-manifolds,” Turkish
J. Math., vol. 26, no. 1, pp. 115–130, 2002.

[69] Stipsicz, A. I., “On the geography of Stein fillings of certain 3-manifolds,”
Michigan Math. J., vol. 51, no. 2, pp. 327–337, 2003.

[70] Thurston, W. P. and Winkelnkemper, H. E., “On the existence of contact
forms,” Proc. Amer. Math. Soc., vol. 52, pp. 345–347, 1975.

[71] Thurston, W. P., “Three-dimensional manifolds, Kleinian groups and hyper-
bolic geometry,” Bull. Amer. Math. Soc. (N.S.), vol. 6, no. 3, pp. 357–381, 1982.

[72] Wajnryb, B., “An elementary approach to the mapping class group of a sur-
face,” Geom. Topol., vol. 3, pp. 405–466 (electronic), 1999.

[73] Wallace, A. H., “Modifications and cobounding manifolds,” Canad. J. Math.,
vol. 12, pp. 503–528, 1960.

[74] Wand, A., “Factorizations of diffeomorphisms of compact surfaces with bound-
ary.” Submitted.

[75] Wand, A., “Mapping class group relations, Stein fillings, and planar open book
decompositions,” J. Topol., vol. 5, no. 1, pp. 1–14, 2012.

[76] Weinstein, A., “On the hypotheses of Rabinowitz’ periodic orbit theorems,”
J. Differential Equations, vol. 33, no. 3, pp. 353–358, 1979.

108



[77] Weinstein, A., “Contact surgery and symplectic handlebodies,” Hokkaido
Math. J., vol. 20, no. 2, pp. 241–251, 1991.

[78] Wendl, C., “Strongly fillable contact manifolds and J-holomorphic foliations,”
Duke Math. J., vol. 151, no. 3, pp. 337–384, 2010.

[79] Wendl, C., “A hierarchy of local symplectic filling obstructions for contact
3-manifolds,” Duke Math. J., vol. 162, no. 12, pp. 2197–2283, 2013.

[80] Wu, H., “Legendrian vertical circles in small Seifert spaces,” Commun. Con-
temp. Math., vol. 8, no. 2, pp. 219–246, 2006.

109


