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SUMMARY

Free and open exchange of information on the Internet is at risk: more than 60 coun-

tries practice some form of Internet censorship, and both the number of countries practicing

censorship and the proportion of Internet users who are subject to it are on the rise. Un-

derstanding and mitigating these threats to Internet freedom is a continuous technological

arms race between security researchers and advocates, and many of the most influential

governments and corporations.

By its very nature, Internet censorship varies drastically from region to region, which

has impeded nearly all efforts to observe and fight it on a global scale. Researchers and

developers in one country may find it very difficult to study censorship in another; this is

particularly true for those in North America and Europe attempting to study notoriously

pervasive censorship in Asia and the Middle East.

This dissertation develops techniques and systems that empower users in one country,

or bystanders, to assist in the measurement and circumvention of Internet censorship in

another. Our work builds from the observation that there are people everywhere who are

willing to help us if only they knew how. First, we develop Encore, which allows webmas-

ters to help study Web censorship by collecting measurements from their sites’ visitors.

Encore leverages weaknesses in cross-origin security policy to collect measurements from

a far more diverse set of vantage points than previously possible. Second, we build Collage,

a technique that uses the pervasiveness and scalability of user-generated content to dissem-

inate censored content. Collage’s novel communication model is robust against censorship

that is significantly more powerful than governments use today. Encore and Collage make

x



it significantly easier for people everywhere to help study and circumvent Internet censor-

ship.
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CHAPTER I

INTRODUCTION

The past twenty-five years have seen the Internet grow from humble beginnings as a re-

search and education network operated by the United States government to a multi-purpose,

multi-national network spanning all countries and continents. Although the Internet’s de-

velopment has transformed commerce, education, entertainment, and nearly every other

facet of modern life, an increasing number of governments have sought to restrict how

their citizens use it. Several studies have reported that dozens of countries restrict Inter-

net communications in some way, and it is likely that far more entities manipulate content

or communications in some fashion [69, 111]. Both the number of countries that restrict

Internet access and the number of Internet users affected by those restrictions are likely

to continue to increase as more countries with historically repressive governments become

better connected. We refer to these restrictions on Internet usage and services as Internet

censorship.

Governments and organizations enforce Internet censorship in a variety of ways. Some-

times they use legal or extralegal tactics to restrict information at its source. For example,

China is notorious for requiring search engines and blogging platforms operating within its

borders to remove offensive content [8,75], while several governments intimidate or perse-

cute journalists and bloggers when they see fit [33, 95, 129]. More subtle mechanisms may

compel users and organizations to filter their own communications without explicit orders

to do so, e.g., by surveilling instant message conversations, as TOM-Skype and LINE do

in China [40, 81]; or threatening expulsion of foreign media agencies [54].

Directly censoring producers of information in these ways is expensive, unscalable,

and imperfect. Not only must governments monitor potentially censored services to ensure

proper enforcement, they might find it difficult to censor individuals and organizations out-

side their jurisdiction. Instead, many governments censor information en route to their citi-

zens by disrupting the network traffic to or from specific domains, sites, or services. China,

Iran, Pakistan, Turkey, Syria, and dozens of other governments have implemented systems

that selectively block Internet traffic from reaching its intended destination [77, 111]. A

few examples: Turkey briefly prevented access to Twitter and YouTube prior to elections

in 2014 [146]; Pakistan has blocked YouTube since 2012 for hosting religiously offensive

videos [117]; and China recently censored the Web sites of several foreign news agencies

1



Censored
user

Censored network Uncensored network

Uncensored targets

Censored targets

Allowed

Censored

Censor

Figure 1: A censor restricts communication on the censored network and disrupts attempts
to access some users, sites, or services (i.e., targets). Censorship may vary over time and
by location.

after they exposed corruption among government officials [21]. In cases where govern-

ments perceive outright blocking to be too drastic, they may instead degrade performance

to make communication inconvenient rather than impossible; China and Iran have used this

technique to great effect [78,89]. On the other end of the spectrum, some governments have

resorted to complete disconnection from the Internet in cases of extreme political unrest,

as Egypt and Libya did during the Arab Spring in 2011 [38, 41].

This dissertation focuses on this latter class of Internet censorship — disruption of

network traffic destined for specific domains, sites, or services — which we refer to as

network censorship. Figure 1 shows the general setting. Users inside a country that em-

ploys network censorship try to communicate with other users, sites, and services, and the

censor attempts to disrupt access to some subset of these destinations. Network censorship

mechanisms are among the most prevalent way to enforce censorship worldwide because

of both their effectiveness and their ease of implementation, and they today impact Internet

users in many countries. Fortunately, these mechanisms are also the easiest to study be-

cause disruption of network traffic tends to be relatively obvious, lending itself to technical

analysis and development of countermeasures. The remainder of this dissertation only con-

siders network censorship except when otherwise noted, and often uses the terms “network

censorship” and “Internet censorship” interchangeably.

Governments most commonly use network censorship to restrict access to the Web

(i.e., HTTP and HTTPS). Figure 2 illustrates many ways that they may censor an HTTP(S)

connection or its requisite DNS lookup, including hijacking DNS requests, reseting TCP

connections to certain IP addresses, redirecting HTTP requests, blocking entire protocols or

port numbers (e.g., port 443 for HTTPS), and restricting entire IP prefixes and autonomous

systems by modifying BGP configuration. Each mechanism operates at a certain granu-

larity and with a certain efficiency, dictated by where in the network stack that technique

2



Client

example.com
Web server

Q: example.com?

A: 93.184.216.119

TCP SYN
TCP SYN-ACK

HTTP GET /foo.htmlHTTP 200 OK

DNS

● NXDOMAIN
● Drop request
● Inject/spoof response

● Send TCP RST
● Drop TCP SYN

● Drop HTTP GET
● Inject HTTP 302 Redirect

Censorship mechanisms

Figure 2: Censors may restrict access to http://example.com/foo.html by dis-
rupting each each stage of an HTTP connection using several mechanisms.

operates. For example, governments and ISPs can often implement censorship very effi-

ciently by hijacking DNS queries in ISP recursive resolvers, but this mechanism can only

operate at the level of domain names and cannot censor individual services or applica-

tions without inflicting collateral damage on others. We use examples of Web censorship

throughout this dissertation.

1.1 Studying network censorship

This dissertation develops new techniques for censorship discovery, measurement, and cir-

cumvention. We introduce these concepts now and elaborate on them in Chapter 2.

Discovering censorship. Service operators, researchers, activists, and users all seek to

quickly and accurately discover when a government starts censoring a site or service, both

to understand the scope and dynamics of censorship and to quickly deploy countermea-

sures. Without good censorship discovery, service operators often only learn about cen-

sorship of their service through word of mouth or press reports, users have difficulty dis-

tinguishing between censorship and other kinds of network failure, and researchers and

activists lack fast and consistent ways to identify new cases of censorship and deploy coun-

termeasures.

Measuring censorship. After discovering that a particular site or service is censored, we

often wish to measure more details about where, when, and how the censorship is imple-

mented. Quantities to measure include the duration of censorship, the technical mechanism

used to enforce it, and whether censorship is consistent across regions and ISPs. These

measurements can inform researchers and activists how best to target and develop new

3



circumvention techniques, and can help public policy experts mold future Internet policy.

Circumventing censorship. Lastly, once we understand what, where, when, and how sites

and services are censored, researchers, activists, and users all seek ways to circumvent this

censorship. Likewise, governments and security experts pursue understanding of the lim-

itations and possible weaknesses of censorship mechanisms. Censorship circumvention is

an arms race; governments impose ever more sophisticated and nuanced censorship mech-

anisms, while researchers and activists develop countermeasures to these mechanisms.

1.2 Fundamental challenges of studying network censorship

Although researchers face numerous obstacles to studying censorship discovery, measure-

ment, and circumvention, two major challenges have dominated all work in this space.

They motivate the novel techniques and systems that we develop in this dissertation.

Network censorship mechanisms are diverse, dynamic, and unknown. The example

mechanisms in Figure 2 only scratch the surface of the diversity of mechanisms that gov-

ernments employ to enforce censorship, which stymies attempts to comprehensively mea-

sure or circumvent it. Researchers can rarely be sure that their measurements are complete,

or that the mechanisms they observe behave in standard or predictable ways. Developers

of circumvention tools must compete against censors that continually deploy ever more

sophisticated and diverse censorship mechanisms.

This diversity stems from Internet censorship’s origins. Censorship is not inherently

technical, even when applied to sophisticated technical systems like the Internet. Govern-

ments and organizations have sought to control access to information throughout human

history, and much of the responsibility for overcoming such censorship lies in the hands

of non-technical experts in public policy, law, and activism to guide governments away

from repressive policies. Internet censorship is thus born of politics, not technology, and

these political origins manifest themselves in technology in many ways. Put another way,

governments often strive for certain policy goals without regard for standard technical pro-

cedures to accomplish them, leading to diverse implementations. Governments and service

providers may enforce similar censorship policies (i.e., to restrict the flow of information

on the Internet), yet share little common technical basis for doing so.

Despite these non-technical origins, researchers and activists have nonetheless devel-

oped a fragmented arsenal of technology to study and circumvent the various manifesta-

tions of Internet censorship that governments devise. Circumvention techniques range from

simple proxy servers and virtual private networks (VPNs) to more sophisticated anonymity

networks and covert communication channels. They are often tailored to the needs of

4



users in individual countries. Censors and citizens engage in an ongoing arms race to de-

velop more powerful censorship mechanisms and circumvention tools, and this arms race

is nowhere near finished.

Censorship is regional. Although the arms race for censorship mechanisms and circum-

vention tools will continue into the foreseeable future, researchers face an uphill battle, as

it is not enough to simply design and implement state-of-art censorship circumvention and

measurements tools; these tools must make it into the hands of the users who need them in

censored countries across the globe. Even though researchers have already developed cir-

cumvention techniques that evade every widely-deployed censorship scheme, only a very

small fraction of users actually know how to install and use these tools. The situation is

even worse for researchers wishing to measure and document censorship mechanisms and

worldwide censorship trends. Measuring properties of Internet censorship mechanisms

is not a technically difficult task in most cases, but there has been no global, systematic

measurement study of it to date; this is largely because, although it is very easy to write

censorship measurement tools, it is extremely difficult to deploy them in areas of the world

that experience the most censorship.

Although many censorship mechanisms are simply applications of existing network se-

curity techniques, these new applications often yield interesting research problems because

of their new context. These new contexts mean that, unlike most research in computer

networking (and computer science in general), work on Internet censorship must cross

many language, culture, and geographic barriers before it is most useful. Researchers and

developers are most often located in North American and European countries that, while

certainly not without their own problems, don’t experience the same level of censorship as

elsewhere in the world.

1.3 Bridging the gap between censored and uncensored users

Thesis statement. This dissertation counteracts Internet censorship’s diversity and region-

alism by narrowing the gap between users in censored and uncensored regions. We demon-

strate that parties in uncensored regions, or bystanders, can help measure and circumvent

the censorship experienced by users in other regions. Our work builds on the observation

that there are bystanders everywhere who are eager to help discover, measure, and circum-

vent Internet censorship if only they knew how. We develop novel techniques and systems

that empower these bystanders to do so.
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1.4 Contributions

This dissertation makes the following contributions in defense of the thesis statement:

1. Encore, a system that lets Webmasters help measure Web censorship. We design

and implement Encore, the first system that measures Internet censorship from un-

modified Web browsers. Doing so enables Encore to collect measurements of Web

censorship from far more vantage points than previously possible, thereby chipping

away at censorship’s endemic regionalism. Encore demonstrates that bystanders who

operate Web sites in uncensored regions can help measure Internet censorship.

2. A technique for circumventing censorship with user-generated content. We explore

strong methods for censorship circumvention with Collage, an automated technique

for disseminating censored data by hiding it amongst legitimate content across the

Web. Collage’s security properties counteract diversity of censorship because they

enable communication in the presence of a broad range of current and future ad-

versaries, and will be particularly valuable in the fight future censors that could be

significantly more powerful than those today. Collage success depends on bystanders

who either operate user-generated content hosting infrastructure or are users of these

services to help circumvent Internet censorship.

We now elaborate on these contributions.

An opportunity for Webmasters to help measure censorship. We design and implement

Encore, the first censorship measurement effort that enables bystander Webmasters to as-

sist in gathering measurements. After adding a single line of HTML code to a Web site,

every visitor to that site will contribute data about how it experiences censorship. Encore

counteracts Internet censorship’s regionalism; rather than requiring researchers to cross lan-

guage and culture barriers to deploy custom measurement code on clients in each censored

country, Encore lets researchers instead recruit a relatively small number of Webmasters

anywhere in the world.

Measuring censorship from unmodified Web browsers. Encore is also the first sys-

tem that collects measurements of censorship from unmodified Web browsers. Although

well-established Web security mechanisms prevent sites from accessing resources hosted

by arbitrary third parties, Encore skirts these mechanisms and allows researchers to collect

censorship measurements without custom browser extensions or plugins. This vastly im-

proves Encore’s potential deployment footprint over browser-based measurement tools that
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require such modifications [49]. After less than one month of deployment on a small hand-

ful of Web sites, Encore has already collected measurements from X users in Y countries.

Robust communication via user-generated content hosts. We develop Collage, a tech-

nique for distributing covert messages via user-generated content hosts. Collage hides these

messages inside ordinary content (e.g., photos, videos, etc) hosted on user-generated sites

like Flickr, YouTube, Picasa, and Twitter. To cope with reliability and capacity problems,

Collage applies information theoretic techniques and algorithms in a novel setting, result-

ing in a robust communication channel that is resistant to a censor’s attempts to block or

manipulate significant fractions of its cover media. Collage counteracts Internet censor-

ship’s diversity with a powerful new circumvention model that is effective against a broad

range of censorship mechanisms, and demonstrates that both user-generated content hosts

and their users are bystanders that can help circumvent Internet censorship.

Censorship circumvention without dedicated infrastructure. Circumvention tools typ-

ically require some kind of dedicated infrastructure. For example, Tor requires a network

of relay nodes. Collage leverages existing infrastructure, which makes it more difficult for

governments to disrupt Collage without incurring significant collateral damage on unre-

lated services.

The first hide-within circumvention tool. Designers of circumvention tools typically try

to achieve covertness by mimicking the network traffic generated by other, popular appli-

cations; unfortunately, recent research has demonstrated that these so-called parrot circum-

vention systems almost always contain significant security flaws because it’s very difficult

to perfectly mimic every aspect of a real application’s traffic [84]. In contrast, Collage

is the first hide-within censorship circumvention tool; this new class of tools tunnels its

communications inside the traffic of a real, running instance of a popular application (e.g.,

Firefox) rather than trying to mimic that application’s traffic. Hide-within circumvention

tools are significantly more robust against active and passive attacks.

1.5 Outline

We present background on network censorship, censorship measurement, and censorship

circumvention in Chapter 2. Chapter 3 presents Encore, a new technique and system for

measuring Internet censorship from unmodified Web browsers. Chapter 4 presents Collage,

a circumvention technique that enables bystanders to help measure Internet censorship. We

conclude with a discussion of general lessons we learned while designing these two systems

in Chapter 5.
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1.6 Bibliographic notes

Collage appeared as a poster at NSDI 2009 [24], a full paper at USENIX Security 2010 [25],

and a demo at SIGCOMM 2010 [26]. Our position paper summarizing the difficulties of

measuring Internet censorship inspired us to build Encore [23].
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CHAPTER II

BACKGROUND AND RELATED WORK

This chapter introduces network censorship in more detail, focusing on challenges and

existing techniques for measuring and circumventing it. We begin with an overview of

the mechanisms that governments use to enforce censorship, then discuss approaches that

researchers have taken to study it.

We cover background material and related work in a single chapter because the two

are very closely related when studying Internet censorship. For most researchers, particu-

larly in the western world, censorship is an emergent behavior of the Internet ecosystem;

with only a few exceptions, our knowledge of it is drawn almost exclusively from obser-

vations and measurements rather than formal systems design, implementation, and evalua-

tion. Thus, discussing background material without simultaneously discussing the studies

and measurements that inform that material makes little sense.

2.1 Technical censorship mechanisms

This dissertation only considers network censorship, in which governments, ISPs, or or-

ganizations disrupt network traffic to subsets of users, domains, IP addresses, URLs, or

services. Figure 1 shows the general problem setting. For convenience, we often refer

to these governments, ISPs, or organizations as censors, and members of subsets of users,

domains, IP address, URLs, or services collectively as censorship targets or simply targets.

This section introduces the technical mechanisms that censors use to enforce censor-

ship and that we aim to measure and circumvent in Chapters 3 and 4. Given the inherently

regional and secretive nature of censorship, our knowledge about how governments imple-

ment censorship policies may be inaccurate or incomplete, and only reflects information

gleaned from experimental research. We defer discussion of how researchers uncovered

and study these mechanisms to Section 2.4.

Censors can impose network censorship through nearly every piece of network infras-

tructure and at all layers of the network stack: they disrupt BGP connectivity, DNS res-

olution, TCP connection establishment, HTTP requests and responses, entire application

protocols, and more. Most mechanisms aren’t specific to censorship enforcement; rather,
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Table 1: Censors can employ many mechanisms at each layer of network infrastructure and
the network stack. Generally speaking, as scope becomes more specific, complexity and
cost of enforcement increases. This table is not exhaustive (nor could it be); it merely gives
examples of censorship mechanisms observed somewhere in the world.

Scope of censorship Example mechanisms

Entire AS
Withdraw BGP advertisements
Physically disconnect cables

Domain name
Install new rules on ISP recursive resolvers
Drop DNS requests to certain domains
Inject DNS responses certain domains

IP address
Drop packets destined for an IP address
Inject TCP RST upon SYN to an IP address

HTTP URL
Drop HTTP request
Return alternate HTTP response
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they are applications of traditional network security techniques in unconventional environ-

ments. We can parameterize these mechanisms along several axes:

Scope and specificity. Some mechanisms are capable of disrupting access to individual re-

sources, while others inherently impact a much larger set of (possibly unrelated) resources.

For example, mechanisms that disrupt DNS cannot disrupt access to individual URLs, and

mechanisms that tamper with BGP can only restrict access to entire IP prefixes or au-

tonomous systems (ASes). This was the case in Pakistan, which blocked the entirety of

YouTube in September, 2012 over only a handful of religiously offensive videos, simply

because the country’s censorship infrastructure at the time was incapable of restricting ac-

cess to individual URLs [105]; Syria, by contrast, often uses extremely specific filtering

rules to pinpoint censorship to individual resources without causing much collateral dam-

age [3]. Table 1 summarizes a few common scopes of censorship and some mechanisms

a censor could use to enforce them. More generally, the scope of censorship can often

indicate the mechanism (or class of mechanisms) of censorship; we exploit this fact in

Section 3.3 to infer mechanisms of Web censorship.

Note that countries sometimes want to disrupt access to entire services or domains even

when they have the capacity for more targeted disruption. For example, China often blocks

entire domains even though its firewall is sophisticated enough to target individual URLs

and keywords [77].

Censor by address vs by content. Censors typically use one of two broad criteria to

decide whether to restrict communication. The first is by addresses that identify commu-

nication endpoints; many governments censor specific domains or URLs, which are both
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types of addresses. The second is by the actual content of the communication; for example,

censors like China filter communications that contain certain keywords. A useful way to

differentiate between these kinds of censorship is that address-based censorship restricts

who you talk to, while content-based censorship restricts what you talk about. This distinc-

tion is important because circumvention techniques are often quite different; circumven-

tion of address-based censorship focuses on concealing traffic’s true destination by routing

it through an intermediary, whereas content-based censorship often tries to obfuscate the

contents itself. Section 2.5 discusses these ideas further.

Complexity and cost. Mechanisms that target higher layers of the network stack are often

more complex and, therefore, more expensive. This is often because higher layers require

the mechanism to maintain state across multiple packets or flows. For example, blocking

access to an entire domain name requires no state, but censoring individual URLs may re-

quire a censor to reassemble TCP streams. We often see this cost reflected in the shared

chronology of censorship across different countries: countries often implement DNS-based

censorship first because of its simplicity and efficiency, then migrate to more precise tech-

niques later to increase flexibility. An important property of Collage (Chapter 4) is that,

while it certainly cannot defeat all forms of censorship, the forms of censorship that it

doesn’t defeat would be very expensive and complicated to implement.

Transparency. Many countries display an informational Web page to users who try to

access a censored resource; others disrupt connections without explanation [153]. Mech-

anisms that don’t give explicit feedback about the existence of censorship may make it

difficult for users to distinguish between censorship and other kinds of network problems.

On the other hand, automatically distinguishing between block pages and legitimate con-

tent can be surprisingly difficult in general because pages can vary dramatically over time

and by region.

On-path vs off-path. Newer, stateful mechanisms often operate on-path, disrupting flows

as they traverse censorship middleboxes using deep packet inspection (DPI). Other tech-

niques operate off-path. For example, because China’s DNS and TCP censorship injects

additional packets into a stream rather than dropping or modifying existing packets, they

can operate off-path for greater efficiency. Off-path techniques are more restricted and

may be easier to circumvent. For example, off-path techniques can only inject additional

packets and cannot modify or remove existing traffic; Clayton et al. [35] showed how

to circumvent Chinese censorship by ignoring packets injected by its off-path censorship

mechanism.

Active vs passive. Most censorship is passive, in the sense that censors do not attempt
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to probe client machines or services before deciding to censor them. China, however,

sends active probes to suspected Tor bridge nodes before blocking them to confirm whether

they speak the Tor protocol [159]. At the time of writing, researchers have focused most

attention on measuring and circumventing passive techniques, and these efforts rarely carry

over to active mechanisms; thus, most circumvention tools don’t yet defend against active

mechanisms. On the other hand, active mechanisms are easier to detect and observe in some

instances (e.g., researchers can identify probes from the Chinese government to suspected

Tor bridge nodes). One notable feature of Collage (Chapter 4) is that it, unlike many other

circumvention tools, is inherently resistant to many active probing attacks.

Commercial vs custom. Some countries (e.g., China) build their own censorship infras-

tructure from scratch, while many others purchase off-the-shelf Deep Packet Inspection

(DPI) equipment from multinational corporations. Commercial solutions are sometimes

easier to study because we can share measurement and circumvention techniques across all

countries that use the same equipment [42].

Centralized vs distributed. Smaller countries tend to centralize their censorship infras-

tructure by placing it on a national backbone, while larger countries delegate responsibility

for censorship to each ISP. Still others do both. Censorship measurement schemes often

aim to quantify the differences in censorship enforcement between ISPs in the same coun-

try [105, 165].

2.2 The network censorship arms race

Researchers study three closely-related components of the network censorship ecosystem:

discovery decides what targets to measure for censorship; measurement conducts experi-

ments and collects data about what, where, when, and how targets are censored and the

mechanisms that enforce this censorship; and circumvention counteracts censorship by

finding and exploiting weaknesses in censorship mechanisms.

Figure 3 illustrates that censors and researchers engage in an arms race to build more

powerful censorship and circumvention tools. Researchers discover and measure instances

of censorship, then use this knowledge to build circumvention tools. Meanwhile, censors

observe these circumvention tools and deploy new censorship mechanisms to thwart them,

which may cause blocking of additional resources. Researchers then observe these changes

in the censor’s strategy by collecting more measurements, and the arms race continues ad

infinitum. This arms race ensures that the network censorship research landscape is always

changing and means that although we do our best to design generic, robust measurement

and circumvention tools, it is difficult to predict whether the discovery, measurement, and
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Researchers discover more
targets to measure

Researchers build 
better circumvention

tools

Censors block
more targets

Censors develop
new mechanisms

Circumvention

Discovery Measurement

Figure 3: Three phases of Internet censorship each influence each other. Censors and
researchers wage an arms race against each other.

circumvention techniques we introduce in this chapter (or the rest of this dissertation) will

be relevant very far in the future.

2.3 Discovery

Discovery aims to produce a list of targets to test for censorship, e.g., a list of potentially

censored URLs. This typically relies on the knowledge of regional experts (e.g., activists,

reporters, government insiders, or users in affected countries who happen to experience

censorship firsthand). There are several sources for such lists. Policy organizations publish

findings of censorship practices around the world. For example, the Open Network Ini-

tiative has published qualitative reports based on measurements from a limited number of

vantage points, with scant insight into how censorship evolves over short timescales or what

exactly is being filtered [112,113]. Other projects such as Herdict [82], GreatFire [77], and

Filbaan [65] maintain lists of domains that may be blocked, usually contributed by volun-

teers. Herdict compiles reports from users about domains that are blocked from a certain

location; such reports lack independent verification. GreatFire monitors reachability of var-

ious domains and services from a site behind China’s censorship firewall; it also maintains

historical measurement results. Each of these tools offers only limited information that is

driven by user-initiated reporting or measurements, yet these services and reports can serve

as initial lists of URLs to test for censorship with more systematic approaches.

While most target lists ultimately rely on human knowledge, some projects attempt to
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discover censorship with no a priori information about what might be censored by inferring

possible censorship events from service usage logs. The Tor Censorship Detector attempts

to infer blocking of Tor by detecting abnormal decreases in Tor traffic [44, 141]. Similarly,

Kathuria [94] attempted to detect censorship of a single service, the BBC [13], from its

per-country usage statistics. Thus far, these techniques are plagued by false positives and

are generally too noisy to be useful.

2.4 Measurement

After discovering a list of potential censorship targets, we aim to collect measurements that

confirm or refute the existence of censorship by telling us what targets are censored, where

they are censored, when they are censored, and how censors implement the censorship (i.e.,

the mechanisms they use).

Table 2 summarizes prior measurement studies of Internet censorship. Rather than in-

troduce every study in painstaking detail, we explain the kinds of measurements of network

censorship that these studies collect via a taxonomy of characteristic features of any mea-

surement collection scheme. This taxonomy should also be helpful when interpreting the

results of future studies.

Vantage points. A vantage point is some node on the network which collects censorship

measurements. It could be a laptop in a user’s home, a smartphone, dedicated measurement

collection infrastructure like a RIPE Atlas Probe [126], a Virtual Private Server (VPS), a

PlanetLab node [12], a SOCKS proxy, a VPN endpoint, or occasionally even a censorship

middlebox itself [3]. Because vantage points determine the representativeness of conclu-

sions we can draw and the breadth of experiments we may run, selection of vantage points

is often a measurement study’s most defining characteristic. Implementation of censorship

may vary widely between ISPs and coexist with localized (non-censorship) network failure,

so studies often strive to collect data from a redundant set of vantage points from multiple

ASes in a country.

Most measurement studies aim to characterize the censorship seen by real users in

a country (i.e., not just users in educational networks or data centers). Although placing

collection software or hardware in the hands of real users is tempting because of the quality

of data they can collect, researchers must (1) find users in these countries willing to host

such measurement software or hardware and (2) ensure that running these measurements

doesn’t place users in danger (e.g., collecting such measurements in oppressive regimes

with strict censorship controls could be illegal).
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Figure 4: Comparison of censorship measurement studies by breadth and depth. Many
studies analyze a single country in great depth, while a few attempt to compare censorship
across countries and regions. In Chapter 3, we introduce Encore, which enables massive
deployment of Web censorship measurements. Refer to Table 2 for study descriptions.
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Table 2: Existing censorship measurement collection systems and studies, categorized by geographic scope and ordered reverse chrono-
logically. A client vantage point is one where measurements are collected on a consumer laptop/desktop in a residential or educational
setting. China keywords refers to a small, well-known set of keywords that trigger the Chinese firewall (e.g., perhaps the most famous is
“falun,” denoting the Falun Gong movement suppressed by the Chinese government). Web indicates a set of common Web censorship
mechanisms.

Name Vantage points Scope Duration Target list Mechanisms
Multiple countries

Herdict [82] Clients (Web browsers) 245 countries 5 years, 2009 – 2014 User generated,
regional experts

Web

ONI [47, 48, 74] Clients in 286 ISPs 77 countries 5 years, 2007 – 2012 Regional experts Web
Verkamp et al. [153] PlanetLab, proxies, clients 11 countries Sometime in 2012 Herdict [82] Web
CensMon [135] PlanetLab 33 countries 14 days in 2011 User generated,

Google Alerts,
Twitter, Herdict,
ONI

Web

Dainotti [41] Various [28, 29, 98, 110, 128] Egypt, Libya 4 months in 2011 N/A (passive) AS
Net Neutrality Monitor [107] Unknown 7 countries 22 (unknown) User generated IP, DNS blocking

Country-specific
Nabi et al. [105] 5 clients in 5 ISPs Pakistan 2 months in 2013 [17] Web, keyword
Aryan et al. [6] 1 client Iran 2 months in 2013 Alexa 500 [4] Web, keywords,

throlling
Winter et al. [159] 32 SOCKS Proxies, 1 VPS China 3 weeks in 2012 N/A (service) See paper [159]
Wright [161] Clients in UK China 1 day in 2012 Herdict [82] DNS
Abdelberi [3] 7 censorship middleboxes Syria 2 months in 2011 N/A (passive) Web, keywords
Xu et al. [165] PlanetLab outside China China 2 months in 2010 Regional sites Keyword
Park et al. [119] Proxies China 3 months, 2008 – 2009 China keywords TCP RST from

HTML response
ConceptDoppler [39] Clients in US China Weeks in 2008 Keywords from

Wikipedia [39]
TCP RST

Clayton et al. [35] Clients in UK China 10 days in 2006 China keywords TCP RST
Zittrain et al. [168] Modems, proxies China 5 months in 2002 Search results DNS injection, IP

filtering, keyword
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Because of these difficulties, many collection efforts use vantage points that only ap-

proximate the conditions seen by real clients. For example, studies relying PlanetLab,

VPSes, or proxies often come with caveats that their results might not be representative of

“real” users if censorship policies differ across ISPs. Several studies of the Chinese firewall

rely on the symmetric behavior of its keyword filtering: instead of using a vantage point

with China to send traffic, they send traffic from vantage points outside China to arbitrary

hosts inside China that nonetheless trigger keyword filtering [35, 39, 161]. Figure 4 illus-

trates the trade off between breadth and depth that measurement studies typically make.

Geographic focus. Prior measurement efforts typically fall into two classes. The first

studies a common censorship mechanism across a variety of countries that employ that

mechanism; the second studies the nuances of censorship in a single country. Compar-

ing results collected from different countries may become easier as more countries adopt

commercial censorship equipment [42].

Collection duration. With only a few exceptions, prior measurement efforts only last a

few weeks or months. Unfortunately, governments often change their censorship policies,

either to suppress circumvention efforts or in response to extraneous political events (e.g.,

elections), which limits the conclusions we may draw from short studies; long-term collec-

tion is often the only way to fully capture such phenomena.

Consistently collecting data during the study is equally important. A study that takes

only a few measurements at irregular intervals often doesn’t provide granular enough infor-

mation to rule out the possibility of spurious network errors (e.g., unreliable links) rather

than targeted censorship.

Source of target lists. As we mentioned in Section 2.3, researchers curate target lists using

a variety of techniques. Some studies rely on lists compiled by third parties (e.g., organi-

zations like the ONI or Herdict), while others compile their own test lists using custom

methods (e.g., crawling search engine results, examining Twitter trends, etc.). Fragmen-

tation of target lists is problematic; it is difficult to compare results between studies using

different target lists, even within the same country.

Some studies don’t require a target list because they analyze passively collected data or

only consider censorship of entire services (e.g., Tor, TLS) [3, 159].

Censorship mechanisms. Most countries focus on Web censorship; that is, they disrupt

some stage of an HTTP or HTTPS connection, as we described in Figure 2. The breadth

of studies of Web censorship reflects this. Other studies focus on techniques commonly

used in China (keyword filtering, TCP reset injection, and DNS spoofing) or less granular

mechanisms like AS-level blocking.

17



Table 3: Existing network measurement collection platforms that could support future stud-
ies of Internet censorship. Some platforms would require modification before they could
collect censorship measurements.

Name Vantage points Flexibility
No modification required

Dasu [131] Hundreds of thousands ping, traceroute, HTTP GET, DNS
Seattle [30, 132] Tens of thousands Restricted Python [125]
RIPE Atlas Probe [126] Thousands ping, traceroute, DNS, verify SSL certs [127]
PlanetLab [12, 120, 122] Hundreds (universities) Linux
BISmark [16, 138] Hundreds (homes) OpenWrt [115]
Fathom [49] Hundreds? Fathom API [58]
OONI [64] Dozens Python

Modification required
Netalyzr [96] Hundreds of thousands Java
MySpeedTest [104] Hundreds (mobile) Android

2.4.1 Potential measurement platforms

Given the importance of choosing good vantage points, future research efforts could focus

on bringing censorship measurements to existing measurement platforms. Table 3 sum-

marizes a few existing measurement platforms. The feasibility of adopting a particular

platform for censorship measurement depends on the number of vantage points on which

it currently runs, the diversity of those vantage points, the flexibility of measurement tasks

that it could support, and whether we would need to modify its existing source code (rather

than running new measurement collection programs using the platform’s existing control

interfaces). Such an effort may also grapple with challenges of trust when attempting to

use a platform not for its advertised purpose.

At the time of writing, we are aware of active efforts to deploy censorship measurements

using Seattle, BISmark, OONI, and MySpeedTest.

2.5 Censorship circumvention

We stated in Section 2.1 that Internet censorship is often just application of standard net-

work security techniques in new contexts. Likewise, censorship circumvention plays the

role of the adversary in traditional network security by trying to find weaknesses in these se-

curity mechanisms. Studying circumvention can benefit both those affected by censorship

(i.e., by improving circumvention technologies) and developers and researchers seeking to

find and fix weaknesses in security solutions.

To communicate with a censorship circumvention tool, a user must typically follow
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three steps:

1. The user must learn who to communicate with. Users often circumvent address-

based censorship by communicating via a third party, but before doing so must learn

who that third party is. This isn’t always a hard problem; for example, in countries

that only practice content-based censorship, it isn’t necessary to communicate via a

third party and users can send data directly to its destination, so users often already

know who to communicate with. In countries that practice address-based censorship,

users typically need to learn the address of some proxy server or service that can rely

traffic to its final destination.

2. Next, the user must learn how to communicate. Sometimes this is trivial, e.g., simply

forward traffic to an open proxy server, which will relay the traffic to its destination.

In many cases, this step involves distribution of encryption keys and software that

uses those keys to establish secure communication.

3. Using these two pieces of information, the user can establish communication using

the circumvention tool.

The first two steps are called bootstrapping. Because the exchange of addresses and

credentials during bootstrapping is an activity that itself may be subject to censorship,

users may need to compose multiple circumvention tools by using a slow, secure secure

circumvention tool to exchange bootstrapping information for a faster tool.

Developers of censorship circumvention systems often strive for several goals:

• Resiliency. The circumvention system must enable users to successfully evade some

type of censorship.

• Performance. Communication should be as fast as possible while still being secure.

We typically measure performance of circumvention systems using traditional net-

work performance metrics like latency and throughput. There is a general tradeoff

between performance and other goals; systems that achieve anonymity and deniabil-

ity typically have far lower performance.

• Deployability. Circumvention tools must make it into the hands of real users and

must be usable by those users. Systems strive to reduce their bootstrapping cost,

i.e., the cost of obtaining initial software and keys, which must happen necessarily

happen outside of the circumvention tool itself.

• Confidentiality. The censor should be unable to read the contents of communication.

This property is normally provided by traditional encryption and is useful because it
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can shield application traffic, thereby frustrating attempts to censor based on traffic

content. For example, a censor wishing to block a single HTTPS URL will have

trouble doing so without inducing collateral damage.

• Anonymity. The censor should be unable to discover who a user is communicating

with. Anonymity normally refers to anonymity of IP addresses, but also applies to

anonymity of users or services. This property is useful because censors often try to

restrict who users communicate with (as opposed to the contents of their communi-

cation). Although useful for censorship circumvention, people also use anonymous

communication tools for other reasons. Tor [51] is probably the most successful

anonymous communication tool and has a many users in countries that do not censor

Internet access.

• Deniability. The censor should be unable to discover that the user is attempting to

communicate using a circumvention tool. This property is useful because making it

difficult for a censor to identify users of circumvention tools increases the amount

collateral damage induced by blocking such tools. For example, if a tool generates

traffic that resembles a VoIP phone call, then a censor wishing to block that tool may

need to block all VoIP communications; doing so would impose a much greater cost

on the censor.

We now summarize approaches and systems for censorship circumvention and discuss

which of the goals they meet. Remember that users may compose multiple tools to enhance

their security; in fact some tools are designed explicitly for this purpose by, e.g., specifying

only a bootstrapping technique and relying on other tools for actual communication.

Simple proxies. Probably the most widely used circumvention tools are simple proxy

tools, like VPNs, SSH tunnels, SOCKS proxies, and HTTP proxies. Standard client and

server software (e.g., OpenVPN, OpenSSH, etc.) often works, although developers have

also created specialized software that adds features to improve resiliency, like automatic

rotation through a pool of potentially blocked proxy IP addresses [70, 123, 151]. Proxies

are attractive because they usually have high performance (i.e., they route traffic through a

single relay before sending it to its destintaion) and are very easy to deploy once users learn

their addresses because proxy functionality is built into most operating systems. These

services do not prescribe a method for bootstraping: users may obtain proxy addresses

by word-of-mouth, Web sites that provide lists of addresses, purchasing access from an

overseas VPN provider, etc. This is one weakness of these services; most methods for

learning proxy addresses make them either easy to find and therefore easy for the censor

to block, or hard for the censor to block and therefore hard to find. Additionally, proxies
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are neither anonymous, confidential, nor deniable with respect to the proxy operator, and

require that users trust this operator, who could collude with authorities to divulge users’

activities. uProxy [152] and Kaleidoscope [137] enable users to relay their traffic via their

social network to alleviate the risk of trusting proxies.

Anonymizing mix networks. Mix networks (e.g., Tor [51], Tarzan [67], Mixminion [46],

Crowds [124]) improve on simple proxies by offering a network of machines through which

users can send traffic if they wish to communicate anonymously with one another. Danezis

and Dias present a comprehensive survey of these networks [45]. Compared to simple

proxies, mix networks trade performance for anonymity and confidentiality, although pre-

vious work has shown that, depending on its location, a censor or observer might be able

to link sender and receiver [7, 11, 61, 103, 133, 134]. These systems do not provide denia-

bility, but users can easily compose mix networks with covert communication channels as

we describe next. Finally, mix networks like Tor traditionally use a public relay list which

is easily blocked, although work has been done to try to rectify this [140, 142].

Covert channels. To achieve deniability, several projects have designed covert commu-

nication channels that hide their traffic inside seemingly legitimate cover. Many of these

systems are designed to be composed with another circumvention tool to provide addi-

tional security (e.g., anonymity), most as pluggable transports for Tor [50]; there are plug-

gable transports that disguise Tor traffic as VoIP calls [86, 102], HTTP [157], encrypted

traffic [109], peer-to-peer communications [62], or arbitrary protocols [53, 160]. Other

schemes like Infranet [59] operate independently of Tor. Researchers have identified weak-

nesses in common approaches to building these transports [73,85]; in Chapter 4 we present

Collage, which provides a covert channel that avoids some of these concerns.

Rendezvous protocols. Some covert channels are too slow for interactive use and are used

as rendezvous protocols for exchanging small pieces of information, particularly addresses

and keys for faster circumvention tools. They typically achieve very strong security prop-

erties like anonymity and deniability at the cost of performance. These sytems include

general purpose rendezvous tools like Online Scanning Services [63] and Collage (Chap-

ter 4); and systems designed specifically to exchange a particular kind of bootstrapping

material, like proxy addresses [60, 101, 137], or Tor relay node addresses [97, 155].

In-network relays. Several researchers have proposed systems that move relays into the

middle of the network [85, 93, 163]. Users address flows to unsuspicious and unwitting

destinations (e.g., weather.com) and a router in the middle of the Internet redirects them to

another, censored destination. This method provides both anonymity and deniability from

the censor, but is very unlikely to be deployed because it requires modification of core
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Internet infrastructure.

Censorship-resistant publication. Some systems aim to provide censorship-resistant doc-

ument storage (as opposed to simply acting as a relay to services that host documents).

Some systems allow publishers and clients to exchange content using either peer-to-peer

networks (Freenet [34]) or using a storage system that makes it difficult for an attacker to

censor content without also removing legitimate content from the system (Tangler [154]).

Freenet provides anonymity and unlinkability, but does not provide deniability for users

of the system, nor does it provide any inherent mechanisms for resilience: an attacker can

observe the messages being exchanged and disrupt them in transit. CovertFS [9] is a file

system that hides data in photos using steganography; it is similar to Collage, but provides

fewer security guarantees.

Neat circumvention tricks. Several researchers have identified weaknesses in specific

censorship implementations that enable circumvention with little to no performance over-

head. Clayton et al. [35] discovered that hosts configured to ignore TCP resets can cir-

cumvent the Chinese firewall, while Duan et al. [52] describe how to ignore injected DNS

responses. While fast, these techniques are brittle because they rely on features of specific

implementations; they also provide no security.

2.6 How this chapter fits with the rest of the dissertation

Chapter 3 presents a method for measuring several varieties of Web censorship from a

broad spectrum of countries. Chapter 4 presents a new rendezvous protocol that provides

deniability and confidentiality and is resilient against a far greater range of attackers than

most existing circumvention techniques.

22



CHAPTER III

MEASURING WEB CENSORSHIP WITH CROSS-ORIGIN
REQUESTS

3.1 Introduction

Consistently and reliably gathering measurements of Internet censorship is extremely dif-

ficult. As we discussed in Chapter 2, perhaps the biggest obstacle entails obtaining access

to a diverse and globally distributed set of vantage points, particularly in regions that are

most likely to experience Internet censorship. Achieving such a widespread deployment in

these locations often requires surmounting language and cultural barriers and convincing

users to install measurement software that is specifically designed for measuring censor-

ship. In some countries, the operation or even possession of such specialized measurement

software could itself be risky or even illegal. Researchers have begun to develop custom

tools to measure filtering from a diverse set of clients worldwide (e.g., OONI [64, 114],

Censorscope [31]), yet widespread deployment remains a perennial challenge. As a result,

researchers have resorted to informal data collection (e.g., complaints on forums [143])

or collection from a small number of non-representative vantage points (e.g., PlanetLab

nodes [135], hosts on virtual private networks, or even ephemeral one-off deployments of

single vantage points) that might not observe the filtering policies that many mobile and

home users experience.

We take an alternate approach: rather than asking users to deploy custom censorship

measurement software—which can be both cumbersome and potentially incriminating—

we take advantage of existing features of the Web to induce unmodified browsers to perform

measurements of Web censorship. Most users access the Internet using a Web browser, so

if we can induce these browsers to perform censorship measurements, we can collect data

from a much larger, more diverse, and more representative set of vantage points than is

possible with custom censorship measurement tools.

Our system, Encore, uses Web browsers on nearly every Internet-connected device as

potential vantage points for collecting data about what, where, and when Web filtering

occurs. Encore relies on a bystander who is hosting a Web page to include a one-line

embedded script, which attempts to retrieve content from third-party Web sites using cross-

origin requests [22, 130]. Although same-origin policies in browsers prohibit many such
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requests (e.g., to thwart cross-site request forgery), our work demonstrates that the types

of cross-origin requests that browsers do allow are sufficient to collect information and

draw conclusions about Web filtering. The Encore script induces every visitor of this Web

page to request an object from a URL that Encore wishes to test for filtering. Encore then

sends binary feedback about whether that request succeeded or failed to a central server for

correlation and analysis across vantage points.

Although the basic mechanism is conceptually simple, designing Encore presents sev-

eral challenges. First, Encore’s measurements must operate within the constraints of the

types of cross-origin requests that Web browsers permit. For example, the img HTML

directive yields the most conclusive feedback about whether an object fails to load, but can

only be used to test images, not general URLs. This limitation means that while it may be

useful for detecting (say) the filtering of an entire DNS domain, it cannot test the reacha-

bility of specific (non-image) URLs. Encore’s design must recognize which cross-origin

requests browsers permit and use collections of these requests to draw inferences with

higher confidence. Second, because Encore requires operators of Web sites to augment

their existing Web pages, Encore should be easy to install and incur minimal performance

overhead on the Web sites where it is deployed.

Encore can detect whether certain URLs are filtered, but it cannot determine how they

are filtered. Subtler forms of filtering (e.g., slowing page loads by introducing latency or

packet loss) are more difficult to detect, and detecting manipulation of the content itself

(e.g., replacing a Web page with a block page, or substituting content) using Encore is

nearly impossible. As such, Encore may ultimately complement other censorship measure-

ment systems, which can perform detailed analysis but face much higher deployment hur-

dles. Ultimately, neither Encore nor other censorship analysis tools can determine human

motivations behind filtering, or even whether filtering was intentional; they only provide

data to policy experts who make such judgments.

We present background on cross-origin Web requests in Section 3.2. Section 3.3 ex-

plains how Encore infers Web filtering using cross-origin requests, and Section 3.4 explains

how to apply this inference technique and gather measurements from a diverse population

of clients. We evaluate the feasibility of deploying Encore in Section 3.5, explore prelimi-

nary results in Section 3.6, and conclude with a discussion of security in Section 3.7.

3.2 Background

This section gives an overview of cross-origin requests, which are the technique that Encore

uses to measure Web filtering. We then introduce threats to our accurate collection and
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interpretation of these measurements.

3.2.1 Cross-Origin Requests

Web browsers’ same-origin policies restrict how a Web page from one origin can interact

with a resource from another origin; an origin is defined according to the protocol, port,

and DNS domain (“host”) [130]. Sites can typically send information to another origin

using links, redirects, and form submissions, but they cannot generally receive data from

another; in particular, browsers restrict cross-origin reads from scripts to prevent attacks

such as cross-site request forgery. However, because cross-origin embedding is typically

allowed, certain read access can be leaked by means of embedding. The cornerstone of

Encore’s design is to use information that is leaked via cross-origin embedding of objects

to determine whether an object from another origin can be successfully loaded.

Various mechanisms allow Web pages to embed remote resources using HTTP requests

across origins; some forms of cross-origin embedding are not subject to the same types

of security checks as other cross-origin reads. Examples of resources that can be embed-

ded include simple markup of images or other media (e.g., <img>), remote scripts (e.g.,

<script>), remote stylesheets (e.g., <link rel="stylesheet" href="..."),

embedded objects and applets (e.g., <embed src="..."), and document embedded

frames such as iframes (e.g., <iframe>). Each of these remote resources has different

restrictions on how the origin page can load them, and the amount of information that is

leaked from such embedded references. For example, images embedded with the img tag

trigger an onload event if the browser successfully retrieves and renders the image, and

an onerror event otherwise. The ability for the origin page to see these types of events

can allow the origin page to infer whether the cross-origin request succeeded, even though

the request refers to an object from a different origin.

Although cross-origin embedding of media provides the most explicit feedback to the

origin about whether the page load succeeded, other embedded references can still pro-

vide more limited information, through timing of onload invocation or introspection on

a Web page’s style. Additionally, different browsers have different security policies and

vulnerabilities; for example, we discovered that the Chrome browser allows an origin site

to load any cross-origin object via the script tag, which allows us to perform a much

more liberal set of measurements from Chrome users. One challenge in designing En-

core is determining whether (and how) various embedded object references can help infer

information about whether an object was retrieved successfully.
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3.2.2 Prior use of cross-origin requests

We are not the first to advocate the use of cross-origin requests for client measurements.

Bortz et al. use timing information from cross-site requests to infer various information,

such as whether a user is logged into a particular site or whether a user has visited a Web

page before [19]. Karir et al. use embedded Javascript with cross-origin requests to mea-

sure IPv6 reachability and performance from large numbers of clients [92]; the use of em-

bedded cross-origin requests to obtain large number of clients is similar to Encore’s design.

Other systems have used cross-origin requests to third parties to determine information such

as network latency between a client and some other Internet destination [79, 108]. These

tools and techniques use similar techniques as Encore, but they primarily aim to measure

network performance or past user behavior based on the timing of successful cross-origin

requests. They do not include techniques to infer reachability of domains, IP addresses, or

URLs based on the success (or lack thereof) of cross-origin requests. This section surveys

related work. We summarize existing censorship measurement techniques and previous

studies of Internet censorship and Web filtering; other policy reports of Internet censorship

(which can ultimately seed our measurements); and other efforts to perform measurements

from clients using advertisements or embedded images. Although we broadly survey In-

ternet censorship practices, Encore focuses specifically on Web filtering, not more general

Internet censorship.

3.2.3 Threat Model

We assume the censor applies the Web filtering mechanisms we introduced in Section 2.1.

Because of censors implement these mechanisms in various ways, we conservatively as-

sume that censors can impose censorship from any network infrastructure within their con-

trol, excluding end hosts. (Previous attempts at widespread control over end hosts have

been unsuccessful [57].) Web filtering typically takes place when the client performs an

initial DNS lookup (at which point the DNS request may result in blocking or redirec-

tion), when the client attempts to establish a TCP connection to the Web server hosting

the content (at which point packets may be dropped or the connection may be reset), or in

response to a specific HTTP request or response (at which point the censor may reset the

TCP connection, drop HTTP requests, or redirect the client to a block page). Encore can

usually determine when a page is blocked, but in most cases cannot determine how. Sec-

tion 3.3 details Encore’s inference algorithm for detecting various forms of Web filtering

using cross-origin requests.
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Our goal is not to circumvent Web filtering but to measure it. Nevertheless, measure-

ment faces its own set of threats. Suppose that clients measure Web filtering by attempting

to reach a site and subsequently submitting reports on whether those attempts succeeded

or failed. In such a scenario, we assume an adversary that can reject, block, or modify any

stage of a Web connection in order to filter Web access for subsets of clients, although we

assume the adversary uses a blacklist and is unwilling to filter all Web traffic, or even sig-

nificant fractions of all Web traffic. This adversary plays three roles in Encore’s design: (1)

the goal of Encore is to measure the adversary’s Web filtering behavior, (2) the adversary

may attempt to filter clients’ access to Encore itself, thereby preventing them from collect-

ing or contributing measurements, and (3) the adversary may attempt to distort Encore’s

filtering measurements by allowing measurement traffic but denying “regular” access to

the same site. We consider all three aspects of Encore’s relationship with this adversary.

Additionally, we briefly consider an adversary that attempts to block, corrupt, or falsify

either the measurement tasks we distribute to clients or the measurement results we collect

from them.

3.3 Measuring Filtering with Encore

This section explains how Encore measures Web filtering using cross-origin requests. We

first provide an overview of how Encore works, and describe the specific limitations on

what Encore can and cannot conclude from the information it collects. We then describe

the measurement tasks that Encore can perform, and what it can (and cannot) infer from

these measurements. Finally, we describe the setup that we use to validate Encore’s mea-

surements. Section 3.4 builds a distributed Web filtering measurement platform using the

measurement and inference primitives that we develop in this section. We defer discussion

of how origin Web servers learn which measurement targets to test from each client (target

selection) and how Web clients send the results of their measurements to a central location

for analysis (measurement collection) to Section 3.4.

3.3.1 Overview

Figure 5 illustrates how Encore measures Web filtering. The process involves three parties:

a Web client that acts as our measurement vantage point; a measurement target, which is

a server that hosts a Web resource that we suspect is filtered; and an origin Web server,

which serves a Web page to the Web client instructing the client how to collect measure-

ments. In each page it serves, the origin includes a measurement task, which is a small

measurement collection program that attempt to access potentially filtered Web resources
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Client

1. Origin serves page to client
containing measurement task

3. Task issues a cross-orign request
for a resource on measurement target

4. Censor (may) filter
request or response

2. Client renders page and
executes measurement task

Origin
Web site

Measurement
target

Figure 5: Encore induces browsers to collect Web filtering measurements by bundling
measurement tasks inside pages served by an origin Web site. Measurement tasks instruct
the client to attempt to fetch a Web resource from a measurement target using a cross-origin
request.

(e.g., Web pages, image files, etc.) from the target and determine whether such accesses

were successful. The client runs this measurement task after downloading and rendering

the page. The greatest challenge is coping with browsers’ limited APIs for conducting

network measurements, particularly when accessing these resources requires issuing cross-

origin requests.

The scope of Web filtering varies in granularity from individual URLs (e.g., a specific

news article or blog post) to entire domains. Detecting Web filtering is difficult regardless

of granularity. On one hand, detection becomes more difficult with increasing specificity.

When specific Web resources are filtered (as opposed to, say, entire domains), there are

fewer ways to detect it. Detecting filtering of entire domains is relatively straightforward

because we have the flexibility to test for such filtering by simply checking accessibility

of a small number of resources hosted on that domain. In contrast, detecting filtering of a

single URL essentially requires an attempt to access that exact URL. Resource embedding

only works with some types of resources, which further restricts the Web resources we can

test and exacerbates the difficulty of detecting very specific instances of filtering.

On the other hand, inferring broad filtering is difficult because Encore can only ob-

serve the accessibility of individual Web resources, and such observations are binary (i.e.,

whether or not the resource was reachable). Any conclusions we draw about the scope of
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Web filtering must be inferred from measurements of individual resources. We take a first-

order glimpse at such inferences in Section 3.3.3 and present a filtering detection algorithm

in Section 3.6.

3.3.2 Measurement tasks

Measurement tasks are small, self-contained HTML and JavaScript snippets that attempt to

load a Web resource from a measurement target. Encore’s measurement tasks must satisfy

four requirements:

1. They must be able to successfully load a cross-origin resource in locations without

Web filtering. This excludes using XMLHttpRequest (i.e., AJAX requests), which is

the most convenient way to issue cross-origin requests, because default Cross-origin

Resource Sharing settings prevent such requests from loading cross-origin resources

from nearly all domains. Instead, we induce cross-origin requests by embedding

images, style sheets, and scripts across domains, which browsers typically allow.

2. They must provide feedback about whether or not loading a cross-origin resource

was successful. Several convenient mechanisms for loading arbitrary cross-origin

requests (e.g., the iframe tag) lack a clear way to detect when resources fail to

load, and are hence unsuitable for measurement tasks.

3. Tasks must not compromise the security of the page running the task. Tasks face both

client- and server-side security threats. On the client side, because Encore detects

Web filtering by embedding content from other origins (rather than simply requesting

it, as would be possible with an AJAX request), such embedding can pose a threat as

the browser renders or otherwise evaluates the resource after downloading it. In some

cases, rendering or evaluating the resources is always innocuous (e.g., image files); in

other cases (e.g., JavaScripts), Encore must carefully sandbox the embedded content

to prevent it from affecting other aspects of Web browsing. Requesting almost any

Web object changes server state, and measurement tasks must take these possible side

effects into account. In some cases, the server simply logs that the request happened,

but in others, the server might insert rows into a database, mutate cookies, change

a user’s account settings, etc. Although it is often impossible to predict such state

changes, measurement tasks should try to only test URLs without obvious server

side-effects.

4. Finally, measurement tasks must not significantly affect perceived page performance,

appearance, or network usage.
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Table 4: Measurement tasks use several mechanisms to discover whether Web resources
are filtered. Each mechanism can only be used to test for filtering of a subset of Web
resources. Some resources cannot be tested using any of these methods. We empirically
evaluate parameters for images and inline frames in Section 3.5.

Embedded resource Summary Limitations
Images Render an image. Browser fires

onload if successful.
Only small images (e.g., ≤ 1 KB).

Style sheets Load a style sheet and test its effects. Only non-empty style sheets.
Inline frames Load a Web page in an iframe,

then load an image embedded on
that page. Cached images render
quickly, implying the page was not
filtered.

Only pages with cacheable images.
Only small pages (e.g., ≤ 100 KB).
Only pages without side effects.

Scripts Load and evaluate a resource as a
script. Chrome fires onload iff it
fetched the resource with HTTP 200
status.

Only with Chrome.
Only with strict MIME type checking.

Below is an example of a simple measurement task that instructs the Web client to load an

image hosted by a measurement target censored.com:

<img src="//censored.com/favicon.ico"

style="display: none"

onload="submitSuccess()"

onerror="submitFailure()"/>

This task meets the four requirements because it (1) requests an image from a remote

measurement target using the img tag, which is allowed by browser security policy, (2)

detects whether the browser successfully loaded the image by listening for the onload

and onerror events, (3) trivially maintains security by not executing any code from

resources served by the measurement target, and (4) preserves performance and appear-

ance by only loading a very small icon (typically 16x16 pixels) and hiding it using the

display: none style rule. Section 3.4 explains how tasks submit results using the

submitSuccess and submitFailure functions. Appendix A presents a longer ex-

ample of a measurement task.

3.3.3 Inferring Web filtering

A measurement task provides binary indication of whether a particular resource failed to

load, thus implying filtering of that specific resource. From this, we draw more general

conclusions about the scope of filtering, beyond individual resources (e.g., whether an en-

tire domain is filtered, whether an entire portion of a Web site is filtered, whether certain
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keywords are filtered). We must do so with little additional information about the filtering

mechanism. This section describes how we design sets of measurement tasks to make these

inferences in the abstract. We defer details about how to use these tasks to measure specific

instances of filtering Section 3.4.

There are several ways of testing accessibility of cross-origin Web resources; unfor-

tunately, none of them work across all types of filtering, all Web browsers, and all target

sites. Instead, we automatically tailor measurement tasks to each measurement target and

Web client. Detecting Web filtering gets harder as the scope of filtering becomes more

specific, so we start with techniques for detecting broad-scale filtering and work toward

more specific filtering schemes. Table 4 summarizes the measurement tasks we discuss

in this section. Section 3.5 empirically determines concrete values for vague claims about

requirements for each measurement task (e.g., “small” images).

3.3.3.1 Filtering of entire domains

Encore can perform collections of measurement tasks that can help us infer that a censor

is filtering an entire domain. It is prohibitively expensive to check accessibility of every

URL hosted on a given domain. Instead, we assume that if several “auxiliary” resources

hosted on a domain (e.g., images, style sheets, etc.) are inaccessible then the entire domain

is probably inaccessible. Our intuition is that the adversary is unlikely to filter access

to merely an arbitrary sampling of supporting resources (as there is not really a practical

reason for doing so); rather, the adversary will more likely filter the entire domain (or at

least an entire section of a Web site).

Fortunately, detecting filtering of some auxiliary resources is straightforward because

these resources are typically embedded on Web pages even across origins. We discuss two

such auxiliary resources.

Images. Web pages commonly embed images, even across origins. Such embedding is es-

sential for enabling Web services like online advertising and content distribution networks

to serve content across many domains.

Encore attempts to load and display an image file from a remote origin by embedding

it using the <img src=... tag. Conveniently, all major browsers fire an onload event

after the browser fetches and renders the image, and fire onerror if either of those steps

fails; the requirement to successfully render the image means that this mechanism only

works for image files and cannot decide the accessibility of non-image content. Down-

loading and rendering an image does not affect user-perceived performance if the image

is small (e.g., an icon), and measurement tasks can easily hide images from view. This
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technique only works if the remote origin hosts a small image for us to embed.

Style sheets. Web pages also commonly load style sheets across origins. For example, sites

often load common style sheets (e.g., Bootstrap [18]) from a CDN to boost performance

and increase cache efficiency.

Encore attempts to load a style sheet using the <style src=...> tag and detects

success of the load by verifying that the browser applied the style specified by the sheet. For

example, if the sheet specifies that the font color for <p> tags is blue, then the task creates

a <p> tag and checks whether its color is blue using getComputedStyle. To prevent

the sheet’s style rules from colliding with those of the parent Web page, we load the sheet

inside an iframe. Although some browsers are vulnerable to cross-site scripting attacks

when loading style sheets, these issues have been fixed in all newer browsers [88]. Style

sheets are generally small and load quickly, resulting in negligible performance overhead.

3.3.3.2 Filtering of specific Web pages

Governments sometimes filter one or two Web pages (e.g., blog posts) but leave the remain-

der of a domain intact, including resources embedded by the filtered pages [105]. Detecting

this type of filtering is more difficult because there is less flexibility in the set of resources

that Encore can use for measurement tasks: it must test accessibility of the Web page in

question and cannot generally determine whether the page is filtered based on the accessi-

bility of other (possibly related) resources. Testing filtering of Web pages, as opposed to

individual resources, is significantly more expensive, complicated, and prone to security

vulnerabilities because such testing often involves fetching not only the page itself, but

also fetching all of that page’s referenced objects and rendering everything. This means we

must be very careful in selecting pages to test. Many pages are simply too expensive or

open too many vulnerabilities to test. Section 3.4 discusses the infrastructure and decision

process we use to decide whether a Web page is suitable for testing.

We present two mechanisms for testing Web filtering of Web pages, and the limitations

of each mechanism:

Inline frames. A Web page can include any other Web page inside itself using the iframe

tag, even across origins. However, browsers place strict communication barriers between

the inline page and the embedding page for security, and provide no explicit notification

about whether an inline frame loaded successfully.

Instead, the task infers whether the resource loaded successfully by observing timing.

It first attempts to load the page in an iframe; then, after that iframe finishes load,the task

records how long it takes to download and render an image that was embedded on that
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page. If rendering this image is fast (e.g., less than a few milliseconds) we assume that the

image was cached from the previous fetch and therefore the Web page loaded successfully.

This approach obviously only works with pages than embed objects that will be cached by

the browser and are unlikely to have been cached from a prior visit to another Web page;

for example, common images like the Facebook’s “thumbs up” icon appear on many pages

and may be in the browser cache even if the iframe failed to load. This approach can be

expensive because it requires downloading and rendering entire Web pages. Additionally,

pages can detect when they are rendered in an inline frame and may block such embedding.

Scripts. Web pages often embed scripts across origins, similarly to how they embed style

sheets. For example, many pages embed the jQuery and other JavaScript libraries hosted

by a content distribution network or some other third-party host [90].

The Chrome Web browser handles script embedding in a way that lets us gauge acces-

sibility of non-script resources from a remote origin. Chrome fires an onload event if it

can fetch the resource (i.e., with an HTTP 200 OK response), regardless of whether the re-

source is valid JavaScript. In particular, Chrome respects the X-Content-Type-Options:

nosniff header, which servers use to instruct browsers to prohibit execution of scripts

with an invalid MIME type [10]. Other browsers aren’t so forgiving, so we only use this

task type on Chrome. Although this technique is convenient, it raises security concerns be-

cause other browsers may attempt to execute the fetched object as JavaScript. Section 3.4

describes the infrastructure we use to make this decision.

3.4 Encore Measurement System

This section presents Encore, a distributed platform for measuring Web filtering using the

techniques we developed in Section 3.3. Encore selects targets to test for Web filtering

(§ 3.4.1), generates measurement tasks to measure those targets (§ 3.4.2), schedules tasks

to run on Web clients (§ 3.4.3), delivers these tasks to clients for execution (§ 3.4.4), collects

the results of each task (§ 3.4.5), and draws conclusions concerning filtering practices based

on the collective outcomes of these tests using the inference techniques that we previously

described in Section 3.3.

Figure 6 shows an example of how Encore induces a client to collect measurements of

Web filtering. The client visits a Web site http://example.com, whose webmaster

has volunteered to host Encore. This origin page references a measurement task hosted

on a coordination server; the client downloads the measurement task, which in turn in-

structs the client to attempt to load a resource (e.g., an image) from a measurement target

censored.com. This request is filtered, so the client informs a collection server of this
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Client
HTTP GET /foo.html

HTTP GET /task.js

HTTP GET /favicon.ico

HTTP GET /submit?result=failure

...<script src="//coordinator/task.js">...

...<img src="//censored.com/favicon.ico"/>...

example.com
Web server

Coordination
server

censored.com
target

Collection
server

Figure 6: An example of observing Web filtering with Encore. The origin Web page in-
cludes Encore’s measurement script, which the coordinator decides should test filtering of
censored.com by attempting to fetch an image. The request for this image fails so the
client notifies the collection server of the failure.
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filtering. The remainder of this section explains how the origin Web server, coordination

server, and collection server work together to induce and collect Web filtering measure-

ments.

3.4.1 Sources of measurement targets

Encore requires a set of potentially filtered Web sites and resources that it will test for Web

filtering. This list can contain either specific Web resources (e.g., Web page URLs) in the

case that Encore is testing the reachability of a specific page; or a URL pattern denoting

sets of URLs (e.g., an entire domain name or URL prefix), where Encore is testing the

reachability of a domain or a portion of a Web site. A small list of targets with a high chance

of filtering is most useful during initial stages of deployment when clients of only a few

moderately popular Web sites will likely be contributing measurements. As deployment

spreads, a broader set of targets can increase breadth of measurements. We explore both

how to obtain lists in both scenarios.

During initial deployment, Encore relies on third parties to provide lists of URLs to

test for Web filtering. Several organizations maintain such lists. Some sites rely on per-

country experts to curate URLs (e.g., GreatFire for China [77], Filbaan for Iran [65]), while

others crowdsource list creation and let anyone contribute reports of Web censorship (e.g.,

Herdict [82]). Our evaluation in Section 3.5 uses a list of several hundred “high value”

URLs curated by Herdict and its partners.

If we deploy Encore to a large number of geographically distributed Web clients, and

build a large, accurate Web index, we could instead use Encore clients to verify accessibility

of the entire Web index; this would avoid the need for specialized lists of measurement

targets by instead testing the entire Web. Regardless of whether Encore curates a small list

of high-value measurement targets or simply extracts URLs from a large Web index, these

URLs and URL patterns serve as input for Encore’s next stage.

Because Encore induces oblivious Web users to perform measurements, there are lim-

itations on the list of targets we will feel comfortable measuring without user consent.

Section 3.7 discusses these concerns further.

3.4.2 Generating measurement tasks

Measurement task generation is a three-step procedure that transforms URL patterns from

the list of measurement targets into a set of measurement tasks that can determine whether

the resources denoted by those URL patterns are filtered for a client. Figure 7 summarizes

the process. First, the Pattern Expander transforms each URL pattern into a set of URLs by
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Figure 7: Encore transforms transforms a list of URL patterns to a set of measurement tasks
in three steps. A URL pattern denotes a set of URL (e.g., all URLs on a domain). A HAR
is an HTTP Archive [80].

searching for URLs on the Web that match the pattern. Second, the Target Fetcher collects

detailed information about each URL by loading and rendering it in a real Web browser and

recording its behavior in an HTTP Archive (HAR) file [80]. Finally, the Task Generator

examines each HAR file to determine which of Encore’s measurement task types, if any,

can measure each resource and generates measurement tasks for that subset of resources.

The Pattern Expander searches for URLs that match each URL pattern. This step iden-

tifies a set of URLs that can all indicate reachability of a single resource; for example, all

URLs with the prefix http://foo.com/ are candidates for detecting filtering of the

foo.com domain. Some patterns are trivial (i.e., they match a single URL) and require

no work. The remainder require us to discover URLs that match the pattern. We currently

expand URL patterns to a sample of up to 50 URLs by scraping site-specific results (i.e.,

using the site: search operator) from a popular search engine. In the future, Encore could

use its own Web crawler to explore each pattern.

After expanding URL patterns into a larger set of URLs, the Target Fetcher renders

each URL in a Web browser and records a HAR file, which documents the set of resources

that a browser downloads while rendering a URL, timing information for each operation,

and the HTTP headers of each request and response, among other metadata. We use the

PhantomJS [121] headless browser hosted on servers at our university in the United States.

To the best of our knowledge, our university does not filter Web requests, especially to the

set of URLs we consider in this paper.

Finally, the Task Generator analyzes each HAR file to determine which subset of re-

sources is suitable for measuring using one of the types of measurement tasks from Table 4.

It examines timing and network usage of each resource to decide whether a resource is

small enough to load from an origin server without significantly affecting user experience,

then inspects content type and caching headers to decide whether a resource matches one of

the measurement tasks. The Task Generator is particularly conservative when considering

inline frames because loading full Web pages can severely impact performance and user ex-

perience (e.g., by playing music or videos). Our prototype implementation excludes pages

that load flash applets, videos, or any other large objects totalling more than 100 KB, and
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requires manual verification of pages before deployment; a future implementation could

apply stricter controls. Refer back to Section 3.3 for more information on the requirements

for each type of measurement task. Section 3.5.1 further explores network overhead of

measurement tasks.

3.4.3 Scheduling measurement tasks

After generating measurement tasks, the coordination server must decide which task to

schedule on each client. Task scheduling serves two purposes. First, it enables clients to

run measurements that meet their restrictions. For example, we should only schedule the

script task type from Table 4 on clients running Chrome. In other cases, we may wish to

schedule additional tasks on clients that remain idle on an origin Web page for a long time.

Second, intelligent task scheduling enables Encore to move beyond analyzing individual

measurements and draw conclusions by comparing measurements between clients, coun-

tries, and ISPs. For example, a single client in Pakistan could report failure to access a

URL for a variety of reasons other than Web filtering (e.g., high client system load, tran-

sient DNS failure, WiFi unreliability, etc.). However, if 100 clients measure the same URL

within 60 seconds of each other and the only clients that report failure are 10 clients in

Pakistan, then we can draw much stronger conclusions about the presence of Web filtering.

3.4.4 Delivering measurement tasks

After scheduling measurement tasks for execution, Encore must deliver tasks to these

clients, who subsequently run them and issue cross-origin requests for potentially filtered

Web resources. To collect a significant number of useful Web filtering measurements,

Encore requires a large client population that is likely to experience a diversity of Web

filtering. Previous censorship measurement efforts require researchers to recruit vantage

points individually and instruct them to install custom software, which presents a signif-

icant deployment barrier [64, 111]. In contrast, Encore recruits a relatively small number

of webmasters and piggybacks on top of their sites’ existing Web traffic, instantly enlisting

nearly all of these sites’ visitors as measurement collection agents.

A webmaster can enable Encore in several ways. The simplest method is to add a single

<script> tag that directs clients to load an external JavaScript directly from the coordi-

nation server. The coordination server generates a measurement task specific to the client

on-the-fly. This method is attractive because it requires no server-side modifications, aside

from a single tag; incurs little server overhead (i.e., only the extra time and space required

to transmit that single line); and allows the coordination server to tailor measurement tasks
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to individual clients in real time. Unfortunately, this method is also easiest for censors to

fingerprint and disrupt: a censor can simply block access to the coordination server, which

inflicts no collateral damage. Section 3.7 discusses ways to make task delivery more robust

to blocking, while Section 3.5.3 discusses motivations for webmasters to include Encore

on their sites in the first place.

An alternative means of rapidly gaining access to vantage points is to embed mea-

surement tasks inside online advertisements that we purchase. This method exploits web-

masters’ preestablished relationships with online advertising networks to deliver our mea-

surement tasks without direct consent for measuring Web filtering. Additionally, online

ad networks let advertisers sell ads to specific audiences, which will allow us to collect

measurements from areas of interest. The main disadvantage of relying entirely on this

method for delivering measurement tasks is that there is a single point of failure; the ad

network itself may not take kindly to perceived misuse of its service, especially if it leads

to network filtering and subsequent loss of revenue in countries wishing to suppress our

measurements. During initial deployment of our system, however, these effects are likely

to be small enough not to cause trouble.

3.4.5 Collecting measurement results

After clients run a measurement task, they submit the result of the task for analysis. Clients

submit the result of task (i.e., whether the client could successfully load the cross-origin

resource), related timing information (i.e., how long it took to load the resource), and the

task’s measurement ID. The process of submitting results is similar to the process that

clients use to obtain measurement tasks. In the absence of interference from the adversary,

clients submit results by issuing an AJAX request containing the results directly to our

collection server. Section 3.7 discusses other ways to submit results if the adversary filters

access to the collection server.

3.5 Feasibility of Encore Deployment

We evaluate the feasibility of deploying Encore based on early experience with a proto-

type implementation and analysis of potential measurement targets. This section addresses

three questions about Encore’s deployment: (1) whether Encore’s measurement tasks can

detect filtering of real Web resources, which we explore with offline analysis of potentially-

filtered Web sites; (2) whether users visit origin sites, run measurement tasks, and collect

measurements, which we estimate using analytics data collected from a likely site of Encore

deployment; (3) if webmasters will install Encore, which we study in terms of webmaster
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incentives and estimated deployment costs.

3.5.1 Can Encore tasks detect filtering?

This section investigates Encore’s ability to measure filtering of real Web sites. We in-

vestigate feasibility of using Encore to measure filtering of both entire domain names and

individual URLs. To measure filtering practices, we use a list of domains and URLs that are

“high value” for censorship measurement according to Herdict and its partners [83]; most

sites are either perceived as likely filtering targets in many countries (e.g., because they

are affiliated with human rights and press freedom organizations) or would cause substan-

tial disruption if filtered (e.g., social media like Twitter and YouTube). This list contains

over 200 URL patterns, of which only 178 were online when we performed our analysis in

February 2014.

We collect data for this set of experiments by running the first two stages of the pipeline

in Figure 7, which uses the Pattern Expander to generate a list of 6,548 URLs from the 178

URL patterns in our list, then collect HAR files for each URL using the Target Fetcher. We

then send these HAR files to a modified version of the Task Generator that emits statistics

about sizes of accepted resources and pages.

Filtering of entire domains. We explore whether Encore can measure filtering of each of

the 178 domains on the list we generated as described above. Recall from Section 3.3.3 that

we can use either images or style sheets to observe Web filtering of an entire domain; for

simplicity, this analysis only considers images, although style sheets work similarly. We

can measure a domain using this technique if it (1) contains images that can be embedded

by an origin site and (2) those images are small enough not to significantly impact user

experience. We explore both of these requirements for the 178 domains in our list. Because

our prototype implementation expands URL patterns using the top 50 search results for

that pattern, we will be analyzing a sample of at most 50 URLs per domain. Most of these

domains have more than 50 pages, so our results are a lower bound of the amenability of

Encore to collect censorship measurements from each domain.

Figure 8 plots the distribution of the number of images that each domain hosts. 70% of

domains embed at least one image, and almost all such images are less than 5 KB. Nearly

as many domains embed images that fit within a single packet and a third of domains

have hundreds of such images. Even if we conservatively restrict measurement tasks to

load images less than 1 KB, Encore can effectively measure Web filtering of over half the

domains in our list.

Filtering of specific Web sites. We explore how often Encore can measure filtering of
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Figure 8: Distribution of the number of images hosted by each of the 178 domains tested,
for images that are at most 1 KB, at most 5 KB, and any size. Over 60% of domains host
images that could be delivered to clients inside a single packet, and a third of domains have
hundreds of such images to choose from.

individual URLs hosted on the domains from the list we constructed. Table 4 presented

three mechanisms for measuring filtering of individual Web pages: two iframe mecha-

nisms and a browser-specific script embedding mechanism. We explore the feasibility the

“inline frames (caching)” mechanism, which attempts to load a Web page in an iframe,

then verifies that the browser cached embedded resources from that page. We can use this

mechanism to measure filtering of pages that (1) don’t incur too much network overhead

when loading in a hidden iframe and (2) embed cacheable images. Analysis of the “in-

line frames (load time)” mechanism requires complex parameter tuning that requires a lot

of timing from a diverse client population. Although the “script embedding” mechanism

works with nearly all URLs, the technique only works for users who are browsing using

Chrome.

We first study the expected network overhead from loading sites in an iframe. Figure 9

plots the distribution of page sizes for each URL, where the page size is the sum of sizes of

all resources a page loads and is a rough lower bound on the network overhead that would

be incurred by loading each page in a hidden iframe (protocol negotiation and inefficiencies

add further overhead). Page sizes are distributed relatively evenly between 0–2 MB with a

very long tail. Our prototype only permits measurement tasks to load pages smaller than

100 KB, although future implementations could perhaps tune this bound depending on a

client’s performance and preferences.
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Figure 9: Distribution of page sizes, computed as the sum of sizes of all objects loaded by
a page. This indicates the network overhead each page would incur if a measurement task
loaded it in a hidden iframe. Over half of pages load at least half a megabyte of objects.

We then evaluate whether these sites embed content that can be retrieved with cross-

origin requests. Figure 10 shows the distribution of the number of cacheable images per

URL for pages that are at most 100 KB, at most 500 KB, and any size. Nearly 70% of

pages embed at least one cacheable image and half of pages cache five or more images, but

these numbers drop significantly when restricting page sizes. Only 30% of pages at most

100 KB embed at least one cacheable image.

Encore can measure filtering of upwards of 50% of domains depending on the sizes

of images, but less than 10% of URLs when we limit pages to 100 KB. This finding sup-

ports our earlier observation in Section 3.3.3 that detecting the filtering of individual Web

resources may be significantly more difficult than detecting the filtering of entire domains.

3.5.2 Who performs Encore measurements?

Encore requires clients to visit the Web sites that are hosting Encore scripts. The demo-

graphics of clients who perform Encore measurements is closely related to the demograph-

ics of the clients who visit a participating Web site. To evaluate whether a typical Web site

would receive measurements from enough locations, we installed Encore on the home page

of a university faculty member for February 2014 and analyzed the measurement results

and analytics data it collected. We ran a single measurement task that loads an icon from

google.com. Over the course of the month, the site saw 1, 171 visits. Most visitors were
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Figure 10: Distribution of the number of cacheable images loaded by pages that require at
most 100 KB of traffic to load, pages that incur at most 500 KB of traffic, and all pages.
Perhaps unsurprisingly, smaller pages contain fewer (cacheable) images. Over 70% of all
pages cache at least one image and half of all pages cache five or more images; these
numbers drop considerably when excluding pages greater than 100 KB.

from the United States, but we saw more than 10 users from 10 other countries, and 16% of

visitors reside in countries with well-known Web filtering policies (India, China, Pakistan,

the UK, and South Korea), indicating that dispatching measurement tasks to sites such as

academic Web pages may actually result in measurements from a variety of representative

locations.

Of the 1, 171 unique visitors to the site, 999 attempted to run a measurement task (we

confirmed nearly all of the rest to be automated traffic from our campus’ security scanner),

and 997 successfully fetched a cross-origin resource. Only one reported a failure, and one

didn’t report a result either way. The single failure came from a client in India, which might

have poor connectivity even to popular services like Google. We also found that 45% of

visitors remained on the page for longer than 10 seconds, which is more than sufficient

time to execute at least one measurement task and report its results. The 35% of visitors

who remained for longer than a minute could actually run multiple measurement tasks.

Our small pilot deployment of Encore is representative of the sites on which we can

expect Encore to be deployed in the short term. Our next round of webmaster recruit-

ment will likely be to friends and colleagues who are mostly academics and whose Web

sites and whose audience likely resembles our pilot site. Although adoption of Encore by

even a single high-traffic Web site would entirely eclipse measurements collected by these
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small university deployments, grassroots recruitment remains necessary: Encore relies on

a variety of origin sites to deter an adversary from simply blocking access to all origins to

suppress our measurement collection. Section 3.7 discusses further mechanisms for deter-

ring filtering of Encore’s origin sites and backend infrastructure.

3.5.3 Will webmasters install Encore?

Encore cannot directly target specific demographics for measurement collection—the mea-

surements that we collect arise “organically” from the set of users who happen to visit a

Web site that has installed an Encore script. If the sites that host Encore are globally pop-

ular sites (e.g., Google), then Encore can achieve an extremely widespread sampling of

users. If, on the other hand, the sites are only popular in particular regions, the resulting

measurements will be more limited. The best solution to this problem is to achieve deploy-

ment across sites that are likely to be popular among client populations where we would

like measurements or to deploy on globally popular sites.

Recruiting webmasters to include Encore’s measurement scripts should be feasible.

First, installing Encore on a Web site incurs little cost. Serving these scripts to clients

adds minimal network overhead; our prototype adds only 100 bytes to each origin page

and requires no additional requests or connections between the client and the origin server.

Measurements themselves have little effect on the Web page’s perceived performance be-

cause they run asynchronously after the page has loaded and rendered. However, they do

incur some network overhead to clients when loading cross-origin resources, which may

be undesirable to users with bandwidth caps or slow, shared network connections. As Sec-

tion 3.5.1 explained, measurement tasks that detect filtering of a domain (i.e., by loading

small images) incur overheads that are an insignificant fraction of a page’s network usage.

Second, we see two strong incentives for webmasters to participate in Encore. Many

webmasters may support Encore simply out of greater interest in measuring Web filtering

and encouraging transparency of government censorship. The grassroots success of similar

online freedom projects (e.g., Tor) in recruiting people to host relays and bridges suggests

that such a population does exist. For further incentive, we could institute a reciprocity

agreement for webmasters: in exchange for installing our measurement scripts, webmasters

could add their own site to Encore’s list of targets and receive notification about their site’s

availability from Encore’s client population.
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3.6 Measurements

In this section, we confirm the soundness of Encore’s measurement tasks with both con-

trolled experiments and by comparing our ability to confirm cases of Web filtering with

independent reports of filtering from other research studies. We have implemented and re-

leased every component of Encore described in Section 3.4 and have collected one month

of measurements in April 2014 [55].

To date, eight volunteers have deployed Encore on their sites; most of our measure-

ments originate from the home pages of two professors who receive high traffic volumes.

We recorded 6,666 measurements from 3,347 distinct IPs in 98 countries, with the United

States, China, Canada, India, Germany, Brazil, the United Kingdom, Egypt, and South Ko-

rea each reporting more than 100 measurements. Most of these countries practice some

form of Web filtering. We use a standard IP geolocation database to determine client loca-

tions [99].

3.6.1 Are measurement tasks sound?

To confirm the soundness of Encore’s measurements, we built a Web censorship testbed,

which has DNS, firewall, and Web server configurations that emulate seven varieties of

DNS, IP, and HTTP filtering [156]. During the latter half of the month, we instructed ap-

proximately 30% of clients to measure resources hosted by the testbed (or unfiltered control

resources) using the four task types from Table 4. For example, we verified that the images

task type detects DNS blocking by attempting to load an image from an invalid domain and

observing that the task reports filtering; we verified that the same task successfully loads

an unfiltered image.1

This verification is straightforward for the image, style sheet, and script task types be-

cause they give explicit binary feedback about whether a resource successfully loaded. En-

core collected 930 testbed measurements for these task types; after excluding erroneously

contributed measurements (e.g., from Web crawlers), there were no true positives and few

false positives. For example, clients in India, a country with notoriously unreliable network

connectivity, contributed to a 5% false positive rate for images.

Verifying soundness of the inline frame task type requires more care because it infers

existence of filtering from the time taken to load resources. Figure 11 compares the time

taken to load an uncached versus cached single pixel image from 42 random globally dis-

tributed Encore clients. Cached images normally load within a few tens of milliseconds,

1From //invalid.noise.gatech.edu/pixel.png and
//encore.noise.gatech.edu:8892/pixel.png, respectively.
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Figure 11: Comparison between load times for cached and uncached images from 42 En-
core clients. Cached images typically load within tens of milliseconds, whereas uncached
usually take at least 100 ms longer to load, indicated by the bold red line. We use this
difference to infer filtering.

whereas most clients take at least 100 ms longer to load the same image uncached. The

few clients with little difference between cached and uncached load time were located at

our university, very close to the server. Difference in load time will be more pronounced

for larger images and with greater latency between clients and content.

In both cases, false positives highlight (1) that distinguishing Web filtering from other

kinds of network problems is difficult and (2) the importance of collecting many measure-

ments before drawing strong conclusions about Web filtering. We now develop a filtering

detection algorithm that addresses both concerns.

3.6.2 Does Encore detect Web filtering?

We instructed the remaining 70% of clients to measure resources suspected of filtering,

with the goal of independently confirming Web filtering in countries that other research

has reported. We aimed to detect resources that are consistently inaccessible from one

region, yet still accessible from others. For this purpose, we only measure filtering of

entire domains using the image task type.

Detecting Web filtering is challenging because measurement tasks may fail for rea-

sons other than Web filtering: clients may experience intermittent network connectivity

problems, browsers may incorrectly execute measurement tasks, sites may themselves go

offline, and so on. We use a statistical hypothesis test to distinguish such sporadic or lo-

calized measurement failures from more consistent failures that might indicate Web filter-

ing. We model each measurement success as a Bernoulli random variable with parameter
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p = 0.7; we assume that, in the absence of Web filtering, clients should successfully load

resources at least 70% of the time. Although this quite a conservative assumption, it cap-

tures our desire to eliminate false positives, which can easily drown out true positives when

detecting rare events like Web filtering. For each resource and region, we count both the

total number of measurements nr and the number of successful measurements xr and run

a one-sided hypothesis test for a binomial distribution; we consider a resource as filtered in

region r if xr fails this test at 0.05 significance (i.e., Pr[Binomial(nr, p) ≤ xr] ≤ 0.05) yet

does not fail the same test in other regions.

Applying this technique on preliminary measurements confirms well-known censor-

ship of youtube.com in Pakistan, Iran, and China [76], and filtering of several sites

in China, including twitter.com, anonymouse.org (a filtering circumvention tool)

and pastebin.com (a site that lets users share snippets of text) [77]. Measurements also

appear to confirm Turkey’s widely-publicized filtering of YouTube at the end of March [145],

but we don’t yet have enough measurements for statistical significance. We are actively re-

cruiting more sites and collecting more measurement, and continue to expand these results.

Although our detection algorithm works well on preliminary data, possible enhancements

include dynamically tuning model parameters to account for differing false positive rates

in each country and accounting for potential confounding factors like behavior differences

between browsers, operating systems, and ISPs [15].

3.7 Security Considerations

We discuss how Encore operates in the presence of an adversary that can block, disrupt,

or tamper with client measurements or collection infrastructure. We discuss several tac-

tics that can mitigate attacks, but Encore ultimately faces fundamental security limitations

because it operates within Web browsers, which have limited security APIs and may them-

selves have security vulnerabilities. In particular, because Encore cannot establish trust of

clients performing measurements, it can do little to prevent an adversary from contributing

false measurements; any system accepting measurements from anonymous or pseudony-

mous clients faces this risk.

Filtering access to Encore infrastructure. Clients can only use Encore if they can fetch a

measurement task. If the domain (or URL) that hosts measurement tasks is itself blocked,

clients will not be able to execute measurements. Once a client retrieves a measurement

task, subsequent requests appear as ordinary cross-origin requests; as a result, the main

concern is ensuring that clients can retrieve measurement tasks in the first place.

The server that dispatches tasks could be replicated across many domains to make it
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more difficult for a censor to block Encore by censoring a single domain. Clients could

contact the coordination server indirectly via an intermediary or create mirrors of the co-

ordination server in shared hosting environments (e.g., Amazon AWS), thereby increasing

the collateral damage of blocking a mirror. Going further, webmasters could contact the

coordination server on behalf of clients (e.g., with a WordPress plugin or Django package)

by querying the coordination server and including the returned measurement task directly

in the page it serves to the client; to increase scalability and decrease latency, servers could

cache several tasks in advance. Similarly, collection of the results could be distributed

across servers hosted in different domains, to ensure that collection is not blocked.

There are limits to Encore’s ability to withstand such attacks. Because it runs entirely

within a Web browser, Encore cannot leverage stronger security tools like Tor to anony-

mously report measurements as done by other censorship measurement tools [51, 158].

Detecting and interfering with Encore measurements. Blocking Encore based on the

contents of measurement tasks (e.g., via deep packet inspection) should be difficult, be-

cause we can easily disguise tasks’ code using JavaScript obfuscation or detection evasion

techniques [53,87]. Identifying task behavior is equally difficult because it appears merely

as requests to load a cross-origin object—something many Web sites do under normal op-

eration. If a single client performs a sequence of cross-origin requests that appear unrelated

to the content of the host site, a censor may recognize the sequence as unusual and either

block the subsequent reports or otherwise attempt to distort the results. We expect such

interference to be relatively difficult, however, since a censor would first have to identify

a sequence of requests as a measurement attempt and interpose on subsequent requests to

interfere with the reports. Although such interference is plausible, censors do not generally

interfere with measurements today, so we leave this consideration to future work.

User privacy and protection. Encore induces clients to perform Web requests to po-

tentially sensitive or censored Web sites, which could prove incriminating to the client in

certain countries and circumstances. Our conversations with citizens of various countries

suggest that attempting to access censored content is not illegal per se; nevertheless, sim-

ply because an activity is legal does not make it harmless, so we are sensitive to inducing

users to retrieve content that might land them in trouble. Because Encore’s measurements

are effectively a side effect of a user visiting an unrelated host site, every client has plau-

sible deniability; most users are unaware of Encore, which runs in the background and has

no visible effects. Encore could also shield clients from more incriminating content—for

example, loading a small icon from a banned site may be less incriminating than loading

actual content.
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Although our work doesn’t prescribe a specific use case, we recognize that developing

and deploying a tool like Encore entails risks that we need to understand better; we are

working with experts in Internet policy to find useful yet safe deployment scenarios for

Encore.

3.8 Conclusion

Despite the importance of measuring the extent and nature of Internet censorship, doing

so is difficult because it requires deploying a large number of geographically diverse van-

tage points, and recruiting volunteers for such a deployment is a significant deployment

hurdle. This chapter presents an alternate approach: rather than requiring users to install

custom measurement software, we take advantage of the fact that users’ Web browsers can

perform certain types of cross-origin requests, which can harness to induce measurements

of reachability to arbitrary third-party domains. Although only a limited amount of infor-

mation about the success of these requests leaks across domains, even a small amount of

leakage turns out to be enough to permit inferences about the reachability of higher-level

Web resources, including both URL prefixes and even entire domains.

Encore shifts the deployment burden from clients to webmasters. We have designed

Encore so that deployment is simple (in many cases, webmasters only add one line to the

main Web page source). We also point out that many webmasters are typically interested

in monitoring the reachability of their sites from various client geographies and networks

in any case, so deployment incentives are well-aligned.

Although the types of measurements Encore can perform may be more definitive than

tools that rely on informal user reports (e.g., Herdict), Encore may draw far fewer con-

clusions about the scope and methods of censorship than client-hosted measurement tools

that are specifically designed to measure censorship methods in detail (e.g., OONI, Cen-

sorscope). Ultimately, censorship measurement is a complex, moving target, and no single

measurement method or tool can paint a complete picture of censorship practices. What is

sorely missing from the existing set of measurement tools, however, is a way to character-

ize censorship practices in broad strokes, based on a sizeable and continuous set of client

measurements. By filling this important hole in our understanding, Encore can help bridge

the gap between diverse yet inconclusive user reports and detailed yet narrow or short-term

fine-grained measurements.
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CHAPTER IV

CIRCUMVENTING CENSORSHIP WITH USER-GENERATED
CONTENT

4.1 Introduction

Although existing anti-censorship systems—notably, onion routing systems such as Tor [51]—

have allowed citizens some access to censored information, these systems require users

outside the censored regime to set up infrastructure: typically, they must establish and

maintain proxies of some kind. The requirement for running fixed infrastructure outside

the firewall imposes two limitations: (1) a censor can discover and block the infrastructure;

(2) benevolent users outside the firewall must install and maintain it, a potentially ardu-

ous task. As a result, these systems are somewhat easy for censors to monitor and block

and can be hard to maintain at scale. Although proxy systems like Tor continue to enjoy

widespread use, governments have become increasingly adept at blocking it, begging the

question of whether there are fundamentally new approaches to advancing the arms race

between censors and users: specifically, we explore whether it is possible to circumvent

censorship firewalls with infrastructure that is more pervasive, and that does not require

individual users or organizations to maintain it.

We realize that countless sites allow users to upload content to infrastructure that they

do not maintain or own through a variety of media, ranging from photos to blog comments

to videos. Leveraging the large number of sites that allow users to upload their own con-

tent potentially yields many small cracks in censorship firewalls, because there are many

different types of media that users can upload, and many different sites where they can

upload it. The sheer number of sites that users could use to exchange messages, and the

many different ways they could hide content, makes it difficult for a censor to successfully

monitor and block all of them.

In this chapter, we design a system to circumvent censorship firewalls using different

types of user-generated content as cover traffic. We present Collage, a method for building

message channels through censorship firewalls using user-generated content as the cover

medium. Collage uses existing sites to host user-generated content that serves as the cover

for hidden messages (e.g., photo-sharing, microblogging, and video-sharing sites). Hiding

messages in photos, text, and video across a wide range of host sites makes it more difficult
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for censors to block all possible sources of censored content. Second, because the messages

are hidden in other seemingly innocuous messages, Collage provides its users some level

of deniability that they do not have in using existing systems (e.g., accessing a Tor relay

node immediately implicates the user that contacted the relay). We can achieve these goals

with minimal out-of-band communication.

Collage is not the first system to suggest using covert channels: much previous work has

explored how to build a covert channel that uses images, text, or some other media as cover

traffic, sometimes in combination with mix networks or proxies [5,20,46,51,59,116,136].

Other work has also explored how these schemes might be broken [71], and others hold

the view that message hiding or “steganography” can never be fully secure. Collage’s

new contribution, then, is to design covert channels based on user-generated content and

imperfect message-hiding techniques in a way that circumvents censorship firewalls that is

robust enough to allow users to freely exchange messages, even in the face of an adversary

that may be looking for such suspicious cover traffic.

The first challenge in designing Collage is to develop an appropriate message vector

for embedding messages in user-generated content. Our goal for developing a message

vector is to find user-generated traffic (e.g., photos, blog comments) that can act as a cover

medium, is widespread enough to make it difficult for censors to completely block and

remove, yet is common enough to provide users some level of deniability when they down-

load the cover traffic. In this chapter, we build message vectors using the user-generated

photo-sharing site, Flickr [66], and the microblogging service, Twitter [147], although our

system in no way depends on these particular services. We acknowledge that some or all

of these two specific sites may ultimately be blocked in certain countries; indeed, we wit-

nessed that parts of Flickr were already blocked in China when accessed via a Chinese

proxy in January 2010. A main strength of Collage’s design is that blocking a specific site

or set of sites will not fully stem the flow of information through the firewall, since users

can use so many sites to post user-generated content. We have chosen Flickr and Twitter as

a proof of concept, but Collage users can easily use domestic equivalents of these sites to

communicate using Collage.

Given that there are necessarily many places where one user might hide a message for

another, the second challenge is to agree on rendezvous sites where a sender can leave a

message for a receiver to retrieve. We aim to build this message layer in a way that the

client’s traffic looks innocuous, while still preventing the client from having to retrieve an

unreasonable amount of unwanted content simply to recover the censored content. The ba-

sic idea behind rendezvous is to embed message segments in enough cover material so that

it is difficult for the censor to block all segments, even if it joins the system as a user; and
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Figure 12: Collage’s interaction with the network. See Figure 13 for more detail.

users can retrieve censored messages without introducing significant deviations in their traf-

fic patterns. In Collage, senders and receivers agree on a common set of network locations

where any given content should be hidden; these agreements are established and communi-

cated as “tasks” that a user must perform to retrieve the content (e.g., fetching a particular

URL, searching for content with a particular keyword). Figure 12 summarizes this process.

Users send a message with three steps: (1) divide a message into many erasure-encoded

“blocks” that correspond to a task, (2) embed these blocks into user-generated content (e.g.,

images), and (3) publish this content at user-generated content sites, which serve as ren-

dezvous points between senders and receivers. Receivers then retrieve a subset of these

blocks to recover the original message by performing one of these tasks.

This chapter makes the following contributions.

• We present the design and implementation of Collage, a censorship-resistant message

channel built using user-generated content as the cover medium. An implementation

of the Collage message channel is publicly available [36].

• We evaluate the performance and security of Collage. Collage does impose some

overhead, but the overhead is acceptable for small messages (e.g., articles, emails,

short messages), and Collage’s overhead can also be reduced at the cost of making

the system less robust to blocking.

• We present Collage’s general message-layer abstraction and show how this layer can

serve as the foundation for two different applications: Web publishing and direct

messaging (e.g., email). We describe and evaluate these two applications.

The rest of this chapter proceeds as follows. In Section 4.2, we describe the design goals

for Collage and the capabilities of the censor. Section 4.2.3 discusses prior message hid-

ing techniques that inspire Collage. Section 4.3 presents the design and implementation

51



of Collage. Section 4.4 evaluates the performance of Collage’s messaging layer and appli-

cations. Section 4.5 describes the design and implementation of two applications that are

built on top of this messaging layer. Section 4.6 discusses some limitations of Collage’s

design and how Collage might be extended to cope with increasingly sophisticated censors.

Section 4.7 concludes.

4.2 Problem Overview

We now discuss our model for the censor’s capabilities and our goals for circumventing a

censor who has these capabilities. Whereas Chapter 2 introduced details on how censors

have implemented censorship in the past, the goal of this section is to try to account for fu-

ture censorship mechanisms. That said, it is difficult, if not impossible, to fully determine

the censor’s potential, or event current, capabilities; as a result, Collage cannot provide for-

mal guarantees regarding success or deniability. Instead, we present a model for the censor

that we believe is more advanced than current capabilities and, hence, where Collage is

likely to succeed. Nevertheless, censorship is an arms race, so as the censor’s capabilities

evolve, attacks against censorship firewalls will also need to evolve in response. In Sec-

tion 4.6, we discuss how Collage’s could be extended to deal with these more advanced

capabilities as the censor becomes more sophisticated.

We note that although we focus on censors, Collage also depends on content hosts to

store media containing censored content. Content hosts currently do not appear to be averse

to this usage (e.g., to the best of our knowledge, Collage does not violate the Terms of

Service for either Flickr or Twitter), although if Collage were to become very popular this

attitude would likely change. Although we would prefer content hosts to willingly serve

Collage content (e.g., to help users in censored regimes), Collage can use many content

hosts to prevent any single host from compromising the entire system.

4.2.1 The Censor

We assume that the censor wishes to allow some Internet access to clients, but can monitor,

analyze, block, and alter subsets of this traffic. We believe this assumption is reasonable: if

the censor builds an entirely separate network that is partitioned from the Internet, there is

little we can do. Beyond this basic assumption, there is a wide range of capabilities we can

assume. Perhaps the most difficult aspect of modeling the censor is figuring out how much

effort it will devote to capturing, storing, and analyzing network traffic. Our model assumes

that the censor can deploy monitors at multiple network egress points and observe all traffic

as it passes (including both content and headers). We consider two types of capabilities:
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targeting and disruption.

Targeting. A censor might target a particular user behind the firewall by focusing on that

user’s traffic patterns; it might also target a particular suspected content host site by moni-

toring changes in access patterns to that site (or content on that site). In most networks, a

censor can monitor all traffic that passes between its clients and the Internet. Specifically,

we assume the censor can eavesdrop any network traffic between clients on its network

and the Internet. A censor’s motive in passively monitoring traffic would most likely be

either to determine that a client was using Collage or to identify sites that are hosting con-

tent. To do so, the censor could monitor traffic aggregates (i.e., traffic flow statistics, like

NetFlow [106]) to determine changes in overall traffic patterns (e.g., to determine if some

website or content has suddenly become more popular). The censor can also observe traffic

streams from individual users to determine if a particular user’s clickstream is suspicious,

or otherwise deviates from what a real user would do. These capabilities lead to two impor-

tant requirements for preserving deniability: traffic patterns generated by Collage should

not skew overall distributions of traffic, and the traffic patterns generated by an individual

Collage user must resemble the traffic generated by innocuous individuals.

To target users or sites, a censor might also use Collage as a sender or receiver. This

assumption makes some design goals more challenging: a censor could, for example, inject

bogus content into the system in an attempt to compromise message availability. It could

also join Collage as a client to discover the locations of censored content, so that it could

either block content outright (thus attacking availability) or monitor users who download

similar sets of content (thus attacking deniability). We also assume that the censor could act

as a content publisher. Finally, we assume that a censor might be able to coerce a content

host to shut down its site (an aggressive variant of actively blocking requests to a site).

Disruption. A censor might attempt to disrupt communications by actively mangling traf-

fic. We assume the censor would not mangle uncensored content in any way that a user

would notice. A censor could, however, inject additional traffic in an attempt to confuse

Collage’s process for encoding or decoding censored content. We assume that it could also

block traffic at granularities ranging from an entire site to content on specific sites.

The costs of censorship. In accordance with Bellovin’s observations [14], we assume that

the censor’s capabilities, although technically limitless, will ultimately be constrained by

cost and effort. In particular, we assume that the censor will not store traffic indefinitely, and

we assume that the censor’s will or capability to analyze traffic prevents it from observing

more complex statistical distributions on traffic (e.g., we assume that it cannot perform

analysis based on joint distributions between arbitrary pairs or groups of users). We also
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assume that the censor’s computational capabilities are limited: for example, performing

deep packet inspection on every packet that traverses the network or running statistical

analysis against all traffic may be difficult or infeasible, as would performing sophisticated

timing attacks (e.g., examining inter-packet or inter-request timing for each client may be

computationally infeasible or at least prohibitively inconvenient). As the censorship arms

race continues, the censor may develop such capabilities.

4.2.2 Circumventing the Censor

Our goal is to allow users to send and receive messages across a censorship firewall that

would otherwise be blocked; we want to enable users to communicate across the firewall

by exchanging articles and short messages (e.g., email messages and other short messages).

In some cases, the sender may be behind the firewall (e.g., a user who wants to publish an

article from within a censored regime). In other cases, the receiver might be behind the

firewall (e.g., a user who wants to browse a censored website).

We aim to understand Collage’s performance in real applications and demonstrate that it

is “good enough” to be used in situations where users have no other means for circumvent-

ing the firewall. We therefore accept that our approach may impose substantial overhead,

and we do not aim for Collage’s performance to be comparable to that of conventional net-

worked communication. Ultimately, we strive for a system that is effective and easy to use

for a variety of networked applications. To this end, Collage offers a messaging library that

can support these applications; Section 4.5 describes two example applications.

Collage’s main performance requirement is that the overhead should be small enough

to allow content to be stored on sites that host user-generated content and to allow users

to retrieve the hidden content in a reasonable amount of time (to ensure that the system

is usable), and with a modest amount of traffic overhead (since some users may be on

connections with limited bandwidth). In Section 4.4, we evaluate Collage’s storage re-

quirements on content hosting sites, the traffic overhead of each message (as well as the

tradeoff between this overhead and robustness and deniability), and the overall transfer

time for messages.

In addition to performance requirements, we want Collage to be robust in the face of

the censor that we have outlined in Section 4.2.1. We can characterize this robustness in

terms of two more general requirements. The first requirement is availability, which says

that clients should be able to communicate in the face of a censor that is willing to restrict

access to various content and services. Most existing censorship circumvention systems do

not prevent a censor from blocking access to the system altogether. Indeed, regimes such

as China have blocked or hijacked applications ranging from websites [139] to peer-to-peer
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systems [144] to Tor itself [142]. We aim to satisfy availability in the face of the censor’s

targeting capabilities that we described in Section 4.2.1.

Second, Collage should offer users of the system some level of deniability; although

this design goal is hard to quantify or formalize, informally, deniability says that the censor

cannot discover the users of the censorship system. It is important for two reasons. First, if

the censor can identify the traffic associated with an anti-censorship system, it can discover

and either block or hijack that traffic. As mentioned above, a censor observing encrypted

traffic may still be able to detect and block systems such as Tor [51]. Second, and perhaps

more importantly, if the censor can identify specific users of a system, it can coerce those

users in various ways. Past events have suggested that censors are able and willing to both

discover and block traffic or sites associated with these systems and to directly target and

punish users who attempt to defeat censorship. In particular, China requires users to reg-

ister with ISPs before purchasing Internet access at either home or work, to help facilitate

tracking individual users [32]. Freedom House reports that in six of fifteen countries they

assessed, a blogger or online journalist was sentenced to prison for attempting to circum-

vent censorship laws—prosecutions have occurred in Tunisia, Iran, Egypt, Malaysia, and

India [68]—and cites a recent event of a Chinese blogger who was recently attacked [33].

As these regimes have indicated their willingness and ability to monitor and coerce indi-

vidual users, we believe that attempting to achieve some level of deniability is important

for any anti-censorship system.

By design, a user cannot disprove claims that he engages in deniable communication,

thus making it easier for governments and organizations to implicate arbitrary users. We

accept this as a potential downside of deniable communications, but point out that organi-

zations can already implicate users with little evidence (e.g., [2]).

4.2.3 Prior message hiding and embedding techniques

Collage relies on techniques that can embed content into cover traffic. The current imple-

mentation of Collage uses an image steganography tool called outguess [116] for hiding

content in images and a text steganography tool called SNOW [136] for embedding content

in text. We recognize that steganography techniques offer no formal security guarantees;

in fact, these schemes can and have been subject to various attacks (e.g., [71]). Danezis

has also noted the difficulty in building covert channels with steganography alone [43]: not

only can the algorithms be broken, but also they do not hide the identities of the commu-

nicating parties. Thus, these functions must be used as components in a larger system,

not as standalone “solutions”. Collage relies on the embedding functions of these respec-

tive algorithms, but its security properties do not hinge solely on the security properties of
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any single information hiding technique; in fact, Collage could have used watermarking

techniques instead, but we chose these particular embedding techniques for our proof of

concept because they had readily available, working implementations. One of the chal-

lenges that Collage’s design addresses is how to use imperfect message hiding techniques

to build a message channel that is both available and offers some amount of deniability for

users.

4.3 Collage Design and Implementation

Collage’s design has three layers and roughly mimics the layered design of the network

protocol stack itself. Figure 13 shows these three layers: the vector, message, and applica-

tion layers. The vector layer provides storage for short data chunks (Section 4.3.1), and the

message layer specifies a protocol for using the vector layer to send and receive messages

(Section 4.3.2). A variety of applications can be constructed on top of the message layer.

We now describe the vector and message layers in detail, deferring discussion of specific

applications to Section 4.5. After describing each of these layers, we discuss rendezvous,

the process by which senders and receivers find each other to send messages using the mes-

sage layer (Section 4.3.3). Finally, we discuss our implementation and initial deployment

(Section 4.3.4).

4.3.1 Vector Layer

The vector layer provides a substrate for storing short data chunks. Effectively, this layer

defines the “cover media” that should be used for embedding a message. For example,

if a small message is hidden in the high frequency of a video then the vector would be,
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for example, a YouTube video. This layer hides the details of this choice from higher

layers and exposes three operations: encode, decode, and isEncoded. These operations

encode data into a vector, decode data from an encoded vector, and check for the presence

of encoded data given a secret key, respectively.

Collage imposes requirements on the choice of vector. First, each vector must have

some capacity to hold encoded data. Second, the population of vectors must be large so that

many vectors can carry many messages. Third, to satisfy both availability and deniability,

it must be relatively easy for users to deniably send and receive vectors containing encoded

chunks. Fourth, to satisfy availability, it must be expensive for the censor to disrupt chunks

encoded in a vector. Any vector layer with these properties will work with Collage’s design,

although the deniability of a particular application will also depend upon its choice of

vector, as we discuss in Section 4.6.

The feasibility of the vector layer rests on a key observation: data hidden in user-

generated content serves as a good vector for many applications, since it is both populous

and comes from a wide variety of sources (i.e., many users). Examples of such content

include images published on Flickr [66] (as of June 2009, Flickr had about 3.6 billion

images, with about 6 million new images per day [72]), tweets on Twitter [147] (Twitter

had about half a million tweets per day [150], and Mashable projected about 18 million

Twitter users by the end of 2009 [148]), and videos on YouTube [166], which had about

200, 000 new videos per day as of March 2008 [167].

For concreteness, we examine two classes of vector encoding algorithms. The first

option is steganography, which attempts to hide data in a cover medium such that only in-

tended recipients of the data (e.g., those possessing a key) can detect its presence. Stegano-

graphic techniques can embed data in a variety of cover media, such as images, video,

music, and text. Steganography makes it easy for legitimate Collage users to find vectors

containing data and difficult for a censor to identify (and block) encoded vectors. Although

the deniability that steganography can offer is appealing, key distribution is challenging,

and almost all production steganography algorithms have been broken. Therefore, we can-

not simply rely on the security properties of steganography.

Another option for embedding messages is digital watermarking, which is similar to

steganography, except that instead of hiding data from the censor, watermarking makes

it difficult to remove the data without destroying the cover material. Data embedded us-

ing watermarking is perhaps a better choice for the vector layer: although encoded mes-

sages are clearly visible, they are difficult to remove without destroying or blocking a large

amount of legitimate content. If watermarked content is stored in a lot of popular user-

generated content, Collage users can gain some level of deniability simply because all
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send(identifier, data)

1 Create a rateless erasure encoder for data.
2 for each suitable vector (e.g., image file)
3 do
4 Retrieve blocks from the erasure coder to

meet the vector’s encoding capacity.
5 Concatenate and encrypt these blocks using

the identifier as the encryption key.
6 encode the ciphertext into the vector.
7 Publish the vector on a user-generated

content host such that receivers
can find it. See Section 4.3.3.

receive(identifier)

1 Create a rateless erasure decoder.
2 while the decoder cannot decode the message
3 do
4 Find and fetch a vector from a

user-generated content host.
5 Check if the vector contains encoded

data for this identifier.
6 if the vector is encoded with message data
7 then
8 decode payload from the vector.
9 Decrypt the payload.

10 Split the plaintext into blocks.
11 Provide each decrypted block to

the erasure decoder.
12 return decoded message from erasure decoder

Figure 14: The message layer’s send and receive operations.

popular content contains some message chunks.

We have implemented two example vector layers. The first is image steganography

applied to images hosted on Flickr [66]. The second is text steganography applied to user-

generated text comments on websites such as blogs, YouTube [166], Facebook [56], and

Twitter [147]. Despite possible and known limitations to these approaches (e.g., [71]), both

of these techniques have working implementations with running code [116, 136]. As wa-

termarking and other data-hiding techniques continue to become more robust to attack, and

as new techniques and implementations emerge, Collage’s layered model can incorporate

those mechanisms. The goal of this chapter is not to design better data-hiding techniques,

but rather to build a censorship-resistant message channel that leverages these techniques.
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4.3.2 Message Layer

The message layer specifies a protocol for using the vector layer to send and receive arbi-

trarily long messages (i.e., exceeding the capacity of a single vector). Observable behavior

generated by the message layer should be deniable with respect to the normal behavior of

the user or users at large.

Figure 14 shows the send and receive operations. send encodes message data in vec-

tors and publishes them on content hosts, while receive finds encoded vectors on content

hosts and decodes them to recover the original message. The sender associates a message

identifier with each message, which should be unique for an application (e.g., the hash of

the message). Receivers use this identifier to locate the message. For encoding schemes

that require a key (e.g., [116]), we choose the key to be the message identifier.

To distribute message data among several vectors, the protocol uses rateless erasure

coding [27,100], which generates a near-infinite supply of short chunks from a source mes-

sage such that any appropriately-sized subset of those chunks can reassemble the original

message. For example, a rateless erasure coder could take a 80 KB message and gener-

ate 1 KB chunks such that any 100-subset of those chunks recovers the original message.

Step 1 of send initializes a rateless erasure encoder for generating chunks of the message;

step 4 retrieves chunks from the encoder. Likewise, step 1 of receive creates a rateless

erasure decoder, step 11 provides retrieved chunks to the decoder, and step 12 recovers the

message.

Most of the remaining send operations are straightforward, involving encryption and

concatenation (step 5), and operation of the vector layer’s encode function (step 6). Like-

wise, receive operates the vector layer’s decode function (step 8), decrypts and splits the

payload (steps 9 and 10). The only more complex operations are step 7 of send and step 4

of receive, which publish and retrieve content from user-generated content hosts. These

steps must ensure (1) that senders and receivers agree on locations of vectors and (2) that

publishing and retrieving vectors is done in a deniable manner. We now describe how to

meet these two requirements.

4.3.3 Rendezvous: Matching Senders to Receivers

Vectors containing message data are stored to and retrieved from user-generated content

hosts; to exchange messages, senders and receivers must first rendezvous. To do so, senders

and receivers perform sequences of tasks, which are time-dependent sequences of actions.

An example of a sender task is the sequence of HTTP requests (i.e., actions) and fetch times

corresponding to “Upload photos tagged with ‘flowers’ to Flickr”; a corresponding receiver
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task is “Search Flickr for photos tagged with ‘flowers’ and download the first 50 images.”

This scheme poses many challenges: (1) to achieve deniability, all tasks must resemble

observable actions completed by innocuous entities not using Collage (e.g., browsing the

Web), (2) senders must identify vectors suitable for each task, and (3) senders and receivers

must agree on which tasks to use for each message. This section addresses these challenges.

Identifying suitable vectors. Task deniability depends on properly selecting vectors for

each task. For example, for the receiver task “search for photos with keyword flowers,”

the corresponding sender task (“publish a photo with keyword flowers”) must be used with

photos of flowers; otherwise, the censor could easily identify vectors containing Collage

content as those vectors that do not match their keywords. To achieve this, the sender picks

vectors with attributes (e.g., associated keywords) that match the expected content of the

vector.

Agreeing on tasks for a message. Each user maintains a list of deniable tasks for common

behaviors involving vectors (Section 4.3.1) and uses this list to construct a task database.

The database is simply a table of pairs (Ts, Tr), where Ts is a sender task and Tr is a re-

ceiver task. Senders and receivers construct pairs such that Ts publishes vectors in locations

visited by Tr. For example, if Tr performs an image search for photos with keyword “flow-

ers” then Ts would publish only photos with that keyword (and actually depicting flowers).

Given this database, the sender and receiver map each message identifier to one or more

task pairs and execute Ts and Tr, respectively.

The sender and receiver must agree on the mapping of identifiers to database entries;

otherwise, the receiver will be unable to find vectors published by the sender. If the sender’s

and receiver’s databases are identical, then the sender and receiver simply use the message

identifier as an index into the task database. Unfortunately, the database may change over

time, for a variety of reasons: tasks become obsolete (e.g., Flickr changes its page structure)

and new tasks are added (e.g., it may be advantageous to add a task for a new search

keyword during a current event, such as an election). Each time the database changes,

other users need to be made aware of these changes. To this end, Collage provides two

operations on the task database: add and remove. When a user receives an advertisement

for a new task or a withdrawal of an existing task he uses these operations to update his

copy of the task database.

Learning task advertisements and withdrawals is application specific. For some ap-

plications, a central authority sends updates using Collage’s own message layer, while in

others updates are sent offline (i.e., separate from Collage). We discuss these options in

Section 4.5. One feature is common to all applications: delays in propagation of database
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Figure 15: The expected number of common tasks when mapping the same message iden-
tifier to a task subset, between two task databases that agree on varying percentages of
tasks.

updates will cause different users to have slightly different versions of the task database, ne-

cessitating a mapping for identifiers to tasks that is robust to slight changes to the database.

To reconcile database disagreements, our algorithm for mapping message identifiers to

task pairs uses consistent hash functions [91], which guarantee that small changes to the

space of output values have minimal impact on the function mapping. We initialize the task

database by choosing a pseudorandom hash function h (e.g., SHA-1) and precomputing

h(t) for each task t. The algorithm for mapping an identifier M to a m-subset of the

database is simple: compute h(M) and take the m entries from the task database with

precomputed hash values closest to h(M); these task pairs are the mapping for M .

Using consistent hashing to map identifiers to task pairs provides an important property:

updating the database results in only small changes to the mappings for existing identifiers.

Figure 15 shows the expected number of tasks reachable after removing a percentage of the

task database and replacing it with new tasks. As expected, increasing the number of tasks

mapped for each identifier decreases churn. Additionally, even if half of the database is

replaced, the sender and receiver can agree on at least one task when three or more tasks are

mapped to each identifier. In practice, we expect the difference between two task databases

to be around 10%, so three tasks to each identifier is sufficient. Thus, two parties with

slightly different versions of the task database can still communicate messages: although

some tasks performed by the receiver (i.e., mapped using his copy of the database) will not
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yield content, most tasks will.

Choosing deniable tasks. Tasks should mimic the normal behavior of users, so that a user

who is performing these tasks is unlikely to be pinpointed as a Collage user (which, in and

of itself, could be incriminating). We design task sequences to “match” those of normal

visitors to user-generated content sites. Tasks for different content hosts have different de-

niability criteria. For example, the task of looking at photos corresponding to a popular tag

or tag pair offers some level of deniability, because an innocuous user might be looking at

popular images anyway. The challenge, of course, is finding sets of tasks that are deniable,

yet focused enough to allow a user to retrieve content in a reasonable amount of time. We

discuss the issue of deniability further in Section 4.6.

4.3.4 Implementation

Collage requires minimal modification to existing infrastructure, so it is small and self-

contained, yet modular enough to support many possible applications; this should facilitate

adoption. We have released a version of Collage [36].

We have implemented Collage as a 650-line Python library, which handles the logic

of the message layer, including the task database, vector encoding and decoding, and the

erasure coding algorithm. To execute tasks, the library uses Selenium [1], a popular web

browser automation tool; Selenium visits web pages, fills out forms, clicks buttons and

downloads vectors. Executing tasks using a real web browser frees us from implementing

an HTTP client that produces realistic Web traffic (e.g., by loading external images and

scripts, storing cookies, and executing asynchronous JavaScript requests).

Because Collage uses Selenium to drive a real Web browser, it is the first hide-within

censorship circumvention tool; this new class of tools tunnels its communications inside

the traffic of a real, running instance of a popular application (Firefox) rather than try-

ing to mimic that application’s traffic. Hide-within circumvention tools are significantly

more robust against many kinds of active and passive side-channel attacks [84]. Although

Geddes et al. have raised concerns that hide-within systems are still vulnerable to many

trivial attacks that identify architectural differences or transparently degrade performance

of the covert channel, their work focuses on systems that tunnel loss-sensitive Internet traf-

fic (e.g., Tor TCP streams) inside loss-insensitive VoIP calls [73]. In contrast, Collage

itself is largely immune to such attacks because its covert channel is extremely delay toler-

ant, while its covert traffic (i.e., Web browsing) is not as tolerant such that any disruptions

to the covert channel must significantly degrade performance of the cover traffic. Other

attacks from Geddes et al. (e.g., architectural mismatches and content mismatches) don’t

62



Table 5: Examples of sender and receiver task snippets.

Content host Sender task Receiver task
Flickr PublishAsUser(‘User’, Photo, MsgData) FindPhotosOfFlickrUser(‘User’)
Twitter PostTweet(‘Watching the Olympics’, MsgData) SearchTwitter(‘Olympics’)

impact Collage directly, although they may apply to a specific steganographic scheme that

Collage uses. In addition, conducting such attacks at line speed would be difficult because

they involve decoding and analyzing compressed image data.

We represent tasks as Python functions that perform the requisite task. Table 5 shows

four examples. Each application supplies definitions of operations used by the tasks (e.g.,

FindPhotosOfFlickrUser). The task database is a list of tasks, sorted by their MD5

hash; to map an identifier to a set of tasks, the database finds the tasks with hashes closest

to the hash of the message identifier. After mapping, receivers simply execute these tasks

and decode the resulting vectors. Senders face a more difficult task: they must supply the

task with a vector suitable for that task. For instance, the task “publish a photo tagged with

‘flowers”’ must be supplied with a photo of flowers. We delegate the task of finding vectors

meeting specific requirements to a vector provider. The exact details differ between appli-

cations; one of our applications searches a directory of annotated photos, while another

prompts the user to type a phrase containing certain words (e.g., “Olympics”).

4.4 Performance Evaluation

This section evaluates Collage according to the three performance metrics introduced in

Section 4.2: storage overhead on content hosts, network traffic, and transfer time. We

characterize Collage’s performance by measuring its behavior in response to a variety of

parameters. Recall that Collage (1) processes a message through an erasure coder, (2) en-

codes blocks inside vectors, (3) executes tasks to distribute the message vectors to content

hosts, (4) retrieves some of these vectors from content hosts, and (5) decodes the message

on the receiving side. Each stage can affect performance. In this section, we evaluate how

each of these factors affects the performance of the message layer; Section 4.5 presents

additional performance results for Collage applications using real content hosts.

• Erasure coding can recover an n-block message from (1+ ε
2
)n of its coded message

blocks. Collage uses ε = 0.01, as recommended by [100], yielding an expected 0.5%

increase in storage, traffic, and transfer time of a message.

• Vector encoding stores erasure coded blocks inside vectors. Production steganog-

raphy tools achieve encoding rates of between 0.01 and 0.05, translating to between
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20 and 100 factor increases in storage, traffic, and transfer time [116]. Watermark-

ing algorithms are less efficient; we hope that innovations in information hiding can

reduce this overhead.

• Sender and receiver tasks publish and retrieve vectors from content hosts. Tasks

do not affect the storage requirement on content hosts, but each task can impose

additional traffic and time. For example, a task that downloads images by searching

for them on Flickr can incur hundreds of kilobytes of traffic before finding encoded

vectors. Depending on network connectivity, this step could take anywhere from

a few seconds to a few minutes and can represent an overhead of several hundred

percent, depending on the size of each vector.

• The number of executed tasks differs between senders and receivers. The receiver

performs as many tasks as necessary until it is able to decode the message; this

number depends on the size of the message, the number of vectors published by

the sender, disagreements between sender and receiver task databases, the dynamics

of the content host (e.g., a surge of Flickr uploads could “bury” Collage encoded

vectors), and the number of tasks and vectors blocked by the censor. While testing

Collage, we found that we needed to execute only one task for the majority of cases.

The sender must perform as many tasks as necessary so that, given the many ways

the receiver can fail to obtain vectors, the receiver will still be able to retrieve enough

vectors to decode the message. In practice, this number is difficult to estimate and

vectors are scarce, so the sender simply uploads as many vectors as possible.

We implemented a Collage application that publishes vectors on a simulated content host,

allowing us to observe the effects of these parameters. Figure 16 shows the results of

running several experiments across Collage’s parameter space. The simulation sends and

receives a 23 KB one-day news summary. The message is erasure coded with a block

size of 8 bytes and encoded into several vectors randomly drawn from a pool for vectors

with average size 200 KB. Changing the message size scales the metrics linearly, while

increasing the block size only decreases erasure coding efficiency.

Figure 16a demonstrates the effect of vector encoding efficiency on required storage on

content hosts. We used a fixed-size identifier-to-task mapping of ten tasks. We chose four

send rates, which are multiples of the minimum number of tasks required to decode the

message: the sender may elect to send more vectors if he believes some vectors may be un-

reachable by the receiver. For example, with a send rate of 10x, the receiver can still retrieve

the message even if 90% of vectors are unavailable. Increasing the task mapping size may
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be necessary for large send rates, because sending more vectors requires executing more

tasks. These results give us hope for the future of information hiding technology: current

vector encoding schemes are around 5% efficient; according to Figure 16a, this a region

where a significant reduction in storage is possible with only incremental improvements in

encoding techniques (i.e., the slope is steep).

Figure 16b predicts total sender and receiver traffic from task overhead traffic, assuming

1 MB of vector storage on the content host. As expected, blocking more vectors increases

traffic, as the receiver must execute more tasks to receive the same message content. In-

creasing storage beyond 1 MB decreases receiver traffic, because more message vectors

are available for the same blocking rate. An application executed on a real content host

transfers around 1 MB of overhead traffic for a 23 KB message.

Finally, Figure 16c shows the overall transfer time for senders and receivers, given vary-

ing time overheads. These overheads are optional for both senders and receivers and impose

delays between requests to evade timing analysis by the censor. For example, Collage could

build a distribution of inter-request timings from the user’s normal (i.e., non-Collage) traffic

and impose this timing distribution on Collage tasks. We simulated the total transfer time

using three network connection speeds. The first (768 Kbps download and 384 Kbps up-

load) is a typical entry-level broadband package and would be experienced if both senders

and receivers are typical users within the censored domain. The second (768/10000 Kbps)

would be expected if the sender has a high-speed connection, perhaps operating as a dedi-

cated publisher outside the censored domain; one of the applications in Section 4.5 follows

this model. Finally, the 6000/1000 Kbps connection represents expected next-generation

network connectivity in countries experiencing censorship. In all cases, reasonable delays

are imposed upon transfers, given the expected use cases of Collage (e.g., fetching daily

news article). We confirmed this result: a 23 KB message stored on a real content host took

under 5 minutes to receive over an unreliable broadband wireless link; sender time was less

than 1 minute.

4.5 Building Applications with Collage

Developers can build a variety of applications using the Collage message channel. In this

section, we outline requirements for using Collage and present two example applications.
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Table 6: Summary of application components.

Component Web content proxy (§4.5.2) Covert email (§4.5.3) Other options
Vectors Photos Text Videos, music
Vector encoding Image steganography Text steganography Video steganography,

digital watermarking
Vector sources Users of content hosts Covert Email users Use a heuristic,

crawl the Web
Tasks Upload/download Flickr photos Post/receive Tweets Other user-generated

content host(s)
Database distribution Send by publisher via proxy Agreement by users Prearranged algo-

rithm, “sneakernet”
Identifier security Distributed by publisher, groups Group key Existing PKI

4.5.1 Application Requirements

Even though application developers use Collage as a secure, deniable messaging primitive,

they must still remain conscious of overall application security when using these primi-

tives. Additionally, the entire vector layer and several parts of the message layer presented

in Section 4.3 must be provided by the application. These components can each affect cor-

rectness, performance, and security of the entire application. In this section, we discuss

each of these components. Table 6 summarizes the component choices.

Vectors, tasks, and task databases. Applications specify a class of vectors and a matching

vector encoding algorithm (e.g., Flickr photos with image steganography) based on their

security and performance characteristics. For example, an application requiring strong con-

tent deniability for large messages could use a strong steganography algorithm to encode

content inside of videos.

Tasks are application-specific: uploading photos to Flickr is different from posting

tweets on Twitter. Applications insert tasks into the task database, and the message layer

executes these tasks when sending and receiving messages. The applications specify how

many tasks are mapped to each identifier for database lookups. In Section 4.3.3, we showed

that mapping each identifier to three tasks ensures that, on average, users can still commu-

nicate even with slightly out-of-date databases; applications can further boost availability

by mapping more tasks to each identifier.

Finally, applications must distribute the task database. In some instances, a central

authority can send the database to application users via Collage itself. In other cases, the

database is communicated offline. The application’s task database should be large enough

to ensure diversity of tasks for messages published at any given time; if n messages are

published every day, then the database should have cn tasks, where c is at least the size

of the task mapping. Often, tasks can be generated programmatically, to reduce network

67



overhead. For example, our Web proxy (discussed next) generates tasks from a list of

popular Flickr tags.

Sources of vectors. Applications must acquire vectors used to encode messages, either by

requiring end-users to provide their own vectors (e.g., from a personal photo collection),

automatically generating them, or obtaining them from an external source (e.g., a photo

donation system).

Identifier security. Senders and receivers of a message must agree on a message identifier

for that message. This process is analogous to key distribution. There is a general tradeoff

between ease of message identifier distribution and security of the identifier: if users can

easily learn identifiers, then more users will use the system, but it will also be easier for the

censor to obtain the identifier; the inverse is also true. Developers must choose a distribu-

tion scheme that meets the intended use of their application. We discuss two approaches in

the next two sections, although there are certainly other possibilities.

Application distribution and bootstrapping. Users ultimately need a secure one-time

mechanism for obtaining the application, without using Collage. A variety of distribution

mechanisms are possible: clients could receive software using spam or malware as a prop-

agation vector, or via postal mail or person-to-person exchange. There will ultimately be

many ways to distribute applications without the knowledge of the censor. Other systems

face the same problem [59]. This requirement does not obviate Collage, since once the user

has received the software, he or she can use it to exchange an arbitrary number of messages.

To explore these design parameters in practice, we built two applications using Collage’s

message layer. The first is a Web content proxy whose goal is to distribute content to many

users; the second is a covert email system.

4.5.2 Web Content Proxy

We have built an asynchronous Web proxy using Collage’s message layer, with which

a publisher in an uncensored region makes content available to clients inside censored

regimes. Unlike traditional proxies, our proxy shields both the identities of its users and

the content hosted from the censor.

The proxy serves small Web documents, such as articles and blog posts, by stegano-

graphically encoding content into images hosted on photo-sharing websites like Flickr and

Picasa. A standard steganography tool [116] can encode a few kilobytes in a typical image,

meaning most hosted documents will fit within a few images. To host many documents si-

multaneously, however, the publisher needs a large supply of images; to meet this demand,

the publisher operates a service allowing generous users of online image hosts to donate
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tent hosts. Each group downloads a different subset of images when fetching the same
URL.

their images. The service takes the images, encodes them with message data, and returns

the encoded images to their owners, who then upload them to the appropriate image hosts.

Proxy users download these photos and decode their contents. Figure 17 summarizes this

process. Notice that the publisher is outside the censored domain, which frees us from

worrying about sender deniability.

To use a proxy, users must discover a publisher, register with that publisher, and be

notified of an encryption key. Publishers are identified by their public key so discovering

publishers is reduced to a key distribution exercise, albeit that these keys must be dis-

tributed without the suspicion of the censor. Several techniques are feasible: the key could

be delivered alongside the client software, derived from a standard SSL key pair, or dis-

tributed offline. Like any key-based security system, our proxy must deal with this inherent

bootstrapping problem.

Once the client knows the publisher’s public key, it sends a message requesting regis-

tration. The message identifier is the publisher’s public key and the message payload con-

tains the public key of the client encrypted using the publisher’s public key. This encryption

ensures that only the publisher knows the client’s public key. The publisher receives and

decrypts the client’s registration request using his own private key.
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The client is now registered but doesn’t know where content is located. Therefore, the

publisher sends the client a message containing a group key, encrypted using the client’s

public key. The group key is shared between a small number of proxy users and is used

to discover identifiers of content. For security, different groups of users fetch content from

different locations; this prevents any one user from learning about (and attacking) all con-

tent available through the proxy.

After registration is complete, clients can retrieve content. To look up a URL u, a client

hashes u with a keyed hash function using the group key. It uses the hash as the message

identifier for receive.

Unlike traditional Web proxies, only a limited amount of content is available though

our proxy. Therefore, to accommodate clients’ needs for unavailable content, clients can

suggest content to be published. To suggest a URL, a client sends the publisher a message

containing the requested URL. If the publisher follows the suggestion, then it publishes the

URL for users of that client’s group key.

Along with distributing content, the publisher provides updates to the task database via

the proxy itself (at the URL proxy://updates). The clients occasionally fetch content

from this URL to keep synchronized with the publisher’s task database. The consistent

hashing algorithm introduced in Section 4.3.3 allows updates to be relatively infrequent;

by default, the proxy client updates its database when 20% of tasks have been remapped

due to churn (i.e., there is a 20% reduction in the number of successful task executions).

Figure 15 shows that there may be many changes to the task database before this occurs.

Implementation and Evaluation. We have implemented a simple version of the proxy

and can use it to publish and retrieve documents on Flickr. The task database is a set of

tasks that search for combinations (e.g., “vacation” and “beach”) of the 130 most popular

tags. A 23 KB one-day news summary requires nine JPEG photos (≈ 3 KB data per photo,

plus encoding overhead) and takes approximately 1 minute to retrieve over a fast network

connection; rendering web pages and large photos takes a significant fraction of this time.

Note that the document is retrieved immediately after publication; performance decays

slightly over time because search results are displayed in reverse chronological order. We

have also implemented a photo donation service, which accepts Flickr photos from users,

encodes them with censored content, and uploads them on the user’s behalf. This donation

service is available for download [36].
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4.5.3 Covert Email

Although our Web proxy provides censored content to many users, it is susceptible to attack

from the censor for precisely this reason: because no access control is performed, the censor

could learn the locations of published URLs using the proxy itself and potentially mount

denial-of-service attacks. To provide greater security and availability, we present Covert

Email, a point-to-point messaging system built on Collage’s message layer that excludes the

censor from sending or receiving messages, or observing its users. This design sacrifices

scalability: to meet these security requirements, all key distribution is done out of band,

similar to PGP key signing.

Messages sent with Covert Email will be smaller and potentially more frequent than

for the proxy, so Covert Email uses text vectors instead of image vectors. Using text also

improves deniability, because receivers are inside the censored domain, and publishing a

lot of text (e.g., comments, tweets) is considered more deniable than many photos. Blogs,

Twitter, and comment posts can all be used to store message chunks. Because Covert

Email is used between a closed group of users with a smaller volume of messages, the task

database is smaller and updated less often without compromising deniability. Additionally,

users can supply the text vectors needed to encode content (i.e., write or generate them),

eliminating the need for an outside vector source. This simplifies the design.

Suppose a group of mutually trusted users wishes to communicate using Covert Email.

Before doing so, it must establish a shared secret key, for deriving message identifiers

for sending and receiving messages. This one-time exchange is done out-of-band; any

exchange mechanism works as long as the censor is unaware that a key exchange takes

place. Along with exchanging keys, the group establishes a task database. At present, a

database is distributed with the application; the group can augment its task database and

notify members of changes using Covert Email itself.

Once the group has established a shared key and a task database, its members can

communicate. To send email to Bob, Alice generates a message identifier by encrypting

a tuple of his email address and the current date, using the shared secret key. The date

serves as a salt and ensures variation in message locations over time. Alice then sends her

message to Bob using that identifier. Here, Bob’s email address is used only to uniquely

identify him within the group; in particular, the domain portion of the address serves no

purpose for communication within the group.

To receive new mail, Bob attempts to receive messages with identifiers that are the

encryption of his email address and some date. To check for new messages, he checks

each date since the last time he checked mail. For example, if Bob last checked his mail
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yesterday, he checks two dates: yesterday and today.

If one group member is outside the censored domain, then Covert Email can interface

with traditional email. This user runs an email server and acts as a proxy for the other mem-

bers of the group. To send mail, group members send a message to the proxy, requesting

that it be forwarded to a traditional email address. Likewise, when the proxy receives a

traditional email message, it forwards it to the requisite Covert Email user. This imposes

one obvious requirement on group members sending mail using the proxy: they must use

email addresses where the domain portion matches the domain of the proxy email server.

Because the domain serves no other purpose in Covert Email addresses, implementing this

requirement is easy.

Implementation and Evaluation. We have implemented a prototype application for send-

ing and retrieving Covert Email. Currently, the task database is a set of tasks that search

posts of other Twitter users. We have also written tasks that search for popular keywords

(e.g., “World Cup”). To demonstrate the general approach, we have implemented an (in-

secure) proof-of-concept steganography algorithm that stores data by altering the capital-

ization of words. Sending a short 194-byte message required three tweets and took five

seconds. We have shown that Covert E-mail has the potential to work in practice, although

this application obviously needs many enhancements before general use, most notably a

secure text vector encoding algorithm and more deniable task database.

4.6 Threats to Collage

This section discusses limitations of Collage in terms of the security threats it is likely to

face from censors; we also discuss possible defenses. Recall from Section 4.2.2 that we

are concerned with two security metrics: availability and deniability. Given the unknown

power of the censor and lack of formal information hiding primitives in this context, both

goals are necessarily best effort.

4.6.1 Availability

A censor may try to prevent clients from sending and receiving messages. Our strongest

argument for Collage’s availability depends on a censor’s unwillingness to block large

quantities of legitimate content. This section discusses additional factors that contribute

to Collage’s current and future availability.

The censor could block message vectors, but a censor that wishes to allow access to

legitimate content may have trouble doing so since censored messages are encoded inside
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otherwise legitimate content, and message vectors are, by design, difficult to remove with-

out destroying the cover content. Furthermore, some encoding schemes (e.g., steganog-

raphy) are resilient against more determined censors, because they hide the presence of

Collage data; blocking encoded vectors then also requires blocking many legitimate vec-

tors.

The censor might instead block traffic patterns resembling Collage’s tasks. From the

censor’s perspective, doing so may allow legitimate users access to content as long as they

do not use one of the many tasks in the task database to retrieve the content. Because tasks

in the database are “popular” among innocuous users by design, blocking a task may also

disrupt the activities of legitimate users. Furthermore, if applications prevent the censor

from knowing the task database, mounting this attack becomes quite difficult.

The censor could block access to content hosts, thereby blocking access to vectors

published on those hosts. Censors have mounted this attack in practice; for example, China

is currently blocking Flickr and Twitter, at least in part [139]. Although Collage cannot

prevent these sites from being blocked, applications can reduce the impact of this action by

publishing vectors across many user-generated content sites, so even if the censor blocks

a few popular sites there will still be plenty of sites that host message vectors. One of

the strengths of Collage’s design is that it does not depend on any specific user-generated

content service: any site that can host content for users can act as a Collage drop site.

The censor could also try to prevent senders from publishing content. This action is

irrelevant for applications that perform all publication outside a censored domain. For

others, it is impractical for the same reasons that blocking receivers is impractical. Many

content hosts (e.g., Flickr, Twitter) have third-party publication tools that act as proxies to

the publication mechanism [149]. Blocking all such tools is difficult, as evidenced by Iran’s

failed attempts to block Twitter [37].

Instead of blocking access to publication or retrieval of user-generated content, the

censor could coerce content hosts to remove vectors or disrupt the content inside them. For

certain vector encodings (e.g., steganography) the content host may be unable to identify

vectors containing Collage content; in other cases (e.g., digital watermarking), removing

encoded content is difficult without destroying the outward appearance of the vector (e.g.,

removing the watermark could induce artifacts in a photograph).

4.6.2 Deniability

As mentioned in Section 4.2.1, the censor may try to compromise the deniability of Col-

lage users. Intuitively, a Collage user’s actions are deniable if the censor cannot distinguish
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the use of Collage from “normal” Internet activity. Deniability is difficult to quantify; oth-

ers have developed metrics for anonymity [133], and we are working on quantitative met-

rics for deniability in our ongoing work. Instead, we explore deniability somewhat more

informally and aim to understand how a censor can attack a Collage user’s deniability and

how future extensions to Collage might mitigate these threats. The censor may attempt to

compromise the deniability of either the sender or the receiver of a message. We explore

various ways the censor might mount these attacks, and possible extensions to Collage to

defend against them.

The censor may attempt to identify senders. Applications can use several techniques

to improve deniability. First, they can choose deniable content hosts; if a user has never

visited a particular content host, it would be unwise to upload lots of content there. Second,

vectors must match tasks; if a task requires vectors with certain properties (e.g., tagged with

“vacation”), vectors not meeting those requirements are not deniable. The vector provider

for each application is responsible for ensuring this. Finally, publication frequency must be

indistinguishable from a user’s normal behavior and the publication frequency of innocuous

users.

The censor may also attempt to identify receivers, by observing their task sequences.

Several application parameters affect receiver deniability. As the size of the task database

grows, clients have more variety (and thus deniability), but must crawl through more data

to find message chunks. Increasing the number of tasks mapped to each identifier gives

senders more choice of publication locations, but forces receivers to sift through more

content when retrieving messages. Increasing variety of tasks increases deniability, but

requires a human author to specify each type of task. The receiver must decide an ordering

of tasks to visit; ideally, receivers only visit tasks that are popular among innocuous users.

Ultimately, the censor may develop more sophisticated techniques to defeat user de-

niability. For example, a censor may try to target individual users by mounting timing

attacks (as have been mounted against other systems like Tor [7, 103]), or may look at

how browsing patters change across groups of users or content sites. In these cases, we

believe it is possible to extend Collage so that its request patterns more closely resemble

those of innocuous users. To do so, Collage could monitor a user’s normal Web traffic and

allow Collage traffic to only perturb observable distributions (e.g., inter-request timings,

traffic per day, etc.) by small amounts. Doing so could obviously have massive a impact

on Collage’s performance. Preliminary analysis shows that over time this technique could

yield sufficient bandwidth for productive communication, but we leave its implementation

to future work.
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4.7 Summary

Internet users in many countries need safe, robust mechanisms to publish content and the

ability to send or publish messages in the face of censorship. Existing mechanisms for

bypassing censorship firewalls typically rely on establishing and maintaining infrastructure

outside the censored regime, typically in the form of proxies; unfortunately, when a censor

blocks these proxies, the systems are no longer usable. This chapter presented Collage,

which bypasses censorship firewalls by piggybacking messages on the vast amount and

types of user-generated content on the Internet today. Collage focuses on providing both

availability and some level of deniability to its users, in addition to more conventional

security properties.

Collage is a further step in the ongoing arms race to circumvent censorship. As we

discussed, it is likely that, upon seeing Collage, censors will take the next steps towards

disrupting communications channels through the firewall—perhaps by mangling content,

analyzing joint distributions of access patterns, or analyzing request timing distributions.

However, as Bellovin points out: “There’s no doubt that China—or any government so-

minded—can censor virtually everything; it’s just that the cost—cutting most commu-

nications lines, and deploying enough agents to vet the rest—is prohibitive. The more

interesting question is whether or not ‘enough’ censorship is affordable.” [14] Although

Collage itself may ultimately be disrupted or blocked, it represents another step in mak-

ing censorship more costly to the censors; we believe that its underpinnings—the use of

user-generated content to pass messages through censorship firewalls—will survive, even

as censorship techniques grow increasingly more sophisticated.
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CHAPTER V

CONCLUSION

5.1 Summary of contributions

This thesis has demonstrated that users worldwide can assist in the measurement and cir-

cumvention of Internet censorship. In doing so, we made the following contributions:

1. A system for measuring censorship from unmodified Web browsers. We designed and

implemented Encore, the first system that measures Internet censorship from unmod-

ified Web browsers. Encore collects measurements of Web censorship from far more

vantage points than previously possible. It is able to do so by placing deployment

burden on bystanding webmasters rather than users in censored countries.

2. A technique for circumventing censorship with user-generated content. We explored

what future censorship circumvention might look like with Collage, an automated

technique for disseminating censored data by hiding it amongst legitimate content

across the Web. Collage’s security properties will be invaluable against future cen-

sors, which could be significantly more powerful than those today. Collage leverages

content generated by real users hosted on real user-generated content hosts; using

these bystanders strengthens Collage’s security.

5.2 Lessons learned

We conclude with general lessons we heave learned since we began studying Internet cen-

sorship in 2008. In some cases, these are based on the experiences and beliefs of the author

rather than claims backed by evidence.

5.2.1 For circumvention, a panacea is unlikely

As explained at the beginning of this dissertation, Internet censorship is an arms race, and

one that is nowhere near resolution. New censorship and circumvention techniques will

continue to arise for the considerable future. For several reasons, we believe that we may

never arrive at the “perfect” circumvention tool that defeats every known censorship tech-

nique. First, as we explained in Chapter 1, Internet censorship is ultimately the result of
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non-technical policy; among other things, this means that subtly different censorship poli-

cies could result in massive changes in censorship mechanisms and infrastructure, perhaps

employing entirely unseen techniques and requiring new circumvention techniques. Sec-

ond, performance of any such panacea system could likely be so terrible as to not qualify

as a panacea; we often trade off performance to gain security, and such a panacea would

need to surmount a plethora of technical roadblocks. Finally, and perhaps most impor-

tantly, because censorship is simply applications of network security in new contexts and

circumvention techniques represent attacks on these security systems, any technique that

fundamentally broke censorship mechanisms will have profound ramifications beyond cen-

sorship and censorship circumvention; the security of the entire Internet ecosystem would

be at risk.

5.2.2 We need better incentives for measurement and circumvention

Although some people genuinely want to help measure and circumvent Internet censorship,

better incentives would help drive adoption of the tools we develop. Finding and convinc-

ing users around the world to install censorship measurement software is a monumental

challenge; although deploying Encore has been far easier, it isn’t without its own prob-

lems. Convincing webmasters to expose their users to unproven third-party measurement

scripts (i.e., Encore’s measurement tasks) is difficult without offering something concrete

in return. Similarly, convincing users to donate their photo collections would have required

far more work beyond the prototype we developed and it isn’t clear how many users would

have used it anyway. Providing true value to users beyond simply appealing to their good-

will or curiousity could address these problems.

5.2.3 Sometimes, security isn’t as important as usability

At several points during our research, we were forced to forgo perfect security for the

sake of usability and practicality. We developed Encore because we lacked an easy way to

collect censorship measurements from a diverse set of vantage points. Doing so required

abandoning many security mechanisms present in most prior measurement collection tools.

Although this could cause us to draw erroneous conclusions from measurements tampered

by a censor, we realized that Encore fits into an ecosystem of censorship measurement tools

and independent observers; rather than collecting ground truth, Encore’s job is simply to

corroborate beliefs built from data collected by other tools and assembled from people

experiencing censorship first hand.
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More generally, the extraordinarily high bootstrapping cost of most censorship mea-

surement and circumvention tools means that opportunities to trade security for usability

will arise more often than they otherwise might. Put another way, giving users an insecure

tool is sometimes better than giving them no tool at all.

5.3 Future work

We conclude by summarizing promising research to be done in censorship discovery, mea-

surement, and circumvention.

5.3.1 Richer censorship measurements

Although we argued in Chapter 3 that custom censorship measurement tools are extremely

hard to deploy, they are probably the only way to gather rich, detailed data about Internet

censorship. Even though Encore has the potential to easily collect measurements without

massive deployment hurdles, there are severe and fundamental limitations on the kinds

of data it can collect. Ultimately, the censorship measurement community needs to build

and deploy a network of custom measurement tools — an arduous task, but necessary

nonetheless. Researchers have yet to deploy and sustain a platform for measuring Internet

censorship from a globally diverse set of vantage points for the long term. Luckily, we are

aware of several such efforts underway that are attempting exactly this.

The author’s experiences in building, deploying, and maintaining the BISmark home

router testbed have shown that placing measurement infrastructure in the hands of real users

introduces unexpected challenges, far beyond those faced by testbeds deployed in con-

trolled education networks, like PlanetLab [138]. Achieving the breadth of measurements

required to paint an accurate picture of Internet censorship will likely require deployment

on BISmark or a platform that faces similar challenges. Collecting detailed censorship

measurements also introduces new ethical and legal hurdles that researchers don’t typically

consider when designing general network measurement platforms [23, 162].

Figure 18 adds a new point, labeled ICLab, to the space of related work from Figure 4.

ICLab is a project currently in development that attempts to improve on both the depth

and breadth of existing censorship measurement efforts. We outline several hurdles that

ICLab or similar efforts may face when attempting to deploy hardware or software in the

hands of users around the world. None of these are fundamental roadblocks; rather, they

are practical concerns that could make it significantly harder to sustain the measurement

infrastructure. Please refer to our paper on BISmark deployment experiences for more in
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Figure 18: Future censorship measurement platforms will improve both the breadth and
depth of measurements. One such effort, ICLab, is already underway.

depth discussion of several of these issues [138].

Censorship measurement is not unified. As we explained in Chapter 1, Internet censor-

ship and Internet censorship measurement lack any fundamental technical underpinnings,

which influences the design of any system that attempts to measure a wide breadth of cen-

sorship techniques. Such systems will need to touch a wide range of technologies that span

the entire network stack (e.g., network diagnostics like ping and traceroute; raw packet

capture; deep packet inspection; TCP parameter inspection and tuning; control over packet

fragmentation; fine grained manipulation of application logic) and interact with many unre-

lated systems (e.g., arbitrary Internet server; specialized measurement servers; the plethora

of middleboxes deployed by ISPs; DNS infrastructure; firewalls).

This complicates deployment because testbed authors will need to (1) design many

kinds of measurements and audit their validity, security, and performance, and (2) write

and test lots of code to implement those measurements. These tasks may have little overlap

from one kind of measurement to another. Existing attempts to capture a wide variety of

censorship measurements (e.g., OONI [64]) have already realized the difficulty of capturing

a breadth of censorship measurements. Such efforts typically end up shoehorning their

measurements into a small set of awkward abstractions that results in implementations

that are long, complicated, and ultimately unintelligible. This doesn’t mean those efforts

are ill-conceived, but rather illustrates the extreme difficultly of implementing censorship
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measurements within a single framework or set of abstractions. Rather than focusing on

constructing a general framework for censorship measurement, we advise developers to

focus on resource isolation and security mechanisms that will be necessary when collecting

all such measurements.

Maintaining a measurement platform can be a full time job. At scale, seemingly trivial

tasks require a lot of effort. For example, deploying a faulty update to a single node has only

modest consequences; at worst, we lose access to a single node, and in most circumstances

we can manually fix the problem remotely with a bit of effort. Deploying the same faulty

update to hundreds of globally distributed nodes can have catastrophic consequences; we

alienate users, must spend dozens or hundreds of hours rectifying the problem, and po-

tentially lose access to thousands or tens of thousands of dollars worth of infrastructure.

Therefore, even small upgrades require a lot of testing, as we must thoroughly review any

source code changes and closely monitor the upgrade on a small number of nodes before

widespread deployment.

Keeping measurement nodes online is an uphill battle. This is particularly true when

users have different incentives and values than the developers of the measurement platform.

For example, developers in countries with plentiful bandwidth and cheap power may forget

that nodes could be deployed in countries with miniscule data allowances and expensive

power; whereas users in some parts of world may be accustomed to leaving devices turned

on all the time, users in others may view network-connected devices as appliances that

should be turned off after use. Other users may be enthusiastic about leaving devices on-

line to collect measurements in some periods of interest (e.g., during an election or political

unrest) but lose interest once the conflict is resolved, not realizing that continuous measure-

ment collection is crucial for the establishment of baseline knowledge. These differences

in incentives and attitudes could be a significant impediment to continuous collection of

measurements.

Be wary of placing hardware on the critical path. Testbed authors may be tempted

to place hardware on the critical path, either as a means of collecting more data (e.g.,

about user activity) or to provide benefit to users (e.g., by operating as a wireless access

point). There are advantages and disadvantages to doing so. Advantages include the ability

to observe more data about network usage and potentially compensate for measurement

inaccuracies (e.g., by pausing measurement collection when another client is streaming a

video over the same connection), and for “free” availability monitoring (i.e., users of the

device will notice if it stops working). Disadvantages include users’ very low tolerance

for faults (in all likelihood, they will disconnect the device at the first sign of trouble) and
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privacy concerns of accidentally collecting personal information.

Building trusted relationships is important. Developing trusted relationships with users

is critical for keeping measurement devices online. Users should feel personally invested

and accountable for keeping devices online. The deployment model directly determines

the establishment of these relationships. Deployment models include giving measurement

devices to close friends or colleagues, or outsourcing the deployment burden to third parties

in exchange for some form of compensation. For example, while deploying BISmark, we

found it particularly useful to delegate deployment of nodes in foreign countries to local

experts in those countries; this scales well for a few dozen nodes per delegate. On the

other hand, lack of trust leads to an unstable deployment of nodes that could go offline

at any time; in the extreme, we cannot trust data coming from nodes operated by arbitrary

parties who may contribute malicious data (e.g., if anyone can operate a measurement node,

a government may elect to operate its own set of nodes to contribute false or misleading

measurements).

5.3.2 Reducing bias in censorship discovery

Censorship measurement systems are ultimately only useful if we provide them with tar-

gets to measure. These inputs are provided by censorship discovery. (See Section 2.3 for

a refresher.) Existing measurement tools and studies rely on manual discovery, where re-

gional experts (e.g., users affected by censorship) compile lists of censored resources to

test. This means that current studies aren’t measuring censorship so much as verifying

cases of suspected censorship.

Rather than relying on necessarily biased human experts for censorship discovery, we

could imagine building a system to produce this list automatically. Encore provides one

possible avenue. With very widespread deployment (e.g., installation on a very popular

Web page, like google.com) one could imagine using Encore to test every known resource

for censorship, regardless of suspicion. Such a deployment is exceedingly unlikely, how-

ever, and would likely be prohibitively expensive even if it happened.

An alternate approach is to shrink the size of the target list by inferring censorship from

server-side usage logs. For example, we could only add resources to the target list when

we detect sudden drops in traffic to them. Unfortunately, all attempts to solve the problem

so far have been riddled by so many false positives as to make their output useless. This

isn’t for lack of effort — the author spent nearly two years experimenting with various

censorship discovery techniques on three different data sets. Ultimately, this approach may

work if given rich enough data about how users worldwide access Internet services.
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5.3.3 Fundamental constraints on bootstrapping

Collage provides a secure yet slow covert communication channel that could serve as a

rendezvous system to bootstrap faster circumvention tools like Tor. Unfortunately, Col-

lage itself requires fairly substantial bootstrapping — users must download and install the

Collage software. This bootstrapping issue affects all circumvention tools but we lack an

understanding of its fundamental constraints. Some amount of bootstrapping communica-

tion must be done outside any circumvention system, but it is unclear if there are inherent

limits on how small that communication can be or whether we can increase its resilience to

blocking even without the help of a circumvention tool.

5.3.4 Measuring subtler forms of censorship

This dissertation only considered forms of network censorship that are easy to detect. As

the arms race between censorship and circumvention advances, censors may begin em-

ploying more sophisticated and subtle forms of censorship. We already see a trend toward

less invasiveness, with countries like Pakistan moving from censorship of entire domains to

only certain URLs [105], and China and Iran degrading performance rather than completely

disrupting communications [78, 89]. The future may blur the line between censorship and

personalization by tailoring censorship for each users or modifying rather than disrupting

content [118, 164].
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APPENDIX A

EXAMPLE OF AN ENCORE MEASUREMENT TASK

This is a complete example of JavaScript code that runs in a client’s Web browser to mea-

sure Web filtering using cross-origin embedding of a hidden image. It uses jQuery [90].

The coordination server minifies and obfuscates the source code before sending it to a

client.

See http://goo.gl/l8GU0R for a simple demo of Encore’s cross-origin request

mechanism.

var M = Object();

// A measurement ID is a unique identifier

// linking all submissions of a measurement.

M.measurementId = ... // a UUID.

// This function embeds an image from

// a remote origin, hides it, and

// sets up callbacks to detect success

// or failure to load the image.

M.measure = function() {

var img = $(’<img>’);

img.attr(’src’, ’//target/image.png’);

img.style(’display’, ’none’);

img.on(’load’, M.sendSuccess);

img.on(’error’, M.sendFailure);

img.appendTo(’html’);

}

// This function submits a result using

// a cross-origin AJAX request. The server

// must allow such cross-origin submissions.

M.submitToCollector = function(state) {

$.ajax({

url: "//collector/submit" +
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"?cmh-id=" + this.measurementId +

"&cmh-result=" + state,

});

}

M.sendSuccess = function() {

M.submitToCollector("success");

}

M.sendFailure = function() {

M.submitToCollector("failure");

}

// Send a ping to the server as soon as

// the client loads the page, regardless

// of whether the measurement result. This

// indcates which clients attempted to

// run the measurement, even if they

// don’t submit a result.

M.submitToCollector("init");

// Run the measurement when the page loads.

$(M.measure);
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Free and open exchange of information on the Internet is at risk: more than 60 coun-

tries practice some form of Internet censorship, and both the number of countries practicing

censorship and the proportion of Internet users who are subject to it are on the rise. Un-

derstanding and mitigating these threats to Internet freedom is a continuous technological

arms race with many of the most influential governments and corporations.

By its very nature, Internet censorship varies drastically from region to region, which

has impeded nearly all efforts to observe and fight it on a global scale. Researchers and

developers in one country may find it very difficult to study censorship in another; this is

particularly true for those in North America and Europe attempting to study notoriously

pervasive censorship in Asia and the Middle East.

This dissertation develops techniques and systems that empower users in one country,

or bystanders, to assist in the measurement and circumvention of Internet censorship in

another. Our work builds from the observation that there are people everywhere who are

willing to help us if only they knew how. First, we develop Encore, which allows webmas-

ters to help study Web censorship by collecting measurements from their sites’ visitors.

Encore leverages weaknesses in cross-origin security policy to collect measurements from

a far more diverse set of vantage points than previously possible. Second, we build Collage,

a technique that uses the pervasiveness and scalability of user-generated content to dissem-

inate censored content. Collage’s novel communication model is robust against censorship

that is significantly more powerful than governments use today. Together, Encore and Col-

lage help people everywhere study and circumvent Internet censorship.
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