
A MODEL-BASED SYSTEMS ENGINEERING METHODOLOGY TO
MAKE ENGINEERING ANALYSIS OF DISCRETE-EVENT

LOGISTICS SYSTEMS MORE COST-ACCESSIBLE.

A Thesis
Presented to

The Academic Faculty

by

George G. Thiers

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial & Systems Engineering

Georgia Institute of Technology
August 2014

Copyright c© 2014 by George G. Thiers

A MODEL-BASED SYSTEMS ENGINEERING METHODOLOGY TO
MAKE ENGINEERING ANALYSIS OF DISCRETE-EVENT

LOGISTICS SYSTEMS MORE COST-ACCESSIBLE.

Approved by:

Dr. Leon McGinnis, Advisor
School of Industrial & Systems
Engineering
Georgia Institute of Technology

Dr. Edward Huang
Systems Engineering & Operations
Research
George Mason University

Dr. Chris Paredis
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Christos Alexopoulos
School of Industrial & Systems
Engineering
Georgia Institute of Technology

Dr. Rahul Basole
School of Interactive Computing
Georgia Institute of Technology

Date Approved: May 2014

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

SUMMARY . xi

I INTRODUCTION . 1

1.1 Definitions . 1

1.2 The Methodology . 6

1.2.1 Process . 6

1.2.2 An Automation Method . 8

1.2.3 An Abstraction Method . 11

1.2.4 A Formalization Method . 13

1.2.5 Contributions . 14

1.3 Arguing a Hypothesis . 15

1.4 Prerequisite Knowledge and Boundary . 17

II PRIOR WORK . 19

2.1 Prior Work with the Same Goal . 19

2.1.1 Decision-Support Systems . 19

2.1.2 Reuse of Concrete Analysis Models 20

2.2 Prior Work for the Methodology’s Process 21

2.3 Prior Work for the Methodology’s Methods 24

2.3.1 Model-Driven Architecture of Software 24

2.3.2 Automation . 26

2.3.3 Abstraction . 27

2.3.4 Formalization . 29

2.4 Prior Work for the Methodology’s Tool of a Token-Flow Network Definition 31

2.4.1 Petri Nets . 31

2.4.2 UML 2.0 Activities . 32

2.5 Prior Work for the Methodology’s Tool of a Question Definition 34

2.5.1 Literature Search for Published Documents 35

iii

2.5.2 Relational Database Search . 38

2.6 Summary . 39

III TOKEN-FLOW NETWORK: STRUCTURE 41

3.1 Basic Structure . 41

3.2 Tokens . 44

3.3 Flow . 45

3.4 Interfaces . 48

3.5 Levels of Abstraction . 50

3.6 Analysis Semantics: Variables, Constraints, Objectives, and Observations . 55

3.7 Summary . 57

IV TOKEN-FLOW NETWORK: BEHAVIOR 58

4.1 Time, Behavior, State Change, and Events 58

4.2 Behavioral Model of a Process . 61

4.3 Hosting Behavior at a FlowNode . 66

4.4 Resources . 69

4.5 Plant/Control Interface in a Token-Flow Network 73

4.5.1 Admission of Tokens into FlowNodes 74

4.5.2 Dispatching Tokens from FlowNodes 76

4.5.3 Routing a Dispatched Token . 81

4.5.4 How a Token Crosses a FlowEdge 83

4.6 Summary . 85

V SEMANTICS OF A WELL-FORMED QUESTION 87

5.1 A Taxonomy of Questions . 89

5.2 A Taxonomy of Questions about a Token-Flow Network 92

5.3 A Question’s Subject and Predicate Modifiers 95

5.3.1 Questions about Describing Structure at a Single Point in Time . . 96

5.3.2 Questions about Describing Behavior Spanning Multiple Points in
Time . 97

5.3.3 Questions about Predicting Behavior Spanning Multiple Points in
Time . 99

iv

5.3.4 Questions about Controlling Behavior Spanning Multiple Points in
Time . 102

5.4 Analysis Models and Answers . 104

5.5 Summary . 109

VI ABSTRACTION AND AUTOMATION METHODS 111

6.1 First-Stage Abstraction by Stereotype Application 112

6.2 Modeling Levels of Abstraction . 113

6.3 Second-Stage Analysis Model-Building and Automation 117

6.3.1 Example: Optimization Analysis 120

6.3.2 Example: Statistical Regression Analysis 123

6.3.3 Example: Discrete-Event Simulation Analysis 125

6.4 Model-to-Model Transformation Tools . 130

6.5 Summary . 131

VII EXAMPLES . 133

7.1 Example using Basic Structural Semantics 134

7.2 Example using Behavioral Process Semantics 139

VIIICONCLUSIONS AND FUTURE WORK 145

8.1 Contributions . 145

8.2 Boundary . 146

8.2.1 Boundary Induced by the Formalization Method 146

8.2.2 Boundary Induced by the Abstraction Method 147

8.2.3 Boundary Induced by the Automation Method 150

8.3 Future Work . 151

8.4 What If the Hypothesis Is Untrue? . 153

APPENDIX A — PETRI NETS . 156

APPENDIX B — UML 2.0 ACTIVITIES 159

APPENDIX C — INTERPRETING SEQUENCING DEPENDENCIES
IN A PROCESS NETWORK . 162

REFERENCES . 168

v

LIST OF TABLES

1 A Taxonomy of Questions Specialized to a Token-Flow Network. 93

vi

LIST OF FIGURES

1 [Pegden et al., 1995]’s Example of a Discrete-Event Simulation Analysis
Model in the SIMAN Language. 3

2 [Estefan, 2008]’s Elements of a Methodology and their Relationships. 5

3 The Process in this Dissertation’s Methodology. 6

4 [Roedler, 2002]’s Illustration of ISO/IEC 15288 Process Categories. 7

5 Where an Automation Method Might Be Applied to the Process in this
Dissertation’s Methodology. 8

6 Example: Discrete-Event Simulation Analysis Model in Simio Language v5.81. 9

7 Adding Intermediate Steps to the Process in this Dissertation’s Methodology
for the Abstraction Method. 12

8 Process, Methods, and Tools in this Dissertation’s Methodology. 14

9 [Law and Kelton, 2000]’s Ten Steps of a Typical Sound Simulation Study. . 16

10 [Friedenthal et al., 2011]’s Illustration of the OOSEM System Development
Process. 22

11 [Friedenthal et al., 2011]’s Refinement of the Specify and Design System
Process in Figure 10. 23

12 [Hazelrigg, 1998]’s Framework for Decision-Based Engineering Design. . . . 24

13 [Friedenthal et al., 2011]’s Partial Systems Engineering Standards Taxonomy. 30

14 Prior Work on Modeling Questions: A Definition of a Published Document
per Proquest ABI/INFORM Complete. 36

15 Prior Work on Modeling Questions: User Interface for Constructing a
Proquest ABI/INFORM Complete Document Query. 37

16 Prior Work on Modeling Questions: Schema for a Proquest ABI/INFORM
Complete Document Query. 37

17 Prior Work on Modeling Questions: A Definition of a Relational Database. 38

18 Excerpt from a Defining BNF Grammar for SQL:1999. 39

19 Token-Flow Network, Structural Definition: Basic Structure. 41

20 An Example of a Network Instance Conforming to Basic Structural Semantics. 42

21 Token-Flow Network, Structural Definition: Tokens. 44

22 Token-Flow Network, Structural Definition: Flow. 46

23 An Example of a FlowNetwork Instance Conforming to Flow Semantics. . . 47

24 Token-Flow Network, Structural Definition: Interfaces. 49

vii

25 An Example of Integrated Network and FlowNetwork Instances using
Interface Semantics. 49

26 Token-Flow Network, Structural Definition: Levels of Abstraction. 50

27 An Example of a Nested Network Instance Conforming to Level Of Abstrac-
tion Semantics. 51

28 An Example of Integrated Nested Network and FlowNetwork Instances
Conforming to Level Of Abstraction Semantics. 51

29 An Example of Consumption at a Node’s FlowNode Interfaces. 52

30 An Example of Consumption at a Node’s FlowNode Interfaces, Allocated to
FlowNodes in a Nested Network. 53

31 Incorrect Example of a FlowNode with FlowNode Interfaces. 54

32 Corrected Example of a FlowNode with FlowNode Interfaces. 54

33 Token-Flow Network, Structural Definition: Metrics 56

34 Token-Flow Network, Structural Definition: Additional Flow Constraints. . 56

35 Token-Flow Network, Behavioral Definition: Time and Events. 59

36 Token-Flow Network, Behavioral Definition: Process Behavioral Model (in
isolation). 61

37 Example: A Process Network Instance Sequenced Explicitly using Sequenc-
ingDependencies. 62

38 Token-Flow Network, Behavioral Definition: Process Behavioral Model
(integrated). 63

39 Example: A Process Network Instance Sequenced Implicitly using Token Flows. 64

40 Token-Flow Network, Behavioral Definition: Process Subclasses. 65

41 Token-Flow Network, Behavioral Definition: Hosting Behavior. 67

42 Example: ConversionNode and ConversionEdge Hosting Behavior. 68

43 Token-Flow Network, Behavioral Definition: Resources and Corresponding
Tokens. 70

36 Token-Flow Network, Behavioral Definition: Process Behavioral Model (in
isolation). 71

44 A Modeling Pattern of Plant/Control Separation. 73

45 Token-Flow Network, Behavioral Definition: Blocked FlowNodes and FlowEdges. 75

46 Token-Flow Network, Behavioral Definition: Process Subclasses with Output
Production Rules. 77

47 Example: A Process Network Instance with Three Levels of Parent/Child
Hierarchy. 79

viii

48 Example: A Process Network Instance with Four Levels of Parent/Child
Hierarchy. 79

49 Token-Flow Network, Behavioral Definition: Routing Control Policies for
Dispatching Tokens from a FlowNode onto an Outgoing FlowEdge. 81

50 Token-Flow Network, Behavioral Definition: Flow Control Policies for a
Token crossing a FlowEdge. 83

51 Example: A Process Network Instance with Hosted Storage Processes and
Hosted Move Processes. 84

52 A Generalized View of the Process in this Dissertation’s Methodology. . . . 87

53 A Taxonomy of Questions. 90

54 Example: State Values Available at Two Points in Time. 90

55 Example: State Values Available at Many Points in Time. 91

56 Example of Reed-Kellogg Sentence Diagramming. 95

57 Pattern for a Question about a Describing Structure at a Single Point in Time. 96

58 Reed-Kellogg Diagram for an Example of a Question about Describing
Structure at a Single Point in Time. 96

59 Pattern for a Question about Describing Behavior Spanning Multiple Points
in Time. 98

60 Reed-Kellogg Diagram for a Question about Describing Behavior Spanning
Multiple Points in Time. 99

61 Pattern for a Question about Predicting Behavior Spanning Multiple Points
in Time. 100

62 Reed-Kellogg Diagram for a Question about Predicting Behavior Spanning
Multiple Points in Time. 101

63 Reed-Kellogg Diagram for a Question about Predicting Behavior Spanning
Multiple Points in Time, with an Embedded Behavioral Model. 102

64 Pattern for a Question about Controlling Behavior Spanning Multiple Points
in Time. 103

65 Reed-Kellogg Diagram for a Question about Controlling Behavior Spanning
Multiple Points in Time. 104

66 An Objects-and-Relationships View of The Process in this Dissertation’s
Methodology. 104

67 The Process in this Dissertation’s Methodology, with Multiple Answering
Analysis Models and Analyst Choice. 106

68 The Process in this Dissertation’s Methodology, with Question and Answer
Qualifications. 108

ix

69 A Complete Illustration of the Process in this Dissertation’s Methodology. . 109

8 Process, Methods, and Tools in this Dissertation’s Methodology. 111

70 [Berner et al., 1999]’s Classification of UML Stereotypes. 112

71 OMG’s Layered Abstraction Levels for Object-Oriented Modeling. 114

72 Example: A Simple SysML User Model. 114

73 Instance Models Conforming to the SysML User Model in Figure 72. 115

74 A Model-to-Model Transformation Paradigm. 118

75 Model-to-Model Transformation for MDA Object-Oriented Code Generation. 118

76 Model-to-Model Transformations in MDA Object-Oriented Code Generation
and MBSE Analysis Model Generation Use Cases. 119

77 M2-Level Definition of an AMPL Optimization Analysis Model. 120

78 M2-Level Definition of a Statistical Analysis Model. 123

79 An M1-Level Partial Definition of Multiple Linear Regression Analysis. . . . 124

80 [Miller et al., 2004]’s Four Defining Paradigms for Discrete-Event Modeling. 126

81 An M1-Level Partial Definition of the SIMAN Language. 128

82 An M0-Level Instance of a SIMAN Model and a SIMAN Experiment. . . . 129

69 A Complete Illustration of the Process in this Dissertation’s Methodology. . 133

83 Example 1: SysML User Model of a Supply Chain. 134

84 Reed-Kellogg Diagram for the Question in Example 1. 135

85 Example 1: Applying Basic Network Stereotypes to a Supply Chain User
Model. 136

86 Example 2: SysML Activity Model of a Manufacturing Process Instance. . . 139

87 Reed-Kellogg Diagram for the Question in Example 2. 140

88 Example 2: Apply Process Network Stereotypes to a SysML Activity Model
of a Manufacturing Process. 141

89 Example: A Recursive Design Pattern for System Structure. 155

90 Higher-level Coordination Concepts for Firing Transitions in a Petri Net. . 157

91 A Portion of the UML 2.0 Activity Metamodel. 159

92 Example: A Simple Process Network to Demonstrate an Algorithm for
Interpreting Sequencing Dependencies. 164

93 Example: A More Complex Process Network to Demonstrate an Algorithm
for Interpreting Sequencing Dependencies. 165

x

SUMMARY

This dissertation supports human decision-making with a Model-Based Systems

Engineering methodology enabling engineering analysis, and in particular Operations

Research analysis of discrete-event logistics systems, to be more widely used in a cost-

effective and correct manner. A methodology is a collection of related processes, methods,

and tools, and the process of interest is posing a question about a system model and then

identifying and building answering analysis models. Methods and tools are the novelty of

this dissertation, which when applied to the process will enable the dissertation’s goal.

One method which directly enables the goal is adding automation to analysis model-

building. Another method is abstraction, to make explicit a frequently-used bridge to

analysis and also expose analysis model-building repetition to justify automation. A third

method is formalization, to capture knowledge for reuse and also enable automation without

human interpreters. The methodology, which is itself a contribution, also includes two

supporting tool contributions.

A tool to support the abstraction method is a definition of a token-flow network, an

abstract concept which generalizes many aspects of discrete-event logistics systems and

underlies many analyses of them. Another tool to support the formalization method is a

definition of a well-formed question, the result of an initial study of semantics, categories,

and patterns in questions about models which induce engineering analysis. This is more

general than queries about models in any specific modeling language, and also more general

than queries answerable by navigating through a model and retrieving recorded information.

A final contribution follows from investigating tools for the automation method.

Analysis model-building is a model-to-model transformation, and languages and tools for

model-to-model transformation already exist in Model-Driven Architecture of software. The

contribution considers if and how these tools can be re-purposed by contrasting software

object-oriented code generation and engineering analysis model-building. It is argued that

xi

both use cases share a common transformation paradigm but executed at different relative

levels of abstraction, and the argument is supported by showing how several Operations

Research analyses can be defined in an object-oriented way across multiple layered instance-

of abstraction levels.

Enabling Operations Research analysis of discrete-event logistics systems to be more

widely used in a cost-effective and correct manner requires considering fundamental

questions about what knowledge is required to answer a question about a system, how

to formally capture that knowledge, and what that capture enables. Developments here are

promising, but provide only limited answers and leave much room for future work.

xii

CHAPTER I

INTRODUCTION

The objective of this research is to support human decision-making. That can be hard for

many reasons, including complexity of the system which is the subject of decisions. One

resolution is to only make simple systems, which seems to disagree with the human spirit.

Another way is to augment the human brain with a computer and make use of modeling

and analysis. Modeling and analysis can help with the description, prediction, control,

and design of a complex system’s structure and behavior, but can also be expensive 1.

The cost can be so high that modeling and analysis are often forgone, leading to missed

opportunities at best 2 and catastrophic failures at worst. This dissertation supports

human decision-making with a Model-Based Systems Engineering methodology enabling

engineering analysis, and in particular Operations Research analysis of discrete-event

logistics systems, to be more widely used in a cost-effective and correct manner.

1.1 Definitions

Analysis is often defined as the opposite of synthesis - synthesis is combining simple

elements to derive something more complex, and analysis is breaking what is complex

into simpler elements 3. The ultimate purpose of analysis is understanding, at any of the

hierarchical levels identified by [Rouse, 2009]:

• Describe past observations

• Classify past observations

• Predict future observations

1Indirect evidence for this claim is the size of teams and scope of work of INFORMS Wagner Prize
finalists, documented in the Interfaces September/October special issue each year. The introduction to the
most recent is [Butler and Robinson, 2013]. Direct evidence for the claim is elusive in published academic
literature but readily available in non-peer-reviewed sources such as [LaValle et al., 2010].

2A representative non-peer-reviewed source is [Kiron et al., 2011].
3Many definitions of analysis are collected by the Stanford Encyclopedia of Philosophy:

http://plato.stanford.edu/entries/analysis/s1.html, viewed 09jan2014.

1

• Control future observations

• Design future observations

This taxonomy is fundamental and will be relied on heavily in this dissertation. For

simplicity, describe and classify are combined and design is left out-of-scope, so levels of

understanding as used here are describing past observations, predicting future observations,

and controlling future observations. Note that these levels have an inherent sequence -

only after behavior can be described can it be predicted, and only after behavior can be

predicted can it be controlled (also called prescribed). What follows are three examples

of Operations Research analysis used to support each of the describe, predict, and control

levels of understanding.

.

An analysis which can be used to describe past observations is statistical regression. An

analysis model for multiple linear regression, both vectorized and indexed, is:

y = Xβ + ε OR yi = β1xi,1 + . . .+ βpxi,p + εi i = 1, . . . , n

ε ∼ N
(
0, σ2I

)
εi ∼ N(0, σ2)

Independent observations are made of p predictors xi,1, . . . , xi,p and one response yi. The

analysis’ purpose is to fit a reduced-order description by estimating linear coefficients

β1, . . . , βp, plus σ2 for error. Solution algorithms include least-squares optimization,

maximum likelihood estimation, and possibly Bayesian methods (which require enhancing

the model with prior distributions for β and σ2). Solvers include packaged functions in R,

SAS, JMP, Minitab, Excel, and more. The fitted regression line is a reduced-order model

describing past and present observations, which under certain assumptions can be used to

predict future observations.

.

An analysis which can be used to predict future observations is simulation. Since there

exist many ways to model behavior which can be simulated, to the best of the author’s

2

knowledge there is no canonical model for simulation analysis. An example of a discrete-

event simulation analysis model from [Pegden et al., 1995, p.116] in the SIMAN language

is shown in figure 1.

Figure 1: [Pegden et al., 1995]’s Example of a Discrete-Event Simulation Analysis Model
in the SIMAN Language. The model concerns customers moving through a restaurant.

SIMAN enables expressing a discrete-event simulation analysis model either graphically

or programmatically. The language includes ten basic processes (ten different block shapes)

with over forty concrete realizations. Many discrete-event simulation languages enable

separating a model from experiments on the model, such that one model can be reused to

answer multiple questions via different experiments. An experiment on the model in figure

1 from [Pegden et al., 1995, p.118] is:

BEGIN;

PROJECT, Sample Problem 3.4,SM;

ATTRIBUTES: PartySize;

VARIABLES: Door,10000;

QUEUES: TableQ:

CashierQ;

RESOURCES: Table,50:

Cashier;

COUNTERS: LostParties:

ServedParties;

DSTATS: NR(Table),Number of Busy Tables:

NQ(TableQ),# of Waiting Parties:

NR(Cashier)*100,Cashier Utilization:

NQ(CashierQ),# Waiting for Cashier;

REPLICATE, 1;

END;

Solution algorithms are generally time-stepping algorithms utilizing a simulation clock,

event queues, state transitions, and statistical estimation algorithms for outputs. Solvers

3

include AnyLogic, Arena, SimEvents, Simio, FlexSim, Tecnomatix, and more; users can

even write their own solver using the Visual Basic code in [Allen, 2011, ch.9].

.

An analysis which can be used to control future observations is optimization. An analysis

model for linear optimization, both vectorized and indexed, is:

min cTx OR min
n∑
i=1

cixi

s.t. Ax = b s.t.
n∑
i=1

aijxi ≤ bj j = 1, . . . ,m

x ≥ 0 xi ≥ 0 i = 1, . . . , n

Controllable variables are x1, . . . , xn, their values may be linearly constrained, and the

objective is a cost-weighted sum of the variables. An optimization analysis’ purpose is

to find values for the variables which satisfy all constraints and optimize the objective.

Solution algorithms include the simplex method, interior point methods, branch-and-bound

for integer variables, and decomposition methods for large-scale cases. Solvers include

CPLEX, Gurobi, Xpress, Excel, and more.

.

Discrete-event logistics system is an abstract term for industrial engineering systems

including manufacturing, supply chains, transportation, warehouses, healthcare delivery,

and more. These systems’ behavior can be described using the concepts of discrete events

(any state change, such as the beginning or ending of a process’ execution) and logistics

(movement of goods, services, information, payments, and more). A low-level behavioral

model for discrete-event logistics systems is an event-triggered state machine, and higher-

level behavioral models such as a process can also be used, which may also have a lower-level

state machine representation.

A model can be defined as “a representation of a selected part of the world” 4 or

as a description or characterization. Model-Based Systems Engineering (MBSE)

4http://plato.stanford.edu/entries/models-science, viewed 17april2014.

4

is defined by [INCOSE, 2007, p.15] as “the formalized application of modeling to support

system requirements, design, analysis, verification and validation activities beginning in the

conceptual design phase and continuing throughout development and later life cycle phases.”

A methodology is defined by [Estefan, 2008, p.1-3]:

• “A Methodology is a collection of related processes, methods, and tools.”

• “A Process is a logical sequence of tasks performed to achieve a particular objective.

A process defines WHAT is to be done, without specifying HOW each task is

performed.”

• “A Method consists of techniques for performing a task, in other words, it defines

the HOW of each task.”

• “A Tool is an instrument that, when applied to a particular method, can enhance the

efficiency of the task; provided it is applied properly and by somebody with proper

skills and training. The purpose of a tool should be to facilitate the accomplishment

of the HOW.”

• “A MBSE Methodology can be characterized as the collection of related processes,

methods, and tools used to support the discipline of systems engineering in a ‘model-

based’ or ‘model-driven’ context.

[Estefan, 2008, p.3] illustrates methodology elements and their relationships in figure 2.

Figure 2: [Estefan, 2008]’s Elements of a Methodology and their Relationships.

5

1.2 The Methodology

Given the definitions in the previous section, next consider the methodology which is the

core contribution of this dissertation. A methodology is a collection of related processes,

methods, and tools, and each category is explained in the sections below.

1.2.1 Process

The process of interest is posing a question about a system model and then identifying and

building answering analysis models, illustrated in figure 3.

Figure 3: The Process in this Dissertation’s Methodology.

Step 1 shows that the process is question-based - analysis is performed for a purpose, and

a question contains that purpose. In step 2, a question may concern parts of a system which

are not well-understood, whether due to missing low-level data or higher-level knowledge

about structure and behavior. In this case, types of answering analysis may be identified but

analysis models cannot be built until missing system knowledge is collected or computed.

Step 2 may also be explained as making a question and its context precise and unambiguous

enough that answering analysis models can be built.

In step 3, identifying answering analysis and building an analysis model are traditionally

6

lumped as ‘formulation’ and are considered an art, even in routine cases. An important

observation is that identifying analysis to answer a question requires creativity, whether

recognition in the sense of “I’ve seen something like this before” or devising something

original. Once analysis is identified, however, then building an analysis model can be

mechanical, and anything mechanical can be automated to reduce time and cost. In

step 4, contemporary Operations Research literature extensively studies solving analysis

models for answers, and nothing is added here. Step 5 includes two feedback loops; step 5a

captures that executing the process offers the opportunity to learn something and capture

knowledge, and step 5b captures that improved understanding of a system may induce

additional questions for further understanding. Steps 5a and 5b are developed no further;

attention in this dissertation is restricted to methods and tools for steps 1, 2, and 3.

To put the process into perspective, ISO/IEC 15288 is a comprehensive standard for

systems engineering processes and includes categories shown in figure 4.

Figure 4: [Roedler, 2002]’s Illustration of ISO/IEC 15288 Process Categories.

The process in this dissertation’s methodology, illustrated in figure 3, might classify as

a supporting process in the Decision-Making category. Note that posing a question about a

7

system model and then identifying and building answering analysis models is not designed

to be novel, but rather to capture a process regularly executed in the status quo by any

person or organization seeking to use engineering analysis to improve understanding and

support decision-making. The novelty of this dissertation are methods and tools, which

when applied to the process will enable the dissertation’s goal.

1.2.2 An Automation Method

A method applied to the process illustrated in figure 3 is automation. Figure 5 considers

what exactly in the process can be automated.

Figure 5: Where an Automation Method Might Be Applied to the Process in this
Dissertation’s Methodology.

The claim that analysis model-building is often mechanical and amenable to automation

is explained in section 6.3; of interest here is how the automation method can help realize

the dissertation’s goal. Automation has good return-on-investment whenever similar tasks

8

are repeated over and over again. Where is repetition in building analysis models? For one

answer, consider a simple discrete-event simulation analysis model in the Simio language

illustrated in figure 6.

Figure 6: A Discrete-Event Simulation Analysis Model in Simio Language v5.81.

Many simulation analysis languages, Simio included, allow separating a model from

any hard-coded data values, which in figure 6 include parameters for Simio’s definition

of a Workstation. However, process-oriented simulation models almost always hard-code

a process structure, which in figure 6 includes one Source instance, three Workstation

instances, and their interconnections. If the number of sources, the number of workstations,

or their interconnections change, the result is a new model. Therefore, evaluating differently-

structured alternatives using process-oriented simulation is a potentially high-repetition

scenario in which humans may build a large number of similar analysis models, and

automation may have good return-on-investment.

Beyond simulation analysis, however, many analysis modeling languages can separate

a model from both hard-coded data values and also structural instances. This includes

statistical regression languages, mathematical optimization languages, and in general

languages allowing users to define variable-length sets or arrays of model elements. Analysis

models in these languages need not be rebuilt even as the values and also the dimensions

of data tables change. This is good for robustness but bad for model-building repetition,

because a model separated from both hard-coded data values and also structural instances

9

need not be frequently rebuilt. Also, a bigger obstacle to model-building repetition is that

any analysis model answers a specific question about a specific system, and changes to a

system model’s schema may make obsolete any dependent analysis model-building program.

The case for automated analysis model-building needs more motivation:

• An automated builder program makes analysis models accessible to those who don’t

speak a particular analysis modeling language. This has value considering the number

of such languages - R, SAS, JMP, and more for statistical regression, AMPL, CPLEX,

Gurobi, and more for optimization, AnyLogic, Arena, SimEvents, Simio, FlexSim,

Tecnomatix, and more for discrete-event simulation, and many more languages for

many more types of analysis.

• An automated builder program captures the information that a certain analysis can

answer a certain question about a certain system model. Creativity and innovation

are always welcome for (System Model, Question) → Analysis Model relations, but

there also exist routine and well-understood solutions which become more accessible

with formal capture and sharing.

• In many cases, repetition is found not in the concrete but in the abstract. For example,

logistics questions about moving and storing various goods in various industries may

be answered with very similar network flow optimization analysis. If an automated

analysis model builder can relax its dependence on a particular system model to

dependence on an abstraction model, then its utility may multiply.

The last point is an important part of this dissertation’s methodology - rather than

automate analysis model-building to answer questions about concrete systems, do it to

answer questions about abstractions. Automation makes sense in the presence of repetition,

and while an isolated example of simulation model-building repetition based on concrete

systems was identified above, much more repetition can be found by abstracting away

domain-specific details and focusing on shared commonalities.

10

1.2.3 An Abstraction Method

“In the development of our understanding of complex phenomena, the most

powerful tool available to the human intellect is abstraction. Abstraction arises

from a recognition of similarities between certain objects, situations, or processes

in the real world, and the decision to concentrate on these similarities, and to

ignore for the time being the differences. As soon as we have discovered which

similarities are relevant to the prediction and control of future events, we will

tend to regard the similarities as fundamental and the differences as trivial. We

may then be said to have developed an abstract concept to cover the set of objects

or situations in question.” [Hoare, 1972, p.83]

Developing, documenting, formulating, and solving analysis based on broadly-applicable

abstractions is already practiced in the status quo. What is novel here is making the method

explicit, and choosing one special abstract concept to generalize a wide range of systems

and analysis of them. For discrete-event logistics systems and Operations Research analysis

of them, a great amount of utility can be realized from the single abstract concept of a

token-flow network.

A token-flow network at its core is the basic mathematical structure of a graph, modeling

entities and pairwise relations between them. The graph data structure is appropriate when

topology and interconnectivity of model elements is as important as the elements themselves.

A graph contains one or more nodes (possibly with labels) and zero or more edges (possibly

with weights). While the basic definition is simple and incontrovertible, layers on top of

the basic definition are where formality and synthesis are needed. The token-flow network

defined in chapters 3 and 4 is an attempt to formalize shared network semantics underlying

various discrete-event logistics systems and analysis models of them, captured in the syntax

of a UML profile to enable formal mapping from system to token-flow network semantics.

Making an abstraction method explicit requires enhancing the process in this disserta-

tion’s methodology with intermediate steps, shown in figure 7.

The abstraction method is crucial to the value proposition of this dissertation’s

11

Figure 7: Adding Intermediate Steps to the Process in this Dissertation’s Methodology for
the Abstraction Method.

methodology - if the abstraction model is stable, then automated analysis model-building

programs can be written once and broadly reused. The fragile dependence on a particular

system model is not eliminated, but rather pushed upstream into an abstraction mapping

from system to token-flow network semantics. Therefore, redefining mappings from system

to token-flow network semantics as a system model changes must be easy, and is by using

the mechanism of UML stereotype application, explained in section 6.1.

The automation and abstraction methods as discussed so far are assuming some type

of knowledge capture with some degree of formality for system models, abstraction models,

and even questions. A formalization method is the topic of the next section.

12

1.2.4 A Formalization Method

“Natural language is notoriously ambiguous and so if science is to progress,

we need other more rule-based approaches to model building. The consensual

agreement in a scientific community of signs and rules is termed formalism.

Formalisms, such as logic-based systems with axioms and rules, tend to minimize

the number of components in an attempt to reduce potential semantic ambiguity.”

[Fishwick, 2007, p.4]

Formalizing knowledge means capturing it with more precision and less ambiguity than

common in natural-language descriptions. For models of an arbitrary system’s structure

and behavior, document-based system models of pictures and text are often too informal

and require a human interpreter, and mathematical-language analysis models are often too

formal and disguise any embedded system model. Capturing knowledge with a formalism

like the Systems Modeling Language (SysML) [OMG SysML, 2012] instead of a natural or

mathematical language may not cure all, because precisely-defined language elements does

not guarantee they will be used to create an unambiguous and fidelitous model, but can be

a substantial improvement. A benefit of formalization is often machine-readability, which

like formal is an adjective of degree because even natural languages can be parsed by a

computer with high accuracy using probabilistic algorithms [Klein and Manning, 2003].

A formalization method’s purpose is capturing knowledge for reuse. For capturing

descriptions of arbitrary systems, a preferred formalism is SysML, an extension of UML.

The underlying representation is XML with a standardized schema for machine-readability,

and the language allows graphical diagrams as views into a model for a human interface.

The UML and SysML languages are enabling technologies, without which realizing the goals

of this dissertation’s methodology would be significantly more difficult.

The team performing the Europa mission concept study at NASA’s Jet Propulsion

Lab write that a “common misconception is that models are not really useful until they

can be subjected to quantitative analysis. This is simply not the case. Capture and

description are powerful and far-reaching first steps. Just describing something in a formal

13

modeling language like SysML immediately improves communications and understanding.

The benefits of this would be difficult to overstate.” [Bayer et al., 2012, p.13]

1.2.5 Contributions

Figure 8 illustrates elements in this dissertation’s methodology.

Figure 8: Process, Methods, and Tools in this Dissertation’s Methodology.

The methodology is the core contribution of this dissertation, with the goal of enabling

Operations Research analysis of discrete-event logistics systems to be more widely used in

a cost-effective and correct manner. The process is posing a question about a system model

and then identifying and building answering analysis models. Methods include automation,

abstraction, and formalization. Tools to enable the methods are where two additional

contributions are found - a formal definition of the abstract concept of a token-flow network

to support the abstraction method, and a formal definition of a well-formed question to

support the formalization method. Investigating tools for the automation method leads to

one additional contribution - addressing if and how existing model-to-model transformation

tools can be re-purposed from Model-Driven Architecture of software.

14

1.3 Arguing a Hypothesis

A hypothesis is that this dissertation’s methodology has efficacy and can enable Operations

Research analysis of discrete-event logistics systems to be more widely used in a cost-

effective and correct manner. One form of evidence are reports from pilot projects testing

a simpler version of the methodology without the abstraction method, and these support

the hypothesis. In [Batarseh et al., 2012], for an electronics assembly system and resource

allocation questions about it, an experiment was conducted to automate the building of

discrete-event simulation analysis models. A result estimated by the organization’s analysts

was a ten-fold reduction in the time required to build these analysis models. It is no accident

that several such experiments concern simulation analysis models, because building same-

schema but differently-structured simulation analysis models was identified in section 1.2.2

as a scenario in which this dissertation’s methodology without an abstraction method can

still have good return-on-investment. Similar work is documented in [Son et al., 2003],

estimating a reduction from one week to less than an hour for the time required to build

analysis components of a simulation-based shop floor control system. No experiments testing

this dissertation’s methodology with an abstraction method have been documented to the

best of the author’s knowledge.

A different type of argument in support of the hypothesis might derive from applying

the same methods and tools to a different but similar process to illustrate their functioning

and efficacy. [Law and Kelton, 2000, p.83-84] illustrate “steps that will compose a typical,

sound simulation study” in figure 9, which is a process implicitly involving posing a question

about a system model and then identifying, building, and solving an answering simulation

analysis model.

15

Figure 9: [Law and Kelton, 2000]’s Ten Steps of a Typical Sound Simulation Study.

In figure 9, formalization can impact the “collect data and define model” step 2. Needed

information and data may already be captured in a formal system model, making this step

trivial. If not - if a question targets undeveloped parts of a system model and needed

information and data are missing - then step 2 requires finding, computing, or inferring

needed information as in the status quo, plus augmenting the system model with that new

information. Once formally captured, knowledge becomes reusable to answer any future

questions, highlighting that time and cost savings from this dissertation’s methodology are

expected for routine questions about well-understood parts of the system.

In figure 9, formalizing questions can impact the “design experiments” step 7, and

automation can impact the “construct a computer program and define model” step 4.

Suppose system semantics are captured in a SysML user model, a token-flow network

abstraction is defined as a UML profile, and abstracting system to network semantics is

performed by stereotype application. For a token-flow network and question about it, if an

16

answering simulation analysis was previously identified and an automated builder program

written, then step 4 will realize significant time and cost savings. If no answering analysis

model was previously identified, however, then step 4 requires identifying an answering

analysis’ type, building the analysis model, and (if time and incentives permit) recording

the model-building process into an automation program. First-case time and cost will

increase in order to reduce time and cost of future repetition.

An indirect argument in support of the hypothesis is [Bertsimas and Tsitsiklis,

1997, p.266] observation that “Network flow problems are the most frequently solved

linear programming problems. They . . . arise naturally in the analysis and design of

communication, transportation, and logistics networks, as well as in many other contexts.”

[Collins et al., 2009, p.58] makes a similar argument by enumerating properties of a product

development process and abstracting them to network statistics computable by well-known

graph theoretic analyses.

Rigorously testing the hypothesis that this dissertation’s methodology has efficacy would

require an experiment with a statistically significant number of industrial pilot projects

or implementations. Since that experiment is resource- prohibitive, it is left to happen

organically and be revisited in the future to collect and analyze the results. This dissertation

prepares for and tries to shape the experiment by developing required methods and tools.

It is also fair to consider if and why the hypothesis may be untrue, which will be revisited

in section 8.4.

1.4 Prerequisite Knowledge and Boundary

Certain knowledge is prerequisite for a reader to understand this dissertation. This includes

the concept of a model and its various types - models describing a system’s structure and

behavior, models of analysis, and refinement of the latter category into models of descriptive,

predictive, and control/prescriptive analysis. The most challenging prerequisite may be

object-oriented thinking - understanding the relationship between a Class and Object or

more generally a Classifier and Instance. Object-oriented SysML user models are used

17

in chapter 7’s examples, and an object-oriented UML profile is used to express token-

flow network semantics in chapters 3 and 4. Object-oriented thinking is implicit anytime

an analysis modeling language is set-based, allowing users to use sets as model elements

without knowledge of their member elements, and understanding this dissertation requires

making object-oriented thinking explicit.

The scope and boundary of this dissertation’s methodology are considered at length

in the concluding chapter, but an abbreviated introduction is helpful here. While the

methodology is desired to be fully general, the author’s thinking is influenced by many

years in an industrial and systems engineering department, and all use cases are derived

from discrete-event logistics systems and Operations Research analysis of them. Boundary

conditions follow from various components in the methodology - using the process illustrated

in figures 3 and 7 or something isomorphic, using the formalization tools of SysML user

models, profiles, and question semantics developed in chapter 5, using the abstraction tool

of a token-flow network definition developed in chapters 3 and 4, and only building analysis

models with a well-defined object-oriented metamodel.

The remainder of this dissertation is organized as follows: Chapter 2 describes prior

work. Chapters 3 and 4 define structure and behavior of a token-flow network in the

syntax of a UML profile. Chapter 5 documents an initial study of categories, patterns,

and semantics in questions, and chapter 6 develops both the abstraction and automation

methods and qualifies the methodology’s boundary. Chapter 7 offers examples, and chapter

8 concludes. Appendices A and B extend chapter 2 with technical definitions of the existing

token-flow network definitions of Petri Nets and UML 2.0 Activities, and appendix C extends

an analysis example in chapter 7.

18

CHAPTER II

PRIOR WORK

Posing a question about a system model and then identifying and building answering

analysis models is a process regularly executed by any person or organization seeking to

improve understanding and support decision-making. This dissertation proposes applying

certain methods and tools to the process to enable more widespread usage in a cost-effective

and correct manner. Prior work described in this chapter shows that subsets of these

methods and tools have been tried before in different contexts. Prior work with the same

overall goal as this dissertation’s methodology is described first. Then, prior work is outlined

for the process and each method and tool.

2.1 Prior Work with the Same Goal

2.1.1 Decision-Support Systems

While history has known countless efforts to use modeling and analysis to support decision-

making, attention is restricted here to contemporary efforts involving computer-based

information storage systems. Decision Support System refers to a 1970s and onward

information technology trend succeeding Management Information Systems and Electronic

Data Processing. [Sprague, 1980, p.2] describes characteristics of Decision Support Systems:

• “They tend to be aimed at the less well-structured, underspecified problems that upper

level managers typically face;

• They attempt to combine the use of models or analytic techniques with traditional data

access and retrieval functions;

• They specifically focus on features which make them easy to use by noncomputer people

in an interactive mode; and

• They emphasize flexibility and adaptability to accommodate changes in the environ-

ment and the decision-making approach of the user.”

19

This dissertation’s methodology shares the last three characteristics and might classify as

a decision-support system. It classifies even better as what Sprague calls a DSS Generator,

which is “a ‘package’ of related hardware and software which provides a set of capabilities

to quickly and easily build a specific Decision Support System.” [Sprague, 1980, p.6] An

example of a DSS Generator with the same goal but narrower scope than this dissertation

is [Biswas and Narahari, 2004].

2.1.2 Reuse of Concrete Analysis Models

Other methodologies with the same goal as this dissertation’s involve not building analysis

models from scratch but rather reusing existing ones. For statistical regression analysis,

partial model reuse may be possible by copying, pasting, and modifying R programming

code, keeping the model-fitting and diagnostic procedure but changing the predictors and

response. For optimization analysis, partial model reuse may be possible by copying,

pasting, and modifying AMPL programming code with new variables, constraints, and

objective. [Robinson et al., 2004] discusses a spectrum of analysis model reuse methods

from Code scavenging to Function reuse to Component reuse to Full model reuse.

Analysis models are often implemented as software. For reusing a software asset, [Larsen,

2006, p.542-543] observes:

“Two factors that make an asset reusable, impacting its time-to-value and

thereby affecting the organization’s time-to-market, are its complexity and

its comprehensibility . . . If an asset is truly comprehensible, offers minimal

complexity, and solves a recurring problem, and if the consumer of the asset

can discover it quickly, then that asset has its best chance at providing value in

a timely manner.”

Unfortunately, this observation effectively lists several obstacles to analysis models’ reuse.

Analysis models by their very nature can be complex, which inhibits comprehension and

maintenance by authors and especially non-authors. Comprehensibility is also inhibited by

a plethora of analysis modeling languages - R, SAS, JMP, and more for statistical regression,

AMPL, CPLEX, Gurobi, and more for optimization, AnyLogic, Arena, SimEvents, Simio,

20

Tecnomatix, and more for discrete-event simulation, and many more languages for many

more types of analysis. For these reasons, any methodology centered around reusing

concrete and solver-ready analysis models may be fundamentally flawed and offer only

marginal benefits.

Interestingly, this dissertation’s methodology is all about reuse, not of concrete and

solver-ready analysis models but rather of information needed to build them on-demand.

2.2 Prior Work for the Methodology’s Process

The process in this dissertation’s methodology is posing a question about a system model

and then identifying and building answering analysis models. This process to support

decision-making may be executed within a larger systems engineering process, and several

of these larger processes are outlined here for context.

Per [Estefan, 2008, p.7], “A systems engineering process is a process model that defines

the primary activities that must be performed to implement systems engineering ... A variety

of systems engineering process standards have been proposed by different international

standards bodies, but most systems engineering process standards in use today have evolved

from the early days of DoD-MIL-STD 499.” ANSI/EIA 632, IEEE 1220-1998, and ISO/IEC

15288 are three full process standards available and contemporarily used, and categories of

processes in ISO/IEC 15288 were illustrated in figure 4. A different systems engineering

process using SysML to support the specification, analysis, design, and verification of

systems is the Object-Oriented Systems Engineering Method (OOSEM) [Friedenthal et al.,

2011]. OOSEM’s system development process is illustrated in figure 10, expressed as a

SysML activity.

21

Figure 10: [Friedenthal et al., 2011]’s Illustration of the OOSEM System Development
Process.

[Friedenthal et al., 2008, p.398] explain “This process can be applied recursively to

multiple levels of a system’s hierarchy that is similar to a Vee development process, where the

specification and design process is applied to successively lower levels of the system hierarchy

down the left side of the Vee, and the integration and test process is applied to successively

higher levels of the system hierarchy up the right side of the Vee. This development process

is different from a typical Vee process in that it includes both management processes and

technical processes at each level of the hierarchy.” The Specify and Design System process

in figure 10 is refined in figure 11.

22

Figure 11: [Friedenthal et al., 2011]’s Refinement of the Specify and Design System Process
in Figure 10.

The process in this dissertation’s methodology can be used to support Optimize and

Evaluate Alternatives, highlighted in figure 11.

A different class of larger process models of smaller scope than a comprehensive systems

engineering process concern decision-making. A decision-making process from [Hazelrigg,

1998, p.657] is shown in figure 12, and the process in this dissertation’s methodology can

support several steps.

23

Figure 12: [Hazelrigg, 1998]’s Framework for Decision-Based Engineering Design.

2.3 Prior Work for the Methodology’s Methods

In this dissertation’s methodology, methods include automation, abstraction, and formaliza-

tion, and prior work exists for all three. The section begins by acknowledging the heritage

of software engineering; for software engineering processes, the Model Driven Architecture

methodology applies formalization and automation methods and is described in section

2.3.1, and Design Patterns result from applying an abstraction method and are outlined in

section 2.3.3.

2.3.1 Model-Driven Architecture of Software

The goal of Model-Driven Architecture (MDA) is mitigating time, cost, and complexity

obstacles to make executable software more cost-accessible. It is an important predecessor

to this dissertation’s methodology because many processes, methods, and tools for system

modeling and transformations are re-purposed from MDA. Model-Driven Architecture has

origins in an OMG white paper advocating language, vendor, and middleware- independent

definition of software [Soley et al., 2000]. The idea is to create a platform-independent

model of software at a higher level of abstraction, which can be transformed as-needed

into platform-specific and executable models. The platform-independent model aids

documentation and communication, but more importantly exists as the definition of a

24

software system in a useful form. Several overviews exist, including [Kleppe et al., 2003]

and [Mellor et al., 2004]. Mellor makes the motivating observation that since the earliest

days of computing, designing, building, and maintaining software often takes far more time

than executing it.

The main reason for creating platform-independent models at a higher level of

abstraction than programming code is complexity, both of a software creation and the target

platform, which make it difficult to understand structure and especially behavior. [Soley

et al., 2000] advocates OMG modeling standards including the UML (Unified Modeling

Language) and MOF (Meta-Object Facility); MOF is a metamodeling language which exists

for the higher-level purpose of defining OMG languages including UML itself. Interesting

is what the designers chose not to do - define UML using a synthesis grammar in EBNF

(Extensible Backus-Naur Form). [Alanen and Porres, 2003, p.6] comment:

“Metamodels inherently contain more information than EBNF grammars. While

an EBNF grammar is quite similar in that it can be presented as a graph of nodes

and directed edges, the edges themselves do not contain as much information as

properties in a metamodel. EBNF forms a tree; metamodels form graphs with

special edges that can be interpreted in many ways.”

Defining UML using MOF instead of an EBNF grammar has advantages, but impedes proofs

and formal reasoning about the structure, behavior, and transformation of UML models.

Using UML’s profiling mechanism, the SysML (Systems Modeling Language) was

defined for general systems modeling [OMG SysML, 2012]. SysML is UML with some

parts removed, some parts reused, and extensions for modeling requirements, parametric

relations, and continuous-behavior activities [Friedenthal et al., 2011]. SysML represents an

effort to make system models explicit, formal, and useful for the larger process of Model-

Based Systems Engineering. The paradigm is the same as Model-Driven Architecture of

software - create platform-independent models at a higher level of abstraction, which can be

transformed as-needed into platform-specific and executable models. In this dissertation,

those executable models are analysis models whose solution answers a question about a

25

system or its abstraction.

2.3.2 Automation

A large class of prior work for automation concerns automatically generating simulation

analysis models of discrete-event logistics systems. [Oldfather et al., 1966] documents what

may be the earliest simulation analysis model generator. [Yuan et al., 1993] describes a

generator for SIMAN-language simulation analysis models of “discrete operational systems”

modeled with an “operations network” and “operation equations”, a scope similar to this

dissertation’s. [Son and Wysk, 2001] describe an effort to automatically build simulation

analysis models in the Arena language for manufacturing systems and shop floor control

questions about them. They use a network abstraction called a “message-based part

state graph” to capture potential routings through a shop’s resources, suggesting that the

methodology may generalize to other discrete-event logistics systems and questions about

resource allocation and routing. [Mueller et al., 2007] describe an effort to automatically

build simulatable Petri Net models for semiconductor manufacturing systems and various

questions about them, an immediate predecessor to this dissertation. Simulation analysis

model generators inputting SysML-language system models are [Schonherr and Rose, 2009]

and [McGinnis and Ustun, 2009]. An effort which uses a system modeling language named

CONSENS instead of SysML is [Rudtsch et al., 2013].

Each of these references concern simulation model generation for a specific type of

discrete-event logistics system. There also exists prior work for more arbitrary systems,

such as any behavior modeled as a SysML activity [Staines, 2008], a SysML state machine

[Bernardi et al., 2002], or SysML interaction in a sequence diagram [Viehl et al., 2006].

[Peak et al., 2007] and [Kim et al., 2013] describe analysis model generation based on

SysML parametrics which is more general than simulation; the idea is that any parametric

relation formally captured in a SysML constraint block can be the basis of an analysis

model. Commercial tools to this end are ParaMagic and ModelCenter 1, enabling parametric

diagrams to serve as analysis templates and SysML constraint blocks in those diagrams to

1http://www.intercax.com/products/paramagic/, viewed 27jan2014.
http://www.phoenix-int.com/software/phx-modelcenter.php, viewed 27jan2014.

26

be functional black boxes referencing legacy analysis models.

Important prior work also concerns automation itself - how to transform one model into

another. Automated model-building programs for Model-Driven Architecture are called

model-to-model transformations and are described in detail in section 6.3. Systems engineers

have attempted to transplant software model-to-model transformation tools such as [OMG

QVT, 2011] and [EMF ATL, 2014], but with difficulty. [Cleenewerck and Kurtev, 2007,

p.991] suggest “The problem of translational semantics in Model-Driven Engineering is

better to be approached with a domain-specific transformation language instead of with a

general purpose one”, suggesting a one-size-fits-all approach may be inappropriate. This

may be the motivation of [Batarseh and McGinnis, 2012] in proposing SysML for Arena,

a collection of Arena semantics implemented as SysML stereotypes, enabling transparently

defining a model-to-model transformation while remaining in a native system modeling

environment. Earlier work in the same spirit is SysML for Modelica [Paredis et al., 2010].

2.3.3 Abstraction

A design pattern captures a reusable solution to a recurring design problem in a particular

context. The idea is credited to [Alexander et al., 1977, p.X] who introduced it for

architectural design problems, saying “Each pattern describes a problem which occurs over

and over again in our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over, without ever

doing it the same way twice.” The concept has arguably seen its greatest utility when

applied to object-oriented software design processes [Gamma et al., 1995]. The authors

identify twenty-three patterns by name, problem, solution, and consequences, and partition

them into creational, structural, and behavioral categories. Additional patterns have since

been added and new categories created, both within the scope of object-oriented software

design (such as concurrency) and outside (such as higher-level software architectures).

A software design or architecture pattern results from applying an abstraction method

to software engineering processes. There have been efforts to identify patterns in systems

engineering processes including [Cloutier and Verma, 2007], [Haskins, 2008], and [Pfister

27

et al., 2011], but the concept is less mature in this domain. Abstraction helps manage

complexity in object-oriented software design, and an abstraction method is explicit in

this dissertation’s methodology for the same function. Semantics of a token-flow network

in chapters 3 and 4 and semantics of a well-formed question in chapter 5 are structural

patterns.

Prior work for an abstraction method is also found directly within object-oriented

modeling languages. SysML provides several built-in language mechanisms which enable

users to define multiple abstraction levels within a single model [OMG SysML, 2012]. A

basic mechanism is generalization, identifying one block as a special case of another, which

allows abstracting multiple blocks’ commonalities into a superclass 2. Another mechanism

is nesting; a block can nest block parts, a port can nest ports, an action can nest an activity,

and a state can nest a state machine. A third mechanism is stereotyping, a broad-purposed

tool which can serve more functions than just abstraction.

On a deeper level, the SysML metamodel builds upon several abstract concepts. Any

Block Definition Diagram can be viewed as a network of blocks and associations, and an

Internal-Block Diagram can be viewed as a network of ports and connectors. A SysML

Activity is defined as a token-flow network, similar to the Process Network definition in

chapter 4. A SysML State Machine builds upon the definition of a finite-state automaton.

In general, all SysML structural diagrams show views of a network or flow network, and all

SysML behavioral diagrams show views of a token-flow network.

Abstraction is commonly understood as a bridge to analysis, and prior work is

widespread. Network abstraction examples include [Roberts, 1978] and [Lewis, 2009]. The

method itself is not novel; what is novel here is formalizing a unifying, analysis-neutral

definition of the abstract concept of a token-flow network and also making explicit the

process of abstracting from system to network semantics.

2Generalization is different from Instantiation, although both can perform the function of abstraction. A
difference between is-a and instance-of relationships is that subclasses can extend a superclass’ definition,
whereas all instances of a class conform to the same schematic definition.

28

2.3.4 Formalization

Formalizing knowledge means capturing it with more precision and less ambiguity than

common in natural-language descriptions. Much prior work exists for a formalization

method applied to discrete-event logistics systems.

Standardization efforts exist which formalize schemas for exchanging data. An OASIS

standard for the exchange of production planning and scheduling data is [OASIS PPS,

2011]. The output of the ISO TC 184/SC4 committee includes the ISO 10303 standard

for machine-readable capture and sharing of product data [Pratt, 2001]. A SISO standard

for the exchange of manufacturing simulation data is Core Manufacturing Simulation Data

(CMSD) [SISO CMSD, 2010]. AutomationML is a standard-of-standards for exchanging

data between engineering tools in a production facility [Drath et al., 2008; Faltinski et al.,

2012]. These efforts standardize data schemas, but there are also efforts to standardize

semantics and ontologies. An OMG standard formalizing business process semantics is

BPMN (Business Process Model and Notation) [OMG BPMN, 2011]. A Supply Chain

Council standard formalizing supply chain management semantics is the SCOR (Supply

Chain Operations Reference) [SCC SCOR, 2012]. Proposals for formalizing manufacturing

semantics are MASON (Manufacturing Semantics Ontology) [Lemaignan et al., 2006] and

also [McCarthy, 1995; Molina and Bell, 1999; Cutting-Decelle et al., 2007; Guerra-Zubiaga

and Young, 2008].

[Friedenthal et al., 2011, p.12] illustrates a partial classification of standardized

formalisms used in systems engineering in figure 13.

29

Figure 13: [Friedenthal et al., 2011]’s Partial Systems Engineering Standards Taxonomy.

A formalization method is also present in semantic web methodologies [Berners-Lee

et al., 2001]. Formalization is used in this context to capture not just links to internet content

but also knowledge and metadata about the content. Standards for this knowledge capture

include the Resource Description Framework (RDF) and the Web Ontology Language

(OWL) 3. A connection between modeling and simulation and semantic web efforts is also

made by [Miller et al., 2007, p.3-10]; the authors address and refute a claim that “semantics

is not crucial for modeling and simulation, because they are general purpose techniques that

achieve their usefulness through abstraction” in part by criticizing “The mapping from the

real world to the abstract model is largely in the mind of the simulation analyst” and lacking

any formality. [Miller et al., 2007] also collects references to numerous ontologies of scientific

domains, and includes overviews of discrete-event modeling and discrete-event simulation

ontologies.

3http://www.w3.org/RDF/, viewed 28jan2014.
http://www.w3.org/TR/owl2-overview/, viewed 28jan2014.

30

2.4 Prior Work for the Methodology’s Tool of a Token-Flow Network
Definition

A network is an underlying conceptual model for discrete-event logistics systems including

supply chains [Bellamy and Basole, 2012], transportation systems [Magnanti and Wong,

1984], communications systems [Rogers and Kincaid, 1981], and more. It can also be argued

as ubiquitous in other domains including dynamics and control of physical systems (energy

flow in bond graphs [Paynter, 1961] and causal signal flow in signal flow graphs [Mason,

1953]), social relationships [Wasserman, 1994], and more.

Most relevant to this dissertation’s definition are what Schruben calls Event Graphs

[Schruben, 1983] and the SysML metamodel itself [OMG SysML, 2012], although Event

Graph models lack an easy bridge backward to system semantics and SysML models lack

an easy bridge forward to analysis semantics. As the network definition in chapters 3 and 4

took shape, its close similarities to the SysML metamodel were initially surprising. After so

much academic training in modeling analysis, it was a surprise to discover that a network

can be much more than just a bridge to analysis, it can also be a fundamental mechanism for

machine-readable knowledge capture. A directed labeled graph is an underlying conceptual

model for the semantic web’s Resource Description Framework (RDF), and a graph is a

fundamental abstract concept underlying the definition of the SysML language.

There exists prior work specific to token-flow networks. Two popular token-flow network

definitions are Petri Nets and UML Activities, described in the next two sections.

2.4.1 Petri Nets

A Petri Net is a token-flow network with two types of nodes (places and transitions),

one type of directed edge, and a single token type, although multiple token types are

possible with an extension called Colored Petri Nets. A Petri Net is an elementary process

behavioral model which also has straightforward representation as a (possibly infinite) state

machine, where state captures the number and positions of tokens. A technical definition

is in appendix A, drawing from the concise summary in [Wang, 2007].

Petri Nets’ simple and precisely-defined semantics make them amenable to mathematical

31

analysis. If the token-flow network definition in chapters 3 and 4 can be mapped to a Colored

Petri Net or another extension, this would enable using the extensive literature on Petri Net

analysis to prove behavioral properties about token-flow networks abstracted from system

models. Such a mapping might be possible, because the definition of a Process Network

in section 4.2 has similarities to the definition of a SysML Activity whose basic elements

can be mapped to a Petri Net [Huang, 2011; Storrle and Hausmann, 2005], but this is not

attempted here. The object of this dissertation is to formalize a token-flow network as

unifying semantics underlying discrete-event logistics system models and analysis models

of them, and the low-level semantics of Petri Nets seem inadequate for this purpose. For

example, an analog to a Petri Net transition seems unlikely to be found in the structural

portion of a discrete-event logistics system model, and Petri Nets’ control paradigm only

allows token movements to be determined locally. Petri Nets’ theoretical simplicity, while

enabling rigorous mathematical analysis, can make modeling real systems’ structure and

control challenging.

2.4.2 UML 2.0 Activities

UML is a software modeling language, and an original purpose of activity modeling was

describing object-oriented software’s behavior as methods execute and exchange object

pointers and control. The UML 2.0 specification released in 2003 contained a major

rewriting of activities’ semantics and abstract syntax; the technical definition is in appendix

B, and [Bock, 2003, p.45] explains the new paradigm:

“UML 2 activity models follow traditional control and data flow approaches by

initiating subbehaviors according to when others finish and when inputs are

available. It is typical for users of control and data flow to visualize runtime

effect by following lines in a diagram from earlier to later end points, and to

imagine control and data moving along the lines. Consequently a token flow

semantics inspired by Petri nets is most intuitive for these users, where ‘token’

is just a general term for control and data values. . . . UML 2 activities define a

virtual machine based on routing of control and data through a graph of nodes

32

connected by edges. Each node and edge defines when control and data values

move through it. These token movement rules can be combined to predict the

behavior of the entire graph.”

The last sentence has an interesting footnote: “It is hoped that the rules are precise enough

to be translated to a formal semantics, especially to support proving properties about modeled

processes. This is left for future work.” The UML 2.4.1 specification released eight years

later still claims that the intermediate level of activities “supports modeling similar to

traditional Petri nets with queuing” [OMG UML, 2011, p.303]. [Storrle and Hausmann,

2005, p.117] attempt to map UML 2.0 Activities to Petri Nets’ formal semantics, and

conclude “for basic activites, the analogy works pretty well, but for higher-level constructs, no

such intuitive connection exists.” [Schattkowsky and Forster, 2007, p.8] observe “Although

the new UML 2.0 semantics for Activities seem to be close to high-level variants of Petri

Nets, there are essential differences. These differences lie mainly in the fact that unlike in

a Petri Net the activation of computational steps in a UML 2.0 activity is not completely

local, and that some of the model elements have quite complex semantics.”

If the definition of a Process Network in section 4.2 can be mapped to a UML 2.0

Activity, then analysis model-building programs can rely on a definition in the standardized

UML metamodel instead of the non-standardized definition here. This is an attractive

proposition, but is not attempted here for the same reason as with Petri Nets - the

object of this dissertation is formalizing an original definition of a token-flow network as

unifying semantics underlying discrete-event logistics systems and analysis of them. UML

2.0 Activity semantics are process-specific and in the wrong abstract syntax. The semantics

defined in chapter 4 may turn out to be isomorphic to UML 2.0 Activity semantics; the

exercise is to find out.

33

2.5 Prior Work for the Methodology’s Tool of a Question Definition

A synonym for “question” is “query”, and a query language defines syntax and semantics

for queries over database and information system content. Of all known query languages 4,

only the Object Constraint Language (OCL) might function as a query language for SysML

models 5.

The OCL specification introduces it as “a formal language used to describe expressions

on UML models. These expressions typically specify invariant conditions that must hold for

the system being modeled or queries over objects described in a model.” [OMG OCL, 2010,

p.5] While its primary purpose is to augment a UML model with content that cannot be

easily or at all expressed using the UML language, expressed in the form of constraints,

OCL can also be used as a query language. Concrete syntax is defined using a context-free

grammar, but regarding semantics [Kleppe et al., 1999, p.148] state “It could be argued that

OCL is a formal language, although at the time of writing no complete formal semantics

exist for it.” Formalizing OCL semantics is addressed by [Richters and Gogolla, 1998] and

eventually with a chapter in the specification.

Given that query languages already exist defining syntax and semantics of a well-formed

question, what does this dissertation contribute? Most contemporary query languages are

paired with a particular modeling language, and can only express questions about models

captured in that language. Further, a tacit restriction is that queries are only answerable

by navigating through a model and retrieving recorded information. Chapter 5 does not

restrict attention to questions about system models captured in any particular modeling

language, nor to questions answerable by navigating through a model and retrieving

recorded information. Questions may have subjects which are not an explicit system model

element, and be answered by formulating and solving an analysis model. The goal here is

an original development of semantics, categories, and patterns in questions which induce

engineering analysis, and the results of an initial study are documented in chapter 5. Syntax

4Over thirty examples are collected at http://en.wikipedia.org/wiki/Query language, viewed 30jan2014.
5The Object Query Language (OQL) might also function as a query language for SysML models because

of their object-oriented nature, but the Object Data Management Group (ODMG) disbanded in 2001 and
the standard has not been developed since.

34

is left for future work, which might involve expressing the semantics in OCL’s syntax.

The following sections describe two illustrative examples of query languages - the

ProQuest ABI/INFORM Complete query language for library databases 6, and the

Structured Query Language (SQL) for relational databases 7. Beyond query languages,

there also exist other lines of prior work helpful to define semantics of a well-formed question.

To identify useful categories of questions about discrete-event logistics systems, [Tako and

Robinson, 2012, p.805] is a prior-work survey which diagrams much-studied topics about

logistics systems and supply chains. To identify useful categories of questions about token-

flow networks, taxonomy is suggested in the table of contents of a graph theory textbook

such as [Diestel, 2010].

2.5.1 Literature Search for Published Documents

Searching library databases for published documents requires a query language. Such

query languages are often tied to a modeling language for published documents. From

the ProQuest ABI/INFORM Complete “Advanced Search” interface can be inferred the

vendor’s semantics for a published document, shown in figure 14.

6http://search.proquest.com/abicomplete/advanced, viewed 30jan2014.
7A seminal reference for SQL is [Chamberlin and Boyce, 1974]. The contemporary SQL standard is

divided into nine parts ISO/IEC 9075-¡part¿:¡year¿

35

Figure 14: A Definition of a Published Document per Proquest ABI/INFORM Complete.
Note that this definition is not standardized across the industry.

36

The vendor’s user interface for a document retrieval query is shown in figure 15.

Figure 15: User Interface for Constructing a Proquest ABI/INFORM Complete Document
Query, viewed 07feb2014. Additional search options including Source Type, Document Type,
and Language are truncated.

From the user interface in figure 15, semantics for a document retrieval query can be inferred

and are illustrated in figure 16.

Figure 16: Schema for a Proquest ABI/INFORM Complete Document Query. Not all
criteria are shown.

Questions constructed with this query language have the form “What are all published

documents matching search criteria x?”, where x lists at least one pattern to match in one

document field and may also list source types, document types, and languages. While the

Primary Matching Criteria is straightforward - match a certain string in a certain document

field - the Additional Matching Criteria allows the syntax of a nested OR of two strings for

user convenience.

37

2.5.2 Relational Database Search

Searching relational databases for relational data requires a query language. SQL

(Structured Query Language) is industry-standard, although with dialects, and its syntax

is formally defined using a Backus-Naur Form (BNF) grammar. Beyond queries, SQL also

includes subsets of elements for user authorization (DCL, the Data Control Language),

managing the schema (DDL, the Data Definition Language), and adding, updating, or

deleting data (DML, the Data Manipulation Language). SQL is tied to a modeling language

for relational data, illustrated in figure 17 and a metamodel for the schema of a relational

database.

Figure 17: A Definition of a Relational Database.

The semantics in figure 17 are not complete - at the intersection of every row and column

is a data value, which may have many types including character(s), boolean, integer, real,

date, time, or even a foreign key referencing a primary key in another table. Tables of data

values are the output of any SQL query.

The semantics of an SQL query can be inferred from the SELECT . . . FROM . . . WHERE

. . . statement. The syntax of this statement, defined using a BNF grammar, is shown in

figure 18 8.

8The source is http://savage.net.au/SQL/sql-99.bnf.html, viewed 30jan2014.

38

Figure 18: Excerpt from a Defining BNF Grammar for SQL:1999.

The semantics of an SQL query are to choose columns from a table and then filter

rows using constraints on the columns’ data values. Questions constructed with this query

language have the form “What is a subtable of columns from table t where the rows of that

subtable satisfy criteria x?”; t can be an existing table or one created within the query.

Unlike searching library databases for published documents, search criteria may be richer

than string-matching because numerical data is at least ordinal and maybe even cardinal.

2.6 Summary

Posing a question about a system model and then identifying and building answering

analysis models is a process regularly executed by any person or organization seeking to

improve understanding and support decision-making. This dissertation proposes applying

certain methods and tools to the process to enable more widespread usage in a cost-

effective and correct manner. Prior work described in this chapter shows that subsets

of these methods and tools have been tried before in different contexts. Both Model-

Driven Architecture of software and semantic web applications are inspiring examples of

what formalization, abstraction, and automation can enable, and of interest here is trying

something similar for Operations Research analysis of discrete-event logistics systems.

Numerous domain-specific data schemas already exist to facilitate exchanging data, and

needed next are domain-specific languages and ontologies. Examples of ontologies also exist

which have enabled analysis model generation schemes with limited scope, and needed next

39

is a domain-agnostic and general scheme to avoid rewriting functionally equivalent analysis

model-building programs for each domain. The network concept is commonly understood

as a bridge to analysis, and needed next is a canonical and analysis-neutral definition

in a syntax which enables formally abstracting from system to network semantics. An

automation method might inherit paradigm and tools from Model-Driven Architecture,

and needed next is understanding the differences between engineering analysis model-

building and software object-oriented code generation to understand if this inheritance

is both possible and practical.

An analysis model-building scheme which can output multiple analysis types requires

indexing analyses, and a primary indexing component is the questions an analysis can

answer about a token-flow network. This is distinct from prior work which avoids the

issue by outputting only one type of analysis for one type of system. This motivates

understanding semantics, categories, and patterns in questions which induce engineering

analysis, to support questions’ formalization. Query languages exist even for SysML models,

but to the best of the author’s knowledge have too narrow a scope by pairing with particular

modeling languages and expressing only queries answerable by navigating through a model

and retrieving recorded information.

For the process of posing a question about a system model and then identifying and

building answering analysis models, three methods and two tools are proposed which should

enable a methodology more comprehensive and with broader scope than any related prior

work.

40

CHAPTER III

TOKEN-FLOW NETWORK: STRUCTURE

A tool to support the abstraction method is a formal definition of a token-flow network.

The objective in this chapter and the next is creating an original and unifying definition

of this abstract concept which generalizes many aspects of discrete-event logistics systems

and underlies many analyses of them. Guidance for constructing the definition is including

semantics needed to support common questions about describing, predicting, and controlling

discrete-event logistics systems. The abstract syntax is a UML profile, which enables

formally abstracting system semantics in SysML user models to token-flow network

semantics using the mechanism of stereotype application.

3.1 Basic Structure

Basic structure shared by all network definitions should be incontrovertible - nodes

connected by edges, here undirected edges. Adding node labels and edge weights can support

richer questions. Node labels are sometimes called “colors”, and an edge’s weight can

represent length, importance, viscosity, electrical resistance, ambient temperature, layers of

management, density of obstacles, and more. Basic network structural semantics are shown

in figure 19.

Figure 19: Semantics for Basic Structure.

A Network contains one or more Nodes and zero or more (undirected) Edges. Any

node or edge can belong to multiple networks, and if one does then those networks overlap.

41

Explicitly identifying a network is optional, because one can be inferred from a collection

of nodes and edges. An example of a token-flow network instance which conforms to basic

structural semantics is shown in figure 20.

Figure 20: An Example of a Network Instance Conforming to Basic Structural Semantics.

Basic structural semantics can support definitions of all the following properties, any of

which may be the subject of a question about a token-flow network:

Network Statistics:

• Order: The number of nodes.

• Size: The number of edges.

• Density: The ratio of the number of actual edges to the number of possible edges.

• Clique Number: Order of the largest complete subgraph.

• Diameter (requires edge lengths): The longest shortest path between all pairs of

nodes.

Network Boolean Statistics:

• Connected: True if there exists a path between every pair of nodes.

• Acyclic: True if there exist no cycles, meaning for any node there does not exist a

sequence of edges which revisits that node.

• Bipartite: True if nodes can be partitioned into two sets, with no two nodes in either

set linked by an edge.

42

Node Statistics:

• Degree: The number of incident edges.

• Local Clustering Coefficient: Quantifies how close a node’s neighbors are to being

a complete graph.

• Centrality Measures: Quantifies the relative importance of a node. Degree Central-

ity counts incoming and outgoing edges. Katz Centrality also considers extended

neighbors with an attenuating multiplication factor for each step removed. Closeness

Centrality (requiring edge lengths) is the inverse of the sum of distances to all

other nodes, such that less aggregate distance means more closeness. Betweenness

Centrality (requiring edge lengths) counts how many times a node appears in the

shortest path between all other pairs of nodes. Eigenvector Centrality (of which

Google’s PageRank is a variant) computes a measure relative to other nodes’ measures,

where connections to higher-measure nodes contribute more.

Edge Statistics:

• Centrality Measures: Quantifies the relative importance of an edge. Betweenness

Centrality (requiring edge lengths) counts how many times an edge appears in

shortest paths between all pairs of nodes.

Subsets of Network Elements:

• Walk: A sequence of edges which connect a sequence of nodes.

• Path: A walk in which no node is revisited (including the endpoints).

• Coloring: A labeling of nodes or edges (partitioning them into subsets) subject to

constraints. A node coloring assigns labels such that no adjacent nodes share the

same label. An edge coloring assigns labels such that no adjacent edges share the

same label.

• Covering: A node covering is a subset of nodes collectively incident to every edge in

the network. An edge covering is a subset of edges collectively incident to every node

in the network.

All of these properties can optionally be recorded as Network, Node, and Edge properties

in figure 19. Statistics might be recorded as real-, integer-, or boolean-valued properties,

and subsets of network elements might be recorded as properties typed by network elements.

A complication is when a statistic is defined in terms of input parameters and the statistic’s

43

value is only meaningful given the parameters’ values, for example the node statistic “Katz

Centrality” defined in terms of an attenuation factor. This scenario can be accommodated

with a custom data type recording both the parameter’s value and the statistic’s dependent

value.

3.2 Tokens

Discrete-event logistics systems involve the movement of goods, services, information,

payments, and other commodities or entities. Therefore, any useful abstraction must

incorporate these semantics. Flow will be introduced in the next section, and in preparation,

this section defines Token as an abstract semantic for any entity which can move in the

network. The abstraction of a token is quite general, appearing in the engineering contexts

of Dataflow Graphs, Petri Nets, and UML Activities, in the philosophical context of type-

token distinction 1, and in software compilers as any atomic parse element. Semantics for

tokens are shown in figure 21.

Figure 21: Semantics for Tokens. An underlined property is static, meaning the same value
is shared by all Token instances.

1Explained at http://plato.stanford.edu/entries/types-tokens/, viewed 15march2014.

44

Any token has a static property commonUnitOfMeasure, which is a unit of measurement

shared by all tokens of any type, and can be useful to express capacity constraints on

resources. A token may also be earmarked for a particular destination, a property which

may be dynamically updated, although how a token’s destination is updated and by whom

is the subject of control and will be revisited in section 4.5. There exists an explicit model

element for TokenType in addition to tokens themselves; in manufacturing the acronym

SKU (Stock Keeping Unit) can be as useful as the word part. A TokenAggregation captures

a recurring group of tokens and is also a token; a manufacturing example is an assembly

of parts which is itself a part. A TokenAggregation’s contents are recorded in a Bill Of

Tokens, which in other contexts is called a “Bill of Materials” or a “Packing List”.

3.3 Flow

Flow is an abstract semantic to describe movement of goods, services, information,

payments, and more in a discrete-event logistics system; the word enables describing token

movements in the abstract and aggregate. Flow can be the subject of many questions, but

since semantics for time and flow dynamics are not introduced until chapter 4, this section’s

semantics can only support questions whose subjects are bulk flow amounts or rates. Flow

semantics are shown in figure 22.

45

Figure 22: Semantics for Flow. Standard network flow constraints are modeled informally
in textual notes; an implementation version of the profile should make them more formal,
perhaps using the Object Constraint Language [OMG OCL, 2010].

A FlowNode is a special type of Node which supports incoming and outgoing flow. It

has properties for production and consumption of tokens (also called supply and demand)

to make explicit entering and exiting token flows. FlowNodes are connected by a special

type of Edge called FlowEdge, with properties for allowable token types, capacities, and

costs. Semantics in figure 22 enable creating two distinct types of networks - a Network

of Nodes and Edges modeling objects and relationships, and a FlowNetwork of FlowNodes

46

and FlowEdges modeling flow movement, consumption, and production. An example of a

FlowNetwork instance is shown in figure 23.

Figure 23: An Example of a FlowNetwork Instance Conforming to Flow Semantics.

More clarification of flow semantics:

• A FlowEdge is directed from a source to a target FlowNode, allowing non-negative

one-way flow. FlowEdge overrides its endpoint property inherited from Edge because

an Edge is undirected but a FlowEdge is directed. As with Node and Edge, any

FlowNode or FlowEdge may belong to multiple FlowNetworks, in which case those

networks overlap.

• A FlowEdge can carry multiple types of flow; an analogy is multiple small tubes

inside a single large tube. For this reason flowAmount, flowCapacity, flowFixedCost,

and flowUnitCost properties each have [*] multiplicity and are ordered - each is a

vector over all allowed TokenTypes. FlowEdges must respect capacity constraints for

each flow type, plus a gross capacity over all types. No semantics exist for incurring

flow losses on FlowEdges, although the definition can be extended if needed to support

questions whose answers are judged valuable.

• Self-supply at any FlowNode may occur, but only externally through a self-FlowEdge

(with the same source and target). It may also seem superfluous to include

both consumption and production when consumption can be inferred as negative

production, but this is done because a stereotype’s properties should align with

properties of the block to which it is applied, and it is unreasonable to expect a business

47

enterprise to define its outputs as negative inputs. Production and consumption

quantities have no sign restrictions, however, so only one of the two properties is

strictly necessary.

• Any FlowNode has a flow balance constraint for each TokenType, with the form:

flowin + production = flowout + consumption

Tokens can be created and destroyed; this constraint only requires proper accounting.

Satisfying these constraints is what causes flow to move at all in network flow

optimization analysis.

• There are also SysML model constraints, for example enforcing consistency among

multiplicities. An example is that FlowEdge’s properties flowAmount, flowCapacity,

flowFixedCost, and flowUnitCost should have the same multiplicity as flowTypesAl-

lowed.

• The FlowNode stereotype extends three metaclasses - Class, ObjectNode, and Port.

However, only one of the three is fully functional because the UML language definition

only allows Class (a subclass of Classifier) but not ObjectNode nor Port to have

properties. This is not an obstacle upon tunneling through a Port to its typing block

for properties, and tunneling through an ObjectNode (e.g. a Pin in an Activity

Diagram) to its typing block for properties.

3.4 Interfaces

While semantics in figure 22 support two distinct types of networks, use cases integrating

the two are easily imaginable. For example, a parent organization (which abstracts to a

Node) may own and operate manufacturing facilities (which abstract to FlowNodes), and

contractual relationships and international treaties (which abstract to Edges) may enable

supply channels (which abstract to FlowEdges). Figure 24 shows one way to integrate the

two types of networks.

48

Figure 24: Semantics for Interfaces.

The only changes from figure 22 to figure 24 are two added associations. Node has a new

association with FlowNode; while FlowNodes can exist independently in a FlowNetwork, the

new association allows them to also be flow interfaces to Nodes. Edge has a new association

with FlowEdge; while FlowEdges can exist independently in a FlowNetwork, they can now

also associate with Edges modeling other types of relationships. An example of integrated

Network and FlowNetwork instances are in figure 25.

Figure 25: An Example of Integrated Network and FlowNetwork Instances using Interface
Semantics.

Figure 25 shows an excerpt from figure 20 in which specific coastal ports of the United

States node are visible. Container ships can only load and unload at a port-of-entry, which

is a compelling use case for FlowNodes interfaces to Nodes. FlowEdges which correspond

49

to sea shipping lanes are associated with international trade relationships.

A complication introduced by interface semantics is that the association between

Node and FlowNode, in combination with the existing generalization relationship, induces

recursion - a FlowNode may have FlowNode interfaces of its own. This can be useful

because further refining figure 25 may reveal that the Port of Charleston has five terminals,

ports within the port, and a container ship can dock at only one. Zooming in and out to

reveal different amounts of detail is enabled by levels of abstraction, the subject of the next

section.

3.5 Levels of Abstraction

Levels of abstraction is a useful concept for organizing models. Levels of abstraction in a

token-flow network are enabled with one simple addition to figure 24 shown in figure 26, an

association allowing a Node to nest a Network.

Figure 26: Semantics for Levels of Abstraction.

50

Figures 27 and 28 show examples of networks nested within a node.

Figure 27: An Example of a Nested Network Conforming to Level Of Abstraction
Semantics.

Figure 28: An Example of a Nested Network and Integrated FlowNetwork Instance
Conforming to Level Of Abstraction Semantics.

The association enabling nested networks is recursive - for example, New York city

in figures 27 and 28 may be refined into a nested network of five boroughs. Semantics

are needed allowing flow to move between different abstraction levels, for example trade

flows not just to a United States’ coastal port but to a specific city, and the key enabler

51

is a FlowNode interface of a Node. A Node’s FlowNode interface spans the boundary

between a node and its nested network, and through these interfaces is the only defined way

that flow can move among multiple abstraction levels. Because a FlowNode interface may

span different abstraction levels, its parentFlowNetwork property may reflect membership

in multiple FlowNetworks.

Semantics are also needed to ensure that production and consumption values are

consistent between a node’s FlowNode interfaces and the node’s nested network. Figure 29

shows a simplified version of figure 28.

Figure 29: A Simplified Version of Figure 28, Showing Consumption of Tokens at a Node’s
FlowNode Interfaces.

In figure 29, the United States node can be refined into a nested network. At a higher

abstraction level in which the nested network is hidden, all production and consumption

of tokens happens at the FlowNode interfaces Sea Port of Los Angeles and Sea Port of

Charleston. However, at a lower abstraction level the United States node is effectively

replaced by its nested network. The FlowNode interfaces Sea Port of Los Angeles and Sea

Port of Charleston persist and are the link between the nested network and the outside

world, but now production and consumption of tokens happens in Denver and Atlanta

rather than at coastal ports. Therefore, production and consumption at the Sea Port

of Los Angeles and Sea Port of Charleston should become zero and allocated among the

nested network’s FlowNodes, accurately reflecting the coastal ports’ function as effective

flow-through ports of entry. This is shown in figure 30.

52

Figure 30: A Simplified Version of Figure 28, Showing Consumption of Tokens at a Node’s
FlowNode InterfacesAllocated to FlowNodes in a Nested Network.

These semantics apply recursively, for example if the city of Denver contains a nested

network. Then production and consumption is allocated among that nested network’s

FlowNodes, and Rail Port of Denver becomes a flow-through port of entry. Ensuring

production and consumption values remain consistent can be formally modeled with

constraints. For a nested network, the sum of consumption over all nested nodes’ FlowNode

interfaces must equal the aggregate consumption of the parent node’s FlowNode interfaces,

for each TokenType, and the same for production. Constraining them to be equal allows

placing all production and consumption of tokens at the interfaces when the nested network

is hidden, and distributing it among nested nodes’ FlowNode interfaces when the nested

network is visible.

.

While a Node can nest a Network, no use cases are considered in which it is valuable

for a FlowNode to inherit the same ability. What a FlowNode does inherit is the ability to

nest FlowNode interfaces , with an example shown in figure 31 2.

2Nesting interfaces was a key enhancement in SysML version 1.3 [OMG SysML, 2012].

53

Figure 31: Incorrect Example of a FlowNode with FlowNode Interfaces.

Nested interfaces can be useful because the Port of Charleston has five terminals, ports

within the port, and a container ship can dock at only one. If a FlowNode interface nests

FlowNode interfaces, the parent (Sea Port of Charleston) should assume the parentNode

role in the association between Node and FlowNode, FlowEdges incident to the parent

should assume the relationshipEdge role in the association between Edge and FlowEdge

(despite their directionality), and nested FlowNode interfaces (North Charleston Terminal,

Wando Welch Terminal) should define a new set of incident FlowEdges. What should

be avoided is exactly what is shown in figure 31 - a parent FlowNode interface and its

nested FlowNode interfaces both having incident FlowEdges. Figure 32 resolves the issue

by changing stereotypes.

Figure 32: Corrected Example of a FlowNode with FlowNode Interfaces.

If both the United States and Sea Port of Charleston are typed by Node, the result is an

ill-formed token-flow network because a Node cannot have Node interfaces, only FlowNode

interfaces. This is resolved by selective focus with stereotype application - identify the Sea

Port of Charleston as the parent Node and North Charleston and Wando Welch Terminals

54

as FlowNode interfaces. When a FlowNode nests FlowNode interfaces, production and

consumption at the parent FlowNode (Sea Port of Charleston) should be allocated to its

own interfaces (North Charleston Terminal and Wando Welch Terminal), such that the

sums over the nested FlowNodes’ production and consumption values equal the parent

FlowNode’s values. This example also illustrates the mechanism for formally changing

abstraction levels using SysML stereotype application - clear out existing stereotypes and

reapply at the desired level of abstraction. In the presence of recursive nesting, absent

any validation tools, users should take care that a formally-identified token-flow network

conforms to the definition.

3.6 Analysis Semantics: Variables, Constraints, Objectives, and Ob-
servations

The purpose of this section is ensuring sufficient semantics for answering questions about

flow networks using optimization analysis. This is a narrow scope, but network flow

optimization analysis - choosing edge flow amounts to satisfy constraints and optimize

a performance measure - is widely studied and practiced within Industrial Engineering

schools.

Optimization analysis involves variables, constraints, and an objective. Analysis

semantics do not necessarily belong in the token-flow network definition, but do require

semantics in that definition from which they can be synthesized. An optimization variable

carries assumptions that its value can change, be controlled, and set to a desired value3.

A variable can follow from any numerical property such as FlowEdge’s flowAmount for

network flow optimization. For identifying variables, the semantic shown in figure 33 may

be helpful.

3If not true, optimization analysis can still be used to answer questions about describing limits on
performance or optimal scenarios, even if they cannot be realized.

55

Figure 33: Semantics for Metrics.

Metric adds optional semantics to make a property’s controllability explicit instead of

assumed. Metric also adds optional semantics for recording observations of a property’s

value, although a time series requires the concept of time not introduced until section 4.1.

This is not directly useful for questions answered by optimization analysis, but potentially

very useful for questions answered using statistical analysis. Note that tool support for

Metric’s properties might be lacking, but their definition is consistent with the UML

metamodel - the metaclass Property has a property qualifier : Property [0..*] where these

semantics might be recorded.

For the analysis semantics Constraint and Objective, their definitions often include

mathematical expressions, but this is not done here because there already exist numerous

languages defining mathematical expressions. Standard network flow constraints were

defined in figure 22 (flow balance at FlowNodes, flow non-negativity and capacity on

FlowEdges), and to that collection can be added a general flow lower bound constraint

shown in figure 34.

Figure 34: Token-Flow Network Structural Definition: Additional Flow Constraints.

56

Beyond constraints in figures 22 and 34, additional constraints must be defined in a

question. Performance measures from which an objective may follow are also left to be

defined in a question. It is possible to include a set of standard performance measures

in the flow network definition, a common one being sum of cost-weighted edge flows, but

this is left for future work. Inspiration for flow network performance measures might follow

from abstracting domain-specific standards such as the SCOR model for supply chains [SCC

SCOR, 2012].

3.7 Summary

Flow was introduced in section 3.3, but to this point no semantics are defined for its

dynamics, meaning flow is just another structural attribute. This is enough to answer

a class of questions about flow networks using network flow optimization analysis - any

question answerable by choosing edge flow amounts or rates to satisfy constraints and

optimize a performance measure. In this case, a flow network model and analysis of it

effectively concern a single point in time.

Going forward, behavior will be added to the token-flow network definition. The

difference between structure and behavior can be explained using the concept of state, the

general condition of a system at any moment in time. Structure concerns what elements

are in a token-flow network’s state vector, and behavior concerns how that state vector can

change with time. To add behavior, semantics are needed allowing a token-flow network to

be in different states at different times, and this is where chapter 4 begins.

57

CHAPTER IV

TOKEN-FLOW NETWORK: BEHAVIOR

Structure concerns what elements are in a token-flow network’s state vector, and behavior

concerns how that state vector can change with time. For another explanation leading to

the same definition of behavior, suppose a system is structurally described in a SysML user

model, conforming instance models are stored in a relational database, and a table captures

all instances of a Block or more generally any Classifier. In this scenario, the table and

its columns are schema, rows are structure, values are state, and behavior concerns state

change.

Throughout this chapter, recall the guidance for constructing a token-flow network

definition - including semantics needed to support common questions about describing,

predicting, and controlling discrete-event logistics systems.

4.1 Time, Behavior, State Change, and Events

Adding behavior to the token-flow network definition requires semantics allowing a token-

flow network to be in different states at different times, shown in figure 35.

58

Figure 35: Semantics Introducing Time and Events into a Token-Flow Network.

Time, in a calendar date-and-time sense, is realized in the Timestamp semantic which

is useful for discrete events. Timestamps are needed to answer questions about when state

changes occur, length of time between them, and their absolute frequencies, although are

not needed for questions about state change counts and relative frequencies.

Different states at different times often realizes as tokens in different locations at

different times, enabled by the TokenLocation semantic. Number and position of tokens

59

is an important state component, and Node and Edge inherit a contents property from

TokenLocation. Tokens have state too, part of which is location and possibly multiple

locations in the case of nested networks. An implicit constraint is that any token’s location

and that location’s contents should be consistent.

Any state change corresponds to an event, and the two are arguably synonymous. An

EventLog records what changed and when, what recorded using a specific event subclass

and when using a timestamp. TokenLocations and Tokens may each have an EventLog,

which enables recording almost any imaginable state change in the token-flow network.

Implicit constraints are that timestamps should be consistent for the same event recorded

in multiple event logs, and timestamps in event logs should be consistent with dependent

properties such as a token’s timeAtPresentLocation and FlowEdge’s edgeCrossingTime.

FlowNode and FlowEdge’s definitions in chapter 3 say nothing about the dynamics of

token input/output at FlowNodes, the dynamics of tokens crossing FlowEdges, nor what

happens to tokens while resident at FlowNodes. All of these omissions are addressed in

this chapter, but first consider FlowNode and FlowEdge’s existing properties when flow has

dynamics. Recall that any FlowNode has a flow conservation constraint, one per TokenType

produced or consumed:

flowin + production = flowout + consumption

This constraint can still be enforced in a dynamic case, although only in an integrated-over-

time sense, which requires additional semantics for the integration’s endpoints. Production

and consumption of tokens have no dynamics defined, addressed in the next section. The

FlowEdge property flowAmounts loses its meaning absent any precision about time, and

properties flowCapacity (per TokenType) and grossCapacity may constrain either integrated

flow amounts or flow rates, where the new property capacityUnits can be helpful to explicitly

identify what is constrained.

60

4.2 Behavioral Model of a Process

How can behavior be modeled, e.g. what are ways to describe how a token-flow network’s

state vector can change with time? A low-level behavioral model is a state machine, in which

state transitions can be triggered by a random number generator (a Markov Chain) or by

external inputs (a Finite State Automaton). A higher-level behavioral model developed

here is a process. Both low-level state machine and higher-level process models of behavior

have the underlying conceptual model of a token-flow network.

A process is defined as “a set of interrelated tasks that, together, transform inputs into

outputs.” 1 A preferred definition is a “sequence of interdependent and linked procedures

which, at every stage, consume one or more resources (employee time, energy, machines,

money) to convert inputs (data, material, parts, etc.) into outputs.” 2 Phrases like

“interrelated tasks” and “linked procedures” suggest that a process has the underlying

conceptual model of a token-flow network, with semantics shown in figure 36.

Figure 36: Semantics for a Process Behavioral Model in a Token-Flow Network.

Just as any Node may be elaborated as a nested network, any Process may contain

a nested ProcessNetwork, allowing it to be atomic at one level of abstraction but refined

into a Process Network at a lower level. The semantic Sequencing Dependency is borrowed

1http://en.wikipedia.org/wiki/Process (engineering), viewed 19nov2013.
2http://www.businessdictionary.com/definition/process.html, viewed 19nov2013.

61

from the domain of project management and is used to model a simple form of execution

semantics; the most common Sequencing Dependency is FS (Finish to Start), meaning the

target process cannot start until the source process finishes. Sequencing Dependency exe-

cution semantics enable modeling higher-level strategic processes in discrete-event logistics

systems, and also lower-level tactical processes if moving and waiting are explicitly included

as sequenced processes. More generally, the semantics in figure 36 support modeling

processes in which token flows are not explicit (note the absence of FlowNode interfaces and

FlowEdges) and satisfaction of a Sequencing Dependency implies authorization for a process

to begin execution. An example of a Process Network instance conforming to semantics in

figure 36 is shown in figure 37. Note in the example that a Process’ properties for required

inputs can be useful for accounting, but cannot delay process execution.

Figure 37: Example: A Process Network Instance Sequenced Explicitly using Sequenc-
ingDependencies.

A different form of execution semantics are inspired by Petri Nets and involve token

flows - a process begins execution as soon as all required inputs are available. This requires

semantics enabling a Process to have incoming and outgoing token flows, which are added by

inheriting FlowNode interfaces and FlowEdges from the existing network definition, shown

in figure 38.

62

Figure 38: Semantics for a Process Behavioral Model in a Token-Flow Network, Integrated
with Existing Semantics to Enable Token Flows.

Process subclasses Node, inheriting FlowNode interfaces for incoming and outgoing

token flows. SequencingDependency subclasses Edge, inheriting an association with

FlowEdges. Execution semantics are the same as SysML Activities and Petri Nets - when

all required input tokens are available on all of a process’ FlowNode interfaces, tokens in

the types and quantities modeled by each interface’s consumption property are immediately

consumed and the process begins. 3 Process defines no semantics for what happens to a

3No use cases were considered in which a Process is interrupted mid-execution and it is necessary to sort
out exactly what inputs have and have not been consumed at that point. If a Process has a nested Process
Network, then mid-execution consumption information is partially available.

63

token upon consumption; this is left for subclasses to define. A fabrication process which

irreversibly transforms raw materials will destroy consumed tokens and produce new ones

upon completion, but other process types such as assembly, movement, and storage will

produce the same tokens which were consumed. If a process has FlowNode interfaces, their

aggregate production and consumption should be consistent with the Process’ properties

for inputItems, required resources, and outputItems. However, it is the production and

consumption typing each FlowNode interface which ultimately enforces token requirements,

not the Process’ properties. An example of a Process Network instance conforming to

semantics in figure 38 is shown in figure 39.

Figure 39: Example: A Process Network Instance Sequenced Implicitly using Token Flows.

In figure 39, both process1 and process2 begin execution when tokens are available on

each FlowNode interface in the types and numbers specified by the consumption property.

When process execution completes, tokens are produced onto each FlowNode interface in

the types and numbers specified by the production property.

64

Combined use of both Sequencing Dependency and Token Input/Output execution

semantics is conceptually possible in a single token-flow network, but not developed here.

What implicit sequencing by token flows clearly models, but explict sequencing using

Sequencing Dependencies only assumes, is memory. A token waiting on a Process’ FlowNode

interface serves as memory that an input item is available. Memory is required but

only assumed if a Process has multiple incoming Sequencing Dependencies and somehow

remembers which are satisfied and which are pending. Combined use of both types of

execution semantics requires formalizing a Sequencing Dependency’s notion of memory and

then reconciling the two notions to work together. 4

To support common questions about discrete-event logistics systems, the Process

subclasses shown in figure 40 may be useful.

Figure 40: Process Subclasses.

4UML Activities accommodate both forms of execution semantics with token flow - a Sequencing
Dependency is analogous to a control edge on which may flow control tokens.

65

A StorageProcess converts a token’s age, a MoveProcess converts a token’s location

and possibly age, a MakeProcess may convert a token’s existence and physical properties,

and a SupportProcess is auxiliary, for tasks such as machine setups and teardowns.

AuthorizationProcess and TransporterControlProcess serve control functions, discussed in

section 4.5. A notable omission are subclasses for knowledge-collection processes including

TestProcess, MeasureProcess, and ComputeProcess, which are a relatively easy addition if

needed.

4.3 Hosting Behavior at a FlowNode

Structural semantics in chapter 3 enable constructing network models with physical analog,

and semantics in section 4.2 enable constructing behavioral models of process networks.

Important questions about discrete-event logistics systems require using structural and

behavioral models in combination. For example, questions can be asked about describing,

predicting, or controlling the execution of a functional manufacturing process plan, but high-

fidelity answering analysis must also consider the physical manufacturing facility executing

that process plan. A functional process network may allow ten processes to execute

concurrently, but that may require more resources than a particular manufacturing facility

has available.

New semantics ConversionNode and ConversionEdge are defined as subclasses of

FlowNode and FlowEdge, with the added feature that they can host behavior. Since the

only behavioral model defined in this dissertation is a Process Network, ConversionNode

and ConversionEdge can host processes, as shown in figure 41.

66

Figure 41: ConversionNode and ConversionEdge to Host Behavior.

Hosting is a name for the concept which links a ConversionNode or ConversionEdge

with the behavior executed there. In common use cases a ConversionNode will host a

single process which may refine (recursively) into a nested process network. While a

ConversionNode can host arbitrary processes, including a StorageProcess for input and

output tokens, a ConversionEdge can only host a MoveProcess. Since a ConversionNode is a

67

FlowNode, a Process may have ConversionNode interfaces which themselves host processes,

useful for making explicit the behavior of storing a process’ input tokens pre-consumption

and output tokens post-production. An important detail is that if a process is hosted

at a ConversionNode, for example a hosted StorageProcess as just described, then the

process cannot have its own FlowNode interfaces, a consistency requirement which will be

explained in section 4.5.2. For a hosted process without FlowNode interfaces, production

and consumption of the hosting ConversionNode enforce token requirements, which as before

should be consistent with the process’ properties for inputItems, outputItems, and required

resources.

Semantics allowing FlowNodes and FlowEdges to host behavior enable modeling

explicitly that when a token is resident at a ConversionNode for any non-zero amount

of time, behavior must be happening. Corresponding state changes to resident tokens may

concern existence, age, physical properties, packaging, location, knowledge, or more. Absent

any behavior, tokens entering a ConversionNode must be immediately dispatched onto an

outgoing FlowEdge. A token crossing a ConversionEdge also corresponds to behavior,

which may acknowledge state changes enacted at the upstream FlowNode or state changes

enacted by FlowEdge-crossing itself, for example to tokens’ age and location. An example

of a Process Network instance conforming to semantics in figure 41 is shown in figure 42.

Figure 42: Example: ConversionNode and ConversionEdge Hosting Behavior. A
circled H indicates hosting, in this example of StorageProcesses at ConversionNodes and
MoveProcesses on ConversionEdges.

68

4.4 Resources

A preferred definition of a process was given in section 4.2: “A sequence of interdependent

and linked procedures which, at every stage, consume one or more resources (employee time,

energy, machines, money) to convert inputs (data, material, parts, etc.) into outputs.”

Converting inputs to outputs requires resources in discrete-event logistics systems and

many other domains, and important questions concern how to allocate limited resources.

Just how important these questions are can be inferred from [Hopp and Spearman, 1996,

p.270]’s observation that in manufacturing systems, “actual process time (including setups,

downtime, etc.) typically represents only a small fraction (5 to 10 percent) of the total cycle

time in a plant . . . The majority of the extra time is spent waiting for various resources

(workstations, transport devices, machine operators, etc).” This section defines resources

and their corresponding tokens.

A resource is defined as anything which can enact or actively support enacting a state

conversion. A resource must be more than the passive subject of a state conversion, so raw

materials and parts do not qualify. Discrete-event logistics system resources may include

people, real estate, facilities, capital equipment, shared public infrastructure, budgets, and

information. Figure 43 defines resources for a token-flow network, and also a subclass of

Token for any resource which can move.

69

Figure 43: Semantics for Resources and Corresponding Tokens in a Token-Flow Network.

On the left-hand side of figure 43, Equipment and Transporter directly support token

state conversions. Information and Authorization cannot enact conversions themselves,

but can indirectly support conversions if they are required inputs for a process to begin

execution. Regarding the right-hand side, recall that TokenType was defined in section

3.2 with metaclass DataType to allow arbitrary categories of tokens. The new Token

subclasses in figure 43 add no new modeling capabilities, just higher-level semantics, and to

70

the schema rather than as instance data. With these resource semantics, now is a good time

to revisit the definition of a Process and explain its properties for inputItems and resource

requirements which are highlighted in figure 36 below. The highlighted properties and a

Process’ outputItems should be consistent with the consumption and production properties

across all of a process’ FlowNode interfaces, which are the ultimate enforcers of token

requirements for processes whose sequencing is implicitly controlled by token input/output

execution semantics.

Figure 36: Semantics for a Process Behavioral Model in a Token-Flow Network, with
Properties for inputItems and Resource Requirements Highlighted.

• inputItems may be raw materials and parts modeled with ItemTokens. ItemTokens

do not correspond to resources because they are only the passive subject of a state

conversion.

• requiredMovableEquipment may be tools and fixtures and modeled with MovableE-

quipmentTokens. Partitioning fixed and movable equipment requires precision -

“movable” means during normal process execution. Any MovableEquipmentTokens

consumed by a process must be produced when execution completes. 5

• requiredFixedEquipment may be machines. Fixed equipment cannot move during

5This can be enforced using a constraint on the consumption and production properties across all of a
process’ FlowNode interfaces. However, an always-executing process may require enhancing these semantics
because there is no current capability to input and output resource tokens mid-execution. One way to do
this might be to borrow the concepts of Seize and Release from process-oriented discrete-event simulation
languages.

71

normal process execution and has no corresponding token. If a process is hosted

at a ConversionNode which lacks required fixed equipment, then the hosted process

can never execute. If a ConversionNode lacks required movable equipment, however,

then process execution is delayed until a corresponding token arrives.

• requiredOperators may be modeled with OperatorTokens. Humans are a difficult

resource to classify because they can perform so many functions. In figure 43, note that

fixed equipment, movable equipment, and transporter all have an assignedOperator

property which can overlap with a process’ requiredOperators, so the properties should

be constrained consistent. Any OperatorTokens consumed by a process must be

produced when execution completes.

• requiredInstructions may be work instructions and modeled with InformationTokens.

What moves through a network is usually not an original information source such as

a paper document or digital file, but rather a copy or link to information. Therefore,

information is the only type of resource in figure 43 not in one-to-one correspondence

with a token, because a single item of information may be associated with many copies

or links.

• requiredAuthorization or permission may be modeled with AuthorizationTokens.

Authorization is discussed further in section 4.5. Note that there are other functionally

equivalent ways to convey authorization, for example with an InformationToken.

In addition to these properties of Process, the subclass MoveProcess may also require a

vehicle resource modeled with a TransporterToken, which in manufacturing use cases may

be forklifts, push carts, conveyors, and even operators. A TransporterToken carries tokens

which cannot move themselves.

72

4.5 Plant/Control Interface in a Token-Flow Network

Consider a pattern for system modeling shown in figure 44.

Figure 44: A Modeling Pattern of Plant/Control Separation.

What is the value of this pattern? In the describe / predict / control hierarchy, control

is at the top and superceded only by design, which is out-of-scope. Controlling future

observations is an essential level of understanding, and requires knowledge of sensors and

actuators and more broadly what state values are controllable, the levers and mechanisms

available to manipulate those values, and how those levers and mechanisms can be used to

realize goals. The value of a Plant/Control separation pattern for system modeling is to

help make all this knowledge explicit.

Figure 44 identifies separate concepts of plant and control and message-based or

signal-based interaction between them. Plant is passive; imagine a manufacturing facility

in which every machine, tool, operator, and transport vehicle remains idle waiting for

instructions. Control is what makes everything in the manufacturing facility move and

perform in a desired way. A subtle point is that even hardware whose exclusive purpose is

control functions belongs in the plant category; the control category involves concepts like

allocation, plan, planning horizon, policy, decision, re-evaluation frequency, and more. 6 In

figure 44, the internal workings of the control function which convert measurements into

6[Hopp and Spearman, 1996, p.381] offer high-level definitions in the context of production planning.
They partition planning horizons into long, intermediate, and short, and define that long-range decisions
address strategy, intermediate-range decisions address tactics, and short-range decisions address control.

73

decisions are not modeled here, only the plant interface points at which control decisions

arrive and are enacted in a token-flow network 7.

Interface points between plant and control, and choices needing decisions at each,

include:

• If, when, and in what numbers to admit tokens into FlowNodes. If a FlowNode is an

interface to a Process, choices also concern when the Process consumes those tokens.

• If, when, and in what numbers to dispatch tokens from FlowNodes. If a FlowNode

is an interface to a Process, choices also concern when the Process produces those

tokens.

• Onto which outgoing FlowEdge to route dispatched tokens.

• The dynamics of a token crossing a FlowEdge.

To the list might be added controlling what happens to a token while resident at a Node.

However, the only behavioral model defined here is a process, whose underlying conceptual

model is a token-flow network, so this case’s control mechanisms and choices are considered

covered by the just-listed cases.

4.5.1 Admission of Tokens into FlowNodes

Only a small number of control mechanisms are modeled for controlling a token’s admission

into a FlowNode. This section describes those mechanisms, and then considers the

subsequent question of when a process consumes tokens admitted into its FlowNode

interfaces.

If a process has FlowNode interfaces, any FlowNode has a consumption property

listing token types and quantities required for process execution to begin. In this way a

FlowNode can filter admissible tokens, and (possibly dynamic) choices of admissible token

types and quantities is a control mechanism. There may not exist much flexibility for

a MakeProcess requiring a specific bill of materials, but there may be more flexibility

7In addition to individual decisions, this section also uses the word policy for a collection of decisions,
sometimes time-indexed. [Schruben and Yücesan, 1993, p.266] define policy as: “The rules that govern the
interaction of entities within a system are called laws if they are not under our control and policies if they
are.”

74

for StorageProcess, MoveProcess, and others. Another control mechanism is blocking a

FlowNode or a FlowEdge, shown in figure 45.

Figure 45: FlowNode and FlowEdge with Blockage properties.

Blocking is type-specific; a FlowNode or a FlowEdge may be blocked for token type A but

not type B. Blocking a FlowNode means tokens cannot be admitted into the FlowNode,

and may be caused by full or nonexistent storage, the concept of failure, the concept of

maintenance, and more. Blocking a FlowEdge means that no tokens may be dispatched

onto the FlowEdge, and may be caused by a blocked FlowNode target, the concept of

failure, the concept of maintenance, and more. If a token crosses a FlowEdge but the

target FlowNode is blocked for that type, then the token blocks the FlowEdge for its type

until the target FlowNode’s blockage clears. FlowNode and FlowEdge’s blockedTokenTypes

properties and FlowNode’s consumption and production properties are all interface points

between plant and control.

Filtering and blocking are the only control mechanisms defined for admitting a token

into a FlowNode. After admission, a token may be consumed by the parent process,

and defining how this works more concerns behavioral execution semantics than control

choices. If not immediate, for example if all required inputs are not yet available on all of a

process’ interfaces, then storage is needed. FlowNode’s subclass ConversionNode exists

to host processes and may host StorageProcesses for input and output tokens, as was

shown in figure 41. Even if a ConversionNode hosts a storage process, storage may not

be available for an arbitrary token depending on allowed types and capacities. Types and

capacities of StorageProcesses are another control mechanism. Storage processes hosted at

75

ConversionNodes are not the only possible mechanism to store tokens; another possibility

for any process in which required input tokens may not arrive all at once is for the process to

contain a nested process network with StorageProcess as the first step. In both possibilities,

note something unusual about a StorageProcess - it may consume and produce tokens mid-

execution.

Execution semantics were mentioned earlier in section 4.2 - when all required input

tokens are available on a FlowNode interface, either in storage or blocking an incoming

FlowEdge, then that interface is active or enabled in Petri Net vocabulary. When all of a

process’ FlowNode interfaces are active, then the process immediately consumes all required

input tokens from each interface (but not any extras) and begins execution. Again, it is the

interfaces’ production and consumption which ultimately decide inputs and outputs, and

for processes sequenced implicitly using token flow those properties should be consistent

with the process’ properties inputItems, requiredOperators, requiredAuthorization, etc. An

all-tokens-up-front paradigm may be semantically limiting, especially for inputs consumed

in later process steps for which just-in-time is desired. However, the notion of “later process

steps” implies a nested process network which can replace the parent process. Then an all-

tokens-up-front paradigm shifts from the parent process to each nested process. This is not

a perfect solution, as it recursively pushes the issue to lower abstraction levels rather than

eliminates it, but it suffices for many questions about discrete-event logistics systems.

4.5.2 Dispatching Tokens from FlowNodes

This section concerns semantics and control mechanisms for controlling a token’s dispatch

from a FlowNode onto an outgoing FlowEdge. First, however, this section concerns the

upstream question of when a process produces output tokens onto its FlowNode interfaces.

Semantics are that when a process’ execution completes, the production property of each

FlowNode interface specifies token types and quantities immediately produced onto the

interface. The default behavior can be redefined, and that is done by several Process

subclasses as shown in figure 46.

76

Figure 46: Process Subclasses with Output Production Rules.

• A MakeProcess introduces the concept of batching, both a make batch and a move

batch, which need not be the same size - production lots might be 10,000 units to avoid

costly machine setups, which might be divided into 20 move batches of 500 units each

for the sake of variability reduction. A MakeProcess outputs a single token type, and

choices of make and move batch sizes are control mechanisms at the plant/control

interface. If the move batch size is less than the make batch size, a MakeProcess

produces tokens onto FlowNode interfaces upon completion of each move batch while

process execution continues. Completion of a make batch marks the finish of process

execution, and all remaining output tokens are produced onto FlowNode interfaces,

whether or not they comprise an entire move batch. 8 Also included is the concept

of yield - not all output tokens may be produced correctly and some may be rejected.

Imperfect yield requires the ability to dynamically update production quantities on a

MakeProcess’ FlowNode interfaces.

8Semantics are to produce output tokens for an entire move batch all at once upon batch completion.
What this does not model is accumulation of a partial batch. Alternative semantics are to produce output
tokens onto the interface one-at-a-time, and define move batch semantics for a FlowNode interface rather
than a Process. If this alternative is preferred, then move batch semantics defined for a FlowNode interface
must be consistent with semantics of a MoveProcess possibly hosted on an outgoing ConversionEdge.

77

• An AuthorizationProcess can support scheduling controllers in discrete-event logistics

systems, may be always-running, and may produce AuthorizationTokens mid-

execution, one-at-a-time, and earmarked for specific destinations. 9 A control

mechanism at the plant/control interface is when authorization tokens are produced,

and a few common policies are enumerated in figure 46, but nothing is modeled for

how to choose an AuthorizationToken’s destination and routing.

• A StorageProcess may be always-running and may consume and produce tokens mid-

execution. If a StorageProcess is stand-alone (not hosted) and has its own FlowNode

interfaces, process execution may be delayed for required input tokens. Once execution

begins, any token consistent with the tokenTypesAllowed property whose consumption

will not exceed capacities is immediately consumed. A control mechanism at the

plant/control interface is when to produce tokens from a StorageProcess, and a few

common policies are enumerated in figure 46. A complementary choice is what to

produce, for which a few primitive mechanisms are defined:

– Produce the highest-ranked token in a single queue.

– Produce token types and quantities of the production property on a StoragePro-

cess’ FlowNode interfaces (this only works if stand-alone and not hosted).

– Produce token types and quantities of the whatToProduce property of an

OutputStorageDispatchToken, which was defined in figure 43 and will be

explained shortly.

When a StorageProcess is hosted at a ConversionNode instead of being stand-alone,

semantics are more involved. A hosted StorageProcess may require fixed equipment such as

shelves or racks, which a hosting ConversionNode must have or else the assignment is bad.

A bigger issue is consistency among several levels of parent/child hierarchy. For an example,

figure 47 shows a simplified version of figure 39 in which Processes have ConversionNode

interfaces for token input/output, and those interfaces each host StorageProcesses.

9An AuthorizationProcess is defined for explicitly modeling the generation of a specific kind of control
message; this process subclass is effectively a shell for a controller without any internal logic defined. An
alternative is to have authorization control messages move implicitly using Events.

78

Figure 47: A Process Network Instance with Three Levels of Parent/Child Hierarchy. A
circled H indicates hosting, in this example of a StorageProcess at a ConversionNode.

There are three levels of parent/child hierarchy in figure 47: Process → ConversionNode

→ StorageProcess. To explain a semantic difficulty with hosted processes, consider a

forbidden scenario in figure 48 which adds an additional level of parent/child hierarchy,

where the hosted StorageProcesses inputStorage1 and outputStorage1 themselves have

FlowNode interfaces for token input/output.

Figure 48: A Process Network Instance with Four Levels of Parent/Child Hierarchy. A
circled H indicates hosting, in this example of a StorageProcess at a ConversionNode. This
is a forbidden scenario.

79

There are four levels of parent/child hierarchy in figure 48: Process → ConversionNode

→ StorageProcess → FlowNode. Suppose outputStorage1 produces a token. Onto which

interface should it be placed - its own interface3 or its parent interface1 ? This is

the ambiguity resulting in the restriction that a hosted process may not have its own

FlowNode interfaces (interface2 and interface3 in figure 48 are disallowed). If a process

is hosted, then how is token input/output handled? Token input/output routes through

consumption and production of the hosting ConversionNode, unlike earlier cases. If the

hosting ConversionNode is itself an interface to a process, however, any consumption is by

the parent process1, and tokens are only diverted to the hosted inputStorage1 in specially-

defined cases such as process1 awaiting additional input tokens. Hosted StorageProcesses

do have value for buffering a parent Process’ input and output tokens, so to work around

this issue special token subclasses can be defined targeting an interface’s hosted processes

rather than its parent process. One example is OutputStorageDispatchToken targeted at a

ConversionNode’s hosted StorageProcess instead of any parent Process. Because of difficulty

with token input and output, a hosted StorageProcess is assumed to be always-running.

Also, note that the workaround is unnecessary for processes hosted at a ConversionNode

which is stand-alone (not an interface to a parent Process), which is a common use case

for a physical network with fixed and mobile resources hosting and executing a functional

process plan.

A StorageProcess has one or more queues. Default semantics are a separate queue for

each token type, which accommodates producing a Bill Of Tokens - for each token type,

produce the specified quantity from the front of that type’s queue. If rankEachTokenType-

Separately is false, however, then all token types share a single queue. As modeled, all

queues within a single StorageProcess share the same ranking rule, although the definition

can be changed to allow independent rules.

So far this section has concerned semantics and control mechanisms for a process

producing tokens onto its FlowNode interfaces, but has said nothing about dispatching

those tokens onto outgoing FlowEdges. Dispatch execution semantics are straightforward:

Tokens produced onto a FlowNode are immediately dispatched onto an outgoing FlowEdge,

80

and a choice among multiple possibilities is discussed in the next section. However, there

also exists the control mechanism that a ConversionNode may host a StorageProcess for

output tokens as shown in figure 41. Storage between a token’s production and dispatch

can be useful in at least two cases:

• If an outgoing FlowEdge is blocked, and an alternative routing is not possible or

permissible, then tokens of the blocked type(s) are stored until the blockage clears.

• If an outgoing ConversionEdge hosts a MoveProcess, and the MoveProcess is perhaps

awaiting a transporter and not ready to begin, then tokens are stored until the

MoveProcess is ready to consume them.

In many cases control mechanisms for dispatching tokens are deferred to upstream

production of tokens. However, whether to store an output token post-production, how

to enact that choice (for example, by blocking outgoing FlowEdges), and when to produce

output tokens from storage are additional control mechanisms at the plant/control interface.

4.5.3 Routing a Dispatched Token

Figure 49: Several Routing Control Policies for Dispatching Tokens from a FlowNode onto
an Outgoing FlowEdge.

Onto which of a FlowNode’s outgoing FlowEdges to dispatch a just-produced token

is a control choice at the plant/control interface. A few common policies are enumerated

81

in figure 49, and a (possibly dynamic) choice among them is captured with FlowNode’s

outgoingEdgeSelectionParadigm property.

• Follow prescribed routing: Any token may have a prescribed routing, a sequence of

nodes which should be consecutively connected by directed edges. Choosing a token’s

routing is a control mechanism at the plant/control interface. A routing may contain

degrees of freedom, for example if consecutive nodes are linked by multiple parallel

edges, in which case a secondary rule is needed such as ‘smallest weight’ or ‘uniform

random’. A token’s routing may be dynamically updated, again a control mechanism.

• To token destination by shortest path: A token may be earmarked for a

particular destination, and ‘by shortest path’ may seem to reduce this to a prescribed

routing. However, a path is a sequence of edges whereas a routing is a sequence of

nodes. A shortest path can be dynamically re-computed as network state changes, as

can a routing, but a semantic difference is that here only the destination is of interest,

whereas in a routing the intermediate nodes may be of interest too. A token can store

an edge sequence in its shortestPathToDestination property.

• To token destination by shortest time: FlowEdge has an edgeCrossingTime

property, which enables recording a notion of crossing time distinct from whatever

the inherited weight property models, for example length. edgeCrossingTimes may

be dynamically updated as storage processes congest with tokens and FlowNodes

and FlowEdges become blocked for particular token types. The semantic difference

between this and the previous two policies is that shortest-time may not realize

as a pre-computed routing (sequence of nodes) or path (sequence of edges) but

rather as sequential decisions made immediately before a token is dispatched from

successive FlowNodes. Nothing is said about how to compute a shortest-expected-

time path, although ingredients such as Process’ time, FlowEdge’s edgeCrossingTime

and inherited weight, and a StorageProcess’ inherited contents may be helpful.

• Round-robin: A FlowNode’s outgoing FlowEdges take turns accepting dispatched

tokens, and the turn rotates in a fixed sequence. Semantics are that tokens dispatched

together are routed together, meaning that successive turns may dispatch unequal

numbers of tokens. An alternative is one token per turn, for which semantics can be

redefined if preferred. Not modeled is any sequencing among a FlowNode’s outgoing

FlowEdges, nor any mechanism for remembering which FlowEdge is next in the

sequence - an implementation version of the token-flow network profile should include

these omissions.

• Smallest weight: Output tokens are dispatched onto the outgoing FlowEdge with

smallest weight. Not modeled is a tiebreaking rule if multiple FlowEdges have the

82

same weight. Note that the weight property may dynamically update, which is a

control mechanism at the plant/control interface.

• Uniformly random: All outgoing FlowEdges have an equal probability of selection,

and one is chosen at random. If there are n outgoing FlowEdges then each has a 1/n

probability of selection. As with round-robin, semantics are that tokens dispatched

together are routed together, which can be redefined to one token per turn if preferred.

• Edge-Weighted random: Each of a FlowNode’s outgoing FlowEdges has a selection

probability proportional to its weight, and one is chosen at random. Selection

probability is defined as an edge’s weight divided by the sum of all outgoing

FlowEdges’ weights. As with round-robin and uniformly random, semantics are that

tokens dispatched together are routed together.

4.5.4 How a Token Crosses a FlowEdge

Figure 50: Several Flow Control Policies for a Token Crossing a FlowEdge

The dynamics of how exactly a token crosses a FlowEdge involve behavioral semantics

and control mechanisms at the plant/control interface. A few simplifications of these

dynamics are enumerated as control policies in figure 50, and a (possibly dynamic) choice

among them is captured with FlowEdge’s edgeCrossingParadigm property.

83

• Instantaneous: The simplest policy, which can support anything moving electrically

or optically depending on the fidelity required. FlowEdge’s edgeCrossingTime must

be zero for consistency.

• Proportional to weight: This policy models edgeCrossingTime proportional to a

FlowEdge’s weight property. Not modeled is the constant of proportionality.

• Deterministic crossing time: This policy implies that edgeCrossingTime is a literal

number or derived per a deterministic formula.

• Stochastic crossing time: This policy implies that edgeCrossingTime is either a

literal random variable specification (e.g. Normal(0, 1) or Exponential(2)), a derived

random variable specification (e.g. Normal(µ, σ2) with deterministic formulas for µ

and σ2), or some other stochastic specification such as the ingredients for a kernel

density estimator.

In addition to FlowEdge’s edgeCrossingParadigm property, other semantics and control

mechanisms are in the definition of a MoveProcess possibly hosted on a ConversionEdge.

Figure 51 shows an extension of figure 47 in which ConversionEdges host MoveProcesses.

Figure 51: A Process Network Instance in which each ConversionEdge hosts a MovePro-
cess. A circled H indicates hosting, here of StorageProcesses at ConversionNodes and
MoveProcesses on ConversionEdges.

MoveProcess inherits a Process’ properties for input items (think Bill Of Lading),

output items (usually the input items), fixed equipment, authorization, and adds a

84

property requiredTransporter for tokens which cannot move themselves. MoveProcess may

also contain a nested process network, which allows refinement into steps like loading,

transportation, unloading, inspection, and accepting or declining delivery. If a MoveProcess

is stand-alone and not hosted, it may have its own FlowNode interfaces for input and output

tokens. If hosted on a ConversionEdge as in figure 51, it cannot have FlowNode interfaces

and additional semantics are needed.

A MoveProcess hosted on a ConversionEdge has a source FlowNode and target

FlowNode. Semantics are that tokens dispatched onto the ConversionEdge are immediately

consumed by the MoveProcess, and upon completion are immediately produced for admis-

sion into the target FlowNode. MoveProcess inherits a property requiredFixedEquipment

(such as rails or conveyors) which a hosting ConversionEdge must have or else the

assignment is bad. A difficulty is that TransporterTokens and AuthorizationTokens must

be input/output to/from a MoveProcess, but if hosted there are no interfaces for token flow.

A hosted MoveProcess does effectively have interfaces, however, at the ConversionEdge’s

endpoints. A transporter always loads tokens at a ConversionEdge’s source and unloads

them at a ConversionEdge’s target; therefore, a hosted MoveProcess’ TransporterTokens

can be admitted at the source and dispatched onto the target. Authorization for a

hosted MoveProcess can be accommodated upstream, because a StorageProcess hosted

at the ConversionEdge’s source may wait for an OutputStorageDispatchToken to produce

tokens. An alternate is to extend the token-flow network defintion with a special subclass

of AuthorizationToken directed at hosted MoveProcesses.

4.6 Summary

To support the abstraction method, chapters 3 and 4 define the abstract concept of a

token-flow network, both structure and behavior. Semantics and modeling choices can be

debated, but these chapters should provide compelling evidence that a token-flow network

can generalize a wide range of discrete-event logistics systems and underlies many analyses

of them. Since a network (for structure) and token-flow network (for behavior) are also

underlying conceptual models for the SysML language, a token-flow network seems a

85

particularly good choice for the abstraction model in this dissertation’s methodology.

The next chapter supports the formalization method, not for systems or abstractions but

for questions about them. If arbitrary systems can be formalized with the SysML language,

and a token-flow network formalized as a UML profile using semantics in chapters 3 and 4,

what language should be used to formalize questions? Chapter 5 contains an initial study

of semantics, categories, and patterns in questions, which when coupled with syntax may

comprise a formalism for questions with broader scope than any known query language.

86

CHAPTER V

SEMANTICS OF A WELL-FORMED QUESTION

Questions play a central role in the description, prediction, and control of discrete-event

logistics systems. Any decision answers a “What should I do?” question. Decision-

making is commonly supported by evaluating alternatives, with evaluation done by posing

and answering questions about a system’s structure or behavior. Answering questions

invariably involves the development and analysis of models, which may be explicit or

implicit, qualitative or quantitative, analytical or computational. For these reasons, the

process in this dissertation’s methodology is question-driven. Figure 52 shows a general

version of the process in which Context Model represents either a system model or an

abstraction model.

Figure 52: The Process in this Dissertation’s Methodology, in which Context Model
represents either a system model or an abstraction model.

This chapter presents an initial study of formalizing questions in the context of designing

and operating discrete-event logistics systems. What distinguishes developments in this

87

chapter from prior-work query languages was discussed in chapter 2 and is important enough

to repeat here. Most contemporary query languages are paired with a particular modeling

language, and can only express questions about models captured in that language. Further,

a tacit restriction is that queries are only answerable by navigating through a model and

retrieving recorded information. This chapter does not restrict attention to questions about

system models captured in any particular modeling language, nor to questions answerable

by navigating through a model and retrieving recorded information. Questions may have

subjects which are not an explicit context model element, and be answered by formulating

and solving an analysis model. The goal here is an original development of semantics,

categories, and patterns in questions which induce engineering analysis, and the results of

an initial study are documented in chapter 5. Syntax is left for future work, which might

involve expressing the semantics in the Object Query Language’s (OCL’s) syntax.

For this initial study, assume that the subject of a question is a system or token-flow

network instance model with concrete instance data, as opposed to a user model without

conforming instance models or a metamodel. This assumption ensures that answering

analysis models have instance data and can be solved for an answer. General question

semantics include:

• All information needed to identify and build an analysis model in figure 52’s process

must be captured in either the context model or the question.

• Analysis is performed for a purpose, and a question contains that purpose - what

information is sought about which context model elements?

• A question is independent of any answering computational process. This is important

because query languages such as SQL can make it easy to conflate a question with an

answering analysis model, even though they are two distinct concepts.

• A pattern for questions is proposed as “(Question Word) is (Question Subject)

(Predicate Modifiers)?” Question Words include who, what, which, when, where,

how, and why. Question Subject (which may have modifiers) and Predicate Modifiers

are the links between a question and a context model, and concentrated in these

elements is the purpose of answering analysis.

Additional question semantics such as characterizing a Question Subject, its modifiers,

88

and Predicate Modifiers can only be developed for narrower categories of questions. “Nar-

rower categories of questions” implies a taxonomy for questions which induce engineering

analysis, which is the subject of the next section.

5.1 A Taxonomy of Questions

A question contains analysis’ purpose, an axiom from section 1.1 is that analysis’ purpose

is understanding, and [Rouse, 2009] refines understanding into the hierarchical levels

of describing past observations, predicting future observations, and controlling future

observations. Therefore, describe / predict / control seems a natural taxonomy for

questions. Another high-level taxonomy which is fundamental to system modeling is

structure / behavior. 1 The cross product of these two classifications applied to

questions suggests six categories - questions about describing structure, predicting structure,

controlling structure, describing behavior, predicting behavior, and controlling behavior.

However, an issue with these categories is that they overlap, which is undesirable because

disjoint categories are conceptually simpler, and also that important variables such as time

are missing.

The difference between structure and behavior was explained in section 3.7 using the

concept of state, the general condition of a system at any moment in time. Structure

concerns what elements are in a token-flow network’s state vector, and behavior concerns

how that state vector can change with time. Prediction and control inherently concern state

change spanning multiple points in time, and therefore prediction and control inherently

concern behavior, and therefore questions about predicting and controlling structure are

inherently questions about predicting and controlling behavior. Six overlapping categories

can be reduced to four disjoint ones, and figure 53 shows this simplified classification of

questions with disjoint leaf categories and also incorporates the concept of time.

1Another taxonomy introduced in section 4.5 is plant/control, but since no general definition of control
is referenced or developed here, this classification is not pursued. A missing definition of control will prove
limiting in this chapter when developing the last category in describe / predict / control.

89

Figure 53: A Taxonomy of Questions.

For the simplest category of questions in figure 53 - questions about describing structure

at a single point in time - note that answering analysis can still be quite sophisticated,

for example the Operations Research analyses of optimization and statistics. For questions

about multiple points in time, note that they inherit a natural sequence from [Rouse, 2009]’s

levels of understanding - only after behavior can be described can it be predicted, and only

after behavior can be predicted can it be controlled (also called prescribed). For the first

category of questions about multiple points in time, questions about describing behavior,

suppose that the subject of a question is a model element’s property with a recorded time

history containing two observations, as shown in figure 54.

Figure 54: State Values Available at Two Points in Time.

For questions about describing behavior, analysis of the time history in figure 54 is

limited to state change magnitude ∆, time interval t, ∆/t , and not much more. ∆/t

90

may suggest a linear-trend analysis model which can be used for prediction, but doing that

requires caution given only two data points. Suppose that the subject of a question is a

model element’s property with a recorded time history containing many more observations,

as shown in figure 55.

Figure 55: State Values Available at Many Points in Time, Plus a Regression Line.

For questions about describing behavior, analysis of the time history in figure 55 may

again include state change magnitudes ∆, time intervals t, and ∆/t for many permutations

of points which can aggregate to a descriptive analysis model for system behavior. However,

enough recorded state values enable more sophisticated reduced-order analysis models. One

example is a regression line (plotted in figure 55), and other options include fitting an

ordinary differential equation or stochastic process model, for example a Markov Chain on

a discretized state space.

Consider the second category of questions about multiple points in time in figure 53,

questions about predicting behavior. Such questions generally have the form “What are

consequences of making a certain change?”, where change may be active intervention or

passively advancing time, and consequences are subjects of questions about description.

This does not mean that predictive analysis always reduces to descriptive analysis at some

future time and system state; rather, predictive analysis usually concerns how to estimate

the future state given present and past. An example is that analysis to answer the question

“What is the expected degree of node x after advancing time by t increments?” may be

91

completely different from analysis to answer the question “What is the degree of node x?”

Consider the third category of questions about multiple points in time in figure 53,

questions about controlling behavior. Such questions generally have the form “What

changes should be made to realize certain consequences?”, where consequences are subjects

of questions about description, and evaluating consequences of any change can be treated

as a separate question about prediction. A liability of this subclass of questions is missing

semantics needed to discuss control changes and their consequences, because the context

model may not include or reference any definition of control.

5.2 A Taxonomy of Questions about a Token-Flow Network

Figure 53’s taxonomy can be extended in the context of a token-flow network. This is done

for several reasons, including testing the taxonomy’s usefulness by seeing how it organizes

questions about well-known network properties, and also to characterize the space of well-

formed questions about a token-flow network. Table 1 extends figure 53 in tabulated form.

92

Table 1: A Taxonomy of Questions Specialized to a Token-Flow Network. CONTROL
is asterisked because the token-flow network definition does not include or reference any
definition of the concept.

DESCRIBE questions
about TFN Structure

Questions about
Structural Statistics

- (network statistics) order, size, density, global
clustering coefficient, diameter, circumference,
clique number, chromatic number, arboricity
- (network boolean statistics) connected, bipar-
tite, acyclic, regular
- (node statistics) degree, local clustering coeffi-
cient, centrality measures
- (edge statistics) betweenness centrality

Questions about
Structural Subsets

- subgraphs including trees, strongly connected
components, and graph factorizations
- node subsets including cliques, independent
sets, edge coverings, and edge colorings
- edge subsets including node coverings (match-
ing, assignment), node colorings (map-making),
k-factorization

Questions
about Routing

- walks
- paths including Hamiltonian path (visit every
node) and Eulerian path (visit every edge)
- cycles

DESCRIBE questions
about TFN Behavior Questions about

Flow Statistics

- entering and exiting nodes
- across edges
- from a token’s perspective (e.g. time in motion,
time stationary)

Questions about
Flow Rates on Edges

- max flow (spans describe and predict)

Questions about
Flow Rates through
Network

- cycle time
- throughput
- capacity

Questions about
Total Cost associated
with Flow

- transshipment (spans describe and control)
- edges off / on (including fixed-charge for use)
- nodes off / on

Questions about
Waiting

- queueing
- inventory, including work-in-process
- from a token’s perspective (e.g. time in queue)

PREDICT questions
about TFN Behavior

Such questions can be written in the form “What are consequences of
making a certain change?”, where change may be active intervention or
passively advancing time, and consequences are subjects of questions about
description.

CONTROL∗ questions
about TFN Behavior

Such questions can be written in the form “What changes should be
made to realize certain consequences?”, where consequences are subjects
of questions about description, and evaluating consequences of a certain
change could be treated as a separate question about prediction.

93

Table 1’s third column is not intended to be exhaustive. The second-column categories

are not disjoint; one example is that answering a question about the network structural

statistic diameter (the longest shortest path between any pair of nodes) requires first finding

those shortest paths by answering a question about routing. Many of the structural statistics

and subsets in the third column are defined in section 3.1.

Predicting and controlling token-flow network behavior inherently concern change,

whether given a change and predicting its consequences or given desired consequences

and finding a control change to realize them. Therefore, questions about predicting

and controlling token-flow network behavior can be further characterized by better

understanding the ways a token-flow network can change. Prior work exists, and much is

in the spirit of [Koka et al., 2006] which allows two primitive change mechanisms (creation

and dissolution of ties) and then defines aggregate patterns of network evolution resulting

from the two primitives (network expansion, churning, strengthening, and shrinking). This

dissertation’s token-flow network definition allows many more primitive change mechanisms:

• Advance time

• Add or remove a node set

• Modify a node set’s state

• Add or remove an edge set

• Modify an edge set’s state

• Create or destroy a token set

• Modify a token set’s state

Continuing to develop the idea of network change exceeds the scope of this initial study,

which focuses on semantics, categories, and patterns in questions which induce engineering

analysis. However, the primitive change mechanisms just listed suggest several directions

for future work, including investigating aggregate patterns of token-flow network evolution

which follow from the primitive change mechanisms listed, and also expressing higher-

level control concepts such allocations, plans, and policies in terms of the primitive change

mechanisms, which might be done in combination with creating a definition of control.

94

5.3 A Question’s Subject and Predicate Modifiers

Given the taxonomy in section 5.1, this section returns to the pattern “(Question Word) is

(Question Subject) (Predicate Modifiers)?” and further characterizes a Question Subject,

its modifiers, and Predicate Modifiers for each of the four leaf categories in figure 53. A

syntax used to display a question’s structure is Reed-Kellogg sentence diagramming [Reed

and Kellogg, 1896]. A question is a sentence, and every sentence has a subject, predicate,

and direct object, each possibly with multiple levels of modifiers. The question “What is

the degree of node x?” diagrams as 2:

Figure 56: Example of Reed-Kellogg Sentence Diagramming.

“What is the degree of node x?” has subject degree modified by of node x, predicate

is, and direct object What. If the question is to be machine-interpretable, note that it

leaves information implicit, specifically in network n. Such information might be inferred

from context in a conversation between humans, but in this initial study assume that all

information needed to answer a question must be explicit in either the context model or the

question. Therefore, given the pattern “(Question Word) is (Question Subject) (Predicate

Modifiers)?”, information needed to answer a question which is not in the context model

must be in either the Question Subject or Predicate Modifiers, and important question

semantics include types and patterns of information found in these question elements. The

four subsequent sections formalize these types and patterns of information for each of the

four leaf categories in figure 53’s taxonomy.

2Created by the Reed-Kellogg Diagrammer at http://1aiway.com/nlp4net/docs/help reed kellogg.aspx,
used 13march2014. Since the tool only parses complete sentences of dictionary words, identifier x is post-
processed into a diagram for the sentence “What is the degree of this node?” This tool and this type of
post-processing are used to create figures 56, 58, 60, 62, 63, and 65.

95

5.3.1 Questions about Describing Structure at a Single Point in Time

For questions about describing structure at a single point in time, the pattern “(Question

Word) is (Question Subject) (Predicate Modifiers)?” expressed in the syntax of a Reed-

Kellogg sentence diagram specializes to what is shown in figure 57.

Figure 57: Pattern for a Question about a Describing Structure at a Single Point in Time.

For this category of questions, a question’s subject is a subset of context model elements

and their properties. Those model elements and properties need not be explicitly recorded,

and if they are not then a question must define them in terms of context model elements

and properties which are recorded. The predicate modifier’s function concerns time. In the

question “What is the degree of node x in network n?”, the predicate modifier is omitted

and understood as the present. In the question “What was the degree of node x in network

n at time t?”, the predicate modifier is included and specifies the single point in time t.

This question is diagrammed in figure 58.

Figure 58: Reed-Kellogg Diagram for an Example of a Question about Describing Structure
at a Single Point in Time.

96

The modifier at time t can be argued as either a predicate modifier as shown in figure

58 or as a nested subject modifier. The former is chosen here and for the remainder of this

dissertation, that precision about time will modify is. A bigger complication in figure 58 is

a missing definition of a node’s degree, which is not recorded as any Node property in figure

19, and is also not defined in the question. The question should actually read “What was

the number of edges incident to node x in network n at time t?”, but for convenience

a well-understood analysis semantic such as a node’s degree should be allowed in place of

its verbose definition. To allow this convenience yet still have the question be machine-

interpretable, one solution is to have an ontology mapping certain analysis semantics back

to token-flow network semantics. Network, node, and edge statistics and subsets from the

first two categories in table 1 might also be recorded in this ontology, for example a network’s

density, diameter, global clustering coefficient, and more.

Note that for questions about describing structure at a single point in time, figure 57 is

a realization of this chapter’s goal - characterizing what information is needed in a question

about a model such that answering analysis can be formulated.

5.3.2 Questions about Describing Behavior Spanning Multiple Points in Time

For questions about describing behavior spanning multiple points in time, the pattern

“(Question Word) is (Question Subject) (Predicate Modifiers)?” expressed in the syntax of

a Reed-Kellogg sentence diagram specializes to what is shown in figure 59.

97

Figure 59: Pattern for a Question about Describing Behavior Spanning Multiple Points in
Time.

Differences between this and the previous category are that the predicate modifier may

specify multiple points in time, and that a question’s subject may be a state value which

can vary over those points in time. Therefore, a question’s subject may be not only context

model elements and properties, but also semantics for change, statistics about it, or models

of it. The burden is on a questioner to ensure that a question’s subject is precise with

respect to time; an example of imprecision is the question “What was the degree of node x

in network n between times t1 and t2?”, which can only be answered with a plot of node x’s

degree over the continuous time interval [t1, t2]. The question might be revised to “What was

the change in the degree of node x in network n between times t1 and t2?”, diagrammed

in figure 60, or in place of change may also ask about mean, variance, a random variable

model , and more.

98

Figure 60: Reed-Kellogg Diagram for a Question about Describing Behavior Spanning
Multiple Points in Time.

While the predicate modifier in this example specifies an entire interval of time points

“between times t1 and t2”, the question may be answered using only state values at the

two endpoints, so just because multiple points in time are identified does not mean that

they must all be used to answer the question. Also, in special cases the predicate modifier

identifying multiple points in time better classifies as a subject modifier, specifically when

the question’s subject is time such as the length of time between two events.

.

Questions about describing behavior are effectively questions about describing state

change, and can often be answered without knowing underlying causes or dynamics of

changing state, e.g. without a behavioral model. Indeed, sometimes these questions concern

finding a behavioral model when none exists. Going forward, questions about predicting

and controlling behavior will require knowledge of underlying causes and dynamics, and a

new requirement in subsequent categories will be a behavioral model which must be explicit

in either a context model or a question.

5.3.3 Questions about Predicting Behavior Spanning Multiple Points in Time

For questions about predicting behavior spanning multiple points in time, the pattern

“(Question Word) is (Question Subject) (Predicate Modifiers)?” expressed in the syntax of

a Reed-Kellogg sentence diagram specializes to what is shown in figure 61.

99

Figure 61: Pattern for a Question about Predicting Behavior Spanning Multiple Points in
Time.

Section 5.1 stated that questions about predicting behavior generally have the form

“What are consequences of making a certain change?”, where change may be active

intervention or passively advancing time, and consequences are the subjects of questions

about description. Therefore, one difference between this category and the previous two

is a new type of predicate modifier defining a proposed change, which is chosen as a

modifier of the predicate is because the change is a precondition to being. Primitive change

mechanisms for a token-flow network were considered briefly at the end of section 5.2 and

their development was left for future work, but defining a proposed change should have

similar semantics to a question’s subject - it must be precise about which context model

elements are to be changed in which ways at which times. If no change except advancing

time, then this predicate modifier may be implicit. Another important difference between

this category and the previous two is since prediction (in time) extrapolates past and present

observations into an uncertain future, a behavioral model is required for how the question’s

subject in the context model will respond to the proposed change. An example of a question

conforming to the template “What are consequences of making a certain change?” is “What

is the expected degree of node x in network n at time t2 after making change c at time t1?”,

diagrammed in figure 62.

100

Figure 62: Reed-Kellogg Diagram for a Question about Predicting Behavior Spanning
Multiple Points in Time.

The example in figure 62 is similar to the previous section’s example in figure 60, with

the addition of a predicate modifier defining a proposed change. What is missing is a

behavioral model defining how node x’s degree responds to change c as a function of time.

There are several options for where such a behavioral model may reside - in the context

model, in the question as an additional predicate modifier, or assumed by an analyst and

returned as an answer qualification (which is defined in section 5.4). Consider an example

of each:

• Suppose the needed behavioral model is in the context model. Behavior can be defined

in several ways in a SysML user model, including a parametric model, an operation,

an activity, and a state machine. An example of a parametric model is an ordinary

differential equation describing the degree’s trajectory:

ḋ = f(d, t) + c(t)

where d represents degree, ḋ represents its first time derivative, f is an arbitrary

function, and c(t) is a forcing function. Note that since time is not explicit in the

SysML language, t must be assigned meaning - see [Friedenthal et al., 2008, p.161] for

an example.

• Suppose the needed behavioral model is in the question as a subject modifier 3.

The question diagrammed in figure 62 with an embedded behavior model is “What

3The behavioral model is chosen as a question’s subject modifier because it describes how the subject
responds to the proposed change. It might also be argued as a predicate modifier if it describes how being
evolves in time.

101

is the expected degree of node x in network n at time t2 after making change c at

time t1, where degree responds by exponential decay with change-dependent

constant c.a?”, diagrammed in figure 63.

Figure 63: Reed-Kellogg Diagram for a Question about Predicting Behavior Spanning
Multiple Points in Time, with an Embedded Behavioral Model.

A challenge which is not resolved here is that behavioral models stated in prose may

lack the formality needed for machine-interpretability.

• Suppose the needed behavioral model is neither in a context model nor a question.

Then an analyst may assume a behavioral model such as “degree responds by

exponential decay with change-dependent constant c.a”, answer the question using

this assumption, and note the answer’s dependence on the assumed behavioral model.

Qualifications of answers are defined in section 5.4.

5.3.4 Questions about Controlling Behavior Spanning Multiple Points in Time

For questions about controlling behavior spanning multiple points in time, the pattern

“(Question Word) is (Question Subject) (Predicate Modifiers)?” expressed in the syntax of

a Reed-Kellogg sentence diagram specializes to is shown in figure 64.

102

Figure 64: Pattern for a Question about Controlling Behavior Spanning Multiple Points in
Time.

Section 5.1 stated that questions about controlling behavior generally have the form

“What changes should be made to realize certain consequences?”, where consequences are

again subjects of questions about description, and evaluating consequences of a certain

change could be treated as a separate question about prediction. This form inverts

consequences and changes from the previous category, questions about predicting behavior,

and effectively swaps the question subject and a predicate modifier between figures 61 and

64. The question’s subject is a control change made to the context model, which is the

desired output of an answering analysis, and as discussed in section 4.5 the concept of

control is undefined and semantics cannot be elaborated. The desired consequences of a

change - the context model in a particular state at a particular time - have swapped from

a question’s subject into a predicate modifier. An example of a question conforming to the

template is “What is a change at time t1 to make d the expected degree of node x in network

n at time t2?”, diagrammed in figure 65.

103

Figure 65: Reed-Kellogg Diagram for a Question about Controlling Behavior Spanning
Multiple Points in Time.

Similar to the previous category, predicting consequences of change requires a behavioral

model. This behavioral model describes how context model elements and their properties

will respond to candidate changes. As before, this behavioral model might be included in

the context model, supplied in the question as a nested predicate modifier, or assumed by

an analyst and returned as an answer qualification.

5.4 Analysis Models and Answers

So far this chapter has concerned the semantic content of questions and questions’ links to

a context model. Nothing has yet been said about analysis models and answers. Figure 66

shows an objects-and-relationships view of the process in this dissertation’s methodology.

Figure 66: An Objects-and-Relationships View of The Process in this Dissertation’s
Methodology.

104

While previous sections in this chapter concern the left half of figure 66, this section

concerns the right half. A question and context model are associated with zero or more

answering analysis models. A question is defined as well-formed if, in combination with

its context, at least one answering analysis can be identified. This does not imply that the

resulting analysis model can be solved, only that experiments are known which can yield

the answer, whether or not those experiments can actually be performed. A question which

is not well-formed can become so by devising experiments or inventing analysis which can

answer the question.

When a question is well-formed, the multiplicity of answering analysis models is one

or more. This means that the mapping from a question and context model pair to

answering analysis models is a relation, not a function. Also, an analysis model is associated

with one or more answers, again a relation instead of a function - examples include an

optimization analysis with multiple optima, or any analysis including randomness in the

solution algorithm. These two relations are the subject of this section.

The pairing of a question and a context model may have multiple answering analysis

models because there may exist multiple ways to answer the same question. For the question

“What is the degree of node x?”, even a property so simply defined can be computed in at

least two ways - query node x and count the number of incident edges, or query all of a

network’s edges and count how many are incident to node x. For the question “What is the

expected degree of node x at time t?”, using past observations of node x’s degree and choosing

time series forecasting allows autoregressive models, integrated models, moving average

models, combinations including ARMA or ARIMA, non-parametric methods, regression

analysis, and more. In general, any question about any context might be answered by

a variety of analyses, and an exogenous factor such as how much time a decision-maker

can wait for the answer can influence the analysis choice. While the type of answering

analysis may change, the analysis’ purpose does not, which is why a question is defined

independently from any answering computational process.

Given a question and context model pair, and with multiple answering analyses

identified, how to choose one? Exogenous information such as “I need an answer in five

105

minutes” may influence the choice. In the status quo the link which converts a context

model, question about it, and requirements for obtaining an answer into a choice among

answering analyses is an analyst, included in figure 67.

Figure 67: The Process in this Dissertation’s Methodology, with Multiple Answering
Analysis Models and Analyst Choice.

A tenuous assumption in figure 67 is that an analyst can appreciate the consequences of

each alternative in useful terms such as time, cost, and accuracy. When the requirements

and performance of an analysis model’s solution algorithms are known in such terms, for

example that the fastest solution algorithm has running time O(n2) with n a measure

of problem size, that information should be formally captured and used as an indexing

mechanism for analysis models. This allows a choice among multiple answering analyses to

be framed in terms which are useful to a decision-maker.

For an example of an accuracy requirement, suppose one way to answer a question about

a context model is with integer programming analysis. If branch-and-bound is part of the

solution algorithm, it maintains lower and upper bounds on the optimal solution. A possible

stopping criterion is when the ratio between the bounds (the integrality gap) falls below a

106

threshold g, which may be a user-supplied accuracy requirement. However, a complication

is that g may be used to select an answering analysis and also again by the solver for a

stopping criterion, and requires careful consideration of where this information belongs.

Information absolutely essential to an analysis, meaning an analysis description is

ambiguous and cannot be solved without that information, must be captured in either

the question or the context model. Threshold g is not absolutely essential - without

this information, branch-and-bound will continue until the entire tree is pruned and an

optimal solution is exactly determined. g is integral to solution approximation, not analysis

description. One way to capture such important but not essential information is to pair it

(but not conflate it) with a question. Figure 68 contains this addition to figure 67, plus

adding a semantic for qualified answers, plus generalizing an analyst with the function they

perform 4.

4It is an open question if all the criteria a human analyst uses to choose among multiple answering
analyses can plausibly be captured for an analysis’ indexing. If they can, then a function from a context
model, question about it, and requirements for obtaining the answer to a unique choice of answering analysis
can be fully automated. In the present, however, it seems prudent to ask how the choice can be narrowed
or filtered by indexable information, leaving a human analyst to choose among the remainder.

107

Figure 68: The Process in this Dissertation’s Methodology, with Question and Answer
Qualifications.

The rationale behind Qualified Question was just explained, and the rationale behind

Qualified Answer is to provide information helpful or essential for interpreting the answer.

Different types of analysis have different ways to quantify accuracy, for example confidence

intervals for statistical estimates and integrality gaps for integer programming, and these

are qualifications of accuracy given approximation types. What is harder to quantify is

inaccuracy resulting from model assumptions such as linearity or normality, which at least

can be stated and if possible quantified; these are qualifications of approximation types.

Combining figures 7 and 68 results in a complete illustration of the process in this

dissertation’s methodology, shown in figure 69.

108

Figure 69: A Complete Illustration of the Process in this Dissertation’s Methodology.

5.5 Summary

Analysis is performed for a purpose, and in this dissertation’s methodology a question

supplies that purpose. The semantics of a taxonomy in sections 5.1 and 5.2, patterns for

each question category in section 5.3, and auxiliary information such as qualifications in

section 5.4 - are first steps towards characterizing the space of well-formed questions about

a model, and towards algorithmically determining if a question is well-formed.

The results of this initial study are instructive for Model-Based Systems Engineering

methodology and tools. A language advocated for formal system modeling is SysML,

which is paired with the query language OCL. A next step might be expressing semantics

developed in this chapter using OCL’s syntax, but there are obstacles. One obstacle is

integration between SysML user models and conforming instance models. An integration

point unsupported by many contemporary SysML tools is indexing over multiple instance

models, for example as snapshots in time. The first two categories of questions in section

5.1 can be asked about a model which contains only structure and no behaviors. Even the

simplest questions about describing structure at a single point in time have a predicate

109

modifier identifying a point in time which is not necessarily the present. If conforming

instance models are snapshots of state at regular time intervals, indexing by timestamps

could be useful but is not naturally supported by SysML authoring tools, instead delegated

to version control tools.

Questions about describing behavior over multiple points in time have a similar issue.

These questions concern describing observations of change and can often be answered

without knowing the causes or dynamics of change, meaning they require no behavioral

model. The obstacle is again no naturally supported way to capture structural instance

models’ time-varying state. The obstacle is relaxed for questions about predicting behavior

because time-varying state can be described in a behavioral model. Questions about

controlling behavior encounter a different obstacle - missing higher-level semantics for

control in the SysML language and hence no defined way to express a control change.

This category of questions must also capture an initial condition and a desired future state,

which might be done with structural instance models and so require enhanced indexing of

them, although in simple cases an initial condition and desired future state might be stated

compactly in a question (e.g. “from value a in the present to value b in t time units”). A final

obstacle is that OCL may lack syntax to express qualifications of questions, because time,

cost, and accuracy requirements concern choosing and solving answering analysis rather

than any immediate elements in a SysML user model or conforming instance models.

A conclusion is that question semantics developed in this chapter are partially but

not fully supported by existing Model-Based Systems Engineering tools. Next steps might

include introducing a new category of questions about designing behavior spanning multiple

points in time, better characterizing the range of questions which can be asked about a

model, and exploring possible alignment between question categories and analysis categories.

Next steps for implementation might be expressing semantics in a more practical syntax

than Reed-Kellogg sentence diagrams, and also developing integration between user models

and conforming instance models of system structure. This requires an indexing scheme

which might include timestamp for the past, candidate and what-if for the present, and

scenario for the future.

110

CHAPTER VI

ABSTRACTION AND AUTOMATION METHODS

Figure 8: Process, Methods, and Tools in this Dissertation’s Methodology.

The purpose of this chapter is explaining the methods in this dissertation’s methodology

and their application to the process. Formalization tools for an abstraction model and

questions about it were the subject of the previous three chapters, and a formalization

method using SysML for system models is the subject of [Friedenthal et al., 2011]. In

need of explanation are the abstraction and automation methods. The tool of a token-flow

network definition supports the abstraction method, but little has been said about how to

actually use it. The automation method targets the building of analysis models, claimed to

be mechanical and amenable to automation, and this claim must be supported.

The abstraction and automation methods each involve model-to-model transformations,

which are two transformation stages needed to get from a system model and question about

it to an answering analysis model. These two transformation stages, which the methodology

proposes to execute quite differently, are the subject of this chapter.

111

6.1 First-Stage Abstraction by Stereotype Application

In the SysML language, formally abstracting a system model to a token-flow network model

can be done by stereotype application. A stereotype is a SysML language element which

can modify or extend the language itself. Given a SysML user model, applying token-flow

network stereotypes can be thought of as overlaying a token-flow network screen over the

system model, hiding certain model elements and properties and abstracting vocabulary of

retained elements. Stereotype application enables defining model-to-model transformations

within a system modeling environment, and also makes it easy to change levels of abstraction

by clearing existing stereotypes and reapplying at the desired level of abstraction. While

stereotypes and their collection in profiles are metamodeling elements, application to a

SysML user model results in a transformed SysML user model.

[Friedenthal et al., 2011] loosely classify stereotypes into two categories:

• A source of ancillary data and rules. An example of stereotype usage in this category

is to add standardized version or audit information to model elements.

• A domain-specific language in which stereotypes act more like metaclasses. Into this

category fall chapter 3 and 4’s token-flow network stereotypes including Network,

Node, and Edge.

[Berner et al., 1999, p.252] classify stereotypes into four categories, which are illustrated in

figure 70 and explained below.

Figure 70: [Berner et al., 1999]’s Classification of UML Stereotypes.

112

• “A decorative stereotype modifies the concrete syntax of a language element and

nothing else.”

• “A descriptive stereotype extends or modifies the abstract syntax of a language

element. . . . The semantics of the base language remains unchanged.”

• “A restrictive stereotype is a descriptive stereotype that additionally defines the

semantics of the newly introduced element. . . . A restrictive stereotype does not

change the semantics of the base language - it only extends it by the semantics of

the stereotype. . . . Restrictive stereotypes are typically used to add missing features

to some elements of a language, to strengthen weak features, or to introduce a

metalanguage on top of a given language.”

• “A redefining stereotype redefines a language element, changing its original semantics.

. . . With decorative, descriptive, and restrictive stereotypes, instances of the stereotype

remain valid instances of the stereotyped language element. For redefining stereotypes,

this is no longer true. A redefining stereotype can introduce a new language element

that is no longer related to the element of the base language that it stereotypes.”

Token-flow network stereotypes defined in chapters 3 and 4 fall into the third category

as restrictive, because they extend the SysML language with new semantics.

While stereotype application is a mechanism for abstracting a system model to a token-

flow network model, what about abstracting questions? In simple cases there is little to do

- just replace the question’s subject in the system model with its abstracted model elements

or properties in the token-flow network model. When a question’s subject does not have an

abstract analog in the token-flow network model, however, then there are two possibilities.

Either the token-flow network definition can be enhanced, or the question falls outside

this dissertation’s boundary because it is fundamentally not a question about describing,

predicting, or controlling token-flow network structure or behavior.

6.2 Modeling Levels of Abstraction

The abstraction and automation methods are two model-to-model transformation stages

needed to get from a system model and question about it to an answering analysis model.

The previous section 6.1 described first-stage abstraction by stereotype application, and

the next section 6.3 will describe second-stage identifying and building analysis models and

automation. In preparation, this section defines an Object Management Group (OMG)

113

convention for object-oriented modeling layered abstraction levels, which is to label them

M3, M2, M1, and M0 as illustrated in figure 71.

Figure 71: OMG’s Layered Abstraction Levels for Object-Oriented Modeling.

Instance models live at the M0-level, user models live at the M1-level, metamodels live

at the M2-level, metametamodels live at the M3-level, and infinite recursion is avoided only

by authoring metametamodels in a self-defining language such as MOF [OMG MOF, 2013]

or ECORE [EMF ECORE, 2014]. When a user opens a SysML authoring tool, creates a

new model, and adds elements such as blocks and associations, an M1-level user model is

created which defines a schema for any conforming M0-level instance model. An example

of an M1-level SysML user model is shown in figure 72.

Figure 72: A Simple SysML User Model with One Block and Two Supporting Data Types.

M0-level instance models conforming to the SysML user model in figure 72 can be captured

in a variety of ways. One way is in a SysML authoring tool, which captures instance

models with an underlying XMI representation. Another way better suited to large-scale

114

instance models is to capture them in a database whose schema is the M1-level user model.

Database options include an object-oriented database, flattening into a relational database1,

and more. Examples of an M0-level instance model conforming to the SysML user model

in figure 72 are shown in figure 73, captured in both a SysML authoring tool (top) and also

in a relational database (bottom).

Figure 73: Instance Models Conforming to the SysML User Model in Figure 72.

Contemporary SysML authoring tools include numerous and useful features for working

with M1-level user models, but to the best of our knowledge none have a scalable solution

to build and maintain conforming M0-level instance models. This may be a consequence of

many contemporary SysML authoring tools being first and foremost UML authoring tools.

.

A question not yet addressed is why figure 71 depicts exactly four abstraction levels and

not some other number. This question is answered directly in [OMG MOF, 2013, p.8]:

“One of the sources of confusion in the OMG suite of standards is the perceived

rigidness of a ‘Four layered metamodel architecture’ that is referred to in various

OMG specifications. Note that key modeling concepts are Classifier and Instance

1Flattening refers to creating a relational data representation of objects. An example of the conversions
required is in how generalization relationships are stored in a relational database, for example 2D Shape
with subclasses Quadrilateral, Triangle, and Circle. Subclasses might be stored as records in a 2D Shape
table, meaning schema information is stored as data, because relational databases can only store data.

115

or Class and Object, and the ability to navigate from an instance to its classifier.

This fundamental concept can be used to handle any number of layers.”

The takeaway is that there can exist as many layers as are usefully needed. For UML

structural models, four is a useful number - MOF is defined at M3, the UML language

conforms to MOF and is defined at M2, user models of structure conform to UML and

are defined at M1, and object instances are at M0. Note that many abstraction levels exist

below M0, including interpreted computer programs on top of compiled computer programs

on top of assembly instructions on top of machine code instructions, but those levels are

unimportant for designing object-oriented software or solver-ready Operations Research

analysis models. Behavioral models such as UML Activities and State Machines can also

be defined in four layers - MOF at M3, UML defining Activity at M2, usages at M1, and

Activity Executions as object instances at M0. [OMG UML, 2011, p.327] says:

“An activity execution represents an execution of the activity. An activity

execution, as a reflective object, can support operations for managing execution,

such as starting, stopping, aborting, and so on; attributes, such as how long the

process has been executing or how much it costs; and links to objects, such as

the performer of the execution, who to report completion to, or resources being

used, and states of execution such as started, suspended, and so on.”

While this is literally correct, activity executions as instance objects is not a useful level of

abstraction when the goal is generating solver-ready Operations Research analysis models.

Activity executions as instance objects is important to a solver, especially for a model with

stochastic components requiring sampling, replications, and estimation, but for building the

solver’s input this is one abstraction level lower than important. For this dissertation’s goals,

behavioral models including UML Activities, State Machines, and discrete-event simulation

models are effectively defined over three interesting abstraction levels rather than four. This

discussion is continued with an example in section 6.3.3.

116

6.3 Second-Stage Analysis Model-Building and Automation

Given a token-flow network model and question about it, what does it mean to identify an

answering analysis, and given the identification what does it mean to build an answering

analysis model?

Identifying an answering analysis means creating a declarative specification of its

formulation. This means describing which question and network model elements transform

to which analysis model elements, although without any need to describe control flow for

how to actually execute the transformation 2. Given a declarative specification, building

an analysis model means executing the transformation - adding imperative control flow,

executing transformation rules, and outputting an analysis model. The claim that building

analysis models can be mechanical and amenable to automation is supported by the fact

that it is already functionally done in Model-Driven Architecture of software, for example

with tools in the Eclipse Modeling Project. 3 This offers hope that Model-Based Systems

Engineering (MBSE) can build upon the work of Model-Driven Architecture (MDA), with

benefits such as explicit metamodels not embedded in transformations and declarative

specification separated from imperative control flow whenever possible. However, it must

first be considered if MDA’s paradigm and tools are appropriate for this dissertation’s

methodology before adapting them.

An MDA paradigm for model-to-model transformation is shown in figure 74 4.

2Can a transformation always be expressed declaratively? [Gardner et al., 2003] say “In the experience
of the authors, a declarative approach is useful for specifying simple transformations and for identifying
relations between source and target model elements. However, many transformations are not straightforward.
. . . An imperative language is preferable for the definition of complex many-to-many transformations which
involve detailed model analysis.” Therefore, identifying an answering analysis means knowing a declarative
specification of its formulation to the extent possible, complemented by imperative specification if needed.

3The Eclipse Modeling Project is hosted at http://www.eclipse.org/modeling/, viewed 14feb2014.
Its Model to Model Transformation subproject is hosted at http://www.eclipse.org/mmt/, and hosts three
subprojects of its own - ATL, QVT Declarative, and QVT Operational.

4Image taken from http://wiki.eclipse.org/ATL/Concepts, viewed 11feb2014.

117

Figure 74: A Model-to-Model Transformation Paradigm.

For MDA object-oriented code-generation, levels of abstraction in figure 74 are M3, M2,

and M1 from top-to-bottom. MMa is a metamodel for Ma; one example is MMa the UML

metamodel defining elements like Class, Property, and Operation and Ma a conforming user

model of object-oriented software. MMb is a metamodel for Mb; one example is MMb

the Java language definition and Mb a conforming Java program. Mt is a transformation

instance conforming to MMt, which defines a language for model-to-model transformations.

Implicit in figure 74 is that while a transformation is executed to produce Mb from Ma, it

is defined between metamodel elements in MMa and MMb, made explicit in figure 75.

Figure 75: Model-to-Model Transformation for MDA Object-Oriented Code Generation.

Object-oriented code generation is effectively a syntax translation between an object-

oriented UML model and object-oriented programming code. Note that the instance

118

level M0 is not shown in figures 74 and 75 because it is unimportant to object-oriented

code generation. This is a major distinction between model-to-model transformations

in MDA object-oriented code generation versus MBSE analysis model generation - the

former outputs M1-level object-oriented programming code, and the latter outputs M0-level

analysis instance models. MBSE analysis model generation can follow the same model-to-

model transformation paradigm as MDA object-oriented code generation, but shifted one

level of abstraction lower, as illustrated in figure 76.

Figure 76: Model-to-Model Transformations in MDA Object-Oriented Code Generation
and MBSE Analysis Model Generation Use Cases.

Given a token-flow network model and a question about it, figure 76 allows another

explanation of identifying versus building an answering analysis - identifying an answering

analysis means defining a model-to-model transformation at the M1 level, and building

an analysis model means executing the transformation at the M0-level. The function of

automated analysis model-building programs this dissertation’s methodology is to execute

semantic and syntactic transformations of token-flow network instance models at the M0-

level.

Supporting what is claimed in figure 76 requires developing the right-hand sides of

transformations, to show that Operations Research analyses of discrete-event logistics

systems can be defined in an object-oriented way across multiple layered abstraction levels.

As indicated in the previous section, assignment of semantics to numbered abstraction

119

levels is relative rather than absolute. Guidelines for what follows are that the highest-level

definition of analysis resides at M2 and a solver-ready analysis model with instance model

elements and data resides at M0. This works for optimization, statistics, and discrete-

event simulation analysis, although a process model subject to discrete-event simulation

experiments is fundamentally a behavioral model and is effectively defined using one less

level of abstraction, as previously explained.

6.3.1 Example: Optimization Analysis

AMPL (A Mathematical Programming Language) [Fourer et al., 2002] defines canonical

semantics for mathematical optimization analysis, and its syntax can be translated into

various vendors’ languages for solution. An M2-level definition of AMPL includes semantics

shown in figure 77.

Figure 77: Definition of an AMPL Optimization Analysis Model.

Intuitive semantics of any optimization analysis are variable, objective, and constraint,

which are all included in figure 77. AMPL models are fundamentally set-based, which is

why Parameter, Variable, and Constraint are each indexed over any number of sets. Note

that figure 77’s definition is incomplete - it does not elaborate Linear Expression, and only

shows an abbreviated definition of Set. Also not shown in figure 77 is that AMPL contains

explicit syntax for network flow optimization analysis, including “Node” and “Arc”.

Using these M2-level semantics plus syntax defined in [Fourer et al., 2002], an M1-level

model for network flow optimization analysis is shown in model 6.1.

120

set FlowNode;

set FlowEdge within (FlowNode cross FlowNode);

set TokenType;

#Sign convention for netFlow: Demand is positive, Supply is negative

param netFlow {FlowNode, TokenType};

param flowUnitCost {FlowEdge, TokenType};

param typeCapacity {FlowEdge, TokenType};

param grossCapacity {FlowEdge};

var flowAmount {FlowEdge, TokenType};

minimize netFlowCost:

sum {(i,j) in FlowEdge, c in TokenType}

flowUnitCost[(i,j),c] * flowAmount[(i,j),c];

subject to flowBalance {n in FlowNode, c in TokenType}:

sum {(i,n) in FlowEdge} flowAmount[(i,n),c]

= netFlow[n,c] + sum{(n,j) in FlowEdge} flowAmount[(n,j),c];

subject to flowBounds {(i,j) in FlowEdge, c in TokenType}:

0 <= flowAmount[(i,j),c] <= typeCapacity[(i,j),c];

subject to edgeGrossCapacity {(i,j) in FlowEdge}:

sum {c in TokenType} flowAmount[(i,j),c] <= grossCapacity[(i,j)];

Model 6.1: An M1-level network flow optimization analysis model in the AMPL language.

Model 6.1 contains three usages 5 of the M2-level Set (named FlowNode, FlowEdge,

and TokenType), four usages of Parameter, one usage of Variable, one usage of Objective,

and three usages of Constraint (named flowBalance, flowBounds, and edgeGrossCapacity).

An experienced optimization analyst will recognize that this model is incomplete without

data. “Data” is in fact a conforming M0-level instance model, shown in model 6.2, and in

AMPL can even be placed in the same input file as the M1-level user model.

5A vocabulary convention used here is that instantiation of M2-level elements in M1-level user models
are usages, and instantiation of M1-level elements in M0-level instance models are instances. The two words
are functionally equivalent.

121

set FlowNode := Node1 Node2 ;

set FlowEdge := (Node1, Node2) ;

set TokenType := sku001 sku002 ;

param netFlow: Node1 Node2 :=

sku001 -20 20

sku002 -30 30;

param flowUnitCost: (Node1, Node2) :=

sku001 15

sku002 12;

param typeCapacity: (Node1, Node2) :=

sku001 20

sku002 30;

param grossCapacity :=

(Node1, Node2) 50;

Model 6.2: An M0-level AMPL instance model conforming to M1-level Model 6.1.

“Data” is misleading if it only suggests literal numbers or strings; model 6.2 also

instantiates sets. In AMPL, the only usages which need be instantiated are sets and

parameters, from which all instances follow for all Variable usages, the Objective usage,

and all Constraint usages. In the network flow optimization example in model 6.1, Set

instances correspond to network elements, meaning a solver-ready optimization analysis

instance model follows given a network instance model 6.

Now that an AMPL optimization analysis model has been defined at the M2, M1, and

M0 levels, revisit the claim illustrated in figure 76 that MBSE analysis model generation

can follow the same model-to-model transformation paradigm as MDA code generation but

shifted one abstraction level lower. Network flow optimization analysis may be identified

as an answering analysis for various questions about a token-flow network. “Identified”

implies a declarative specification of an analysis model at the M1 level, and that declarative

specification is exactly the content of model 6.1 (declarative “rules” include that the cross

product of all FlowEdge instances and TokenType instances maps to a set of Variable

instances, and that the cross product of all FlowNode instances and TokenType instances

maps to a set of flowBalance Constraints). This M1-level specification of the analysis can be

6This also suggests an interesting analogy between a mathematical Set and SysML’s Block. An unexplored
tangent is if set-based is a mathematical analog for object-oriented.

122

written once and infinitely reused, and a model-to-model transformation to automatically

build it would be a poor investment. It is the M0-level portion in model 6.2 which may

be repeatedly rebuilt, and its content follows from a syntactically transformed token-flow

network instance model 7. Therefore, an automated analysis model-building program which

may be valuable here is defined at the M1-level and executed at the M0-level.

6.3.2 Example: Statistical Regression Analysis

A definition of statistical analysis is inferred from [Kiefer, 1987] and illustrated in figure 78.

Figure 78: Definition of a Statistical Analysis Model.

7Executing a model-to-model transformation may only involve syntax translation as in this example, but
in other cases it can involve semantic manipulation of the network instance. Semantic manipulations may
include overriding nodes’ consumption and production values with ones at specific nodes for shortest-path
analysis, or zeroing out FlowEdge unit costs on all FlowEdges except a newly-created one which connects
the target back to the source for max-flow analysis.

123

Given the M2-level definition in figure 78, one way in which M1-level usages of Statistical

Analysis follow is by refining structure of the Decision Space, for example the usages of point,

interval, and region estimation, hypothesis testing, regression analysis, multiple decisions,

and ranking. Consider the M1-level usage of multiple linear regression analysis, an analysis

model reproduced from section 1.1:

y = Xβ + ε OR yi = β1xi,1 + . . .+ βpxi,p + εi i = 1, . . . , n

ε ∼ N
(
0, σ2I

)
εi ∼ N(0, σ2) (1)

Equation 1’s analysis model leaves a large amount of knowledge implicit, including the

semantics Predictor, Response, Parameter, Observation, and Decision. Figure 79 makes

these semantics explicit, and is a partial M1-level definition of multiple linear regression

analysis, “partial” because while it shows usages of M2-level Set and Loss Function, it does

not show required usages of M2-level Sample Space, Distribution Space, Decision Space, and

Decision Function.

Figure 79: An M1-Level Partial Definition of Multiple Linear Regression Analysis.

For multiple linear regression analysis, consider the simplest interesting example of

estimating β with σ2 known. The missing usages in figure 79 are:

• An M1-level usage of Sample Space is all possible observations of the p predictors

and one response (multiple responses induce multiple independent analyses). M0-level

124

instances follow given instances of the Predictor and Response sets and associated

Observation sets, e.g. given p and n in Rn,p+1
8.

• An M1-level usage of Distribution Space is all possible conditional distributions

of the response given the predictors: y ∼ N
(
Xβ, σ2I

)
. In this case knowledge of

the distribution reduces to knowledge of the parameters β. M0-level instances follow

given an instance of the Parameter set, e.g. given the p in Rp.

• Decisions β̂ are made for the parameters β, and an M1-level usage of Decision Space

is all possible values for decisions. M0-level instances follow given an instance of the

Decision set, e.g. given the p in Rp.

• An M1-level usage of Loss Function is a penalty for incorrect decisions expressed

in terms of decision β̂ and the true (unknown) β. Possibilities include (stated

generally for decision d and true distribution θ) squared-error loss L = (θ −
d)2 integral to the least-squares solution algorithm, 0-1 loss L = I{θ=d}, and

absolute loss L = |θ − d|. Here the squared-error loss function is L
(
β, β̂

)
=∑n

i=1

((∑p
j=1 βjxi,j

)
−
(∑p

j=1 β̂jxi,j

))2
=
∑n

i=1 (yi − ŷi)2. M0-level instances follow

given instances of the Predictor and Response sets, associated Observation sets, and

the Decision set.

• AnM1-level usage of Decision Function is a mapping from observations of predictors

and response to decisions. The least-squares solution and also maximum likelihood

solution is β̂ =
(
XTX

)−1
XT y, assuming

(
XTX

)−1
exists. M0-level instances follow

given instances of the Predictor and Response sets and associated Observation sets.

6.3.3 Example: Discrete-Event Simulation Analysis

Popular languages for discrete-event simulation analysis include AnyLogic, Arena (SIMAN),

SimEvents, Simio, Tecnomatix, and more. It is argued here that none of these languages,

at least as exposed to a user, defines discrete-event simulation analysis in a general

sense. [Schruben and Yücesan, 1993] identify three discrete-event modeling paradigms or

worldviews - process-interaction, activity-scanning, and event-scheduling. [Miller et al.,

2004] identifies those three as process-oriented, activity-oriented, and event-oriented, and

adds state-oriented with an illustration in figure 80.

8Restrictions on R might change the analysis type. Bounded or discrete response y, for example, may
require a Generalized Linear Model.

125

Figure 80: [Miller et al., 2004]’s Four Defining Paradigms for Discrete-Event Modeling.

[Miller et al., 2004] propose M2-level semantics for each paradigm, and also shared

fundamental concepts:

• State-Oriented and Event-Oriented : StateSpace, EventSet, TimeSet, TransitionFunc-

tion, ClockFunction, and InitialState.

• Activity-Oriented : PlaceSet, ActivitySet, TimeSet, IncidenceFunction, InitialMark-

ing, and ClockFunction (where ClockFunction has a slightly different meaning than

in the state-oriented paradigm).

• Process-Oriented : ProcessSet, ProcessStateSet, TimeSet, TransitionFunction, and

ClockFunction.

• Shared Fundamental Concepts: State, Event, Time, Transition, Activity, Place,

Token, Entity, Process, Resource, Color, and Clock.

Semantics overlap, and also may be mapped from one paradigm into another. This is true

of the SIMAN language; while users create process-interaction models in block diagrams,

126

internally a solver follows an event-scheduling paradigm. [Pegden et al., 1995, p.579] explain:

“Nearly all modern discrete simulation systems are internally implemented using

a discrete-event world view. . . . In many respects, the discrete-event world view

is a much simpler framework for modeling than the process-interaction world

view. . . . Unfortunately, in most cases, the effort actually required to develop a

model with this view is significantly greater. The reason for this is that the logic

you must develop to define each event in the model is often complex and difficult

to code.”

The existence of four different paradigms or worldviews suggests that discrete-event

simulation analysis does not enjoy the same conceptual simplicity as optimization analysis.

[Zeigler, 1976] proposed DEVS (Discrete Event System Specification) as a unifying

framework, defined as an extension of a finite state automaton. [Schruben and Yücesan,

1993, p.267] comment “Zeigler’s formalism provides conceptual tools for model specification;

however, it has yet to be developed into a practical guide for model implementation.”

If the highest-level definition of an analysis resides at M2, then this is where definitions

of the process-interaction, activity-scanning, event-scheduling, and state-oriented paradigms

belong. A four-layer architecture might define ProcessSet at M2, usages at M1 (a set of

business processes, a set of engineering processes, a set of accounting processes, etc.), and

populate the set with instances at M0. In the status quo, however, neither the SysML

Activity definition nor process-oriented discrete-event simulation languages make anM2/M1

distinction, and for a solver-ready analysis model the SysML Activity metamodel sits one

level above instantiation (evidence supporting this is the existence of tools to execute

Activity Diagrams). With or without an M2/M1 distinction, this section argues that SysML

Activities, SysML State Machines, and behavioral models in many process-oriented discrete-

event simulation languages can be defined in an object-oriented way across multiple layered

abstraction levels, and therefore supports what is claimed in figure 76 - that MBSE analysis

model generation can reuse MDA’s model-to-model transformation paradigm, but shifted

one abstraction level lower than object-oriented code generation.

127

For discrete-event behavioral models and simulation analysis, an excerpt from an M1-

level definition of the SIMAN language is inferred from [Pegden et al., 1995] and shown in

figure 81.

Figure 81: An M1-Level Partial Definition of the SIMAN Language.

Figure 81 shows an important difference between a SysML Activity and a process-

oriented discrete-event simulation analysis model - the latter defines both a model and

experiments on that model. Figure 81 also shows semantics but not syntax, meaning hidden

128

are constraints for instantiating model elements. One such constraint is that a user cannot

directly instantiate Entity, which can only be done indirectly by other model elements.

Similar syntax constraints for instantiating model elements existed with the AMPL language

in section 6.3.1.

An M0-level instance of both a SIMAN Model and a SIMAN Experiment which conform

to figure 81’s semantics are shown in figure 82 [Pegden et al., 1995, p.116].

Figure 82: A Solver-Ready Instance of a SIMAN Model and a SIMAN Experiment.

The analysis model in figure 82 is solver-ready and regarded here as M0 instance-

level. There exist lower abstraction levels including UML Activity Executions, which are

important to a solver especially for a model with stochastic components requiring sampling,

replications, and estimation, but for building the solver’s input this is one abstraction level

lower than important.

129

6.4 Model-to-Model Transformation Tools

This section considers tools which can execute a model-to-model transformation at the M0

level. Within a SysML user model is the model itself (an XML document conforming to

a standardized schema) and its human interface (diagrams). Because of the underlying

XML representation, model-to-model transformations operating on a SysML user model

can be written in any programming language with XML parsing capabilities. Suppose that

for several questions about an instance model conforming to a SysML user model, ad-hoc

transformation programs to build analysis models are written in general purpose languages

such as Java or C++. While best practices for MBSE analysis model generation are not yet

mature, this is not one. Output analysis models conform to metamodels themselves, which

should be explicit, formal, and machine-interpretable. Further, methodology for model-to-

model transformation may be common to all such programs, providing an opportunity to

express transformations declaratively and abstract away control flow.

The software community long ago realized that model-to-model transformations have

much in common, and abstracted commonalities into the paradigm previously shown in

figure 74. The genesis of the paradigm was an OMG request for proposals to standardize

mappings between models in MOF-defined languages. The request for proposals included

the following mandatory requirements [OMG QVT RFP, 2002, p.23-24]:

1. “Proposals shall define a language for querying models. The query language shall

facilitate ad-hoc queries for selection and filtering of model elements, as well as for

the selection of model elements that are the source of a transformation.”

2. “Proposals shall define a language for transformation definitions. Transformation

definitions shall describe relationships between a source MOF metamodel S, and a

target MOF metamodel T , which can be used to generate a target model instance

conforming to T from a source model instance conforming to S. The source and

target metamodels may be the same metamodel.”

4. “The transformation definition language shall be capable of expressing all information

required to generate a target model from a source model automatically.”

6. “The transformation definition language shall be declarative in order to support

transformation execution with the following characteristic: Incremental changes in

a source model may be transformed into changes in a target model immediately.”

130

As a result, today the Eclipse MMT project 9 contains several tools following figure

74’s paradigm including ATL and Operational QVT. Their transformation languages share

overlapping semantics including what ATL calls a rule and Operational QVT calls a

mapping ; both offer the hope of a pre-existing tool which can be re-purposed for MBSE

analysis model-building.

At the time of writing, however, two major obstacles to these tools are a software

bias and immaturity. While figure 74’s paradigm should apply to any consecutive pair of

abstraction levels, in reality the top box being a single self-defining language (like MOF or

ECORE) suggests an M3, M2, and M1 assumption consistent with MDA object-oriented

code-generation. At the time of writing ATL can only accommodate MMa in the ECORE

metamodeling language, requiring unnatural conversion for M1-level SysML user models.

ATL can also only accommodate Ma and Mb in XML Metadata Interchange (XMI) format,

requiring unnatural conversion for instance models in databases, and requiring second-stage

model-to-text syntax translation if desired output is analysis model code. Despite these

limitations, the existence of these tools is promising, and these objections only concern bias

and capabilities and not the underlying model-to-model transformation paradigm.

Other approaches are also being explored for automated analysis model-building.

[Sprock and McGinnis, 2014] leverages a stable network definition and software engineering

design patterns and is especially useful for outputting analysis models containing a rebuilt

network instance, a category which includes discrete-event simulation.

6.5 Summary

The purpose of this chapter is to explain the methods in this dissertation’s methodology

and their application to the process, specifically the abstraction and automation methods.

For abstraction, UML stereotype application is proposed to formally abstract system

models to token-flow network models. For automation, a model-to-model transformation

paradigm and tools already exist in Model-Driven Architecture of software, and an original

contribution follows from considering if and how these tools can be re-purposed for MBSE

9http://www.eclipse.org/mmt/, viewed 20feb2014.

131

analysis model generation. Section 6.3 contrasted model-to-model transformations in

the two use cases, argued that they share a common transformation paradigm executed

at different relative levels of abstraction, and supported the argument by showing how

Operations Research analyses can be defined in an object-oriented way across multiple

layered abstraction levels. The result is identifying one feasible way to automatically build

analysis models, which should not exclude other possibilities.

Beyond this point, the methodology is developed no further. The next chapter contains

two full-length examples of executing the methodology, of executing the process using

methods and tools described in this and preceding chapters.

132

CHAPTER VII

EXAMPLES

This chapter contains two full-length examples of executing the methodology, of executing

the process using methods and tools described in preceding chapters. The most complete

illustration of the methodology’s process is in figure 69, which shows all of the elements

demonstrated in each example.

Figure 69: A Complete Illustration of the Process in this Dissertation’s Methodology.

Basic elements demonstrated in each example are a formal system model, question about

the system model, a formal abstraction model, question about the abstraction model, and

an answering analysis model. Additional elements demonstrated are question qualifications,

answer qualifications, and a choice among multiple answering analyses.

133

7.1 Example using Basic Structural Semantics

System Model:

Figure 83: Semantics for a Supply Chain.

Figure 83 shows an M1-level user model defining the structure of a supply chain. This

model may be paired with conforming M0-level instance models, and should be paired with

at least one because the dissertation restricts attention to questions about instance models

with concrete instances and data values. However, this first example will not show any

conforming instance models to elide details and better illustrate the process.

Question about System: What are the most influential enterprises in a supply chain at

which to invest in helping the supplier adopt new enterprise-level quality control standards?

Influence should be measured by diffusion potential.

134

A Reed-Kellogg diagram for the question “What are the most influential enterprises in a

supply chain at the present time?” is shown in figure 84 1.

Figure 84: Reed-Kellogg Diagram for the Question in Example 1.

The question concerns describing structure at a single point in time, and figure 84

conforms to the pattern for this category of questions shown in figure 57. The question’s

subject is the set of instances of the Enterprise model element and specifically their

influence. The concepts of “influence” and “diffusion potential” may be ambiguous, which

can be resolved in two ways: (1) Carefully define “influence” and “diffusion potential” in

terms of existing model elements, or (2) Interpret them using human discretion, and state

what is actually computed as an approximation type in a qualified answer. The latter way

is used in this example.

Abstraction Model: For the given system model and question about it, only basic

structural semantics of a token-flow network are needed, shown in figure 85.

1Created by the Reed-Kellogg Diagrammer at http://1aiway.com/nlp4net/docs/help reed kellogg.aspx,
used 21march2014.

135

Figure 85: Applying Basic Network Stereotypes to a Supply Chain User Model.

Question about Abstraction: What are the most influential nodes in a network?

Influence should be measured by diffusion potential.

It was claimed in section 6.1 that abstracting a question about a system to a question

about a token-flow network can be done in simple cases by replacing the question’s subject

with its abstracted semantic in the token-flow network model. This is done here, replacing

“Enterprise” with “Node” and also “Supply Chain” with “Network”.

Qualified Question: A Qualified Question may contain qualifications such as time, cost,

accuracy, and other requirements for obtaining the answer. Qualifications can influence

a choice among multiple answering analyses, and also be passed to a solver to influence

solution approximation.

• Qualification on Time: An answer is desired in five minutes or less.

• Qualification on Cost : The question must be answered using only pre-existing data,

meaning properties explicitly recorded in figure 83.

136

Multiple Answering Analyses:

(1) Centrality measures can quantify the relative importance or influence of a node, and

several are defined in section 3.1. Basic centrality measures include Degree, Katz,

Closeness, and Betweenness. Eigenvector Centrality computes a node’s value relative

to other node values, and has an analogy to equilibrium in a diffusion process. Alpha

Centrality is a variation of Eigenvector Centrality and allows nodes to have external

sources of influence.

(2) Influence propagation in social networks is concerned with “If we can try to convince

a subset of individuals to adopt a new product or innovation, and the goal is to trigger

a large cascade of further adoptions, which set of individuals should we target?”

[Kempe et al., 2003, p.137] Two basic behavioral models are the Linear Threshold

and Independent Cascade for propagation, and can be combined with optimization to

find a subset of most-influential nodes.

Choose an Answering Analysis: How can the choice among multiple answering analyses

be narrowed or filtered by indexable information?

• When the Edge stereotype is applied to supply contracts, if an Edge’s weight property

is not identified then this prohibits any answering analysis relying on that property.

In this example this may exclude Closeness Centrality and Betweenness Centrality.

• The time requirement of five minutes or less prohibits any computationally expensive

analysis. Betweenness Centrality requires finding shortest paths between all pairs of

nodes, which can be done using the Floyd-Warshall algorithm which has worst-case

performance O(n3) for a network with n nodes. Given an approximate relationship

for the time required by a number of computations in a certain programming language

on a certain computer, and given n, O(n3) can be converted into concrete time units.

A human analyst might decide that influence propagation models are most appropriate

for answering the question, and choose a combination of influence propagation using a linear

threshold model and optimization to find a subset of most-influential nodes. Finding a set

of k nodes with maximum influence is NP-hard, which may violate the time requirement

of five minutes or less depending on network size. However, [Kempe et al., 2003] propose

a greedy hill-climbing algorithm whose solution is provably no worse than 63% of optimal.

137

As illustrated in figure 69, the time requirement must be passed to the solver, which must

know how to interpret it and use the approximation algorithm for sufficiently large network

instances.

Qualified Answer: Given a token-flow network instance model with n nodes and a user’s

choice of k ≤ n, the analysis will output k nodes with maximum collective influence.

However, the answer should be qualified:

• Qualification of Approximation Types: Influence is measured by influence propagation

in the sense of “If we can try to convince a subset of individuals to adopt a new product

or innovation, and the goal is to trigger a large cascade of further adoptions, which

set of individuals should we target?” Influence propagates using a linear threshold

model.

• Given the Approximation Types, Qualification of Accuracy : If the analysis model is

solved to optimality, no further qualification is needed. If the network instance is

sufficiently large and the solver uses the approximation algorithm from [Kempe et al.,

2003], the total number of network nodes active at the end of a diffusion process

beginning with only the answer’s k nodes activated is no less than 63% of optimal.

138

7.2 Example using Behavioral Process Semantics

System Model: A manufacturing process plan is modeled as a SysML Activity, in this

dissertation considered at the M0 instance level, and shown in figure 86.

Figure 86: SysML Activity Model of a Manufacturing Process Instance.

In the activity ProcessPlanCandidate1, process steps are Call Behavior Actions to the

activities Fabrication Operation, Assembly Operation, and Sourcing Operation, which are

further defined in the top half of figure 86.

Question about System: What is the expected raw process time of manufacturing process

ProcessPlanCandidate1?

139

A Reed-Kellogg diagram for the question “What is the expected interval between start time

and end time after executing this process?” is shown in figure 87 2.

Figure 87: Reed-Kellogg Diagram for the Question in Example 2.

The question concerns predicting behavior spanning multiple points in time, and figure

87 conforms to the pattern for this category of questions shown in figure 61. The question’s

subject is the expected length of a time interval, specifically raw process time defined by

[Hopp and Spearman, 1996, p.225] as “the sum of long-term average process times of each

workstation in the line” or “the average time it takes a single job to traverse the empty

line”. Predicting behavior requires a behavioral model, which here is contained in the

system model and specificically in the SysML language definition of an Activity.

Abstraction Model: For the given system model and question about it, behavioral

semantics for a token-flow Process Network are needed, shown in figure 88.

2Created by the Reed-Kellogg Diagrammer at http://1aiway.com/nlp4net/docs/help reed kellogg.aspx,
used 22march2014.

140

Figure 88: Apply Process Network Stereotypes to a SysML Activity Model of a
Manufacturing Process.

Question about Abstraction: What is the expected raw process time of process network

ProcessPlanCandidate1?

It was claimed in section 6.1 that abstracting a question about a system to a question

about a token-flow network can be done in simple cases by replacing the question’s subject

with its abstracted semantic in the token-flow network model. This is done here, replacing

“Manufacturing Process” with “Process Network” and raw process time with an analogous

concept for a Process Network.

Qualified Question: A Qualified Question may contain qualifications such as time, cost,

accuracy, and other requirements for obtaining the answer. Qualifications can influence

141

a choice among multiple answering analyses, and also be passed to a solver to influence

solution approximation.

• Qualification on Time: An answer is desired in five minutes or less.

• Qualification on Cost : The question must be answered using only pre-existing data,

meaning properties explicitly recorded in the upper half of figure 86 and any Event

Logs. Suppose that Event Logs are recorded from executions of other manufacturing

process instances (which may include the same operation types used in the lower half

of figure 86), but not the specific manufacturing process instance shown.

• Qualification of Tools: No discrete-event simulation solver (AnyLogic, Arena,

SimEvents, Simio, Tecnomatix, etc.) is available. However, compilers for general-

purpose languages with mathematical libraries are available (e.g. gcc, javac with a

runtime environment, perhaps even MATLAB).

Multiple Answering Analyses:

(1) A rough approximation is to add the time required by each component process.

Depending on the M0-level process network instance, this may be wildly inaccurate

because it ignores that processes may execute in parallel. This yields an analysis

model E[T] =
∑n

i=m Ti for a Process Network instance with m processes, which may

be incomplete depending on models for the Ti (literal numbers, deterministic formulas,

random variables, etc.)

(2) Given a process network instance, interpret sequencing dependencies for an analytical

formula E[T] = f(T1, . . . , T6) involving the Ti and summation and maximization

operators. Definition of an analysis to interpret sequencing dependencies to determine

f is part of the M1-level analysis model, for example a definition of the Critical Path

Method (the CPM in PERT/CPM) to find a process network’s longest path. This

analysis definition is included here only as an algorithm for simple cases in appendix

C. As before, the analysis model may be incomplete depending on models for the Ti.

(3) Discrete-event simulation is an answering analysis which can be useful if the Ti

have probability distribution models. Discrete-event simulation analysis may also

be extensible; for example, the analysis model might be extended at a later time to

relax raw process time assumptions, which included an empty production line and full

resource availability.

142

Choose an Answering Analysis: How can the choice among multiple answering analyses

be narrowed or filtered by indexable information?

• The time requirement for an answer in five minutes or less prohibits computationally

expensive analysis.

• The cost requirement here is actually enabling, because if any operation types shown

in figure 86 were previously executed in different manufacturing process instances,

then data from Event Logs can be used to estimate probability distributions for the

Ti.

• The tool limitation prohibits discrete-event simulation analysis. However, access

to general-purpose languages with mathematical libraries enables sampling random

variables. This means that simulation can still be identified as an answering analysis

type, but only simple simulation in the sense of sampling, replications, and estimation

and not more complex discrete-event simulation logic.

Given the requirements, a human analyst might decide to interpret sequencing

dependencies for an analytical formula E[T] = f(T1, . . . , T6) involving the Ti and summation

and maximization operators. The analyst might further decide to model the Ti as random

variables and estimate distributions from previous instances’ execution times, extracted

from Event Logs. Thus, a complete M1-level analysis definition is the formula E[T] =

f(T1, . . . , T6), a model of analysis to determine f , models of the Ti (such as N(µi, σ
2
i)), and

a model of statistical estimation analysis (for estimating µi and σ2i).

Answering Analysis Model: Let T model the process network’s time and Ti the time

required by each component process. Suppose previous operation instances’ execution times

follow a normal distribution; note that this allows negative process times, and a better model

might be a half-normal distribution. An M0-level analysis model for the Process Network

instance in figure 88 is:

143

E[T] = E
[
Tasm2 + max

{
Tasm1 + max{Tfab1, Tfab2}, Tsrc1

}]
Tfab1, Tfab2 ∼ N

(
µfab, σ

2
fab

)
Tasm1, Tasm2 ∼ N

(
µasm, σ

2
asm

)
Tsrc1 ∼ N

(
µsrc, σ

2
src

)
No explicit model of the analysis for determining f is included, only an algorithm in

appendix C. No explicit model of statistical estimation analysis is included, only the

output µi and σ2i for i ∈ {fab, asm, src}. An M0-level instance model requires the normal

distribution parameters to be literal numbers, so for the sake of solution arbitrarily assume

that µfab = µasm = µsrc = σ2fab = σ2asm = σ2src = 1.

Solution and a Qualified Answer: For the random variable N(1, 1) + max
{
N(1, 1) +

max
{
N(1, 1), N(1, 1)

}
, N(1, 1)

}
, no analytical result is known for its mean. While a

discrete-event simulation solver is unavailable, general purpose programming languages

are and can be used for sampling, replications, and estimation. Using MATLAB and an

arbitrary choice of 50 replications, the solver returns E[T] ≈ 3.6 However, the answer must

be qualified:

• Qualification of Approximation Types: This expected value is for raw process time

which assumes an empty production line with no waiting and full resource availability.

Models for the execution time of Fabrication, Assembly, and Sourcing operations are

normally-distributed random variables whose parameters were estimated from the

operation type’s execution time in other processes instances, with independence and

stationary assumptions.

• Given the Approximation Types, Qualification of Accuracy : A 95% confidence interval

for E[T] is approximately (3.24, 3.96).

144

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

What connects this dissertation to past, present, and future output from the same research

laboratory is the goal of enabling Operations Research analysis of discrete-event logistics

systems to be more widely used to support decision-making. Sophisticated methodologies

already exist to design mechanical, electrical, and even software products, but to the

best of our knowledge methodologies of similar sophistication do not exist to design those

products’ manufacturing facilities, warehouses, and supply chains [McGinnis et al., 2006]. If

Operations Research analysis is used to describe, predict, control, and design discrete-event

logistics systems in an ad-hoc manner, large amounts of time and labor can be consumed,

verifying and validating analysis can be challenging, little knowledge may be captured,

and little is learned. This dissertation relies on an observation that “Operations Research

analysis” includes a well-understood and routine subset which is used repeatedly in similar

abstract contexts. In this subset, every instance of an analysis model need not be a hand-

crafted art, and the methodology can enable this subset to be more widely used in a cost-

effective and correct manner.

8.1 Contributions

This dissertation’s primary contribution is a Model-Based Systems Engineering methodol-

ogy enabling Operations Research analysis of discrete-event logistics systems to be more

widely used in a cost-effective and correct manner. The process of interest is posing a

question about a system model and then identifying and building answering analysis models.

Methods include automation, abstraction, and formalization. Tools supporting the methods

are where two additional contributions are found - a formal definition of the abstract concept

of a token-flow network to support the abstraction method, and a formal definition of a well-

formed question to support the formalization method. Investigating tools for the automation

method leads to one additional contribution - addressing if and how existing model-to-model

145

transformation tools can be re-purposed from Model-Driven Architecture of software.

A consequence of the methodology is helping to elucidate exactly what information is

needed to answer a question about a system. Token-flow network stereotypes applied to a

system model function as a filter and isolate the abstract concepts relevant to formulating

answering analysis. Within the question is analysis’ purpose, and between a question and

token-flow network model must be all information needed to formulate answering analysis,

which can then be solved for an answer. Therefore, the methodology isolates the knowledge

required to answer a question about a system, and also considers fundamental questions

about how to capture that knowledge and what that capture enables. Developments here

are promising, but provide only limited answers and leave much room for future work.

8.2 Boundary

The process, methods, and tools of this dissertation’s methodology each induce different

facets of a boundary which delineates when the methodology is useful and when it is not.

The process - posing a question about a system model and then identifying and building

answering analysis models - effectively changes the user interface for Operations Research

analyses from analysis models themselves to system models and questions about them.

While the process is designed to capture something regularly executed in the status quo,

working with formalized system models, formalized abstraction, and formalized questions

may be unusual for analysts because these artifacts are often informal and implicit in the

status quo. Therefore, a boundary condition is that an organization’s business processes

for using modeling and analysis to support decision-making should be isomorphic to the

process in this dissertation’s methodology.

8.2.1 Boundary Induced by the Formalization Method

For formalization, only one set of tools has been identified in this dissertation - formalize sys-

tem models as SysML user models, the token-flow network as a UML profile, and questions

using semantics developed in chapter 5. It is also possible to formalize system models in

UML or other MOF-defined languages, although outside of UML/SysML a stereotype-like

language element may not exist and a model-to-model transformation to abstract system

146

to network semantics must be defined differently. The UML/SysML languages induce a

boundary condition that users must understand object-oriented modeling.

For formalizing questions, a simplifying assumption was that questions about designing

behavior spanning multiple points in time are out-of-scope. Also, many questions’ subject

is a subset of model elements and their properties, so a boundary for questions follows from

a boundary for the content of token-flow network models. Accommodating well-understood

analysis semantics such as a node’s degree in place of number of incident edges is proposed

by an ontology mapping certain analysis semantics back to token-flow network semantics,

but this ontology was left for future work. Another limitation on questions is lacking

definitions for high-level concepts such as control, risk, and more.

8.2.2 Boundary Induced by the Abstraction Method

Stereotype application is the mechanism proposed to formally abstract a system model

to a token-flow network model. However, this leads to the restrictive boundary condition

that a SysML user model must “align with” or “look like” the token-flow network profile

applied. Scenarios can be imagined in which this does not hold, for example user models

with associations in Block Definition Diagrams or connectors in Internal Block Diagrams

which cross the boundary between a parent and a nested network but not through an

interface. User models which do not “align with” or “look like” the token-flow network

defined in chapters 3 and 4 are outside the boundary of this dissertation’s methodology.

This restriction can be viewed in both a negative and a positive light; negative regards the

profile as constraining design and content of a SysML user model, and positive regards the

profile as a design pattern guilding users as they construct a SysML user model.

Section 6.1 stated a boundary condition for abstracting a question: “When a question’s

subject does not have an abstract analog in the token-flow network model, however, then

there are two possibilities. Either the token-flow network definition can be enhanced, or the

question falls outside this dissertation’s boundary because it is fundamentally not a question

about describing, predicting, or controlling token-flow network structure or behavior.”

Both of these cases depend on a boundary for the token-flow network definition, which

147

is considered in the following subsections and partitioned into a defined boundary based on

the token-flow network exactly as defined in chapters 3 and 4 and a conceptual boundary

based on any possible extensions.

Defined Boundary for a Token-Flow Network

Abstraction reduces information content. Therefore, the token-flow network definition’s

inclusions and omissions decide which discrete-event logistics system concepts can be the

subject of a question. The definition need not include every imaginable token-flow network

detail because a question can define its subject in terms of included model elements, but

there are some missing concepts whose definition in a question would be very verbose.

Concepts which were defined in chapters 3 and 4 include basic structure, tokens, flow,

interfaces, levels of abstraction, time, events, a process behavioral model, and resources.

Concepts which are known omissions include additional behavioral models, continuous flow,

the concept of control, and various omitted properties and subclasses of existing model

elements mentioned throughout chapters 3 and 4. Between the inclusions and omissions lies

the defined boundary.

The defined boundary can be extended, although some extensions are easier than others.

The difficulty of an extension is determined by both the intricacy of a concept and also its

dependencies on existing token-flow network elements. Easier extensions include:

• Adding properties to existing model elements.

• Adding subclasses of existing model elements, for example knowledge-related sub-

classes of Process in section 4.2.

New properties and subclasses of existing model elements become more difficult

extensions when a property or subclass associates with other token-flow network model

elements, creating a dependency on those elements. Harder extensions also include:

• New behavioral models whose underlying conceptual model is a token-flow network,

for example as a State Machine. Well-understood definitions already exist including

148

Markov chains, Finite-state automata, Moore machines, Mealy machines, and Turing

machines, but what makes this extension difficult is unifying the variants and

integrating a new behavioral model with existing token-flow network semantics.

Structure-behavior integration is particularly important given chapter 5’s exposition

that questions spanning multiple points in time concern structural model elements

and properties, integrated with change semantics, and supporting behavioral models

for prediction and control.

• The concept of continuous flow. Flow discretized into tokens may be unhelpful for

modeling the flow of continuous commodities such as liquid matter, gaseous matter, or

analog information signals. What makes this extension difficult is that a continuous

flow definition must also be consistent with discretized flows of tokens.

• The concept of control is undefined, first discussed in section 4.5, and semantically

limits the questions which can be asked about controlling token-flow network behavior.

A control metamodel might include semantics such as allocation, plan, planning

horizon, policy, decision, re-evaluation frequency, and more. What makes this

extension difficult is both the intricacy of the concept and its integration with existing

token-flow network semantics.

Conceptual Boundary for a Token-Flow Network

Suppose the token-flow network definition in chapters 3 and 4 is modified and extended

in any imaginable way. What types of semantics will never appear, and therefore can never

be the subject of a question? Answering this question would reveal the conceptual boundary

of this dissertation’s methodology. It is surprisingly difficult; a token-flow network is such

a broadly-applicable abstraction that it is difficult to find system and question scenarios

which are completely unrelated.

For an example, consider an aspect of a system which seems to have no connection

149

to a token-flow network - managing employees. The subjects of questions may be goal-

setting, communication, guidance, correction, discipline, and performance evaluation. In

isolation, managing employees has no obvious connection to a token-flow network. However,

as soon as an employee associates with a token-flow network, for example as a resource, then

goal-setting, communication, guidance, correction, discipline, and performance evaluation

now concern controlling human resources and are inside the conceptual boundary. While

semantics for controlling human resources are absent from chapters 3 and 4, they can be

added if needed to support important questions. A similar example is price negotiations,

which in isolation have no obvious connection to a token-flow network, but acquire a

connection if price negotiation is within a supply chain or any other discrete-event logistics

system. A supply contract defines a relationship (as shown in section 7.2’s example), and

price negotiation is a control mechanism for setting the relationship’s properties. A similar

example is risk assessment.

It is an open question how far the token-flow definition can be extended and should

be extended. Ever-increasing detail can be added to the definition, but some questions’

subjects may require details not appropriate to the general case. At that point it may be

prudent to consider partial analysis model generation instead of full, analogous to code-

generation of just architecture, with humans manually adding the internal logic of methods

at a later time.

8.2.3 Boundary Induced by the Automation Method

It was claimed in the beginning of this chapter that Operations Research analysis includes

a well-understood and routine subset which is used repeatedly in similar abstract contexts.

“Well understood and routine” means that the analysis is well-defined in an object-oriented

way across multiple layered abstraction levels. This is actually a boundary condition for

analysis model generation in this dissertation’s methodology, if an analysis can be defined

in this way, enabling a declarative specification of its formulation to be defined at the user

model level and executed at the instance model level. Examples of object-oriented analysis

definitions across multiple layered abstraction levels are included in sections 6.3.1, 6.3.2,

150

and 6.3.3.

8.3 Future Work

Possibilities for future work include:

• Enhancing the token-flow network definition: The token-flow network definition’s

inclusions and omissions determine which discrete-event logistics system concepts the

methodology can support. While several omitted concepts were mentioned with the

defined boundary, it may be prudent to first invest in developing and prioritizing use

cases for discrete-event logistics system modeling and analysis. This can help organize

and prioritize enhancements, rather than adding them arbitrarily.

• Enhanced understanding of the abstraction method’s conceptual boundary : It is an

open question how far the token-flow network definition can be expanded and should

be expanded. What limits does this place on the range of meaningful questions which

can be asked about discrete-event logistics systems?

• Further development of question semantics: Semantics need expression in a syntax

to comprise a query language for object-oriented models of systems and abstractions.

What might section 5.3’s semantics look like in the syntax of the OCL language?

Section 5.5 suggests some prerequisite investments to integrate structural user models

and conforming instance models, including an instance model indexing scheme

possibly including timestamp for the past, candidate and what-if for the present,

and scenario for the future.

• Expanding the scope of questions to user models and metamodels: A simplifying

assumption in chapter 5 was that questions are asked about M0-level instance models.

There also exist interesting questions about M1-level user models and M2-level

metamodels. Do semantics, categories, and patterns in chapter 5 generalize?

• Better understanding a choice among multiple answering analyses: Multiple analyses

may be identified to answer a single question about a single system or network instance

model. Can a choice among them always be framed in terms of indexable information,

151

e.g. can all the criteria a human analyst uses to make a choice be identified and

characterized? If not all criteria, which ones?

• Better understanding the nature of engineering analysis languages: Is mathematical

“set-based” an analog for “object-oriented”? Better understanding model-to-model

transformation outputs’ languages may help with finding and abstracting patterns in

these transformations. More generally, is object-oriented a fundamental paradigm for

modeling systems, abstractions, questions, analyses, and model-to-model transforma-

tions?

• Verification and validation: Whether built manually or automatically, an analysis

model is often subject to verification and validation. For simulation analysis

models, [Law and Kelton, 2000, p.264-265] define the terms as “Verification is

concerned with determining whether the conceptual simulation model has been correctly

translated into a computer program, i.e. debugging the simulation computer program

. . . Validation is the process of determining whether a simulation model (as opposed

to the computer program) is an accurate representation of the system.” Verification

concerns if an analysis model was built correctly, whereas validation concerns if an

analysis model is suitable to answer a particular question about a system model.

Methodologies for verification and validation are out-of-scope in this dissertation

but important candidates for future work. [Kleijnen, 1995] surveys verification and

validation techniques for simulation analysis models, and in addition this dissertation’s

methodology offers novel opportunities for verification. One example is that if Process

Network semantics in chapter 4 have a mapping to Petri Net semantics, then automatic

analysis model-building programs which output discrete-event simulation analysis

models might at the same time output a simulatable Petri Net which can be checked

for reachability, safeness (boundedness), and liveness (absence of deadlock).

• Shortcomings of discrete-event simulation languages: Section 6.3 reveals that discrete-

event simulation analysis is not as well-defined and well-structured as other Operations

Research analyses. Similar to AMPL for optimization analysis, a canonical language

152

for discrete-event simulation analysis would greatly help to build these analysis

models. This requires integrated definitions for the process-oriented, activity-oriented,

event-oriented, and state-oriented discrete-event modeling paradigms, which might be

done by formalizing and standardizing mappings from higher-level behavioral models

such as a process to lower-level behavioral models such as DEVS to an underlying

conceptual model such as a token-flow network. Other suggestions for a discrete-event

simulation canonical language are to retain a separation of model and experiments

(analogous to a system model and questions about it) and also to add a separation of

functional process definitions from physical facility definitions.

• Implications for teaching : Industrial Engineering involves both domain knowledge

and Operations Research analysis. Industrial Engineering systems have both concrete

realizations and abstractions such as a discrete-event logistics system and ultimately

a token-flow network. Both the concrete realizations and abstractions of them

are already understood in the status quo, but a frequently missing method is

formalization, whose purpose is to define something before attempting to describe,

predict, control, and design it. Formalization can be skipped, but a likely consequence

is shallow, incomplete, and ad-hoc understanding of the system being studied,

regardless of how sophisticated the analysis.

8.4 What If the Hypothesis Is Untrue?

A hypothesis is that this dissertation’s methodology can enable Operations Research

analysis of discrete-event logistics systems to be more widely used in a cost-effective and

correct manner. An experiment to rigorously test the hypothesis is time- and resource-

prohibitive, so this dissertation’s contribution is a methodology to prepare for and shape

that experiment. However, it is instructive to consider if and why the hypothesis may

be untrue. Suppose that years from now this dissertation’s methodology has been heavily

modified, shown ineffectual, or abandoned for something better. Reasons might include:

• The Law of Leaky Abstractions: The issue is described in [Kiczales, 1992] and the

term is coined by [Spolsky, 2002]:

153

“The law of leaky abstractions means that whenever somebody comes up

with a wizzy new code-generation tool that is supposed to make us all ever-

so-efficient, you hear a lot of people saying ‘learn how to do it manually first,

then use the wizzy tool to save time.’ Code generation tools which pretend

to abstract out something, like all abstractions, leak, and the only way to

deal with the leaks competently is to learn about how the abstractions work

and what they are abstracting. So the abstractions save us time working, but

they don’t save us time learning ... And all this means that paradoxically,

even as we have higher and higher level programming tools with better and

better abstractions, becoming a proficient programmer is getting harder and

harder.”

An implication is that this dissertation’s methodology might make engineering analysis

more cost-accessible to trained and experienced analysts who could produce the

same output manually, but it may have limits to adoption by decision-makers who

are not fluent in engineering analysis. On the other hand, almost any person can

use a navigation application on a smartphone to find shortest-path or shortest-time

driving directions between two points, without any knowledge of how to construct a

network model and compute a shortest path. Somewhere in between is a boundary

involving both human and engineering factors which must be understood and possibly

manipulated.

• Integration between SysML models and enterprise information systems: Many enter-

prises’ status quo experience with formal modeling is in the schemas of information

systems, including CAD, PDM, MES, MRP, ERP, and CRM. Implementation of

this dissertation’s methodology requires integrating process, methods, and tools with

enterprises’ business processes and methodologies. Maintaining an object-oriented

SysML user model whose semantics may vary from enterprise information systems’

schemas may prove onerous; at a minimum tool support may be needed to keep the

two consistent, and a long-term change needed to business processes is elevating the

154

importance of formal ontologies from which information system schemas follow, rather

than letting schemas be arbitrarily decided by data collected.

• Issues with formal modeling in object-oriented languages: While the previous point

concerned if formal system models in a language such as SysML will be used, this point

concerns how. Mature design patterns and best practices exist for object-oriented

software modeling, but are less mature for systems modeling. One example of a

modeling pattern which may prove to be a liability is a recursive pattern in modeling

structure, with two possible realizations illustrated in figure 89.

Figure 89: A Recursive Design Pattern for System Structure.

Self-association is the simplest recursive pattern in modeling structure; on the left-

hand side of figure 89, an instance of block A is associated with an instance of block A,

which may be associated with an instance of block A, etc. On the right-hand side of

figure 89, block C inherits a self-association from block B. Recursion is intellectually

pleasing but adds complexity to the token-flow network definition. An example used

in chapter 3 is that a FlowNode may have FlowNode interfaces, which may have

FlowNode interfaces, etc, and each level of abstraction must have consistent production

and consumption properties with the levels above and below. Another example in

section 4.5.2 is a Process with ConversionNode interfaces, which themselves host

StorageProcesses, which themselves might have FlowNode interfaces, with the last

possibility explicitly prohibited because it introduced semantic ambiguity.

155

APPENDIX A

PETRI NETS

A Petri Net is a bipartite directed graph. The two types of nodes are places and

transitions, connected by directed edges. Because the graph is bipartite, edges may have

(place, transition) or (transition, place) endpoints but not (place, place) or (transition,

transition). Tokens reside at places, and their position and number change as a Petri Net

executes by firing transitions. A mathematical definition is a five-tupleN = {P, T, I, O,M0}

where:

• P is a finite set of places and T is a finite set of transitions. P ∪T must be nonempty

and P ∩ T must be empty.

• I : P × T → Z+ is an input function assigning a non-negative integer to each of a

transition’s incoming edges. If I assigns a positive integer k to an edge, then there

exist k parallel directed edges between the (place, transition) pair. This can also be

drawn by a single directed edge with weight k, and I is sometimes called an edge

weighting function. O : T × P → Z+ is a transition output function assigning a

non-negative integer to each of a transition’s outgoing edges with analogous meaning.

• M0 : P → [Z+]|P |×1 is an initial marking assigning to each place a non-negative

number of tokens. M is effectively the Petri Net’s state vector.

A transition is enabled if the place at the origin of each incoming (place, transition) edge

contains a number of tokens greater than or equal to the edge’s weight. An enabled

transition t fires by, for each incoming edge (q, t), removing from q a number of tokens

equal to the edge’s weight and depositing in each output place p as many tokens as the

weight of outgoing edge (t, p). Each firing updates the marking M , effectively a state

transition.

156

A Petri Net is a model for event-driven dynamic systems. Higher-level coordination

concepts for firing transitions can be modeled including sequential firing, concurrent

firing, mutually exclusive firing, synchronized firing, prioritized firing 1, and a decision

for transitions in conflict. These concepts are built from elementary semantics in ways

illustrated in figure 90 [Wang, 2007, p.4].

Figure 90: Higher-level Coordination Concepts for Firing Transitions in a Petri Net.

Important behavioral properties of Petri Nets (and a frequent subject of analysis) are

reachability, safeness, and liveness. Reachability of a specific marking Mi requires proving

1Modeling prioritized firing between two transitions requires introducing an inhibitor edge, which
conditions a transition’s enabling on the absence of tokens at the inhibitor edge’s source.

157

the existence a transition firing sequence from M0 to Mi. A Petri Net is safe if every place

is safe, and a place is safe (k-bounded) if its number of tokens will never exceed k for any

reachable marking from M0. A Petri Net is live if for any reachable marking, it is possible

to fire any transition in the net by progressing through some firing sequence. Otherwise,

the net may experience deadlock.

A Petri Net is a token-flow network with two types of nodes, one type of directed edge,

and one token type. If a Petri Net’s state is its number and position of tokens, then a

Petri Net can also be viewed as a state transition system. There are useful extensions,

including Colored Petri Nets (multiple types of tokens), hierarchical Petri Nets (multiple

levels of abstraction), timed Petri Nets (explicitly introducing time with either deterministic

or stochastic intervals), prioritized Petri Nets (adding a priority attribute to transitions),

and also adding edge types including reset and inhibitor edges. Many Petri Net extensions

are grouped under the title High-Level Petri Nets.

158

APPENDIX B

UML 2.0 ACTIVITIES

Semantically, “An activity is the specification of parameterized behavior as the coordinated

sequencing of subordinate units whose individual elements are actions.” [OMG UML, 2011,

p.324] Syntactically, a UML 2.0 activity is a graph of ActivityNodes and ActivityEdges.

Syntactically defining a UML activity as a graph on whose edges flow object and control

tokens means that in creating an activity, one creates a token-flow network. A portion of

the metamodel is:

Figure 91: A Portion of the UML 2.0 Activity Metamodel.

Important components are:

• ExecutableNode is a type of ActivityNode. Action is its primary subclass, and

action has many subclasses. “An action is simple from the point of view of the

activity containing it, but may be complex in its effect and not be atomic. As a piece

159

of structure within an activity model, it is a single discrete element; as a specification

of behavior to be performed, it may invoke referenced behavior that is arbitrarily

complex.” [OMG UML, 2011, p.319] Advanced activity modeling introduces another

subclass of ExecutableNode called StructuredActivityNode, which has subclasses

LoopNode, ConditionalNode, and SequenceNode.

• ObjectNode is a type of ActivityNode. “Object nodes represent objects and data as

they flow in and out of invoked behaviors, or represent collections of tokens waiting to

move downstream.” [OMG UML, 2011, p.325] Since an ObjectNode may hold multiple

tokens, it has an ordering property whose value is one of {unordered, ordered, LIFO,

FIFO}, meaning it can function as a queue. Object Nodes are places where tokens

can rest; note that tokens cannot rest on ActivityEdges nor at ControlNodes. The

most commonly-used subclasses are Pin and ActivityParameterNode.

• ControlNode is a type of ActivityNode. “Control nodes structure control and object

flow. These include decisions and merges to model contingency. These also include

initial and final nodes for starting and ending flows. In IntermediateActivities, they

include forks and joins for creating and synchronizing concurrent subexecutions.”

[OMG UML, 2011, p.325]

• ActivityEdge has subclasses ControlFlow and ObjectFlow. “A control flow is an

activity edge that only passes control tokens. Tokens offered by the source node

are all offered to the target node.” [OMG UML, 2011, p.366] “An object flow is an

activity edge that only passes object and data tokens. Tokens offered by the source

node are all offered to the target node ... in the same order as they are taken from

the source.” [OMG UML, 2011, p.401] This implies that object and control flow

networks may overlap in nodes but not edges. The specification says nothing about

time elapsed while a token traverses an edge; the semantic of clock time is absent from

the metamodel of UML 2.0 activities.

• Object and Control tokens flow through the network. “A token contains an object,

datum, or locus of control, and is present in the activity diagram at a particular

160

node.” [OMG UML, 2011, p.326] Tokens are by nature are discrete, although this

does not preclude continuous flows - see the discussion in [Bock, 2006]. In SysML,

tokens may also stream across an activity boundary mid-execution, not just at activity

initialization and termination. Concerning where they may reside at any moment

during activity execution, the specification says “Tokens cannot ‘rest’ at control nodes,

such as decisions and merges, waiting to move downstream. Control nodes act as

traffic switches managing tokens as they make their way between object nodes and

actions, which are the nodes where tokens can rest for a period of time. Initial nodes

are excepted from this rule.” [OMG UML, 2011, p.327] There is another exception:

“OMG introduced a special rule for ForkNodes saying that they accept incoming

tokens when at least one outgoing edge can traverse a token. The tokens offered on

the other edges leaving the ForkNode are buffered [at the ForkNode].” [Schattkowsky

and Forster, 2007, p.3]

Concerning flow semantics analogous to the enabling and firing of transitions in Petri Nets,

“Nodes and edges have token flow rules. Nodes control when tokens enter or leave them.

Edges have rules about when a token may be taken from the source node and moved to the

target node. A token traverses an edge when it satisfies the rules for target node, edge, and

source node all at once.” [OMG UML, 2011, p.327]

161

APPENDIX C

INTERPRETING SEQUENCING DEPENDENCIES IN A PROCESS

NETWORK

This appendix provides an example of interpreting a ProcessNetwork’s Sequencing Depen-

dencies to aggregate a ProcessNetwork’s execution time from the execution times of its

component Processes. In a manufacturing context the result is called raw process time,

the time required for a single job to traverse an empty line with no waiting. Assumptions

include no cycles and only finish-to-start sequencing dependencies. It should not matter if

nested processes’ times are derived, deterministic, or random; the algorithm’s purpose is

simply to aggregate and respect sequencing constraints, and the output is an expression for

raw process time using only summation and maximization operators.

Because of the simplifying assumptions, the algorithm’s nature is proof-of-concept.

Future work might consider other dependency types and also offsets. Since the four

dependency types {FS, SF, SS, FF} are common to project management and PERT/CPM

literature, it is possible (but not investigated) that this algorithm or a more general version

may already exist in that literature.

162

C.1 The Algorithm

Initialize Find all terminal operations, with zero outgoing finish-to-start (FS) sequencing

dependencies.

– If none, then the process has no end. Stop, and return an exception / error.

– If one or more, open a summation thread for each terminal operation. Into

each thread, introduce a summand variable (such as Ti) modeling the terminal

operation’s time.

Loop For each open summation thread,

– If a operation has no incoming FS sequencing dependencies, close its thread.

– If a operation has exactly one incoming FS sequencing dependency, follow

it backwards to the source, and add the source operation’s variable Tj as a

summand.

– If a operation has two or more incoming FS sequencing dependencies, open a max

operator, follow each dependency backwards to the source, and add the source

operation’s variable Tj as an argument of the max. Each argument created a

new (nested) summation thread.

End For Loop.

Close Finish by taking the max of all parallel summation threads.

Simplify – (By merging threads) For any max, commonalities among all arguments can be

pulled outside the operator.

– (By eliminating redundant sequencing) For a non-negative process propety

such as time, redundant sequencing follows when sequencing dependencies form

triangles. This follows from the the triangle inequality - the non-negative

measures of a triangle’s two legs will always sum greater than or equal to the

measure of the triangle’s hypotenuse. This allows replacing a max operator in

which one argument is always greater than or equal to the others by the dominant

argument.

163

C.2 Example 1

Figure 92: A process composed of sequenced operations. Assume that each directed edge
is a finish-to-start sequencing dependency. Assume that each operation has a property Ti
modeling time (although no assumptions are yet made about the model’s form - literal
value, deterministic formula, random variable, etc).

Initialize T9

Loop + max
{
T6, T7, T8

}
+T5 +T5 +T5

+ max
{
T2, T3, T4

}
+ max

{
T2, T3, T4

}
max

{
T2, T3, T4

}
+T1 +T1 +T1 +T1 +T1 +T1 +T1 +T1 +T1

Vertical stacking is used to show summation threads. Written conventionally:

T9 + max
{

T6 + T5 + max{T2 + T1, T3 + T1, T4 + T1},

T7 + T5 + max{T2 + T1, T3 + T1, T4 + T1},

T8 + T5 + max{T2 + T1, T3 + T1, T4 + T1}
}

Simplify by pulling out common arguments:

T9 + max
{

T6 + T5 + T1 + max{T2, T3, T4},

T7 + T5 + T1 + max{T2, T3, T4},

T8 + T5 + T1 + max{T2, T3, T4}
}

Simplify by pulling out common arguments:

T9 + T5 + T1 + max
{
T2, T3, T4

}
+ max

{
T6, T7, T8

}
The result for raw process time can be verified by inspection.

164

C.3 Example 2

Figure 93: A process composed of sequenced operations. Assume that each directed edge
is a finish-to-start sequencing dependency. Assume that each operation has an property
Ti modeling time (although no assumptions are yet made about the model’s form - literal
value, deterministic formula, random variable, etc).

Initialize by identifying three terminal operations T6, T7, and T8. Open a summation
thread for each operation. Because of space limitations, Loop on each thread separately:

T6

+ max
{
T1, T5

}
+ max

{
T2, T3

}
+ max{T2, T4}

T7
+T5
+ max

{
T2, T3

}
+ max{T2, T4}

T8
+ max

{
T4, T3

}
+ max{T2, T4}

Close with an outer MAX of the three unjoined threads, and write conventionally:

max

{
T6 + max

{
T1, T5 + max

{
T2, T3 + max{T2, T4}

}}
,

T7 + T5 + max
{
T2, T3 + max{T2, T4}

}
,

T8 + max
{
T4, T3 + max{T2, T4}

}}
Simplify by eliminating redundant sequencing. Two triangles exist, from 2→ 3→ 5 versus
2→ 5 and 4→ 3→ 8 versus 4→ 8. This realizes as max operators in which one argument

165

dominates the other.

max

{
T6 + max

{
T1, T5 + T3 + max{T2, T4}

}
,

T7 + T5 + T3 + max{T2, T4},

T8 + T3 + max{T2, T4}

}
Simplify by pulling out common arguments:

max

{
T6 + max

{
T1, T5 + T3 + max{T2, T4}

}
,

max
{
T7 + T5, T8

}
+ T3 + max{T2, T4}

}
While more difficult than the previous example, the result for raw process time can

again be verified by inspection.

C.4 Sums and Maxima of Random Variables

Given a result for raw process time such as T = T1 + T2 + max
{
T3, T4

}
, how to

actually compute a number? If the Ti are deterministic (whether literal numbers or

nested deterministic formulas) then solving for T only requires a calculator, where the

sophistication of the calculator is determined by the sophistication of the mathematical

operators in any nested formulas. If the Ti are random variables, however, then T is also a

random variable, and the analysis model must be extended to compute a random variable

feature such as its mean, variance, or distribution.

Suppose a raw process time formula involves only sums. For random variables X and

Y defined on the same probabillity space:

• The mean of X + Y can be computed E[X + Y] = E[X] + E[Y] by the linearity of

expectation, true whether or not X and Y are independent.

• The variance of X+Y can be computed var(X+Y) = var(X)+var(Y)+2cov(X,Y),

and the covariance term disappears if X and Y are independent.

• No general formula exists for the distribution of X+Y ; it depends on the distributions

of X and Y and their dependence. Results include:

– If X ∼ Normal(µx, σ
2
x), Y ∼ Normal(µy, σ

2
y), and X and Y are independent,

then X + Y ∼ Normal(µx + µy, σ
2
x + σ2y). This generalizes for a sum of more

than two terms.

166

– If X,Y ∼ Uniform(0, 1) and independent, then X + Y ∼ Triangular(0, 2).

– If X1, . . . , Xn ∼ Bernoulli(p) and independent, then X1 + . . . + Xn ∼
Binomial(n, p).

– If X1, . . . , Xn ∼ Geometric0(p) and independent, then

X1 + . . .+Xn ∼ NegativeBinomial(n, p).

If a formula for raw process time includes only sums, then features of T including its

mean, variance, and in some cases distribution have closed-form solutions. However, if a

formula for raw process time also includes max operators, then closed-form solutions for

features of T are difficult to find. Options include:

• Use rough (and possibly inaccurate) approximations, such as replacing each maxi-

mization by the argument with the largest mean.

• Use simulation. Sample each component random variable T1, . . . , Tn from their known

distributions and compute T . Perform replications, then return estimators such as

sample mean for E[T] and sample variance for var(T).

167

References

Alanen, M. and Porres, I. 2003. A relation between context-free grammars and meta
object facility metamodels. Technical Report no. 606, Turku Centre for Computer Science
(TUCS).

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,
and Angel, S. 1977. A Pattern Language. Oxford University Press.

Allen, T. T. 2011. Introduction to discrete event simulation and agent-based modeling:
voting systems, health care, military, and manufacturing. Springer.

Batarseh, O., McGinnis, L., and Lorenz, J. 2012. MBSE supports manufacturing
system design. In 22nd Annual INCOSE International Symposium, Rome, Italy.

Batarseh, O. and McGinnis, L. F. 2012. System modeling in SysML and system analysis
in arena. In Proceedings of the 2012 Winter Simulation Conference, pp. 2924–2935. IEEE.

Bayer, T., Chung, S., Cole, B., Cooke, B., Dekens, F., Delp, C., Gontijo, I.,
Lewis, K., Moshir, M., Rasmussen, R., et al. 2012. Early formulation model-
centric engineering on NASAs Europa mission concept study. In 22nd Annual INCOSE
International Symposium, Rome, Italy. Pasadena, CA: Jet Propulsion Laboratory,
National Aeronautics and Space Administration, 2012.

Bellamy, M. A. and Basole, R. C. 2012. Network analysis of supply chain systems: A
systematic review and future research. Systems Engineering .

Bernardi, S., Donatelli, S., and Merseguer, J. 2002. From UML sequence diagrams
and statecharts to analysable petri net models. In Proceedings of the 3rd international
workshop on Software and performance, pp. 35–45. ACM.

Berner, S., Glinz, M., and Joos, S. 1999. A classification of stereotypes for object-
oriented modeling languages, pp. 249–264. In UML’99 - The Unified Modeling Language.
Springer.

Berners-Lee, T., Hendler, J., and Lassila, O. 2001. The Semantic Web. Scientific
American 284:28–37.

Bertsimas, D. and Tsitsiklis, J. N. 1997. Introduction to Linear Optimization. Athena
Scientific, Nashua, NH.

Biswas, S. and Narahari, Y. 2004. Object oriented modeling and decision support for
supply chains. European Journal of Operational Research 153:704–726.

Bock, C. 2003. UML 2 activity and action models. Journal of Object Technology 2:43–53.

Bock, C. 2006. SysML and UML 2 support for activity modeling. Systems Engineering
9:160–186.

Butler, C. A. and Robinson, R. S. 2013. Introduction: 2012 Daniel H. Wagner prize
for excellence in operations research practice. Interfaces 43:397–399.

168

Chamberlin, D. D. and Boyce, R. F. 1974. Sequel: A structured english query
language. In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on
data description, access and control, pp. 249–264. ACM.

Cleenewerck, T. and Kurtev, I. 2007. Separation of concerns in translational semantics
for DSLs in model engineering. In Proceedings of the 2007 ACM symposium on applied
computing, pp. 985–992. ACM.

Cloutier, R. J. and Verma, D. 2007. Applying the concept of patterns to systems
architecture. Systems Engineering 10:138–154.

Collins, S. T., Yassine, A. A., and Borgatti, S. P. 2009. Evaluating product
development systems using network analysis. Systems Engineering 12:55–68.

Cutting-Decelle, A.-F., Young, R. I., Michel, J.-J., Grangel, R., Le Cardinal,
J., and Bourey, J. P. 2007. ISO 15531 mandate: A product-process-resource based
approach for managing modularity in production management. Concurrent Engineering
15:217–235.

Diestel, R. 2010. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, Heidelberg.

Drath, R., Luder, A., Peschke, J., and Hundt, L. 2008. AutomationML - The glue
for seamless automation engineering. In IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA 2008), pp. 616–623. IEEE.

EMF ATL 2014. ATLAS Transformation Language (ATL). Eclipse Modeling Project:
Model to Model Transformation Subproject, http://www.eclipse.org/atl/. Viewed
31march2014.

EMF ECORE 2014. ECORE Metamodeling Language. Eclipse Modeling Framework
(EMF), http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/
ecore/package-summary.html. Viewed 20feb2014.

Estefan, J. A. 2008. Survey of model-based systems engineering (MBSE) methodologies,
revision B. Research Report from Jet Propulsion Laboratory, California Institute of
Technology.

Faltinski, S., Niggemann, O., Moriz, N., and Mankowski, A. 2012. AutomationML:
From data exchange to system planning and simulation. In IEEE International Conference
on Industrial Technology (ICIT 2012), pp. 378–383. IEEE.

Fishwick, P. A. 2007. The languages of dynamic system modeling, pp. 1.1–1.12. In
Handbook of Dynamic System Modeling, Computer and Information Science Series.
Chapman & Hall/CRC.

Fourer, R., Gay, D. M., and Kernighan, B. W. 2002. AMPL: A Modeling Language
for Mathematical Programming. Duxbury Press / Brooks/Cole Publishing Company, 2nd

edition.

Friedenthal, S., Moore, A., and Steiner, R. 2008. A Practical Guide to SysML,
Second Edition: The Systems Modeling Language. Elsevier, 1st edition.

169

Friedenthal, S., Moore, A., and Steiner, R. 2011. A Practical Guide to SysML,
Second Edition: The Systems Modeling Language. Elsevier, 2nd edition.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design patterns: elements
of reusable object-oriented software. Addison-Wesley.

Gardner, T., Griffin, C., Koehler, J., and Hauser, R. 2003. A review of OMG
MOF 2.0 query/views/transformations submissions and recommendations towards the
final standard. In MetaModelling for MDA Workshop, pp. 178–197.

Guerra-Zubiaga, D. A. and Young, R. I. 2008. Design of a manufacturing knowledge
model. International Journal of Computer Integrated Manufacturing 21:526–539.

Haskins, C. 2008. Using patterns to transition systems engineering from a technological
to social context. Systems Engineering 11:147–155.

Hazelrigg, G. A. 1998. A framework for decision-based engineering design. Journal of
mechanical Design 120:653–658.

Hoare, C. A. R. 1972. Notes on data structuring, pp. 83–194. In O.-J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare (eds.), Structured Programming. London: Academic Press
Ltd.

Hopp, W. J. and Spearman, M. L. 1996. Factory physics: Foundation of manufacturing
management. Irwin.

Huang, C.-C. 2011. Discrete Event System Modeling Using SysML and
Model Transformation. PhD thesis, Georgia Institute of Technology,
http://smartech.gatech.edu/handle/1853/45830.

INCOSE 2007. Systems Engineering Vision 2020. Technical Product INCOSE-TP-
2004-004-02 version 2.03, International Council on Systems Engineering (INCOSE),
http://www.incose.org/ProductsPubs/pdf/SEVision2020 20071003 v2 03.pdf.

Kempe, D., Kleinberg, J., and Tardos, É. 2003. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM.

Kiczales, G. 1992. Towards a new model of abstraction in the engineering of software. In
International Workshop on Reflection and Meta-Level Architecture, pp. 67–76.

Kiefer, J. C. 1987. Introduction to Statistical Inference. Springer.

Kim, H., Fried, D., Menegay, P., Soremekun, G., and Oster, C. 2013. Application
of integrated modeling and analysis to development of complex systems. Procedia
Computer Science 16:98–107.

Kiron, D., Shockley, R., Kruschwitz, N., Finch, G., and Haydock, M. 2011.
Analytics: The widening divide. MIT Sloan Management Review 53:1–22.

Kleijnen, J. P. 1995. Verification and validation of simulation models. European Journal
of Operational Research 82:145–162.

170

Klein, D. and Manning, C. D. 2003. Fast exact inference with a factored model for
natural language parsing. In Advances in Neural Information Processing Systems 15
(NIPS 2002), pp. 3–10. Cambridge, MA: MIT Press.

Kleppe, A., Warmer, J., and Cook, S. 1999. Informal formality? The object constraint
language and its application in the UML metamodel, pp. 148–161. In The Unified
Modeling Language. UML98: Beyond the Notation. Springer.

Kleppe, A. G., Warmer, J. B., and Bast, W. 2003. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Professional.

Koka, B. R., Madhavan, R., and Prescott, J. E. 2006. The evolution of interfirm
networks: Environmental effects on patterns of network change. Academy of Management
Review 31:721–737.

Larsen, G. 2006. Model-driven development: Assets and reuse. IBM Systems Journal
45:541–553.

LaValle, S., Hopkins, M., Lesser, E., Shockley, R., and Kruschwitz, N. 2010.
Analytics: The new path to value. MIT Sloan Management Review Special Report in
collaboration with IBM Institute for Business Value, Fall 2010.

Law, A. M. and Kelton, W. D. 2000. Simulation Modeling and Analysis. McGraw-Hill
Boston, MA, 3rd edition.

Lemaignan, S., Siadat, A., Dantan, J.-Y., and Semenenko, A. 2006. MASON: A
proposal for an ontology of manufacturing domain. In Proceedings of the IEEE Workshop
on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS
2006), pp. 195–200. IEEE.

Lewis, T. G. 2009. Network Science: Theory and Applications. John Wiley & Sons.

Magnanti, T. L. and Wong, R. T. 1984. Network design and transportation planning:
Models and algorithms. Transportation Science 18:1–55.

Mason, S. J. 1953. Feedback theory-some properties of signal flow graphs. Proceedings of
the IRE 41:1144–1156.

McCarthy, I. 1995. Manufacturing classification: Lessons from organizational systematics
and biological taxonomy. Integrated Manufacturing Systems 6:37–48.

McGinnis, L. and Ustun, V. 2009. A simple example of SysML-driven simulation. In
Proceedings of the 2009 Winter Simulation Conference, pp. 1703–1710. IEEE.

McGinnis, L. F., Huang, E., and Wu, K. 2006. Systems engineering and design of high-
tech factories. In Proceedings of the 2006 Winter Simulation Conference, pp. 1880–1886.
IEEE.

Mellor, S. J., Kendall, S., Uhl, A., and Weise, D. 2004. MDA Distilled: Principles
of Model-Driven Architecture. Addison-Wesley Professional.

Miller, J. A., Baramidze, G. T., Sheth, A. P., and Fishwick, P. A. 2004.
Investigating ontologies for simulation modeling. In Proceedings of the 37th Annual
Simulation Symposium, pp. 55–63. IEEE.

171

Miller, J. A., He, C., and Couto, J. I. 2007. Impact of the semantic web on modeling
and simulation. In P. A. Fishwick (ed.), Handbook of Dynamic System Modeling.
Chapman & Hall/CRC.

Molina, A. and Bell, R. 1999. A manufacturing model representation of a flexible
manufacturing facility. Proceedings of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture 213:225–246.

Mueller, R., Alexopoulos, C., and McGinnis, L. F. 2007. Automatic generation
of simulation models for semiconductor manufacturing. In Proceedings of the 39th
conference on Winter Simulation, pp. 648–657. IEEE Press.

OASIS PPS 2011. Production Planning and Scheduling (PPS) Version 1.0. Organization
for the Advancement of Structured Information Standards (OASIS), http://docs.oasis-
open.org/pps/pps/v1.0/cs01/pps-v1.0-cs01.html.

Oldfather, P. M., Ginsberg, A. S., and Markowitz, H. M. 1966. Programming
by questionnaire: How to construct a program generator. RAND Report RM-5129-PR,
RAND Corporation, Santa Monica CA.

OMG QVT RFP 2002. Request for Proposal: MOF 2.0 Query / Views / Transformations.
Object Management Group, http://www.omg.org/cgi-bin/doc?ad/2002-4-10. OMG
Document Number ad/2002-04-10.

OMG OCL 2010. Object Constraint Language Version 2.2. Object Management Group,
http://www.omg.org/spec/OCL/2.2. OMG Document Number formal/2010-02-01.

OMG BPMN 2011. Business Process Model and Notation (BPMN) Version 2.0. Object
Management Group, http://www.omg.org/spec/BPMN/2.0/. OMG Document Number
formal/2011-01-03.

OMG QVT 2011. Meta Object Facility (MOF) 2.0 Query/View/Transformation Spec-
ification. Object Management Group, http://www.omg.org/spec/QVT/1.1/. OMG
Document Number formal/2011-01-01.

OMG UML 2011. OMG Unified Modeling Language (OMG UML) Super-
structure Version 2.4.1. Object Management Group, http://www.omg.org/spec/
UML/2.4.1/Superstructure. OMG Document Number formal/2011-08-06.

OMG SysML 2012. OMG Systems Modeling Language (OMG SysML) Version 1.3. Object
Management Group, http://www.omg.org/spec/SysML/1.3/. OMG Document Number
formal/2012-06-01.

OMG MOF 2013. OMG Meta Object Facility (MOF) Core Specification Version 2.4.1.
Object Management Group, http://www.omg.org/spec/MOF/2.4.1/. OMG Document
Number formal/2013-06-01.

Paredis, C., Bernard, Y., Burkhart, R., de Koning, H., Friedenthal, S.,
Fritzson, P., Rouquette, N., and Schamai, W. 2010. An overview of the
SysML-modelica transformation specification. In 20th Annual INCOSE International
Symposium, Chicago, IL.

Paynter, H. M. 1961. Analysis and design of engineering systems. MIT press, Boston.

172

Peak, R., Burkhart, R., Friedenthal, S., Wilson, M., Bajaj, M., and Kim, I.
2007. Simulation-based design using SysML - part 1: a parametrics primer. In 17th
Annual INCOSE International Symposium, San Diego, CA.

Pegden, C. D., Shannon, R. E., and Sadowski, R. P. 1995. Introduction to simulation
using SIMAN. McGraw-Hill New York, 2nd edition.

Pfister, F., Chapurlat, V., Huchard, M., and Nebut, C. 2011. A design pattern
meta model for systems engineering. 18th International Federation of Automatic Control
(IFAC) World Congress, Milano, Italy .

Pratt, M. J. 2001. Introduction to ISO 10303 - the STEP standard for product data
exchange. Journal of Computing and Information Science in Engineering 1:102–103.

Reed, A. and Kellogg, B. 1896. Higher Lessons In English. Revised edition.

Richters, M. and Gogolla, M. 1998. On formalizing the UML object constraint
language OCL. In Proceedings of the 17th International Conference on Conceptual
Modeling (ER98), pp. 449–464. Springer LNCS.

Roberts, F. S. 1978. Graph theory and its applications to problems of society. Number 29
in CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia: Society
for Industrial and Applied Mathematics (SIAM).

Robinson, S., Nance, R. E., Paul, R. J., Pidd, M., and Taylor, S. J. 2004.
Simulation model reuse: Definitions, benefits and obstacles. Simulation Modelling
Practice and Theory 12:479–494.

Roedler, G. 2002. What is ISO/IEC 15288 and why should I care? Presentation Slides.
ISO/IEC JTC1/SC7/WG7, Geneva: International Organization for Standardization.

Rogers, E. M. and Kincaid, D. L. 1981. Communication networks: Toward a new
paradigm for research. Free Press New York.

Rouse, W. B. 2009. Engineering perspectives on healthcare delivery: Can we afford
technological innovation in healthcare? Systems Research and Behavioral Science 26:573–
582.

Rudtsch, V., Bauer, F., and Gausemeier, J. 2013. Approach for the conceptual design
validation of production systems using automated simulation-model generation. Procedia
Computer Science 16:69–78.

SCC SCOR 2012. Supply Chain Operations Reference Model revision 11.0. Supply Chain
Council (SCC), http://supply-chain.org/scor/11.

Schattkowsky, T. and Forster, A. 2007. On the pitfalls of UML 2 activity modeling.
In Proceedings of the International Workshop on Modeling in Software Engineering, pp.
8–13. IEEE Computer Society.

Schonherr, O. and Rose, O. 2009. First steps towards a general SysML model for
discrete processes in production systems. In Proceedings of the 2009 Winter Simulation
Conference, pp. 1711–1718. IEEE.

173

Schruben, L. 1983. Simulation modeling with event graphs. Communications of the ACM
26:957–963.

Schruben, L. and Yücesan, E. 1993. Modeling paradigms for discrete event simulation.
Operations Research Letters 13:265–275.

SISO CMSD 2010. Core Manufacturing Simulation Data - UML Model. Simulation
Interoperability Standards Organization (SISO). Document Number SISO-STD-008-
2010.

Soley, R. and OMG Staff Strategy Group 2000. Model Driven Architecture. White
Paper no. 308, Object Management Group, http://www.omg.org/cgi-bin/doc?OMG/00-
11-05.pdf.

Son, Y. J. and Wysk, R. A. 2001. Automatic simulation model generation for simulation-
based, real-time shop floor control. Computers in Industry 45:291–308.

Son, Y. J., Wysk, R. A., and Jones, A. T. 2003. Simulation-based shop floor control:
formal model, model generation and control interface. IIE Transactions 35:29–48.

Spolsky, J. 2002. The law of leaky abstractions. Blog Post at
http://www.joelonsoftware.com/articles/LeakyAbstractions.html, Published 11nov2002.
Retrieved 24march2014.

Sprague, R. H. 1980. A framework for the development of decision support systems. MIS
Quarterly 4:1–26.

Sprock, T. and McGinnis, L. F. 2014. Simulation model generation using software
design patterns. In Proceedings of the 2014 Winter Simulation Conference (pending).
IEEE.

Staines, T. S. 2008. Intuitive mapping of UML 2 activity diagrams into fundamental
modeling concept petri net diagrams and colored petri nets. In 15th Annual IEEE
International Conference and Workshop on the Engineering of Computer Based Systems,
2008. (ECBS 2008), pp. 191–200. IEEE.

Storrle, H. and Hausmann, J. H. 2005. Towards a formal semantics of UML 2.0
activities. In Proceedings German Software Engineering Conference, volume P-64 of
LNI, pp. 117–128.

Tako, A. A. and Robinson, S. 2012. The application of discrete event simulation and
system dynamics in the logistics and supply chain context. Decision Support Systems
52:802–815.

Viehl, A., Schönwald, T., Bringmann, O., and Rosenstiel, W. 2006. Formal
performance analysis and simulation of UML/SysML models for ESL design. In
Proceedings of the Conference on Design, Automation and Test in Europe, pp. 242–247.
European Design and Automation Association.

Wang, J. 2007. Petri nets for dynamic event-driven system modeling. Handbook of Dynamic
System Modeling pp. 1–17.

174

Wasserman, S. 1994. Social network analysis: Methods and applications, volume 8.
Cambridge University Press.

Yuan, Y., Dogan, C. A., and Viegelahn, G. L. 1993. A flexible simulation model
generator. Computers & Industrial Engineering 24:165–175.

Zeigler, B. P. 1976. Theory of Modeling and Simulation. Wiley Interscience, New York,
1st edition.

175

