
ON SPARSE REPRESENTATIONS AND NEW META-LEARNING
PARADIGMS FOR REPRESENTATION LEARNING

A Dissertation
Presented to

The Academic Faculty

by

Nishant A. Mehta

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computer Science

Georgia Institute of Technology
August 2013

Copyright c© Nishant A. Mehta 2013



ON SPARSE REPRESENTATIONS AND NEW META-LEARNING
PARADIGMS FOR REPRESENTATION LEARNING

Approved by:

Charles L. Isbell, Committee Chair
School of Interactive Computing
Georgia Institute of Technology

Alexander G. Gray, Advisor
School of Computational Science
and Engineering
Georgia Institute of Technology

Guy Lebanon
School of Computational Science
and Engineering
Georgia Institute of Technology

Maria-Florina Balcan
School of Computer Science
Georgia Institute of Technology

Tong Zhang
Department of Statistics
Rutgers University

Date Approved: 14 May 2013



To my parents, and the other great teachers I have had . . .

iii



ACKNOWLEDGEMENTS

My greatest thanks go to my parents for providing a truly loving and comfortable childhood

and for always encouraging my scientific and less-than-scientific pursuits. Also, thanks to

my brother Nirav who has served as a stupendous max-entropy paradigm.

I am grateful to my advisor Alex Gray for his initial guidance and for his ability to see

connections in seemingly unrelated spaces; this granted me a higher level view of machine

learning. I also am in his debt ironically not for his guidance in later years but for granting

me an unprecedented amount of freedom to frame my own research plan as well as the time

to see it through. I thank Melody Moore Jackson for my entry into the PhD program and

early work with brain-computer interfaces; even though I have since pivoted to theoretical

machine learning, I hope to one day reconnect to the brain-computer interface world. Also,

I thoroughly enjoyed my brief interaction with Thad Starner, and in seeing Thad’s research

style firsthand, I consider myself incredibly lucky to have been able to collaborate with him.

I owe much to Nina Balcan for introducing me to learning theory and showing how

exciting proofs can be. I thoroughly enjoyed the learning reading group and interacting

with Yingyu, Stephen, Chris, and Ying. Also, I thank Vladimir Koltchinskii for taking the

time to offer a seminar in empirical processes by a true master; the clarity of his lectures

are unmatched. Finally, I think it was Krishna Balasubramanian who first proposed the

fantastic idea to start a seminar on concentration of measure phenomenon, and I am very

happy that we were able to put our differently shaped heads together to make it happen.

Finally, thanks to my friends, namely Dongryeol Lee, Jim Waters, Josh Dillon, Krishna,

Parikshit Ram, and Ravi Ganti, for putting up with my half-baked ideas on research and

jokes that probably were pretty bad either intentionally or despite my best intentions.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 My Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Sparse representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 New representation learning paradigms . . . . . . . . . . . . . . . . . . . . . 5

1.4 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I SPARSE REPRESENTATIONS 11

2 PREDICTIVE SPARSE AUTO-ENCODERS . . . . . . . . . . . . . . . . . . . 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 The predictive sparse coding problem . . . . . . . . . . . . . . . . . 14

2.2 Conditions and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Discussion of Theorems 2.5 and 2.6 . . . . . . . . . . . . . . . . . . . 21

2.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Symmetrization by ghost sample for random subclasses . . . . . . . 24

2.3.2 Rademacher and Gaussian averages and related results . . . . . . . . 24

v



2.4 Overcomplete setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Useful conditions and subclasses . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Learning bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Infinite-dimensional setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Symmetrization and decomposition . . . . . . . . . . . . . . . . . . . 35

2.5.2 Rademacher bound in the case of the good event . . . . . . . . . . . 36

2.6 An empirical study of the s-margin . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Discussion and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8.1 Proof of Sparse Coding Stability Theorem . . . . . . . . . . . . . . . 49

2.8.2 Proof of Symmetrization by Ghost Sample Lemma . . . . . . . . . . 60

2.8.3 Proofs for overcomplete setting . . . . . . . . . . . . . . . . . . . . . 61

2.8.4 Infinite-dimensional setting . . . . . . . . . . . . . . . . . . . . . . . 63

2.8.5 Covering numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 MULTI-TASK PREDICTIVE SPARSE CODING . . . . . . . . . . . . . . . . . 68

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Multi-task predictive sparse coding . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Generalization error bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Proofs for generalization error bounds . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Unsupervised setting: proof of Theorem 3.1 . . . . . . . . . . . . . . 76

3.4.2 Predictive setting: proof of Theorem 3.2 . . . . . . . . . . . . . . . . 82

3.5 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

II NEW REPRESENTATION LEARNING PARADIGMS 97

4 MINIMAX MULTI-TASK LEARNING . . . . . . . . . . . . . . . . . . . . . . . 98

vi



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Minimax multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Minimax MTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.2 A learning to learn bound for the maximum risk . . . . . . . . . . . 103

4.3 A generalized loss-compositional paradigm for MTL . . . . . . . . . . . . . 105

4.4 Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 SAMPLE VARIANCE PENALIZED META-LEARNING . . . . . . . . . . . . . 116

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Meta-learning & sample variance penalization . . . . . . . . . . . . . . . . . 117

5.3 Learning guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Proof sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Convexity & algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

vii



LIST OF FIGURES

1.1 Flexible sharing model for multi-task sparse coding . . . . . . . . . . . . . . 4

2.1 Proof flowchart for the Overcomplete Learning Bound (Theorem 2.5). . . . 27

2.2 Visualization of the proof of the Good Ghost Lemma (Lemma 2.13). . . . . 29

2.3 Proof flowchart for the Infinite-Dimensional Learning Bound (Theorem 2.6). 34

2.4 The s-margin for predictive sparse coding trained on the USPS training set,
digit 4 versus all, for three settings of λ. . . . . . . . . . . . . . . . . . . . . 46

2.5 The s-margin for predictive sparse coding trained on the MNIST training
set, digit 4 versus all, for three settings of λ. . . . . . . . . . . . . . . . . . . 47

2.6 Proof flowchart for the Sparse Coding Stability Theorem (Theorem 2.4). . 49

3.1 Subgradient updates for multi-task predictive sparse coding. . . . . . . . . . 93

3.2 Results of three experiments investigating performance of the sharing model
of multi-task predictive sparse coding. . . . . . . . . . . . . . . . . . . . . . 95

4.1 Max `2-risk (Top two lines) and mean `2-risk (Bottom two lines). At Top
Left and Top Right: `2-risk vs noise level, for σtask = 0.1 and σtask = 0.5
respectively. At Bottom: `2-risk vs task variation, for σnoise = 0.1. . . . . . 111

4.2 Maximum RMSE (Top) and normalized mean RMSE (Bottom) versus task-
specific parameter bound τ1, for shared parameter bound τ0 fixed. In each
figure, Left section is τ0 is 0.2 and Right section is τ0 = 0.6. . . . . . . . . . 112

4.3 MTL (Top) and LTL (Bottom). Maximum `2 risk (Left) and Mean `2 risk
(Right) vs bound on ‖W ‖tr. LTL used 10-fold cross-validation (10% of tasks
left out in each fold). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Test multiclass 0-1 loss vs ‖W ‖tr. Solid red is `1 MTL, solid blue is minimax,
dashed green is (0.1T )-minimax, dashed black is (0.2T )-minimax. . . . . . 114

5.1 Commutative diagram showing different strategies for bounding transfer risk
in terms of empirical risk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 The empirically observed test transfer risk on the simulated data, for both
empirical risk minimization (ERM) and sample variance penalized meta learn-
ing (SVP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

viii



5.3 The top and bottom plots show the excess test transfer risk, computed by
comparing against the optimal meta-hypothesis which selects the first fea-
ture, for the empirical risk minimization (ERM) meta-learner and the sample
variance penalization (SVP) meta-learner. . . . . . . . . . . . . . . . . . . . 135

ix



GLOSSARY

Notation Description Page
List

Spaces

X input space, taken as X = (BRd )
k

for sparse coding 100, 117
Y output space (space of labels or targets) 14, 100,

117
Z joint space Z = X × Y 117
P space of probability measures on Z 101, 120
W space of linear hypotheses, W = rBRd 15

D space of dictionaries (BRd )
k

14
Dµ space of µ-incoherent dictionaries, Dµ = {D ∈ D : µs(D) ≥ µ} 27

D(s) space of ks -atom shared dictionaries, D(s) = (BRd )
ks 70

D(e) space of ke-atom task-exclusive dictionaries, D(e) = (BRd )
ke 70

Eµ subset of D(s) ×
(
D(e)

)T
with µ-incoherent task dictionaries 83

U isometry class U ⊂ Rd×k , in which all U ∈ U satisfy UT U = I 38

S space of k-dimensional dictionaries, S = (BRk )
k

38
A set of learning algorithms A = {AH : H ∈ H} 118

Probability
Π marginal probability measure over input space X 14
P joint probability measure over Z 6, 14, 119
Pz empirical measure with respect to m-sample z 103, 119
Pt probability measure for t th training task 72, 101,

118

P̃t probability measure for t th test task 121
Pz(t) empirical measure with respect to m-sample z(t) 103
Q the environment, a probability measure over P 6, 101,

119
P f E(x ,y)∼P f (x) 20, 119
P `(·, f ) E(x ,y) `

(
y , f (x)

)
20

Pz f 1
m

∑m
i=1 f (xi ) or 1

m

∑m
i=1 f (zi ) 20, 119

Pz `(·, f )
∑m

i=1 `
(
yi , f (xi )

)
20

Samples
z labeled m-sample of training data 14
z′ second labeled m-sample (ghost sample) 24
x′′ unlabeled m-sample 21
x(t) unlabeled m-sample for t th task, drawn from product measure

Pm
t , for Pt a probability measure over input space X

72

z(t) labeled m-sample for t th task, drawn from product measure
Pm

t , for Pt a probability measure over joint space X × Y
73, 103,
118

z′
(t)

labeled ghost m-sample for t th task; independent copy of z(t) 83

x



Notation Description Page
List

z meta-sample collecting the m-samples z(1), . . . , z(T ) 83, 118

z′ ghost meta-sample collecting ghost m-samples z′
(1)

, . . . , z′
(T )

83
Function Classes
F function class for sparse coding; varies depending on unsuper-

vised vs predictive and single vs multi-task
15, 71, 72,
74

Fµ subclass of F with dictionary (or dictionaries) in Dµ 27, 85
Fµµµ∗ {f = (D,w) ∈ F : (µs(D) ≥ µ∗s )and(µ2s(D) ≥ µ∗2s) 35
Fµµµ∗(x) {f ∈ Fµµµ∗ : s-sparse(ϕD(x))and

[
margins(D,x) > τ

]
} 36

Fµµµ∗,η(x) {f ∈ Fµµµ∗ : ∃ x̃ ⊆η x s-sparse(ϕD(x̃))and
[
margins(D, x̃) > τ

]
} 37

Learning
H hypothesis space 6, 101,

117
h (h1, . . . , hT ) ∈ HT 105
H family of hypothesis spaces, or meta-hypothesis space 101, 118
AH algorithm mapping m-samples to hypotheses in H 6
A meta-learner, mapping from meta-samples to algorithms as

A : (Zm)T → A
118

Ω regularizer Ω : H×Zm → R+ 117
Ω(·) meta-learning regularizer, defined in Chapter 4 as

Ω : H× ∪H∈HHT → R+ and defined in Chapter 5 as

Ω(·) : H× (Zm)T → R+

106, 120

AH(·) Ω-regularized empirical risk minimization algorithm, mapping
m-sample z to argminh∈H

1
m

∑m
j=1 `

(
yj , h(xj)

)
+ Ω(h, z)

117

Vm(a1, . . . , am) sample variance of (a1, . . . , am), defined as

Vm(a1, . . . , am) =
1

m(m−1)
∑

1≤i<j≤m
(ai−aj )

2

2

119

Vz(h) sample variance of the loss of hypothesis h with respect to sam-

ple z, defined as Vz(h) := Vm

(
`
(
y1, h(x1)

)
, . . . , `

(
ym, h(xm)

)) 119

Vz(AH) sample variance of AH on z, i.e. the sample variance of em-
pirical risk minimization over H on meta-sample z, defined as

Vz(AH) = VT

(
Pz(1) `

(
·,AH(z(1))

)
, . . . , Pz(T) `

(
·,AH(z(T ))

)) 119

Parameters
D dictionary of k atoms in Rd 2, 12
Dj j th atom (column) of dictionary (matrix) D 12
D̄(t) dictionary for t th task in multi-task sparse coding model, with

D̄(t) = (D(0) D(t))
70

D(0) shared subdictionary in multi-task sparse coding 70
D(t) exclusive subdictionary for t th task in multi-task sparse coding 70
Wt linear hypothesis for t th task 73

Losses
` loss function ` : Y × R→ [0, b] 15, 117
`(·, f ) loss-composed function of Y×Rd , acting as (y , x) 7→ `(y , f (x)) 20
` ◦ F loss class of functions, {`(·, f ) : f ∈ F} 20
ˆ̀

t(ht) empirical risk for hypothesis ht on task t ∈ [T ], defined as
ˆ̀

t(ht) =
∑m

i=1 `(y
(t)
i , ht(x

(t)
i ))

105

ˆ̀(h) vector of empirical risks, ˆ̀(h) :=
(

ˆ̀
1(h1), . . . , ˆ̀

T (hT )
)

105

Sparse Coding

xi



Notation Description Page
List

ϕD sparse auto-encoder, ϕD(x) = argminz ‖x − Dz‖22 + λ‖z‖1 2, 14
µs(D) s-incoherence: minimum (σs(D))2 among s-atom subdic-

tionaries of D
16

margins(D, x) max I⊆[k]
|I|=k−s

minj∈I

{
λ−

∣∣〈Dj , xi − DϕD(xi )〉
∣∣} 17

margins(D,x) minxi∈x margins(D, xi ) 17
s-sparse(ϕD(x)) for all xi ∈ x, ‖ϕD(xi )‖0 ≤ s 17
f f = (f1, . . . , fT ) ∈ F for multi-task (predictive) sparse coding 72
fD,w functions fD,w (x , y) = ` (y , 〈w ,ϕD(x)〉) for multi-task predic-

tive sparse coding
74

Feature Map
ϕθ feature map, or preprocessor, ϕθ : X → Rk 123
Θ metric space indexing elements of H, as Hθ ∈ H for θ ∈ Θ 123
C Lipschitz constant for ϕθ when viewed as a function of θ 123
N (Θ, ε) ε-covering number for Θ using ‖ · ‖ 123

Scalars
m # training points per task 14
T # training tasks 70, 101,

118

T̃ # test tasks 121
d ambient dimension of input space (dimensionality of x) 12
k # atoms for sparse coding; # learned features in general 12
ks # shared atoms for multi-task sparse coding 70
ke # exclusive atoms (per task) for multi-task sparse coding 70
b upper bound on range of ` 15, 117
L Lipschitz constant for ` as a function of its second argument 15, 117
r upper bound on radius of linear hypotheses in W 15

ι = ι(λ, ε) permissible radius of perturbation (PRP), ι(λ, ε) =
√
243ε/λ 27

Complexities
σi Rademacher random variable, uniform on {−1, 1} 24, 122
γi standard normal random variable, distributed as N (0, 1) 24
Rm|x(F) conditional Rademacher average, 2

m Eσσσ supf∈F
∑m

i=1 σi f (xi ) 25, 122
Gm|x(F) conditional Gaussian average, 2

m Eγγγ supf∈F
∑m

i=1 γi f (xi ) 25
Rm(F) Rademacher complexity, ERm|x(F) 104
Rm(F) uniform Rademacher complexity, Rm(F) = supx∈Xm Rm|x(F) 122

Miscellaneous
[n] {1, 2, . . . , n} 16
ρBRd `2-ball in Rd of radius ρ 14
supp(t) index support set, {i ∈ [k] : ti 6= 0} for t ∈ Rk 16
σs(A) the s th singular value of A 16
‖S‖2,s The s-restricted 2-norm: sup{t∈Rn:‖t‖=1,| supp(t)|≤s} ‖St‖2 38

transfer risk EP∼Q Ez∼Pm E(x ,y)∼P `
(
y ,AH(z)(x)

)
6, 120

f̂z hypothesis returned by learner from z 20
x̃ ⊆η x x̃ is a subset of x with at most η elements of x removed 27
x̃ ⊆η x x̃ is a meta-sample collecting samples x̃(1), . . . , x̃(T ), with

x̃(t) ⊂ x(t) for each t ∈ [T ], and cumulatively at most η points
of x(1), . . . ,x(T ) are not present in x̃(1), . . . , x̃(T )

83

xii



SUMMARY

This dissertation is a confluence of representation learning and meta-learning, with a special

focus on sparse representations. Meta-learning is fundamental to machine learning, and it

translates to learning to learn itself. The presentation unfolds in two parts: Part I concerns

sparse representations while Part II studies new multi-task and meta-learning paradigms for

representation learning. Our main pursuit with regards to sparse representation learning are

learning theoretic bounds to support a supervised dictionary learning model for Lasso-style

sparse coding. Such predictive sparse coding algorithms have been applied with much suc-

cess in the literature, and even more common have been applications of unsupervised sparse

coding followed by supervised linear hypothesis learning. The predictive sparse coding gen-

eralization error bounds presented in Chapter 2 are the first, and in the process of their

derivation, we introduce a new geometric quantity for describing sparse coding dictionaries.

Our analysis also leads to a result of independent interest: a fundamental stability result for

the Lasso that shows the stability of the solution vector to design matrix perturbations. In

the context of sparse coding, this result is dubbed the Sparse Coding Stability Theorem, and

it shows the stability of the sparse codes to dictionary perturbations. The generalization

bounds for predictive sparse coding handle the overcomplete setting, where there are more

learned features than the original dimension, and the high/infinite-dimensional setting in

which useful bounds are independent of the ambient dimension. Chapter 3 introduces a new

multi-task model for (unsupervised) sparse coding and predictive sparse coding, allowing

for one dictionary per task but with some pre-specified sharing of certain atoms by all the

tasks. We analyze these new models in the overcomplete setting. For sparse coding, we

develop generalization error bounds on the task-average of the reconstruction error, while

xiii



for predictive sparse coding we extend the single-task predictive sparse coding bound for

the overcomplete setting to a bound on the task-average of the prediction risk.

After looking in-depth at learning sparse representations, in Part II we zoom out to the

more general setting of representation learning paradigms. The results in this part focus on

obtaining new types of learning guarantees for the future performance of a meta-learner’s

learned representation on new tasks encountered in an environment. Chapter 4 introduces

minimax multi-task learning, as well as a general loss-compositional framework for minimiz-

ing a large class of symmetric functions of the empirical risks. This chapter also provides a

high probability learning guarantee on the future performance of a meta-learner on individ-

ual tasks encountered in the future, the first of its kind; here, the probability of failure of the

guarantee decays as 1/T for T training tasks. Next, Chapter 5 introduces sample variance

penalized meta-learning, in which the meta-learner minimizes the sum of the task average

of the training tasks’ empirical risks and a penalty on the sample variance of the empirical

risks. Controlling this sample variance affords two advantages. First, one potentially can

obtain a faster rate of decrease for upper bounds on the transfer risk. Second, the sample

variance can be exploited to apply an empirical version of Chebyshev’s inequality, ultimately

yielding a high probability (1−O
(
1/T̃ 2

)
) guarantee on the meta-learner’s average perfor-

mance over a new draw of T̃ test tasks; this guarantee also improves as the sample variance

of the empirical risks decreases. In the case when a meta-learner’s sole intent is feature

selection, a forward step-wise algorithm is presented for direct minimization of the sample

variance penalized objective. However, this objective generally is not convex and results

in a troublesome bilevel program; in response, we introduce a quite natural convex relax-

ation for use with more general meta-learning models. Finally, Chapter 6 summarizes the

contributions of the thesis and provides a forward looking view of representation learning.
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CHAPTER 1

INTRODUCTION

1.1 My Thesis

The stability of performance of a learned representation can give rise to new gen-

eralization guarantees for supervised learners that learn sparse representations

and, more generally, can motivate new meta-learning paradigms for representa-

tion learning supporting tighter generalization guarantees for a meta-learner’s

performance on new learning tasks.

Given the “right” features, learning is easy. This statement from machine learning folk-

lore beguiles with its simplicity, but the trick lies in learning to find those features. The

classical era of machine learning has concentrated on individual learning tasks such as re-

gression and binary classification, and the past 40 years have seen considerable progress

on this front. In the standard setup, features are fixed a priori with respect to the data,

preferably with the aid of domain knowledge, by selecting from a variety of possible repre-

sentations. One popular and tremendously-used class of representations are those arising

from kernels: selecting a particular Mercer kernel corresponds to a particular choice of

transformation of the original features.

Evidence is gathering that the classical era has reached its apex and that the field is

enjoying a transition to a modern era of machine learning. In this modern era, representa-

tions, or features, are no longer fixed a priori; they can in fact be learned either by using a

large amount of data for a single task, or more commonly, by using a large collective pool

of data from multiple tasks. At the time of this writing, the first International Conference
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on Learning Representations (ICLR) is about to kick off. Since the year 2000, there have

been a number of theoretical results on multi-task and meta-learning1 of representations

(Baxter, 2000; Ben-David and Schuller, 2003; Ando and Zhang, 2005; Maurer, 2005, 2006,

2009). Additionally, the seminal work of Lanckriet et al. (2004) introduced the notion of

learning the kernel and hence learning a kernel-induced representation itself. These works

have started to build a theoretical foundation for representation learning; however, after the

fundamental learning to learn work of Baxter (2000), it appears that the only venture into

this space that applies to general models is due to Maurer (2005). On this note, one of the

goals of this dissertation is to establish new, general learning paradigms for representation

learning. In doing so we will answer previously unasked yet very important questions about

the kinds of guarantees that can be made about representation learning and meta-learning.

1.2 Sparse representations

Before discussing the new paradigms for multi-task and meta-learning, many concepts will

become more concrete by first discussing another goal of this thesis. This goal is to inves-

tigate the generalization properties of a particular, very expressive class of representations:

that of sparse representations. Sparse representations have long captivated the worlds of

neuroscience, signal processing, statistics, and machine learning. Some have suggested that

sparse coding might be used in our own neurobiological hardware (Olshausen and Field,

1997), and sparse representations have exhibited remarkable performance on a variety of

high-dimensional learning tasks. Nevertheless, fundamental theoretical questions on learn-

ing sparse representations remain open. This thesis focuses on a popular and mathemati-

cally elegant approach to sparse representations, called sparse coding. In sparse coding, a

choice of representation amounts to a choice of a sparse auto-encoder ϕD : Rd → Rk , where

D ∈ Rd×k is a dictionary of k columns each lying in the unit `2-ball of Rd . In particular,

we consider the following sparse auto-encoder, induced by the Lasso (Tibshirani, 1996):

ϕD(x) := argmin
z∈Rk

1

2
‖x − Dz‖22 + λ‖z‖1.

1Meta-learning is synonymous with learning to learn, and a formal definition will come later.
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Sparse coding via ϕD(·) often is called `1 sparse coding; the Lasso imposes `1 regularization

on the codes, promoting sparsity for well-studied algebraic and geometric reasons (Tropp,

2006; Donoho and Elad, 2003).

For this sparse auto-encoder, we first and foremost ask what is the sample complexity

of learning these sparse representations for supervised tasks? That is, if the ideal objective

is the following supervised objective for some loss function ` and distribution P over inputs

and labels:

E(x ,y)∼P `
(
y , 〈w ,ϕD(x)〉

)
, (1.1)

then we ask at what rate does the empirical version of (1.1) converge to (1.1) itself, for

any hypothesis (D,w) in some suitable class. Furthermore, how do properties of the codes,

such as sparsity, and properties of the dictionary interact to govern the complexity of

the learning problem? The sample complexity of learning these sparse representations

in the unsupervised setting recently has been studied by Maurer and Pontil (2010) and

Vainsencher et al. (2011). In the unsupervised setting, the ideal objective is simply to

minimize the expectation of the `2 reconstruction error ‖x − DϕD(x)‖2. In this setting,

when the dictionary has finitely many columns it turns out that obtaining generalization

error bounds that decay at the rate
√

dk/m (for m points) is simple, not requiring use of

the sparsity of the codes nor various geometric properties of dictionaries that come into play

in the literature for sparse recovery2. As we will see in Chapter 2, the predictive setting

offers additional challenges not seen in the unsupervised setting, and those challenges can

be met by using ideas somewhat similar to the ones from the sparse recovery literature.

Learning a rich representation often does not come cheaply in terms of data. As a result,

representation learning naturally may benefit from learning frameworks such as multi-task

learning and meta-learning; these frameworks can leverage many low sample size datasets

to jointly learn a shared representation of high complexity. Indeed, in many instances,

there is not enough data for any single task in order to learn a sparse representation, at

least according to the best known upper bounds on the estimation error (established by

2Tropp (2006) provides an excellent and eloquent coverage of these properties.
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Maurer and Pontil (2010) and Vainsencher et al. (2011) in the unsupervised setting and

Mehta and Gray (2013) in the supervised setting). Hence, in Chapter 3 we explore whether

sparse representations can be learned, either for unsupervised tasks or supervised tasks,

using many low sample size tasks. Rather than using a single sparse representation (or

single dictionary) for multiple tasks, we introduce and analyze a more general class of

representations wherein each task has some flexibility in adapting a common representation

to that task’s idiosyncrasies. In particular, the learner will learn a separate dictionary for

each task, with all but the last few columns of each dictionary shared by all the tasks. This

sharing model, shown in Figure 1.1, allows the last few columns of each task’s dictionary

to be adapted to that task.

D
H1L

D
HsL

D
H2L D

H3L

Figure 1.1: Flexible sharing model for multi-task sparse coding. Dictionaries for three tasks
are shown. Each task’s dictionary shares a common subdictionary D(s) (tinted blue) rep-
resented by the leftmost eight atoms. In addition, each task has its own small task-specific
subdictionary (tinted red), consisting of either D(1), D(2), or D(3); these subdictionaries are
represented by the rightmost two atoms.

This multi-task sparse coding model can operate in both the unsupervised and super-

vised settings, giving rise to multi-task sparse coding and multi-task predictive sparse coding

respectively. While the ideas for the unsupervised multi-task sparse coding model existed,

in some sense, in a multi-class classification work of Ramirez et al. (2010), their model never

explicitly shares atoms between the different dictionaries, and their multi-class formulation
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is different from a typical multi-task formulation. Importantly, the atomic sharing in the

multi-task sparse coding model can allow for transfer between representations. It appears

that the analysis of this sort of model in Chapter 3 is the first learning theoretic study

of learning separate representations for different tasks while reducing the complexity of

learning by ensuring that all representation are “close.”

In the supervised setting, the shared sparse representation model becomes a multi-task

extension of predictive sparse coding in which “similar” sparse coding representations are

learned for each task (as per the dictionary sharing model), and a separate linear predictor

also is learned for each task. As a result, it is possible to let the estimation error due to

the large shared subdictionary decay with the overall number of points among all the tasks,

while the contribution to the estimation error due to each task’s specific subdictionary and

linear hypothesis decays with the number of points per task.

1.3 New representation learning paradigms

We now switch to a wide-angle lens and pivot to new multi-task and meta-learning paradigms

that lend themselves to unprecedented kinds of generalization guarantees. The history of

multi-task learning started with the work of Rich Caruana and his approach toward using

inductive transfer to improve a learner’s generalization by learning related tasks together

(Caruana, 1997). Meta-learning, or learning to learn3, emanated from Jonathan Baxter’s

work on learning inductive bias using multi-task learning in order to provide guarantees on

a meta-learner’s performance on future tasks (Baxter, 2000). There is an important dis-

tinction between the multi-task learning and meta-learning settings. In multi-task learning,

the set of tasks is fixed, possibly arbitrarily, and identical at training and test time. How-

ever, in Baxter’s learning to learn setting, the training tasks (from which a representation

is learned) are drawn iid from an environment of tasks, and the resulting learner will be

tested on new, test tasks drawn iid from the same environment.

Critically, to date only a few kinds of generalization guarantees have been made in the

multi-task and meta-learning settings. In fact, nearly all works in these settings have focused

3Meta-learning and learning to learning will be both refer to the same concept in this thesis, the concept
itself being the learning to learn setup introduced by Baxter (2000).
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on just two types of guarantees: in multi-task learning, the focus has been upper confidence

bounds on the the average estimation error, whereas the focus in the meta-learning setting

has been upper confidence bounds on the expected true risk, or transfer risk (defined below

in (1.2)). While obtaining such bounds on average/expected performance across tasks

certainly is important, such bounds provide an imprecise view on the performance of a

learner on individual tasks.

In multi-task learning, there are situations where one wants to ensure that the true risk

the learner suffers on any task will not be large. For example, this is true when the learner

is to learn a representation from T tasks, and at test time the learner is tested on only

a single one of those tasks, possibly chosen adversarially. In such situations, rather than

obtaining a bound on the task-average of the learner’s true risk, it is important to obtain

task-wise learning bounds: that is, a bound on the true risk of the learner for each task.

To date, the only general work that has produced task-wise learning bounds operates in

a scenario where the average estimation error and task-wise estimation become equivalent

(Ben-David and Schuller, 2003). This thesis attempts to fill in this apparent void.

In the meta-learning setting, the typical quantity whose minimum is sought is the trans-

fer risk, defined as

EP∼Q Ez∼Pm E(x ,y)∼P `
(
y ,AH(z)(x)

)
, (1.2)

where:

• Algorithm AH takes an m-sample of m labeled points z = (x1, y1), . . . , (xm, ym) and

returns a hypothesis in hypothesis space H;

• Q is the environment, a probability measure over task probability measures;

• Each probability measure P is a distribution over labeled examples z = (x , y).

To minimize this objective, a meta-learner attempts to learn a hypothesis space H (which

can result from learning a particular representation) using samples from multiple training

tasks such that algorithm AH performs well on future tasks. However, if an agent is suf-

ficiently risk-averse, guarantees that the transfer risk of a hypothesis space H is small are
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insufficient. Similar to the single-task learning setting, an agent might require tail bounds

on its future performance. That is, it might need guarantees of the form:

With high probability, the true risk AH will suffer when trained on a new task

drawn from Q does not exceed some level γ.

Guarantees of this form are about the performance of a meta-learning on a single random

task encountered in the future, and such guarantees are unprecedented in the meta-learning

literature. Observe that while a simple application of Markov’s inequality using a bound

on the transfer risk certainly provides some bound on the tail, the level of concentration

obtained does not increase with the number of training tasks T .

In Chapter 4, we establish one sort of high probability guarantee on the future perfor-

mance of a meta-learner’s returned learning algorithm. The nature of the bound suggests a

new paradigm for multi-task learning, called minimax multi-task learning, wherein the goal

is to learn a representation capable of minimizing the maximum of the empirical risks of the

training tasks. In addition to formulating minimax multi-task learning, we also frame two

different spectra of multi-task learning setups. The first spectrum involves the minimization

of `p-norms of the vector of empirical risks, for p in the range [1,∞). Whereas minimizing

the `1 norm of the empirical risks corresponds to minimizing their mean, minimizing the

`∞ norm corresponds to minimizing their maximum. The second spectrum is a continuous

family of relaxations of minimax multi-task learning, where more relaxation translates to a

softening of the maximum. When fully relaxed, the learning formulation translates to the

classical minimization of the mean of the empirical risks.

Chapter 5 provides another sort of high probability bound on the future performance of

a meta-learner on new tasks. This tail bound relies on an empirical Bernstein bound, and

it exploits the sample variance of the empirical risks encountered by the selected learning

algorithm on the training tasks. As such, when the sample variance of the empirical risks is

low, the bound can provide sharper guarantees about the average performance of the learner

over sets of test tasks drawn from the environment. The empirical Bernstein bound used

to develop the tail bound for the learner’s future performance also enables sharper upper

confidence bounds on the transfer risk than what have previously been established in a
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general meta-learning setting. These dual benefits suggest a new meta-learning framework,

sample variance penalized meta learning, that implicitly values the stability of a learned

representation’s performance across tasks drawn from the environment.

Below is a brief summary of the main contributions of this thesis, split up by chapter:

1.4 Summary of contributions

Chapter 2

Sparse Coding Stability Theorem. This is a fundamental stability result for the Lasso.

The result shows sufficient conditions under which the optimal solution z∗ to the Lasso

problem,

argmin
z∈Rk

1

2
‖x − Dz‖22 + λ‖z‖1,

is stable with respect to perturbations to the dictionary D. This appears to be the first result

of this kind. Other ostensibly similar results only apply to the case when the reconstruction

error ‖x − Dz∗‖22 of the optimal solution is small (Herman and Strohmer, 2010)4, whereas

the conditions we use are independent of the magnitude of the reconstruction error. In

statistical machine learning applications where the Lasso is being used for denoising, the

running assumption is that the residual will be non-trivial, and so this distinction is very

important.

Predictive sparse coding learning bound for overcomplete setting. This is the

first estimation error bound for predictive sparse coding, and in particular, the bound ap-

plies to the overcomplete setting where the number of atoms k in the dictionary exceeds

the ambient dimension d . Sparse representations based on `1 sparse coding have enjoyed

widespread use in the machine learning literature, and various techniques, both unsuper-

vised (Raina et al., 2007) and supervised (Mairal et al., 2009, 2012), have been used to learn

the dictionary for sparse coding for later use on supervised tasks. The bound presented es-

4It should be noted that Herman and Strohmer (2010) actually analyze the ε-error-tolerant basis pursuit
problem argminz∈Rk ‖z‖1 s.t. ‖x − Dz‖2 ≤ ε.
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sentially decays at the rate
√

dk
m , with additional dependence on the stability properties

of the particular sparse auto-encoder learned on the training sample. Hence, the bound is

both data and algorithm dependent.

Predictive sparse coding learning bound for infinite-dimensional setting. This

bound is independent of the ambient dimension of the data, and hence it is useful in sit-

uations where d is very large or even infinite. The bound essentially decays at the rate√
k2s
m , where s is some notion of sparsity of the codes induced from the training sample and

the learned auto-encoder. Similar to the overcomplete setting, this bound also is data and

algorithm dependent.

Chapter 3

Multi-task (unsupervised) sparse coding learning bound. A flexible multi-task

extension of the sparse coding model for unsupervised tasks, where the goal of each task

is to minimize the `2 reconstruction error. Our results include a multi-task extension of

already existing estimation error bounds for for single-task sparse coding in the overcomplete

setting.

Multi-task predictive sparse coding learning bound. A similar multi-task extension

of the predictive sparse coding model. The main result is a multi-task extension of the

single-task predictive sparse coding estimation error bound in the overcomplete setting.

Chapter 4

Tail bounds for future test risk of meta-learner using maximum of empirical

risks on training tasks. The first tail bound on the true risk of a meta-learner on future

tasks which decays with the number of training tasks. The presented result bounds the

probability that the true risk the meta-learner will suffer on a new random task will be

much larger than the maximum of the empirical risks on the training tasks; hence, this

bound motivates minimax multi-task learning.
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Minimax multi-task learning. A new multi-task and meta-learning framework that

minimizes the maximum of the (training) tasks’ empirical risks.

`p-multi-task learning. A new multi-task and meta-learning paradigm that minimizes

`p norms of the tasks’ empirical risks.

α-relaxed minimax multi-task learning. A relaxation of minimax multi-task learn-

ing that allows a softer notion of maximum and interpolates between minimax multi-task

learning and classical multi-task learning.

Chapter 5

Better concentration for transfer risk, using sample variance of empirical risks.

An upper confidence bound on the transfer risk of a meta-learner, unique in its dependence

on the sample variance of the empirical risks on the training tasks. In some instances, this

bound can be much tighter than previous bounds. The proof of this bound relies upon an

empirical Bernstein bound showing concentration of the empirical risks to the expectation

of the empirical risk, where this expectation is with respect to the random task and the

random training sample for that task.

Tail bounds for future test risk of meta-learner using sample variance of empiri-

cal risks. A tail bound on the average true risk of a meta-learner on a random finite set of

future tasks, relying on the sample variance of the empirical risks on the training tasks. This

bound arises via an application of an empirical Chebyshev bound — Chebyshev’s inequality

using a high probability bound on the variance’s deviation from the sample variance.

Sample variance penalized meta-learning. A new meta-learning framework that min-

imizes the sum of the mean of the empirical risks with a penalty on the sample variance of

the empirical risks. This problem is non-convex and, for reasons explained in Chapter 5, not

amenable to non-convex optimization approaches. We show a suitable convex relaxation

with good theoretical qualities.
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Part I

SPARSE REPRESENTATIONS

11



CHAPTER 2

PREDICTIVE SPARSE AUTO-ENCODERS

2.1 Introduction

Learning architectures such as the support vector machine and other linear predictors enjoy

strong theoretical properties (Steinwart and Christmann, 2008; Kakade et al., 2009), but

a learning-theoretic understanding of many more complex learning architectures is lacking.

Predictive methods based on sparse coding recently have emerged which simultaneously

learn a data representation via a nonlinear encoding scheme and an estimator linear in that

representation (Bradley and Bagnell, 2009b; Mairal et al., 2012, 2009). A sparse coding

representation z ∈ Rk of a data point x ∈ Rd is learned by representing x as a sparse linear

combination of k atoms Dj ∈ Rd of a dictionary D = (D1, . . . ,Dk) ∈ Rd×k . In the coding

x ≈
∑k

j=1 zj Dj , all but a few zj are zero.

Predictive sparse coding methods such as Mairal et al. (2012)’s task-driven dictionary

learning recently have achieved state-of-the-art results on many tasks, including the MNIST

digits task. Whereas standard sparse coding minimizes an unsupervised, reconstructive `2

loss, predictive sparse coding seeks to minimize a supervised loss by optimizing a dictio-

nary and a linear predictor that operates on encodings to that dictionary. There is much

empirical evidence that sparse coding can provide good abstraction by finding higher-level

representations which are useful in predictive tasks (Yu et al., 2009b). Intuitively, the power

of prediction-driven dictionaries is that they pack more atoms in parts of the representa-

tional space where the prediction task is more difficult. However, despite the empirical

successes of predictive sparse coding, it is unknown how well it generalize in a theoretical
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sense.

In this chapter, we develop what to our knowledge are the first generalization error

bounds for predictive sparse coding algorithms; in particular, we focus on `1-regularized

sparse coding. Maurer and Pontil (2010) and Vainsencher et al. (2011) previously established

generalization bounds for the classical, reconstructive sparse coding setting. Extending their

analysis to the predictive setting introduces certain difficulties related to the richness of the

class of sparse encoders. Whereas in the reconstructive setting, this complexity can be

controlled directly by exploiting the stability of the reconstruction error to dictionary per-

turbations, in the predictive setting it appears that the complexity hinges upon the stability

of the sparse codes themselves to dictionary perturbations. This latter notion of stability is

much harder to prove; moreover, it can be realized only with additional assumptions which

depend on the dictionary, the data, and their interaction (see Theorem 2.4). Furthermore,

when the assumptions hold for the learned dictionary and data, we also need to guarantee

that the assumptions hold on a newly drawn sample.

Contributions We provide learning bounds for two core scenarios in predictive sparse

coding: the overcomplete setting where the dictionary size, or number of learned features, k

exceeds the ambient dimension d ; and the infinite-dimensional setting where only dimension-

free bounds are acceptable. Both bounds hold provided the size m of the training sample is

large enough, where the critical size for the bounds to kick in depends on a certain notion

of stability of the learned representation. This chapter’s core contributions are:

1. Under mild conditions, a stability bound for the Lasso (Tibshirani, 1996) under dic-

tionary perturbations (Theorem 2.4).

2. In the overcomplete setting, a learning bound that is essentially of order
√

dk
m +

√
s

λµs(D) ,

where each sparse code has at most s non-zero components (Theorem 2.5). The

term 1
µs(D) is the inverse s-incoherence (see Definition 2.1) and is roughly the worst

condition number among all linear systems induced by taking s columns of D.

3. In the infinite-dimensional setting, a learning bound that is independent of the di-

mension of the data (Theorem 2.6); this bound is essentially of order 1
µ2s(D)

√
k2s
m .
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The stability of the sparse codes are absolutely crucial to this work. Proving that the

notion of stability of contribution 1 holds is quite difficult because the Lasso objective (see

(2.1) below) is not strongly convex in general. Consequently, much of the technical difficulty

of this work is owed to finding conditions under which the Lasso is stable under dictionary

perturbations and proving that when these conditions hold with respect to the learned

hypothesis and the training sample, they also hold with respect to a future sample.

For convenience, we have collected all of the various notation of this chapter in a glossary.

2.1.1 The predictive sparse coding problem

Let P be a probability measure over BRd × Y, the product of an input space BRd (the unit

ball of Rd) and a space Y of univariate labels; examples of Y include a bounded subset of

R for regression and {−1, 1} for classification. Let z = (z1, . . . , zm) be a sample of m points

drawn iid from P, where each labeled point zi equals (xi , yi ) for xi ∈ BRd and yi ∈ Y. In

the reconstructive setting, labels are not of interest and we can just as well consider an

unlabeled sample x of m points drawn iid from the marginal probability measure Π on BRd .

The sparse coding problem is to represent each point xi as a sparse linear combination

of k basis vectors, or atoms D1, . . . ,Dk . The atoms form the columns of a dictionary D

living in a space of dictionaries D := (BRd )k , for Di = (D1
i , . . . ,Dd

i )
T in the unit `2 ball. An

encoder ϕD can be used to express `1 sparse coding:

ϕD(x) := argmin
z

1

2
‖x − Dz‖22 + λ‖z‖1; (2.1)

hence, encoding x as ϕD(x) amounts to solving a Lasso problem. The reconstructive `1

sparse coding objective is then

min
D∈D

Ex∼Π
1

2
‖x − DϕD(x)‖22 + λ‖ϕD(x)‖1,

Generalization bounds for the empirical risk minimization (ERM) variant of this objective

have been established. In the infinite-dimensional setting, Maurer and Pontil (2010) showed1

1To see this, take Theorem 1.2 of Maurer and Pontil (2010) with Y = {y ∈ Rk : ‖y‖1 < 1
λ
} and

T = {T : Rk → Rd : ‖Tej‖ ≤ 1, j ∈ [k]}, so that ‖T ‖Y ≤ 1
λ

.
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the following bound:

Prx

{
sup
D∈D

Ex∼Π fD(x)−
1

m

m∑
i=1

fD(xi ) ≥
k√
m

(
14

λ
+

1

2

√
log (16m/λ2)

)
+

√
log(1/δ)

2m

}
≤ δ.

(2.2)

where fD(x) := minz∈Rk ‖x − Dz‖22 + λ‖z‖1. This bound is independent of the dimension

d and hence useful when d � k , as in general Hilbert spaces. Vainsencher et al. (2011)

handled the overcomplete setting, producing a bound that is O
(√

dk/m
)

as well as fast

rates of O(dk/m), with only logarithmic dependence on 1
λ .

Predictive sparse coding, introduced by Mairal et al. (2012), minimizes a supervised loss

with respect to a representation and an estimator linear in the representation. Let W be a

space of linear hypotheses with W := rBRk , the ball in Rk scaled to radius r . A predictive

sparse coding hypothesis function f is identified by f = (D,w) ∈ D × W and defined as

f (x) = 〈w ,ϕD(x)〉. The function class F is the set of such hypotheses. The loss will be

measured via ` : Y × R → [0, b], b > 0, a bounded loss function that is L-Lipschitz in its

second argument.

The predictive sparse coding objective is2

min
D∈D,w∈W

E(x ,y)∼P `(y , 〈w ,ϕD(x)〉) +
1

r
‖w‖22; (2.3)

In this work, we analyze the ERM variant of (2.3):

min
D∈D,w∈W

1

m

m∑
i=1

`(yi , 〈w ,ϕD(xi )〉) +
1

r
‖w‖22. (2.4)

This objective is not convex, and it is unclear how to find global minima, so a priori we

cannot say whether an optimal or nearly optimal hypothesis will be returned by any learning

algorithm. However, we can and will bet on certain sparsity-related stability properties

holding with respect to the learned hypothesis and the training sample. Consequently,

all the presented learning bounds will hold uniformly not over the set of all hypotheses

2While the focus of this chapter is (2.3), formally the predictive sparse coding framework admits swapping
out the squared `2 norm regularizer on w for any other regularizer.
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but rather potentially much smaller random subclasses of hypotheses. Additionally, the

presented bounds will be algorithm-independent3, although algorithm design can influence

the learned hypothesis’s stability and hence the best a posteriori learning bound.

Encoder stability Defining the encoder (2.1) via the `1 sparsity-inducing regularizer (or

sparsifier) is just one choice for the encoder. The choice of sparsifier seems to be pivotal both

from an empirical perspective and a theoretical one. Bradley and Bagnell (2009b) used a

differentiable approximate sparsifier based on the Kullback-Leibler divergence (true sparsity

may not result). The `1 sparsifier ‖·‖1 is the most popular and notably is the tightest convex

lower bound for the `0 “norm”: ‖x‖0 := |{i : xi 6= 0}| (Fazel, 2002). Regrettably, from a

stability perspective the `1 sparsifier is not well-behaved in general. Indeed, due to the lack

of strict convexity, each x need not have a unique image under ϕD . It also is unclear how

to analyze the class of mappings ϕD , parameterized by D, if the map changes drastically

under small perturbations to D. Hence, we will begin by establishing sufficient conditions

under which ϕD is stable under perturbations to D.

2.2 Conditions and main results

In this section, we develop several quantities that are central to the statement of the main

results. Throughout this chapter, let [n] := {1, . . . , n} for n ∈ N. Also, for t ∈ Rk , define

supp(t) := {i ∈ [k] : ti 6= 0}.

Definition 2.1 (s-incoherence). For s ∈ [k] and D ∈ D, the s-incoherence µs(D) is

defined as the square of the minimum singular value among s-atom subdictionaries of D.

Formally,

µs(D) =
(
min {σs(DΛ) : Λ ⊆ [k], |Λ| = s}

)2
,

where σs(A) is the s th singular value of A.

The s-incoherence can used to guarantee that sparse codes are stable in a certain sense.

3Empirically we have observed that stochastic gradient approaches like the one in Mairal et al. (2012)
perform very well.
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We also introduce some key parameter-and-data-dependent properties. The first prop-

erty regards the sparsity of the encoder on a sample x = (x1, . . . , xm).

Definition 2.2 (s-sparsity). If every point xi in the set of points x satisfies ‖ϕD(xi )‖0 ≤

s, then ϕD is s-sparse on x. More concisely, the Boolean expression s-sparse(ϕD(x)) is

true.

This property is critical as the learning bounds will exploit the observed sparsity level over

the training sample. Finally, we require some margin properties.

Definition 2.3 (s-margin). Given a dictionary D and a point xi ∈ BRd , the s-margin of

D on xi is

margins(D, xi ) := max
I⊆[k]
|I|=k−s

min
j∈I

{
λ−

∣∣〈Dj , xi − DϕD(xi )〉
∣∣}.

The sample version of the s-margin is the maximum s-margin that holds for all points in

x, or the s-margin of D on x:

margins(D,x) := min
xi∈x

margins(D, xi ).

The importance of these s-margin properties flows directly from the upcoming Sparse

Coding Stability Theorem (Theorem 2.4). Intuitively, if the s-margin of D on x is high, then

there is a set of (k − s) inactive atoms that are poorly correlated with the optimal residual

x − DϕD(x); hence these are far from being included in the set of active atoms. More

formally, margins(D, xi ) is equal to the (s + 1) th smallest element of the set of k elements

{λ− |〈Dj , xi − DϕD(xi )〉|}j∈[k]. Note that if ‖ϕD(xi )‖0 = s, we can use the (s + ρ)-margin

for any integer ρ ≥ 0. Indeed, ρ > 0 is justified when ϕD(xi ) has only s non-zero dimensions

but for precisely one index j∗ outside the support set |〈Dj∗ , xi−DϕD(xi )〉| is arbitrarily close

to λ. In this scenario, the s-margin of D on xi is trivially small; however, the (s +1)-margin

is non-trivial because the max in the definition of the margin will remove j∗ from the min’s

choices I. Empirical evidence shown in Section 2.6 suggests that even when ρ is small, the

(s + ρ)-margin is not too small.
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Sparse coding stability The first result of this chapter is a fundamental stability result

for the Lasso. In addition to being critical in motivating the presented conditions, the result

may be of interest in its own right.

Theorem 2.4 (Sparse Coding Stability). Let D, D̃ ∈ D satisfy µs(D),µs(D̃) ≥ µ and

‖D − D̃‖2 ≤ ε, and let x ∈ BRd . Suppose that there exists an index set I ⊆ [k] of k − s

indices such that for all i ∈ I:

|〈Di , x − DϕD(x)〉| < λ− τ (2.5)

with ε ≤ τ
2λ

27
. (2.6)

Then the following stability bound holds:

‖ϕD(x)−ϕD̃(x)‖2 ≤
3

2

ε
√

s

λµ
.

Moreover, if ε = τ′2λ
27 for τ′ < τ, then for all i ∈ I:

∣∣∣〈D̃i , x − D̃ϕD̃(x)〉
∣∣∣ ≤ λ− (τ− τ′).

Thus, some margin, and hence sparsity, is retained after perturbation.

Condition (2.5) means that at least k−s inactive atoms in the coding ϕD(x) do not have

too high absolute correlation with the residual x−DϕD(x). We refer to the right-hand side

of (2.6) as the permissible radius of perturbation (PRP) because it indicates the maximum

amount of perturbation for which the theorem can guarantee encoder stability. In short, the

theorem says that if problem (2.1) admits a stable sparse solution, then a small perturbation

to the dictionary will not change the fact that a certain set of k − s atoms remains inactive

in the new solution. The theorem further states that the perturbation to the solution will

be bounded by a constant factor times the size of the perturbation, where the constant

depends on the s-incoherence, the amount of `1-regularization, and the sparsity level.
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The proof of Theorem 2.4 is quite long, and so we leave all but the following very

high-level summary to Section 2.8.1.

Proof sketch First, we show that the solution ϕD̃(x) is s-sparse and, in particular, has

support contained in the complement of I. Second, we reframe the Lasso as a quadratic

program (QP). By exploiting the convexity of the QP and the fact that both solutions have

their support contained in a set of s atoms, simple linear algebra yields the desired stability

bound. The first step appears much more difficult than the second. The quartet below is

our strategy for the first step:

1. optimal value stability: The two problems’ optimal objective values are close;

this is an easy consequence of the closeness of D and D̃.

2. stability of norm of reconstructor: The norms of the optimal reconstructors

(DϕD(x) and D̃ϕD̃(x)) of the two problems are close. We show this using optimal

value stability and

(x − DϕD(x))
T DϕD(x) = λ‖ϕD(x)‖1, (2.7)

the latter of which holds due to the subgradient of (2.1) with respect to z (Osborne

et al., 2000).

3. reconstructor stability: The optimal reconstructors of the two problems are

close. This fact is a consequence of stability of norm of reconstructor, using

the `1 norm’s convexity and the equality (2.7).

4. preservation of sparsity: The solution to the perturbed problem also is supported

on the complement of I. To show this, it is sufficient to show that the absolute

correlation of each atom D̃i (i ∈ I) with the residual in the perturbed problem is

less than λ. This last claim is a relatively easy consequence of reconstructor

stability.
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2.2.1 Main results

The following notation will aid and abet the below results and the subsequent analysis.

Recall that the loss ` is bounded by b and L-Lipschitz in its second argument. Also recall

that F is the set of predictive sparse coding hypothesis functions f (x) = 〈w ,ϕD(x)〉 indexed

by D ∈ D and w ∈ W. For f ∈ F , define `(·, f ) : Y × Rd → [0, b] as the loss-composed

function (y , x) 7→ `(y , f (x)). Let ` ◦ F be the class of such functions induced by the choice

of F and `. A probability measure P operates on functions and loss-composed functions as:

P f = E(x ,y)∼P f (x) P `(·, f ) = E(x ,y)∼P `(y , f (x)).

Similarly, an empirical measure Pz associated with sample z operates on functions and

loss-composed functions as:

Pz f =
1

m

m∑
i=1

f (xi ) Pz `(·, f ) =
1

m

m∑
i=1

`(yi , f (xi )).

Finally, when provided a training sample z, the hypothesis returned by the learner

will be referred to as f̂z. Note that f̂z is random, but f̂z becomes a fixed function upon

conditioning on z.

Classically speaking, the overcomplete setting is the modus operandi in sparse coding. In

this setting, an overcomplete basis is learned which will be used parsimoniously in coding

individual points. The next result bounds the generalization error in the overcomplete

setting. The Õ(·) notation hides log(log(·)) terms and assumes that r ≤ mmin{d ,k}.

Theorem 2.5 (Overcomplete Learning Bound). With probability at least 1− δ over

z ∼ Pm, for any s ∈ [k] and any f = (D,w) ∈ F satisfying s-sparse(ϕD(x)) and

m >
243

margins(D,x)2λ
,
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the generalization error (P−Pz)`(·, f ) is

Õ

b

√
dk logm + log 1

δ

m
+

b

m

(
dk log

1

margin2s (D,x) · λ

)
+

L

m

(
r
√

s

λµs(D)

) . (2.8)

Note that this bound also applies to the particular hypothesis f̂z = (D̂z, ŵz) learned from

the training sample.

Often in learning problems, we first map the data implicitly to a space of very high

dimension or even infinite dimension and use kernels for efficient computations. In these

cases where d � k or d is infinite, it is unacceptable for any learning bound to exhibit

dependence on d . It is possible to untether the analysis from d by using the s-margin of the

learned dictionary D̂z on a second, unlabeled sample. In the infinite-dimensional setting,

the following dimension-free learning bound holds.

Theorem 2.6 (Infinite-Dimensional Learning Bound). With probability at least 1−δ

over a labeled m-sample z ∼ Pm and a second, unlabeled sample x′′ ∼ Πm, if an algorithm

learns hypothesis f̂z = (D̂z, ŵz) such that ϕD̂z
is s-sparse on (x ∪ x′′), µ2s(f̂z) > 0, and

m ≥ 27

margin2s (D̂z,x ∪ x′′) · λ
,

then the generalization error (P−Pz)`(·, f̂z) is

Õ

 L√
m

(
rk
√

s

µ2s(f̂z)

)
+ b

√
(k2 + log 1

δ) logm

m
+

L

m

(
r
√

s

λµs(f̂z)

) . (2.9)

2.2.2 Discussion of Theorems 2.5 and 2.6

The results highlight the central role of the stability of the sparse encoder. The presented

bounds are data-dependent and exploit properties relating to the training sample and the

learned hypothesis. Since k ≥ d in the overcomplete setting, an ideal learning bound

has minimal dependence on k. The 1
m term of the learning bound for the overcomplete

setting (2.8) exhibits square root dependence on both the size of the dictionary k and the

ambient dimension d . It is unclear whether further improvement is possible, even in the
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reconstructive setting. The two known results in the reconstructive setting were established

first by Maurer and Pontil (2010) and later by Vainsencher et al. (2011), as mentioned in

the Introduction. The infinite-dimensional setting learning bound (2.9) is dimension free,

with linear dependence on k , square root dependence on s, and inverse dependence on the

2s-incoherence µ2s(f̂z). While both bounds exhibit dependence on the sparsity level s, the

sparsity level appears to be much more significant in the infinite-dimensional setting.

Let us compare these bounds to the reconstructive setting, starting with the overcom-

plete regime. The first term of (2.8) matches the slower of the rates shown by Vainsencher

et al. (2011) for the unsupervised case. Vainsencher et al. also showed fast rates of dk
m

(plus a small fraction of the observed empirical risk), but in the predictive setting it is an

open question whether similar fast rates are possible. The second term of (2.8) represents

the error in approximating the estimator via an (ε = 1
m )-cover of the space of dictionaries.

This term reflects the stability of the sparse codes with respect to dictionary perturbations,

as quantified by the Sparse Coding Stability Theorem (Theorem 2.4). The reason for the

lower bound on m is that the ε-net used to approximate the space of dictionaries needs

to be fine enough to satisfy the PRP condition (2.6) of the Sparse Coding Stability Theo-

rem. Hence, both this lower bound and the second term are determined primarily by the

Sparse Coding Stability Theorem, and so with this proof strategy the extent to which the

Sparse Coding Stability Theorem cannot be improved also indicates the extent to which

Theorem 2.5 cannot be improved.

Shifting to the infinite-dimensional setting, Maurer and Pontil (2010) previously showed

the generalization bound (2.2) for unsupervised (`1-regularized) sparse coding. Comparing

their result to (2.9) and neglecting regularization parameters, the dimension-free bound in

the predictive case is larger by a factor of
√

s

µ2s(f̂z )
. It is unclear whether either of the terms

in this factor are avoidable in the predictive setting. At least from our analysis, it appears

that the
√

s

µ2s(f̂z )
factor is the price one pays for encoder stability. Critically, encoder stability

is not necessary in the reconstructive setting because stability in loss (reconstruction error)

requires only stability in the norm of the residual to the Lasso problem rather than stability

in the value of the solution to the problem. Stability of the norm of the residual is readily

obtainable without any of the incoherence, sparsity, and margin conditions used here.
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Remarks on conditions One may wonder about typical values for the various hypothesis-

and-data-dependent properties in Theorems 2.5 and 2.6. In practical applications of recon-

structive and predictive sparse coding, the regularization parameter λ is set to ensure that

s is small relative to the dimension d . As a result, both incoherences µs(D) and µ2s(D) for

the learned dictionary can be expected to be bounded away from zero. A sufficiently large

s-incoherence certainly is necessary if one hopes for any amount of stability of the class of

sparse coders with respect to dictionary perturbations. Since our path to reaching Theorems

2.5 and 2.6 passes through the Sparse Coding Stability Theorem (Theorem 2.4), it seems

that a drastically different strategy needs to be used if it is possible to avoid dependence

on µs(D) in the learning bounds.

A curious aspect of both learning bounds is their dependence on the s-margin term

margins(D,x). Suppose that a dictionary is learned which is s-sparse on the training sample

x, and s is the lowest such integer for which this holds. It may not always be the case that

the s-margin is bounded away from zero because for some points a small collection of

inactive atoms may be very close to being brought into the optimal solution (the code);

however, we can instead use the (s + ρ)-margin for some small positive integer ρ for which

the (s + ρ)-margin is non-trivial. In Section 2.6, we gather empirical evidence that such a

non-trivial (s + ρ)-margin does exist, for small ρ, when learning predictive sparse codes on

real data. Hence, there is evidence that predictive sparse coding learns a dictionary with

high s-incoherence µs(D) and non-trivial s-margin margins(D,x) on the training sample,

for low s.

If one entertains a mixture of `1 and `2 norm regularization, λ1‖ · ‖1 + 1
2λ2‖ · ‖

2
2, as in

the elastic net (Zou and Hastie, 2005), fall-back guarantees are possible in both scenarios.

For small values of λ2, this regularizer induces true sparsity similar to the `1 regularizer. A

considerably simpler, data-independent analysis is possible in the overcomplete setting with

a final bound that essentially just trades µs(D) for the `2 norm regularization parameter

λ2. In the infinite-dimensional setting, a simpler non-data-dependent analysis using our

approach would only attain a bound of the larger order k3/2

λ2
√

m
.
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2.3 Tools

As before, let z be a labeled sample of m points (an m-sample) drawn iid from P. In

addition, let z′ be a second labeled m-sample drawn iid from P. In the infinite-dimensional

setting, we also will make use of an unlabeled m-sample x′′ drawn iid from the marginal Π.

All epsilon-nets of spaces of dictionaries use the metric induced by the operator norm ‖ · ‖2.

2.3.1 Symmetrization by ghost sample for random subclasses

The next result is essentially due to Mendelson and Philips (2004); it applies symmetrization

by a ghost sample for random subclasses. Our main departure is that we allow the random

subclass to depend on a second, unlabeled sample x′′.

Lemma 2.7 (Symmetrization by Ghost Sample). Let F(z,x′′) ⊂ F be a random sub-

class which can depend on both a labeled sample z and an unlabeled sample x′′. Recall that

z′ is a ghost sample of m points. If m ≥
(

b
t

)2
, then

Przx′′
{
∃f ∈ F(z,x′′), (P−Pz)`(·, f ) ≥ t

}
≤ 2Prz z′x′′

{
∃f ∈ F(z,x′′), (Pz’−Pz)`(·, f ) ≥ t

2

}
.

For completeness, this lemma is proved in Section 2.8.2. This symmetrization lemma will

be applied in both the overcomplete and infinite-dimensional settings to shift the analysis

from large deviations of the empirical risk from the expected risk to large deviations of

two independent empirical risks: in the overcomplete setting the lemma will be specialized

as Proposition 2.12, and in the infinite-dimensional setting the lemma will be adapted to

Proposition 2.15.

2.3.2 Rademacher and Gaussian averages and related results

Let σ1, . . . ,σm be independent Rademacher random variables distributed uniformly on

{−1, 1}, and let γ1, . . .γm be independent Gaussian random variables distributed asN (0, 1).

Denote the collections by σσσ = (σ1, . . . ,σm) and γγγ = (γ1, . . . ,γm). Given a sample of m
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points x, define the conditional Rademacher and Gaussian averages of a function class as

Rm|x(F) =
2

m
Eσσσ sup

f ∈F

m∑
i=1

σi f (xi ) and Gm|x(F) =
2

m
Eγγγ sup

f ∈F

m∑
i=1

γi f (xi ).

respectively.

Lemmas 2.8 and 2.9 below are used near the end of the proof of Theorem 2.20 of

the infinite-dimensional setting, when shifting the analysis from the Gaussian complexity

of a loss-composed function class to the Rademacher complexity of the original function

class. From Meir and Zhang (2003, Theorem 7), the loss-composed conditional Rademacher

average of a function class F is bounded by the scaled conditional Rademacher average:

Lemma 2.8 (Rademacher Loss Comparison Lemma). For every function class F ,

m-sample x, and ` which is L-Lipschitz continuous in its second argument:

Rm|z(` ◦ F) ≤ LRm|x(F).

Additionally, from Ledoux and Talagrand (1991, a brief argument following Lemma 4.5),

the conditional Rademacher average of a function class F is bounded up to a constant by

the conditional Gaussian average of F :

Lemma 2.9 (Rademacher-Gaussian Average Comparison Lemma). For every func-

tion class F and sample of m points x:

Rm|x(F) ≤
√
π

2
Gm|x(F).

The next relation is due to Slepian (1962):

Lemma 2.10 (Slepian’s Lemma). Let Ω and Γ be mean zero, separable Gaussian pro-

cesses4 indexed by a set T such that E (Ωt1 − Ωt2)
2 ≤ E (Γt1 − Γt2)

2for all t1, t2 ∈ T . Then

E supt∈T Ωt ≤ E supt∈T Γt .

Slepian’s Lemma essentially says that if the variance of one Gaussian process is bounded

by the variance of another, then the expected maximum of the first is bounded by the

4{Ωt}t∈T is a Gaussian process with index set T if the collection is jointly Gaussian in the sense that
every finite linear combination of the variables is Gaussian.

25



expected maximum of the second. This lemma will be used in the proof of Theorem 2.18

to bound the Gaussian complexity of an analytically difficult function class via a bound on

the Gaussian complexity of a related but analytically easier function class.

We also will make use of the bounded differences inequality (McDiarmid, 1989), in order

to shift the analysis in the proof of Theorem 2.20 to the Rademacher complexity of a certain

function class:

Theorem 2.11 (Bounded Differences Inequality). Let X1, . . . ,Xm be random variables

drawn iid according to a probability measure µ over a space X . Suppose that a function

f : Xm → R satisfies

sup
x1,...,xm,x ′i ∈X

∣∣f (x1, . . . , xn)− f (x1, . . . , xi−1, x ′i , xi+1, . . . , xm

∣∣ ≤ ci

for any i ∈ [m]. Then

PrX1,...,Xn

{
f (X1, . . . ,Xn)− E f (X1, . . . ,Xn) ≥ t

}
≤ exp

(
−2t2/

m∑
i=1

c2
i

)
.

2.4 Overcomplete setting

The overcomplete setting is classically the more popular regime, and in this setting useful

learning bounds may exhibit dependence on both the dimension d and the dictionary size

k . At a high level, our strategy for the overcomplete case learning bound is to construct

an epsilon-net over a subclass of the space of functions F := {f = (D,w) : D ∈ D,w ∈ W}

and to show that the metric entropy of this subclass is of order dk. The main difficulty is

that an epsilon-net over D need not approximate F to any degree, unless one has a notion

of encoder stability. Our analysis effectively will be concerned only with a training sample

and a ghost sample, and it is similar to in style to the luckiness framework of Shawe-Taylor

et al. (1998). If we observe that the sufficient conditions for encoder stability hold true on

the training sample, then it is enough to guarantee that most points in a ghost sample also

satisfy these conditions (at a weaker level). Figure 2.1 exhibits the high-level flow of the

proof of Theorem 2.5.
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Proposition 2.26

Figure 2.1: Proof flowchart for the Overcomplete Learning Bound (Theorem 2.5).

2.4.1 Useful conditions and subclasses

Let x̃ ⊆η x indicate that x̃ is a subset of x with at most η elements of x removed. This

notation is identical to Shawe-Taylor et al. (1998)’s notation from the luckiness framework.

Our bounds will require a crucial PRP-based condition that depends on both the learned

dictionary and the training sample:

margins(D,x) ≥ ι(λ, ε) for ι(λ, ε) =

√
243ε

λ
.

For brevity we will refer to ι with its parameters implicit; the dependence on ε and λ will

not be an issue because we first develop bounds with these quantities fixed a priori. Lastly,

for µ > 0 define Dµ := {D ∈ D : µs(D) ≥ µ} and Fµ := {f = (D,w) ∈ F : D ∈ Dµ}.

2.4.2 Learning bound

The following proposition is simply a specialization of Lemma 2.7 with x′′ taken as the

empty set and F(z,x′′) := {f ∈ Fµ :
[
margins(D,x) > ι

]
}.
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Proposition 2.12. If m ≥
(

b
t

)2
, then

Prz
{
∃f ∈ Fµ,

[
margins(D,x)) > ι

]
and ((P−Pz)`(·, f ) > t)

}
≤ 2Prz z′

{
∃f ∈ Fµ,

[
margins(D,x) > ι

]
and ((Pz’−Pz)`(·, f ) > t/2)

}
.

In the RHS of the above, let the event whose probability is being measured be

J :=
{
z z′ : ∃f ∈ Fµ,

[
margins(D,x) > ι

]
and (Pz’−Pz)`(·, f ) > t/2)

}
.

Define Z as the event that there exists a hypothesis with stable codes on the original

sample, in the sense of the Sparse Coding Stability Theorem (Theorem 2.4), but more than

η = η(m, d , k,D,x, δ) points5 of the ghost sample whose codes are not guaranteed stable

by the Sparse Coding Stability Theorem:

Z :=

z z′ :
∃f ∈ Fµ,

[
margins(D,x) > ι

]
and

(
@ x̃ ⊆η x′

[
margins(D, x̃) > 1

3margins(D,x)
])
 .

Our strategy will be to show that Pr(J) is small by use of the fact that

Pr(J) = Pr(J ∩ Z̄ ) + Pr(J ∩ Z ) ≤ Pr(J ∩ Z̄ ) + Pr(Z ),

a strategy which thus far is similar to the beginning of Shawe-Taylor et al.’s proof of the

main luckiness framework learning bound (see Shawe-Taylor et al., 1998, Theorem 5.22).

We now show that each of Pr(Z ) and Pr(J ∩ Z̄ ) is small in turn.

The imminent Good Ghost Lemma shadows Shawe-Taylor et al. (1998)’s notion of prob-

able smoothness and provides a bound on Pr(Z ).

Lemma 2.13 (Good Ghost). Fix µ, λ > 0 and s ∈ [k]. With probability at least 1 − δ

over an m-sample x ∼ Pm and a second m-sample x′ ∼ Pm, for any D ∈ Dµ for which

ϕD is s-sparse on x, at least m − η(m, d , k ,D,x, δ) points x̃ ⊆ x′ satisfy
[
margins(D, x̃) >

5We use the shorthand η = η(m, d , k,D,x,δ) for conciseness.
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1
3margins(D,x)

]
, for

η(m, d , k ,D,x, δ) := dk log
1944

margin2s (D,x) · λ
+ log(2m + 1) + log

1

δ
.
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Figure 2.2: Visualization of the proof of the Good Ghost Lemma (Lemma 2.13). Best seen
in color.

Proof. Figure 2.2 illustrates the proof. By the assumptions of the lemma, consider an

arbitrary dictionary D satisfying µs(D) ≥ µ and s-sparse(ϕD(x)). The goal is to guarantee

with high probability that all but η points of the ghost sample are coded by ϕD with

s-margin of at least 1
3margins(D,x).

Let ε =
( 1
3
margins(D,x))2·λ

27 , and consider a minimum-cardinality proper ε-cover D′ of Dµ.

Let D ′ be a candidate element of D′ satisfying ‖D − D ′‖2 ≤ ε. Then the Sparse Coding

Stability Theorem (Theorem 2.4) implies that the coding margin of D ′ on x retains over
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two-thirds the coding margin of D on x; that is,
[
margins(D

′,x) > 2
3margins(D,x)

]
.

Furthermore, most points from the ghost sample satisfy
[
margins(D

′, ·) > 2
3margins(D,x)

]
.

To see this, let Fmarg
D := {f marg

D,τ |τ ∈ R+} be the class of threshold functions defined via

f marg
D,τ (x) :=


1; if margins(D, x) > τ,

0; otherwise.

The VC dimension of the one-dimensional threshold functions is 1, and so it follows that

VC(Fmarg
D ) = 1. By using the VC dimension of Fmarg

D and the standard permutation argu-

ment of Vapnik and Chervonenkis (1968, Proof of Theorem 2), it follows that for a single,

fixed element of D′, with probability at least 1− δ at most log(2m + 1) + log 1
δ points from

a ghost sample will violate the margin inequality in question. Hence, by the bound on the

proper covering numbers provided by Proposition 2.26 (see Section 2.8.5), we can we can

guarantee for all candidate members D ′ ∈ D′ that with probability 1− δ at most

η = dk log
1944

margin2s (D,x) · λ
+ log(2m + 1) + log

1

δ

points from the ghost sample violate the s-margin inequality. Thus, for arbitrary D ′ ∈ D′

satisfying the conditions of the lemma, with probability 1 − δ at most η(m, d , k ,D,x, δ)

points from the ghost sample violate
[
margins(D

′, ·) > 2
3margins(D,x)

]
.

Finally, consider the at least m−η points in the ghost sample that satisfy
[
margins(D

′, ·) >
2
3margins(D,x)

]
. Since ‖D ′−D‖2 ≤

( 1
3
margins(D,x))2·λ

27 , the Sparse Coding Stability Theorem

(Theorem 2.4) implies that these points satisfy
[
margins(D, ·) > 1

3margins(D,x)
]
.

It remains to bound Pr(J ∩ Z̄ ).

Lemma 2.14 (Large Deviation on Good Ghost). Define $ := t/2−
(
2Lβ+ bη

m

)
and

β := ε
2λ

(
1 + 3r

√
s

µ

)
. Then

Pr(J ∩ Z̄ ) ≤

(
8(r/2)1/(d+1)

ε

)(d+1)k

exp(−m$2/(2b2)).

Equivalently, the difference between the loss on z and the loss on z′ is greater than
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$+ 2Lβ+ bη
m with probability at most

(
8(r/2)1/(d+1)

ε

)(d+1)k
exp(−m$2/(2b2)).

Proof. First, note that the event J ∩ Z̄ is a subset of the event

R :=

zz′ :

∃f ∈ Fµ,
[
margins(D,x) > ι

]
and(

∃x̃ ⊆η x′,
[
margins(D, x̃) > 1

3margins(D,x)
])

and ((Pz’−Pz)`(·, f ) > t/2)

 .

Bounding the probability of the event R is equivalent to bounding the probability of a

large deviation (i.e. ((Pz’−Pz)`(·, f ) > t/2)) for the random subclass:

F̃(x,x′) :=

 f ∈ Fµ :
[
margins(D,x) > ι

]
and(

∃x̃ ⊆η x′,
[
margins(D, x̃) > 1

3margins(D,x)
])
 .

Let Fε = Dε ×Wε, where Dε is a minimum-cardinality proper ε-cover of Dµ and Wε

is a minimum-cardinality ε-cover of W. It is sufficient to bound the probability of a large

deviation for all of Fε and to then consider the maximum difference between an element of

F̃(x,x′) and its closest representative in Fε. Clearly, for each f = (D,w) ∈ F̃(x,x′), there

is a f ′ = (D ′,w ′) ∈ Fε satisfying ‖D − D ′‖2 ≤ ε and ‖w − w ′‖2 ≤ ε. If ε is sufficiently

small, then for all but η of the points xi in the ghost sample (and for all points xi of the

original sample) it is guaranteed that

|〈w ,ϕD(xi )〉 − 〈w ′,ϕD′(xi )〉| ≤
∣∣〈w − w ′,ϕD(xi )〉

∣∣+ ∣∣〈w ′,ϕD(xi )−ϕD′(xi )〉
∣∣

≤ ε

2λ
+ r

3

2

ε
√

s

λµ

=
ε

2λ

(
1 +

3r
√

s

µ

)
= β,

where the second inequality follows from the Sparse Coding Stability Theorem (Theo-

rem 2.4). Trivially, for the rest of the points xi in the ghost sample each loss is bounded by

b. Hence, on the original sample:

1

m

m∑
i=1

∣∣`(yi , 〈w ,ϕD(xi )〉)− `(yi , 〈w ′,ϕD′(xi )〉)
∣∣ ≤ Lβ,
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and on the ghost sample:

1

m

m∑
i=1

∣∣`(y ′i , 〈w ,ϕD(x
′
i )〉)− `(y ′i , 〈w ′,ϕD′(x

′
i )〉)
∣∣

≤ L

m

∑
i good

∣∣〈w ,ϕD(xi )〉 − 〈w ′,ϕD′(xi )〉
∣∣+ 1

m

∑
i bad

∣∣`(y ′i , 〈w ,ϕD(x
′
i )〉)− `(y ′i , 〈w ′,ϕD′(x

′
i )〉)
∣∣

≤ Lβ+
bη

m
,

where good denotes the (at least m − η) points of the ghost sample for which the Sparse

Coding Stability Theorem applies, and bad denotes the complement thereof.

Concluding the above argument, the difference between the losses of f and f ′ on the

double sample is at most 2Lβ + bη
m . Consequently, if (Pz’−Pz)`(·, f ) > t/2, then the

absolute deviation between the loss of f ′ on the original sample and the loss of f ′ on the

ghost sample must be at least t/2−
(
2Lβ+ bη

m

)
. To bound the probability of R it therefore

is sufficient to control

Prz z′

{
∃f = (D ′,w ′) ∈ Dε ×Wε, (Pz’−Pz)`(·, f ) > t/2−

(
2Lβ+

bη

m

)}
.

We first handle the case of a fixed f = (D ′,w ′) ∈ Dε × Wε. Applying Hoeffding’s

inequality to the random variable `(yi , f (xi ))− `(y ′i , f (x ′i )), with range in [−b, b], yields:

Prz z′ {(Pz’−Pz)`(·, f ) > $} ≤ exp(−m$2/(2b2)),

for $ := t/2 −
(
2Lβ+ bη

m

)
. By way of a proper covering number bound of Dε ×Wε (see

Proposition 2.27) and the union bound, this result extends over all of Dε ×Wε:

Prz z′
{
∃f = (D ′,w ′) ∈ Dε ×Wε, (Pz’−Pz)`(·, f ) > $

}
≤

(
8(r/2)1/(d+1)

ε

)(d+1)k

exp(−m$2/(2b2)).

The bound on Pr(J ∩ Z̄ ) now follows.

The stage is now set to prove Theorem 2.5; the full proof is in Section 2.8.3.
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Proof sketch (of Theorem 2.5) Proposition 2.12 and Lemmas 2.13 and 2.14 imply that

Prz
{
∃f ∈ Fµ,

[
margins(D,x) > ι

]
and ((P−Pz)`(·, f ) > t)

}
≤ 2

(8(r/2)1/(d+1)

ε

)(d+1)k

exp(−m$2/(2b2)) + δ

 .

Fix s ∈ [k] and µ > 0 a priori. Setting ε = 1
m in the above, elementary manipulations

show that provided m > 243
margins(D,x)2λ

, with probability at least 1− δ over z ∼ Pm, for any

f = (D,w) ∈ F satisfying µs(D) ≥ µ and
[
margins(D,x) > ι

]
, the generalization error

(P−Pz)`(·, f ) is bounded by:

2b

√
2((d + 1)k log(8m) + k log r

2 + log 4
δ)

m

+
2L

m

(
1

λ

(
1 +

3r
√

s

µ

))
+

2b

m

(
dk log

1944

margin2s (D,x) · λ
+ log(2m + 1) + log

4

δ

)
.

It remains to distribute a prior across the bounds for each choice of s and µ. To each

choice of s ∈ [k] assign prior probability 1
k . To each choice of i ∈ N ∪ {0} for 2−i ≤ µ

assign prior probability (i + 1)−2. For a given choice of s ∈ [k] and 2−i ≤ µ we use

δ(s, i) := 6
π2

1
(i+1)2

1
k δ (since

∑∞
i=1

1
i2
= π2

6 ). The theorem now follows.

2.5 Infinite-dimensional setting

In the infinite-dimensional setting learning bounds with dependence on d are useless. Un-

fortunately, the strategy of the previous section breaks down in the infinite-dimensional

setting because the straightforward construction of any epsilon-net over the space of dictio-

naries had cardinality that depends on d . Even worse, epsilon-nets actually were used both

to approximate the function class F in ‖ · ‖∞ norm and to guarantee that most points of

the ghost sample are good provided that all points of the training sample were good (the

Good Ghost Lemma (Lemma 2.13)).

These issues can be overcome by requiring an additional, unlabeled sample — a device
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Infinite-Dimensional 
Learning Bound 
(Theorem 2.6)

Rademacher Average of 
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(Theorem 2.20)

Symmetrization by 
Random Signs 
(Lemma 2.17)

Gaussian Average for 
Fixed S and w Theorem 

(Theorem 2.18)

Bounded Differences 
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(Theorem 2.11)
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Comparison Lemma 

(Lemma 2.8)

Slepian’s Lemma 
(Lemma 2.10)

Difference Bound for 
Isometries Lemma 

(Lemma 2.19)
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Proposition 2.15

Symmetrization by 
Ghost Sample 

(Lemma 7)

Sparse Coding 
Stability Theorem 

(Theorem 2.4)

Rademacher-Gaussian 
Average Comparison Lemma 

(Lemma 2.9)

Proposition 2.27

Figure 2.3: Proof flowchart for the Infinite-Dimensional Learning Bound (Theorem 2.6).

often justified in supervised learning problems because unlabeled data may be inexpensive

and yet quite helpful — and by switching to more sophisticated techniques based on condi-

tional Rademacher and Gaussian averages. After learning a hypothesis f̂z from a predictive

sparse coding algorithm, the sparsity level and coding margin are measured on a second,

unlabeled sample x′′ of m points6. Since this sample is independent of the choice of f̂z, it

is possible to guarantee that all but a very small fraction ( ηm =
log 1

δ
m ) of points of a ghost

sample z are good with probability 1 − δ. In the likely case of this good event, and for a

fixed sample, we then consider all possible choices of a set of η bad indices in the ghost

sample; each of the
(m
η

)
cases corresponds to a subclass of functions. We then approximate

each subclass by a special ε-cover that is a disjoint union of a finite number of special sub-

classes; for each of these smaller subclasses, we bound the conditional Rademacher average

by exploiting a sparsity property. The proof flowchart in Figure 2.3 shows the structure of

6The cardinality matches the size of the training sample z purely for simplicity.
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the proof of Theorem 2.6.

2.5.1 Symmetrization and decomposition

The proof of the infinite-dimensional setting learning bound Theorem 2.6 depends crit-

ically on Lemma 2.19, a lemma which is non-trivial only for dictionaries with non-zero

2s-incoherence. The s-incoherence also will continue to play an important role, as it did

in the overcomplete setting. Therefore, rather than wielding the deterministic subclass Fµ

of the previous section, we will work with a deterministic subclass with lower bounded

s-incoherence and lower bounded 2s-incoherence.

Let µµµ∗ = (µ∗s ,µ
∗
2s) ∈ R2

+ and define the deterministic subclass

Fµµµ∗ =
{

f = (D,w) ∈ F : (µs(D) ≥ µ∗s )and(µ2s(D) ≥ µ∗2s)
}
.

The next result is immediate from Lemma 2.7, taking the random subclass F(·) to be

F(z,x′′) :=
{
{f̂z} ∩ {f ∈ Fµµµ∗ :

[
margins(D,x ∪ x′′) > τ

]}
.

Proposition 2.15. If m ≥
(

b
t

)2
, then

Przx′′

{
f̂z ∈ Fµµµ∗

[
margins(D̂z,x ∪ x′′) > τ

]
and

(
(P−Pz)`(·, f̂z) ≥ t

) }
(2.10)

≤ 2Prz z′x′′

{
f̂z ∈ Fµµµ∗

[
margins(D̂z, (x ∪ x′′)) > τ

]
and

(
(Pz’−Pz)`(·, f̂z) ≥ t

2

) }
.

Now, observe that the probability of interest can be split into the probability of a large
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deviation happening under a “good” event and the probability of a “bad” event occurring:

Prz z′x′′

{
f̂z ∈ Fµµµ∗

[
margins(D̂z,x ∪ x′′) > τ

]
and

(
(Pz’−Pz)`(·, f̂z) ≥ t

2

) }

= Prz z′x′′

 f̂z ∈ Fµµµ∗
[
margins(D̂z,x ∪ x′′) > τ

]
and

(
∃ x̃ ⊆η x′

[
margins(D̂z, x̃) > τ

])
and

(
(Pz’−Pz)`(·, f̂z) ≥ t

2

)


+Prz z′x′′

 f̂z ∈ Fµµµ∗
[
margins(D̂z,x ∪ x′′) > τ

]
and

(
@ x̃ ⊆η x′

[
margins(D̂z, x̃) > τ

])
and

(
(Pz’−Pz)`(·, f̂z) ≥ t

2

)


≤ Prz z′

 ∃f ∈ Fµµµ∗ ,
[
margins(D̂z,x) > τ

]
and

(
∃ x̃ ⊆η x′

[
margins(D̂z, x̃) > τ

])
and

(
(Pz’−Pz)`(·, f ) ≥ t

2

)


+Prx′x′′

{
f̂z ∈ Fµµµ∗

[
margins(D̂z,x

′′) > τ
]
and

(
@ x̃ ⊆η x′

[
margins(D̂z, x̃) > τ

]) }
.

Of the two probabilities summed in the last line, we treat the first in the next subsection.

To bound the second one, note that for each choice of x, f̂z is a fixed function. Hence, it

is sufficient to select η such that, for any fixed function f = (D,w) ∈ F , this second

probability is bounded by δ. The next lemma accomplishes this bound:

Lemma 2.16 (Unlikely Bad Ghost). Let f = (D,w) ∈ F be fixed. If η = log 1
δ , then

Prx′x′′

{ [
margins(D,x′′) > τ

]
and

(
@ x̃ ⊆η x′

[
margins(D, x̃) > τ

]) } ≤ δ.
Proof sketch The proof just uses the same standard permutation argument as in the

proof of the Good Ghost Lemma (Lemma 2.13).

2.5.2 Rademacher bound in the case of the good event

We now bound the probability of a large deviation in the (likely) case of the good event.

Denote by Fµµµ∗(x) the intersection of the deterministic subclass Fµµµ∗ with the random

subclass of functions for which the Sparse Coding Stability Theorem (Theorem 2.4) kicks
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in with constants (µ∗s , s, τ):

Fµµµ∗(x) :=
{

f ∈ Fµµµ∗ :
[
margins(D,x) > τ

]}
.

This is the “good” random subclass. Similarly, let Fµµµ∗,η(x) denote the “mostly good” (or

“all-but-η-good”) random subclass:

Fµµµ∗,η(x) :=
{

f ∈ Fµµµ∗ : ∃ x̃ ⊆η x
[
margins(D, x̃) > τ

]}
.

Recall that σ1, . . . ,σm are independent Rademacher random variables.

Lemma 2.17 (Symmetrization by Random Signs).

Prz z′

 ∃f ∈ Fµµµ∗ ,
[
margins(D,x) > τ

]
and

(
∃ x̃ ⊆η x′

[
margins(D, x̃) > τ

])
and

(
(Pz’−Pz)`(·, f ) ≥ t

2

)


≤ Prz,σσσ

{
sup

f ∈Fµµµ∗ (x)

1

m

m∑
i=1

σi`(yi , f (xi )) ≥
t

4

}
+ Prz,σσσ

{
sup

f ∈Fµµµ∗,η(x)

1

m

m∑
i=1

σi`(yi , f (xi )) ≥
t

4

}
.

Proof. From the definitions of the random subclasses Fµµµ∗(·) and Fµµµ∗,η(·), the left hand

side in the lemma is equal to

Prz z′

{
sup

f ∈Fµµµ∗ (x)∩Fµµµ∗,η(x
′)

1

m

m∑
i=1

(
`(y ′i , f (x ′i ))− `(yi , f (xi ))

)
≥ t

2

}
.

Now, by a routine application of symmetrization by random signs this is equal to

Przz′,σσσ

{
sup

f ∈Fµµµ∗ (x)∩Fµµµ∗,η(x
′)

1

m

m∑
i=1

σi (`(y
′
i , f (x ′i ))− `(yi , f (xi ))) ≥

t

2

}

≤ Prz,σσσ

{
sup

f ∈Fµµµ∗ (x)

1

m

m∑
i=1

σi`(yi , f (xi )) ≥
t

4

}
+ Prz,σσσ

{
sup

f ∈Fµµµ∗,η(x)

1

m

m∑
i=1

σi`(yi , f (xi )) ≥
t

4

}
.

Since the good random subclass Fµµµ∗(x) is just the all-but-0-good random subclass

Fµµµ∗,0(x), it is sufficient to bound the second term of the last line above for arbitrary η ∈ [m].

For fixed z, the randomness of the subclass is annihilated and the above supremum over

Fµµµ∗,η(x) is a conditional Rademacher average. Bounding this conditional Rademacher
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average will call for a few results on the Gaussian average of a related function class.

First, note that for any D ∈ D, the dictionary D can be factorized as D = US , where all

U ∈ U ⊂ Rd×k satisfy the isometry property UT U = I , and S lives in a space S := (BRk )k

of lower-dimensional dictionaries (Maurer and Pontil, 2010). Consider a particular choice

of S ∈ S, linear hypothesis w ∈ W, and m-sample x. The subclass of interest will be those

functions corresponding to U ∈ U such that the encoder ϕUS is s-sparse on x. It turns out

that the Gaussian average of this subclass is well-behaved.

Recall that γγγ = (γ1, . . .γm) where the γi are iid standard normals.

Theorem 2.18 (Gaussian Average for Fixed S and w). Let S ∈ S, s ∈ [k], and x be

a fixed m-sample. Denote by Ux the particular subclass of U defined as:

Ux :=
{

U ∈ U : s-sparse(ϕUS(x))
}
.

Then

Eγγγ sup
U∈Ux

2

m

m∑
i=1

γi 〈w ,ϕUS(xi )〉 ≤
4rk
√
2s

µ2s(S)
√

m
. (2.11)

The proof of this result uses the following lemma that shows how the difference between

the feature maps ϕUS and ϕU′S can be characterized by the difference between U and U ′.

Define the s-restricted 2-norm of S as ‖S‖2,s := sup{t∈Rk :‖t‖=1,| supp(t)|≤s} ‖St‖2.

Lemma 2.19 (Difference Bound for Isometries). Let U,U ′ ∈ U be isometries as above,

S ∈ S, and x ∈ BRd . If ‖ϕUS(x)‖0 ≤ s and ‖ϕU′S(x)‖0 ≤ s, then

‖ϕUS(x)−ϕU′S(x)‖2 ≤
2‖S‖2,2s

µ2s(S)
‖(U ′T − UT )x‖2.

Proof sketch The proof uses a perturbation analysis of solutions to linearly constrained

positive definite quadratic programs (Daniel, 1973), exploiting the sparsity of the optimal

solutions to have dependence only on ‖S‖2,2s and µ2s(S) rather than ‖S‖2 and µk(S).
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Proof (of Theorem 2.18). Define a Gaussian process Ω, indexed by U, by

ΩU :=
m∑

i=1

γi 〈w ,ϕUS(xi )〉.

Our goal is to apply Slepian’s Lemma (Lemma 2.10) to bound the expectation of the

supremum of Ω, which depends on ϕUS , by the expectation of the supremum of a Gaussian

process Γ which depends only on U.

Eγγγ (ΩU − ΩU′)
2 = Eγγγ

(
m∑

i=1

γi 〈w ,ϕUS(xi )〉 −
m∑

i=1

γi 〈w ,ϕU′S(xi )〉

)2

=
m∑

i=1

(〈w ,ϕUS(xi )−ϕU′S(xi )〉)2

≤ r2
m∑

i=1

‖ϕUS(xi )−ϕU′S(xi )‖2 (2.12)

Applying the result from Lemma 2.19, we have

Eγγγ (ΩU − ΩU′)
2 ≤ r2

m∑
i=1

‖ϕUS(xi )−ϕU′S(xi )‖2

≤
(
2r‖S‖2,2s

µ2s(S)

)2 m∑
i=1

∥∥∥(U ′T − UT )xi

∥∥∥2
2

=

(
2r‖S‖2,2s

µ2s(S)

)2 m∑
i=1

k∑
j=1

(〈U ′ej , xi 〉 − 〈Uej , xi 〉)2

=

(
2r‖S‖2,2s

µ2s(S)

)2

Eγγγ

( m∑
i=1

k∑
j=1

γi j〈U ′ej , xi 〉

)
−

(
m∑

i=1

k∑
j=1

γi j〈Uej , xi 〉

)2

= Eγγγ (ΓU − ΓU′)
2

for ΓU :=
2r‖S‖2,2s

µ2s(S)

m∑
i=1

k∑
j=1

γi j〈Uej , xi 〉.

By Slepian’s Lemma (Lemma 2.10), Eγγγ supU ΩU ≤ Eγγγ supU ΓU . It remains to bound
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Eγ supU ΓU :

µ2s(S)

2r‖S‖2,2s
Eγγγ sup

U
ΓU =Eγγγ sup

U

m∑
i=1

k∑
j=1

γi j〈Uej , xi 〉

=Eγγγ sup
U

k∑
j=1

〈Uej ,
m∑

i=1

γi j xi 〉

≤Eγγγ sup
U

k∑
j=1

‖Uej‖‖
m∑

i=1

γi j xi‖

=k Eγγγ ‖
m∑

i=1

γi1xi‖

≤k

√√√√Eγγγ ‖
m∑

i=1

γi1xi‖2

=k

√√√√Eγγγ

〈
m∑

i=1

γi1xi ,
m∑

i=1

γi1xi

〉
= k

√√√√ m∑
i=1

‖xi‖2 ≤ k
√

m.

Hence,

Eγγγ sup
U∈U

2

m

m∑
i=1

γi 〈w ,ϕUS(xi )〉 ≤
4r‖S‖2,2sk

µ2s(S)
√

m
≤ 4rk

√
2s

µ2s(S)
√

m
,

where we used the fact that ‖S‖2,2s ≤
√
2s (see Lemma 2.25 in Section 2.8.4 for a proof).

We present the main result of this section:

Theorem 2.20 (Rademacher Average of Mostly Good Random Subclasses).

Prz,σσσ

{
sup

f ∈Fµµµ∗,η(x)

1

m

m∑
i=1

σi`(yi , f (xi )) ≥
t

4

}
≤
(

m

η

)(
8(r/2)1/(k+1)

ε

)(k+1)k

exp(−mt23/(2b2)),

for t3 :=
t

4
− Lε

2λ

(
3r
√

s

µ∗s
+ 1

)
− 2L

√
πrk
√

s

µ∗2s

√
m

− 2bη

m
.

Proof (of Theorem 2.20). As before, each dictionary D ∈ D will be factorized as D = US

for U an isometry in U and S ∈ S = (BRk )k . Let Sε be a minimum-cardinality proper

ε-cover (in operator norm) of {S ∈ S : µs(S) ≥ µ∗s ,µ2s(S) ≥ µ∗2s}, the set of suitably
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incoherent elements of S.

Recall that the goal is to control the Rademacher complexity of Fµµµ∗,η(x). Our strategy

will be to control this complexity by controlling the complexity of each subclass from a

partition of Fµµµ∗,η(x). For an arbitrary f = (D,w) ∈ F , let an index i be good if and

only if
[
margins(D, xi ) > τ

]
, and let an index be bad if and only if it is not good. Con-

sider a fixed m-sample z and the occurrence of a set of m − η good indices7. There are

N :=
(m
η

)
ways to choose this set of indices. We can partition Fµµµ∗,η(x) into N subclasses

F1
µµµ∗,η(x), . . . ,FN

µµµ∗,η(x) such that for all functions in a given subclass, a particular set of

m − η indices is guaranteed to be good. To be precise, we can choose distinct good index

sets Γ1, . . . , ΓN , each of cardinality m−η, such that for each Γj , if i ∈ Γj then all f = (D,w)

in F j
µµµ∗,η satisfy

[
margins(D, xi ) > τ

]
.

Since the F j
µµµ∗,η(x) form a partition, we can control the complexity of Fµµµ∗,η(x) via:

sup
f ∈Fµµµ∗,η(x)

m∑
i=1

σi`(yi , f (xi )) = max
j∈[N]

sup
f ∈F j

µµµ∗,η
(x)

m∑
i=1

σi`(yi , f (xi )).

To gain a handle on the complexity of each subclass F j
µµµ∗,η(x), we will approximate the

subclasses as follows. For each j ∈ [N], define an ε-neighborhood of F j
µµµ∗,η(x) as

F̄ j
µ∗,η(x) :=

 f = (US ′,w ′) : ‖S − S ′‖ ≤ ε, ‖w − w ′‖ ≤ ε,

S ∈ S, w ∈ W, (US ,w) ∈ F j
µµµ∗,η(x)

 ;

note that the ε neighborhood is taken with respect to S and w but not U. Also, let Wε be

a minimum-cardinality ε-cover of W and define an infinite-cardinality epsilon-net of F :

Fε :=
{

f = (US ′,w ′) ∈ F : U ∈ U ,S ′ ∈ Sε,w ′ ∈ Wε
}
.

Finally, taking the intersection of F̄ j
µ∗,η(x) with Fε yields the F j

µµµ∗,η(x)-approximating

7Each of the remaining indices can be either good or bad.
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subclass, a disjoint union of subclasses equal to

⋃
S ′∈Sε,w ′∈Wε

F j ,S ′,w ′

µµµ∗,η (x)

for

F j ,S ′,w ′

µµµ∗,η (x) := F j
µµµ∗,η(x) ∩

{
f ∈ F : f = (US ′,w ′) : U ∈ U

}
.

To show that this disjoint union is a good approximator for F j
µµµ∗,η(x), for each j ∈ [N]

and arbitrary σσσ ∈ {−1, 1}m we compare

sup
f ∈F j

µµµ∗,η
(x)

1

m

m∑
i=1

σi`(yi , f (xi )) and max
S ′∈Sε,w ′∈Wε

sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

m∑
i=1

σi`(yi , f (xi )).

Without loss of generality, choose j = 1 and take Γ1 = [m−η]. If f is in F1
µµµ∗,η(x), it follows

that there exists an f ′ in the disjoint union
⋃

S ′∈Sε,w ′∈Wε F
1,S ′,w ′

µµµ∗,η (x) such that

1

m

m∑
i=1

σi

∣∣`(yi , 〈w ,ϕD(xi )〉)− `(yi , 〈w ′,ϕD′(xi )〉)
∣∣

≤ L

m

(
m−η∑
i=1

σi

∣∣〈w ,ϕD(xi )〉 − 〈w ′,ϕD′(xi )〉
∣∣)+

1

m

m∑
i=m−η+1

σi

∣∣`(yi , 〈w ,ϕD(xi )〉)− `(yi , 〈w ′,ϕD′(xi )〉)
∣∣

≤ Lε

2λ

(
3r
√

s

µ∗s
+ 1

)
+

bη

m
,

where the last line is due to the Sparse Coding Stability Theorem (Theorem 2.4).

Therefore, for any σσσ ∈ {−1, 1}m it holds that

sup
f ∈Fµµµ∗,η(x)

1

m

m∑
i=1

σi`(yi , f (xi ))

≤ max
j∈[N]

max
S ′∈Sε,w ′∈Wε

sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m∑
i=1

σi`(yi , f (xi )) +
Lε

2λ

(
3r
√

s

µ∗s
+ 1

)
+

bη

m
.

Thus, the approximation error from using the disjoint union is small (it is O( 1
m ) if ε = 1

m ).

It remains to control the complexity of the approximating subclass. From the above,
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for fixed z:

Prσσσ

{
sup

f ∈Fµµµ∗,η(x)

1

m

m∑
i=1

σi`(yi , f (xi )) ≥
t

4

}

≤ Prσσσ

 max
j∈[N]

S ′∈Sε,w ′∈Wε

sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m∑
i=1

σi`(yi , f (xi )) ≥
t

4
− Lε

2λ

(
3r
√

s

µ∗s
+ 1

)
− bη

m


≤ N

(
8(r/2)1/(k+1)

ε

)(k+1)k

·

max
j∈[N]

S ′∈Sε,w ′∈Wε

Prσσσ

 sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m∑
i=1

σi`(yi , f (xi )) ≥
t

4
− Lε

2λ

(
3r
√

s

µ∗s
+ 1

)
− bη

m

 .

Now, from the Bounded Differences Inequality (Theorem 2.11), for any fixed j ∈ [N],

S ′ ∈ Sε and w ′ ∈ Wε,

Prσσσ

 sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m∑
i=1

σi`(yi , f (xi )) > Eσσσ sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m∑
i=1

σi`(yi , f (xi )) + t1


is at most exp(−mt21/(2b2)).

To make the above useful, let us get a handle on the Rademacher complexity term

Eσσσ sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m∑
i=1

σi`(yi , f (xi )).
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Without loss of generality, again take j = 1 and Γ1 = [m − η]. Then

Eσσσ sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m∑
i=1

σi`(yi , f (xi ))

≤ Eσ1,...,σm−η

 sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m−η∑
i=1

σi`(yi , f (xi ))


+ Eσm−η+1,...,σm

 sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m∑
i=m−η+1

σi`(yi , f (xi ))


≤ Eσ1,...,σm−η

 sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m−η∑
i=1

σi`(yi , f (xi ))

+
bη

m
.

Now, Theorem 2.18, the Rademacher Loss Comparison Lemma (Lemma 2.8), and the

Rademacher-Gaussian Average Comparison Lemma (Lemma 2.9) imply that

Eσσσ sup
{U∈U :s-sparse(ϕUS (x))}

1

m

m−η∑
i=1

σi`
(
yi , 〈w ,ϕUS(xi )〉

)
≤
√

m − η
m

2L
√
πrk
√

s

µ2s(S)

≤ 2L
√
πrk
√

s

µ2s(S)
√

m
,

and hence

Prσσσ

 sup
f ∈F j ,S′,w′

µµµ∗,η
(x)

1

m

m∑
i=1

σi`(f (xi )) >
2L
√
πrk
√

s

µ∗2s

√
m

+
bη

m
+ t1

 ≤ exp(−mt21/(2b2)).

Combining this bound with the fact that the bound is independent of the draw of z and

applying Proposition 2.27 (with d set to k) to extend the bound over all choices of j , S ′,

and w ′ yields the final result.

For the case of η = 0, let

t2 :=
t

4
− Lε

2λ

(
3r
√

s

µ∗s
+ 1

)
− 2L

√
πrk
√

s

µ∗2s

√
m

.

It is now possible to prove the generalization error bound for the infinite-dimensional

setting.
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Proof (of Theorem 2.6). Since Fµ∗(x) is equivalent to Fµµµ∗,0(x), Lemma 2.17 and Theo-

rem 2.20 imply that

Prz z′

 ∃f ∈ Fµµµ∗ ,
[
margins(D,x) > τ

]
and

(
∃ x̃ ⊆η x′

[
margins(D, x̃) > τ

])
and

(
(Pz’−Pz)`(·, f ) ≥ t

2

)


≤

(
8(r/2)1/(k+1)

ε

)(k+1)k (
exp(−mt22/(2b2)) +

(
m

η

)
exp(−mt23/(2b2))

)

≤ 2

(
m

η

)(
8(r/2)1/(k+1)

ε

)(k+1)k

exp(−mt23/(2b2)),

and consequently the full probability (2.10) in Proposition 2.15 can be upper bounded (using

η = log 1
δ) as:

Przx′′

{
f̂z ∈ Fµµµ∗ ,

[
margins(D̂z, (x ∪ x′′)) > τ

]
and

(
(P−Pz)`(·, f̂z) ≥ t

) }

≤ 4

(
m

log 1
δ

)(
8(r/2)1/(k+1)

ε

)(k+1)k

exp(−mt23/(2b2)) + 2δ.

After some elementary manipulations and choosing ε = 1
m , we nearly have the final

learning bound. Let µ∗s ,µ
∗
2s > 0, s ∈ [k], and m ≥ 27

τ2λ
be fixed a priori. With probability at

least 1− δ over a labeled m-sample z ∼ Pm and a second, unlabeled m-sample x′′ ∼ Πm, if

an algorithm learns hypothesis f̂z = (D̂z, ŵz) from z such that µ2s(D̂z) ≥ µ∗2s , µs(D̂z) ≥ µ∗s ,

s-sparse(ϕD̂z
(x∪ x′′)), and

[
margins(D̂z,x∪ x′′) > τ

]
all hold, then the generalization error

(P−Pz)`(·, f̂z) is bounded by:

8L
√
πrk
√

s

µ∗2s

√
m

+ b

√
8
(
(k + 1)k log(8m) + k log r

2 + (logm + 1) log 4
δ + log 2

)
m

+
1

m

(
2L

λ

(
3r
√

s

µ∗s
+ 1

)
+ 8b log

4

δ

)
.

Making this bound adaptive to the incoherences, sparsity level, and margin on z and x′′

yields the following final result. With probability at least 1 − δ over a labeled m-sample

z ∼ Pm and a second, unlabeled sample x′′ ∼ Πm, if an algorithm learns hypothesis f̂z =
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(D̂z, ŵz) such that ϕD̂z
is s-sparse on (x ∪ x′′), µ2s(f̂z) > 0, and

m ≥ 27

margin2s (D̂z,x ∪ x′′) · λ
,

then the generalization error (P−Pz)`(·, f̂z) is bounded by:

16L
√
πrk
√

s

µ2s(f̂z)
√

m
+ b

√
8
(
(k2 + k) log(8m) + k log r

2 + (logm + 1) log 7αk
δ + log 2

)
m

+
1

m

(
2L

λ

(
6r
√

s

µs(f̂z)
+ 1

)
+ 8b log

7αk

δ

)
,

for α =
(
log2

(
4

µs(f̂z)

)
log2

(
4

µ2s(f̂z)

))2
.
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Figure 2.4: The s-margin for predictive sparse coding trained on the USPS training set,
digit 4 versus all, for three settings of λ. Clockwise from top left: 50 atoms, 100 atoms, 200
atoms, and 400 atoms. The sparsity level (maximum number of non-zeros per code, taken
across all codes of the training points) is indicated by the dots.
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2.6 An empirical study of the s-margin
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Figure 2.5: The s-margin for predictive sparse coding trained on the MNIST training set,
digit 4 versus all, for three settings of λ. Clockwise from top left: 50 atoms, 100 atoms, 200
atoms, and 400 atoms. The sparsity level (maximum number of non-zeros per code, taken
across all codes of the training points) is indicated by the dots.

Empirical evidence suggests that the s-margin is well above zero even when s is only

slightly larger than the observed sparsity level. We performed experiments on two separate

digit classification tasks, from the USPS dataset and the MNIST dataset LeCun et al.

(1998). In both cases, we employed the single binary classification task of the digit 4 versus

all the other digits, and for both datasets all the training data was used. The results for

USPS and MNIST are shown in Figures 2.4 and 2.5 respectively. Each data point (an

image) was normalized to unit norm. In all plots, it is apparent that when the minimum

sparsity level is s (indicated by the colored dots on the x-axis of the plots), then using an

(s+ρ)-margin for ρ a small positive integer yields a non-trivial margin. Using the 2s-margin
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when s-sparsity holds may ensure that there is a moderate margin for only a constant factor

increase to s.

2.7 Discussion and open problems

We have shown the first generalization error bounds for predictive sparse coding. The

learning bounds in Theorems 2.5 and 2.6 are intimately related to the stability of the

sparse encoder, and consequently the bounds depend on both the learned dictionary and

the training sample. Using the techniques of this chapter, in the infinite-dimensional setting

it is unclear whether one can achieve the encoder stability guarantees without measuring

properties of the encoder on an independent, unlabeled sample. It is an important open

problem whether there is a generalization error bound for the infinite-dimensional setting

which does not rely on the second sample. Additionally, the PRP condition in the Sparse

Coding Stability Theorem (Theorem 2.4) appears to be much stronger than what should

be required. We conjecture that the PRP should actually be O(ε) rather than O(
√
ε). If

this conjecture turns out to be true, then the number of samples required before Theorems

2.5 and 2.6 kick in would be greatly reduced, and many constants in these results would

likewise be massively reduced.

While this chapter establishes upper bounds on the generalization error for predictive

sparse coding, two things remain unclear. How close are these bounds to the optimal ones?

Also, what lower bounds can be established in each of the settings? If the conditions on

which these bounds rely are of fundamental importance, then the presented data-dependent

bounds provide motivation for an algorithm to prefer dictionaries for which small subdic-

tionaries are well-conditioned and to additionally encourage large coding margin on the

training sample.
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2.8 Additional proofs

2.8.1 Proof of Sparse Coding Stability Theorem

The flow of this section is as follows. We first establish some preliminary notation and

summarize important conditions. Several lemmas are then presented to support a key

sparsity lemma. This sparsity lemma establishes that the solution to the perturbed problem

is sparse provided the perturbation is not too large. Finally, the sparsity of this new solution

is exploited to bound the difference of the new solution from the old solution. This flow is

embodied by the proof flowchart in Figure 2.6.

Sparse Coding 
Stability Theorem 

(Theorem 2.4)

Preservation of 
Sparsity Lemma 
(Lemma 2.24)

Lemma 2.25

Optimal Value 
Stability Lemma 
(Lemma 2.21)

Stability of Norm of 
Reconstructor Lemma 

(Lemma 2.22)

Reconstructor 
Stability Lemma 
(Lemma 2.23)

Figure 2.6: Proof flowchart for the Sparse Coding Stability Theorem (Theorem 2.4).

Notation and assumptions

Let α and α̃ respectively denote the solutions to the Lasso problems:

α = argmin
z

1

2
‖x − Dz‖22 + λ‖z‖1 α̃ = argmin

z

1

2
‖x − D̃z‖22 + λ‖z‖1.
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First, let’s review the optimality conditions for the Lasso (Asif and Romberg, 2010,

conditions L1 and L2):

〈Dj , x − Dα〉 = sign(αj)λ if αj 6= 0,

|〈Dj , x − Dα〉| < λ otherwise.

Note that the above optimality conditions imply that if αj 6= 0 then

|〈Dj , x − Dα〉| = λ.

Assumptions

The statement of the Sparse Coding Stability Theorem (Theorem 2.4) makes the following

assumptions:

(A1) - Closeness D and D̃ are close, as measured by operator norm:

‖D̃ − D‖2 ≤ ε.

(A2) - Incoherence There is a µ > 0 such that, for all J ⊆ [k] satisfying |J| = s:

σmin(DJ) ≥ µ.

(A3) - Sparsity with Margin For some fixed τ > 0, there is a I ⊆ [k] with |I| = k − s

such that for all i ∈ I:

|〈Di , x − Dα〉| < λ− τ.

Consequently, all i ∈ I satisfy αi = 0.
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Useful observations

Let v∗D be the optimal value of the Lasso for dictionary D:

v∗D = min
z

1

2
‖x − Dz‖22 + λ‖z‖1

=
1

2
‖x − Dα‖22 + λ‖α‖1

Likewise, let

v∗
D̃
=

1

2
‖x − D̃α̃‖22 + λ‖α̃‖1

The first observation is that the values of the optimal solutions are close:

Lemma 2.21 (Optimal Value Stability). If ‖D − D̃‖2 ≤ ε, then

∣∣∣v∗D − v∗
D̃

∣∣∣ ≤ 5

8

ε

λ
.

Proof. The proof is simple:

v∗
D̃
≤ 1

2
‖x − D̃α‖22 + λ‖α‖1

=
1

2
‖x − Dα+ (D − D̃)α‖22 + λ‖α‖1

≤ 1

2

(
‖x − Dα‖22 + 2‖x − Dα‖2‖(D − D̃)α‖2 + ‖(D − D̃)α‖22

)
+ λ‖α‖1

≤ 1

2
‖x − Dα‖22 + λ‖α‖1 +

1

2

(
ε

λ
+

1

4

(ε
λ

)2)
≤ v∗D +

5

8

ε

λ

for ελ ≤ 1. A symmetric argument shows that v∗D ≤ v∗
D̃
+ 5

8
ε
λ .

The second observation shows that the norms of the optimal reconstructors are close.

Lemma 2.22 (Stability of Norm of Reconstructor). If ‖D − D̃‖2 ≤ ε, then

∣∣∣‖Dα‖22 − ‖D̃α̃‖22∣∣∣ ≤ 5

4

ε

λ
.
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Showing this is more involved than the previous observation.

Proof. First, we claim (and show) that

(x − Dα)T Dα = λ‖α‖1. (2.13)

The proof of the claim comes directly from Osborne et al. (2000, circa (2.8)) To see (2.13),

recall that the Lasso objective is

minimize
z

1

2
‖x − Dz‖22 + λ‖z‖1.

The subgradient of this objective with respect to z is

−DT (x − Dz) + λv ,

where vj = 1 if zj > 0, vj = −1 if zj < 0, and vj ∈ [−1, 1] if zj = 0. From the definition of

v , it follows that

v T z = ‖z‖1.

At an optimal point α, ∂zL(α, λ) = 0, and hence

DT (x − Dα) = λv

m

(x − Dα)T D = λv T

⇓

(x − Dα)T Dα = λv Tα

m

(x − Dα)T Dα = λ‖α‖1,

as claimed.
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Now, we use the fact that the values of the optimal solutions are close (Lemma 2.21):

∣∣∣v∗D − v∗
D̃

∣∣∣ ≤ 5

8

ε

λ
.

But v∗D is just

1

2
〈x − Dα, x − Dα〉+ λ‖α‖1 =

1

2
〈x − Dα, x − Dα〉+ 〈x − Dα,Dα〉

=
1

2
〈x , x − Dα〉 − 1

2
〈x − Dα,Dα〉+ 〈x − Dα,Dα〉

=
1

2
(〈x , x − Dα〉+ 〈x − Dα,Dα〉)

=
1

2
〈x + Dα, x − Dα〉

=
1

2

(
‖x‖22 − ‖Dα‖22

)
.

Consequently,

∣∣∣∣12 (‖x‖22 − ‖Dα‖22)− 1

2

(
‖x‖22 − ‖D̃α̃‖22

)∣∣∣∣ ≤ 5

8

ε

λ

and hence

∣∣∣‖Dα‖22 − ‖D̃α̃‖22∣∣∣ ≤ 5

4

ε

λ
.

Finally, we prove stability of the optimal reconstructor. Rather than showing that

‖Dα − D̃α̃‖22 is O(ε), it will be more convenient for later purposes to prove the following

roughly equivalent result.

Lemma 2.23 (Reconstructor Stability). If ‖D − D̃‖2 ≤ ε, then

‖Dα− Dα̃‖22 ≤
13ε

λ
.

Proof. Let α′ := 1
2(α + α̃). From the optimality of α, it follows that vD(α) ≤ vD(α

′), or
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more explicitly:

1

2
‖x − Dα‖22 + λ‖α‖1 ≤

1

2
‖x − Dα′‖22 + λ‖α′‖1. (2.14)

First, note that
∣∣∣‖Dα̃‖22 − ‖D̃α̃‖22∣∣∣ ≤ 7

4
ε
λ , because

∣∣∣‖Dα̃‖22 − ‖D̃α̃‖22∣∣∣ ≤ 2
∣∣∣〈Dα̃, (D̃ − D)α〉

∣∣∣+ ‖(D̃ − D)α̃‖22

≤ 2‖Dα̃‖2‖D̃ − D‖2‖α̃‖2 +
(
‖D̃ − D‖2‖α̃‖2

)2
≤ 2

(
1 +

ε

2λ

) ε

2λ
+

1

4

(ε
λ

)2
≤ 7

4

ε

λ
,

assuming ε ≤ λ. Combining this fact with Lemma 2.22,
∣∣∣‖Dα‖22 − ‖D̃α̃‖22∣∣∣ ≤ 5

4
ε
λ , yields

∣∣‖Dα‖22 − ‖Dα̃‖22∣∣ ≤ 3ε

λ
.

By the convexity of the 1-norm, the RHS of (2.14) obeys:

1

2

∥∥∥∥x − D

(
α+ α̃

2

)∥∥∥∥2
2

+ λ

∥∥∥∥α+ α̃

2

∥∥∥∥
1

≤ 1

2

∥∥∥∥x − 1

2
(Dα+ Dα̃)

∥∥∥∥2
2

+
λ

2
‖α‖1 +

λ

2
‖α̃‖1

=
1

2

(
‖x‖22 − 2〈x , 1

2
(Dα+ Dα̃)〉+ 1

4
‖Dα+ Dα̃‖22

)
+
λ

2
‖α‖1 +

λ

2
‖α̃‖1

=
1

2
‖x‖22 −

1

2
〈x ,Dα〉 − 1

2
〈x ,Dα̃〉+ 1

8

(
‖Dα‖22 + ‖Dα̃‖22 + 2〈Dα,Dα̃〉

)
+
λ

2
‖α‖1 +

λ

2
‖α̃‖1

≤ 1

2
‖x‖22 −

1

2
〈x ,Dα〉 − 1

2
〈x ,Dα̃〉+ 1

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+ λ

2
‖α‖1 +

λ

2
‖α̃‖1 +

3

8

ε

λ

≤ 1

2
‖x‖22 −

1

2
〈x ,Dα〉 − 1

2
〈x ,Dα̃〉+ 1

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+ 1

2
〈x − Dα,Dα〉

+
1

2
〈x − D̃α̃, D̃α̃〉+ 3

8

ε

λ

≤ 1

2
‖x‖22 −

1

2
〈x ,Dα〉 − 1

2
〈x ,Dα̃〉+ 1

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+ 1

2
〈x ,Dα〉 − 1

2
‖Dα‖22

+
1

2
〈x ,Dα̃〉 − 1

2
‖Dα‖22 +

(
3

8
+

1

4
+

5

8

)
ε

λ
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which simplifies to

1

2
‖x‖22 −

3

4
‖Dα‖22 −

1

2
〈x ,Dα〉 − 1

2
〈x ,Dα̃〉+ 1

4
〈Dα,Dα̃〉+ 1

2
〈x ,Dα〉+ 1

2
〈x ,Dα̃〉+ 5

4

ε

λ

=
1

2
‖x‖22 −

3

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+ 5

4

ε

λ
.

Now, taking the (expanded) LHS of (2.14) and the newly derived upper bound of the

RHS of (2.14) yields the inequality:

1

2
‖x‖22 − 〈x ,Dα〉+ 1

2
‖Dα‖22 + λ‖α‖1

≤ 1

2
‖x‖22 −

3

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+ 5

4

ε

λ
.

which implies that

− 〈x ,Dα〉+ 1

2
‖Dα‖22 + λ‖α‖1

≤ −3

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+ 5

4

ε

λ
.

Replacing λ‖α‖1 with 〈x − Dα,Dα〉 yields:

− 〈x ,Dα〉+ 1

2
‖Dα‖22 + 〈x ,Dα〉 − ‖Dα‖22

≤ −3

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+ 5

4

ε

λ
,

implying that

1

4
‖Dα‖22 ≤

1

4
〈Dα,Dα̃〉+ 5

4

ε

λ
.

Hence,

‖Dα‖22 ≤ 〈Dα,Dα̃〉+ 5ε

λ
.
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Now, note that

‖Dα− Dα̃‖22 = ‖Dα‖22 + ‖Dα̃‖22 − 2〈Dα,Dα̃〉

≤ ‖Dα‖22 + ‖Dα̃‖22 − 2‖Dα‖22 + 10
ε

λ

≤ ‖Dα‖22 + ‖Dα‖22 − 2‖Dα‖22 + 13
ε

λ

= 13
ε

λ
.

The sparsity lemma

We now prove that the solution to the perturbed problem is sparse for sufficiently small ε.

Lemma 2.24 (Preservation of Sparsity). Under Assumptions (A1)-(A3), if

τ ≥ ε
(
1 +

1

2λ

)
+

√
13ε

λ
,

then α̃i = 0 for all i ∈ I.

Proof. Let i ∈ I be arbitrary. To prove that α̃i = 0, it is sufficient to show that

∣∣∣〈D̃i , x − D̃α̃〉
∣∣∣ < λ,

since α̃i is hence zero.

First, note that

∣∣∣〈D̃i , x − D̃α̃〉
∣∣∣ = ∣∣∣〈Di + D̃i − Di , x − D̃α̃〉

∣∣∣
≤
∣∣∣〈Di , x − D̃α̃〉

∣∣∣+ ‖D̃i − Di‖2‖x − D̃α̃‖2

≤
∣∣∣〈Di , x − D̃α̃〉

∣∣∣+ ε (since ‖x‖2 ≤ 1)
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and

∣∣∣〈Di , x − D̃α̃〉
∣∣∣ = ∣∣∣〈Di , x − (D + D̃ − D)α̃〉

∣∣∣
≤ |〈Di , x − Dα̃〉|+

∣∣∣〈Di , (D̃ − D)α̃〉
∣∣∣

≤ |〈Di , x − Dα̃〉|+ ‖Di‖2‖D̃ − D‖2‖α̃‖2

≤ |〈Di , x − Dα̃〉|+ ε

2λ
.

Hence,

∣∣∣〈D̃i , x − D̃α〉
∣∣∣ ≤ |〈Di , x − Dα̃〉|+ ε

(
1 +

1

2λ

)
,

and so it is sufficient to show that

|〈Di , x − Dα̃〉| < λ− ε
(
1 +

1

2λ

)
.

Now,

|〈Di , x − Dα̃〉| = |〈Di , x − Dα̃+ Dα− Dα〉|

≤ |〈Di , x − Dα〉|+ |〈Di ,Dα− Dα̃〉|

< λ− τ+ ‖Di‖2‖Dα− Dα̃‖2

< λ− τ+
√

13ε

λ
, (2.15)

where (2.15) is due to Lemma 2.23. Consequently, it is sufficient if τ is chosen to satisfy

λ− τ+
√

13ε

λ
≤ λ− ε

(
1 +

1

2λ

)
,

yielding:

τ ≥ ε
(
1 +

1

2λ

)
+

√
13ε

λ
.
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Proof of the Sparse Coding Stability Theorem

Proof (of Theorem 2.4). Recall that ϕD(x) is the unique optimal solution to the problem

min
z∈Rk

1

2
‖x − Dz‖22 + λ‖z‖1.

If not for the `1 penalty, in standard form the quadratic program is

min
z∈Rk

1

2
zT DT Dz − zT (DT x) + λ‖z‖1.

Denoting z̄ :=


z

z+

z−

 with z+, z− ∈ Rk , an equivalent formulation is

minimize
z̄∈R3k

Q(z̄) :=
1

2
z̄T

 DT D 0k×2k

02k×k 02k×2k

 z̄ − z̄T


 DT

02k×d

 x

+ λ(0T
k 1T

2k)z̄

subject to z+ ≥ 0k z− ≥ 0k z − z+ + z− = 0k .

Similarly, let Q̃(·) be the objective using D̃ instead of D.

For optimal solutions z̄∗ :=


z∗

z+
∗

z−∗

 and t̄∗ :=


t∗

t+∗

t−∗

 of Q and Q̃ respectively, from

Daniel (1973), we have

(ū − z̄∗)
T∇Q(z̄∗) ≥ 0 (2.16)

(ū − t̄∗)
T∇Q̃ (̄t∗) ≥ 0 (2.17)

for all feasible ū ∈ R3k . Setting ū to t̄∗ in (2.16) and ū to z̄∗ in (2.17) and adding (2.17)

and (2.16) yields

(̄t∗ − z̄∗)
T (∇Q(z̄∗)−∇Q̃ (̄t∗)) ≥ 0,
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which is equivalent to

(̄t∗ − z̄∗)
T (∇Q̃ (̄t∗)−∇Q̃(z̄∗)) ≤ (̄t∗ − z̄∗)

T (∇Q(z̄∗)−∇Q̃(z̄∗)) (2.18)

Here,

∇Q(z) =
1

2

 DT D 0k×2k

02k×k 02k×2k

 z −

 DT

02k×d

 x + λ

 0k

12k

 .

After plugging in the expansions of ∇Q and ∇Q̃ and incurring cancellations from the zeros,

(2.18) becomes

(t∗ − z∗)
T D̃T D̃(t∗ − z∗) ≤ (t∗ − z∗)

T
(
(DT D − D̃T D̃)z∗ + 2(D̃ − D)T x

)
(2.19)

≤ (t∗ − z∗)
T (DT D − D̃T D̃)z∗ + 2‖t∗ − z∗‖2‖(D̃ − D)T x‖2

≤ (t∗ − z∗)
T (DT D − D̃T D̃)z∗ + ‖t∗ − z∗‖2(2ε)

(2.20)

Let us gain a handle on the first term.

Below, we will use an operator which we dub the s-restricted 2-norm (which previously

was defined before Lemma 2.19): for a dictionary A ∈ (BRd )k , the s-restricted 2-norm of A

is defined as ‖A‖2,s := sup{t∈Rk :‖t‖=1,| supp(t)|≤s} ‖At‖2. Now, note that D̃ = D + E for some
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E satisfying ‖E‖2 ≤ ε. Hence,

(t∗ − z∗)
T (DT D − D̃T D̃)z∗

=
∣∣∣(t∗ − z∗)

T (E T D + DT E + E T E )z∗

∣∣∣
≤
∣∣∣(t∗ − z∗)

T E T Dz∗

∣∣∣+ ∣∣∣(t∗ − z∗)
T DT E z∗

∣∣∣+ ∣∣∣(t∗ − z∗)
T E T E z∗

∣∣∣
≤ ‖E (t∗ − z∗)‖2‖Dz∗‖2 + ‖D(t∗ − z∗)‖2‖E z∗‖2 + ‖E (t∗ − z∗)‖2‖E z∗‖2

≤ ‖t∗ − z∗‖2
(
‖E‖2‖D‖2,s‖z∗‖2 + ‖D‖2,s‖E‖2‖z∗‖2 + ‖E‖22‖z∗‖2

)
≤ ‖t∗ − z∗‖2

(
ε
√

s

2λ
+
ε
√

s

2λ
+
ε2

2λ

)
≤ ‖t∗ − z∗‖2

3

2

ε
√

s

λ
,

where the penultimate step follows because

1. if ‖z∗‖0 ≤ s, then Lemma 2.25 in Section 2.8.4 implies that ‖Dz∗‖2 ≤
√

s‖z∗‖2 (and

‖z∗‖2 ≤ ‖z∗‖1 ≤ 1
2λ); and

2. Lemma 2.24 implies that ‖t∗ − z∗‖0 ≤ s.

Combining this result with the fact that D̃ has s-incoherence lower bounded by µ implies

the desired result:

‖t∗ − z∗‖2 ≤
3

2

ε
√

s

λµ
.

2.8.2 Proof of Symmetrization by Ghost Sample Lemma

Proof (of Lemma 2.7). Replace F(σn) from the notation of Mendelson and Philips (2004)

with F(z,x′′). A modified one-sided version of (Mendelson and Philips, 2004, Lemma 2.2)

that uses the more favorable Chebyshev-Cantelli inequality implies that, for every t > 0:

(
1− 4 supf ∈F Var(`(·, f ))

4 supf ∈F Var(`(·, f )) + mt2

)
Przx′′

{
∃f ∈ F(z,x′′), (P−Pz)`(·, f ) ≥ t

}
≤Prz z′x′′

{
∃f ∈ F(z,x′′), (Pz’−Pz)`(·, f ) ≥ t

2

}
.
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As the losses lie in [0, b] by assumption, it follows that supf ∈F Var(`(·, f )) ≤ b2

4 . The lemma

follows since the left hand factor of the LHS of the above inequality is at least 1
2 whenever

m ≥
(

b
t

)2
.

2.8.3 Proofs for overcomplete setting

Proof (of Theorem 2.5). Proposition 2.12 and Lemmas 2.13 and 2.14 imply that

Prz

 ∃f ∈ Fµ,
[
margins(D,x) > ι

]
and ((P−Pz)`(·, f ) > t)


≤ 2

(8(r/2)1/(d+1)

ε

)(d+1)k

exp(−m$2/(2b2)) + δ

 .

Equivalently,

Prz

 ∃f ∈ Fµ,
[
margins(D,x) > ι

]
and

(
(P−Pz)`(·, f ) > 2

(
$+ 2Lβ+ bη(m,d ,k,ε,δ)

m

))


≤ 2

(8(r/2)1/(d+1)

ε

)(d+1)k

exp(−m$2/(2b2)) + δ

 .

Now, expand β and η and replace δ with δ/4:

Prz


∃f ∈ Fµ,

[
margins(D,x) > ι

]
and

(P−Pz)`(·, f ) > 2

(
$+ 2Lε 1

2λ

(
1 + 3r

√
s

µ

)
+

b(dk log 1944

margin2s (D,x)·λ
+log(2m+1)+log 4

δ
)

m

)


≤ 2

(
8(r/2)1/(d+1)

ε

)(d+1)k

exp(−m$2/(2b2)) +
δ

2
.
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Choosing δ
4 =

(
8(r/2)1/(d+1)

ε

)(d+1)k
exp(−m$2/(2b2)) yields

Prz


∃f ∈ Fµ,

[
margins(D,x) > ι

]
and

(P−Pz)`(·, f ) > 2

 $+ Lε 1
λ

(
1 + 3r

√
s

µ

)
+

b(dk log 1944

margin2s (D,x)·λ
+log(2m+1)+(d+1)k log ε

8(r/2)1/(d+1)
+m$2

b2
)

m




≤ 4 ·

(
8(r/2)1/(d+1)

ε

)(d+1)k

exp(−m$2/(2b2)),

which is equivalent to

Prz


∃f ∈ Fµ,

[
margins(D,x) > ι

]
and

(P−Pz)`(·, f ) > 2

 $+ Lε 1
λ

(
1 + 3r

√
s

µ

)
+

b(dk log 1944

margin2s (D,x)·λ
−(d+1)k log 8

ε
+k log 2

r
+log(2m+1)+m$2

b2
)

m




≤ 4 ·

(
8(r/2)1/(d+1)

ε

)(d+1)k

exp(−m$2/(2b2)),

Let δ (a new variable, not related to the previous incarnation of δ) be equal to the upper

bound, and solve for $, yielding:

$ = b

√
2((d + 1)k log 8

ε + k log r
2 + log 4

δ)

m

and hence

Prz


∃f = (D,w) ∈ Fµ,

[
margins(D,x) > ι

]
and

(P−Pz)`(·, f ) > 2

 b

√
2((d+1)k log 8

ε
+k log r

2
+log 4

δ
)

m + Lε 1
λ

(
1 + 3r

√
s

µ

)
+

b(dk log 1944

margin2s (D,x)·λ
+log(2m+1)+log 4

δ
)

m




≤ δ,
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If we set ε = 1
m , then provided that m > 243

margin2s (D,x)·λ :

Prz


∃f ∈ Fµ,

[
margins(D,x) > ι

]
and

(P−Pz)`(·, f ) > 2

 b

√
2((d+1)k log(8m)+k log r

2
+log 4

δ
)

m + L
m

(
1
λ(1 +

3r
√

s
µ )

)
+

b
m

(
dk log 1944

margin2s (D,x)·λ + log(2m + 1) + log 4
δ

)



≤ δ.

It remains to distribute a prior across the bounds for each choice of s and µ. To each

choice of s ∈ [k] assign prior probability 1
k . To each choice of i ∈ N ∪ {0} for 2−i ≤ µ

assign prior probability (i + 1)−2. For a given choice of s ∈ [k] and 2−i ≤ µ we use

δ(s, i) := 6
π2

1
(i+1)2

1
k δ (since

∑∞
i=1

1
i2
= π2

6 ). Then, provided that

m >
243

margins(D,x)2λ
,

the generalization error (P−Pz)`(·, f ) is bounded by:

2b

√√√√√√2

(
(d + 1)k log(8m) + k log r

2 + log
2π2

(
log2

4
µs (D)

)2
k

3δ

)
m

+
2b

m

dk log
1944

margin2s (D,x) · λ
+ log(2m + 1) + log

2π2
(
log2

4
µs(D)

)2
k

3δ


+

2L

m

(
1

λ
(1 +

6r
√

s

µs(D)
)

)
.

2.8.4 Infinite-dimensional setting

Proof (of Lemma 2.16). Recall that η = log 1
δ . Suppose, as in the event being measured,

that there is no subset of the ghost sample x′ of size at least η such that the τ-level s-

margin condition holds for the entire subset. Equivalently, there is a subset of at least η

points in the ghost sample x′ that violate the τ-level s-coding margin condition. From the

permutation argument, if no point of x′′ violates
[
margins(D, ·) > τ

]
, then the probability
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that over η = log 1
δ points of x′ will violate

[
margins(D, ·) > τ

]
is at most δ.

Proof (of Lemma 2.19). By definition, ϕUS(x) = argminz∈Rk
1
2‖x − USv‖2 + λ‖z‖1. Note

that argminz∈Rk ‖x − USz‖2 = argminz∈Rk ‖UT x − UT USz‖2 = argminz∈Rk ‖UT x − Sz‖2,

where the first equality follows because any x in the complement of the image of U will

be orthogonal to USz , for any z ; hence, it is sufficient to approximate the projection of x

onto the range of U. Thus, ϕUS(x) = argminz∈Rk
1
2‖U

T x − Sz‖22 + λ‖z‖1. It will be useful

to apply a well-known reformulation of this minimization problem as a quadratic program

with linear constraints. Denoting z̄ := z̄ := (zT z+T
z−

T
)T , an equivalent formulation is

minimize
z̄∈R3k

QU(z̄) :=
1

2
z̄T

 ST S 0k×2k

02k×k 02k×2k

 z̄ − 1

2
z̄T


 2ST UT

02k×d

 x

+ λ(0T
k 1T

2k)z̄

subject to z+ ≥ 0k z− ≥ 0k z − z+ + z− = 0k ,

For optimal solutions z̄∗ :=


z∗

z+
∗

z−∗

 and t̄∗ :=


t∗

t+∗

t−∗

 of QU and QU′ respectively,

from Daniel (1973), we have

(ū − z̄∗)
T∇QU(z̄∗) ≥ 0 (2.21)

(ū − t̄∗)
T∇QU′ (̄t∗) ≥ 0 (2.22)

for all ū ∈ R3k . Setting ū to t̄∗ in (2.21) and ū to z̄∗ in (2.22) and adding (2.21) and (2.22)

yields

(̄t∗ − z̄∗)
T (∇QU(z̄∗)−∇QU′ (̄t∗)) ≥ 0,

which is equivalent to

(̄t∗ − z̄∗)
T (∇QU′ (̄t∗)−∇QU′(z̄∗)) ≤ (̄t∗ − z̄∗)

T (∇QU(z̄∗)−∇QU′(z̄∗)). (2.23)
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Here, ∇QU(z) =

 ST S 0k×2k

02k×k 02k×2k

 z −

 2ST UT

02k×d

 x + λ

 0k

12k

. After plugging

in the expansions of ∇QU and ∇QU′ and incurring cancellations from the zeros, (2.23)

becomes

(t∗ − z∗)
T (ST St∗ − 2ST U ′

T
x − ST Sz∗ + 2ST U ′

T
x)

≤ (t∗ − z∗)
T (ST Sz∗ − 2ST UT x − ST Sz∗ + 2ST U ′

T
x),

which reduces to

(t∗ − z∗)
T ST S(t∗ − z∗) ≤ 2(t∗ − z∗)

T ST (U ′
T − UT )x .

Since both t∗ and z∗ are s-sparse, wherever we typically would consider the operator

norm ‖S‖2 := sup‖t‖=1 ‖St‖2, we instead need only consider the 2s-restricted operator norm

‖S‖2,2s .

Note that (t∗ − z∗)
T ST S(t∗ − z∗) ≥ µ2s(S)‖t∗ − z∗‖22, which implies that

‖t∗ − z∗‖22 ≤
2

µ2s(S)
‖t∗ − z∗‖‖S‖2,2s‖(U ′T − UT )x‖

and hence

‖t∗ − z∗‖2 ≤
2‖S‖2,2s

µ2s(S)
‖(U ′T − UT )x‖2.

Lemma 2.25. If S ∈ (BRk )k , then ‖S‖2,s ≤
√

s.

Proof. Define SΛ as the submatrix of S that selects the columns indexed by Λ. Similarly,
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for t ∈ Rk define the coordinate projection tΛ of t.

sup
{t:‖t‖=1,| supp(t)|≤s}

‖St‖2

= max
{Λ⊆[k]:|Λ|≤s}

sup
{t:‖t‖=1,supp(t)⊆Λ}

‖SΛtΛ‖2

= max
{Λ⊆[k]:|Λ|≤s}

sup
{t:‖t‖=1,supp(t)⊆Λ}

∥∥∥∥∥∑
ω∈Λ

tωSω

∥∥∥∥∥
2

≤ max
{Λ⊆[k]:|Λ|≤s}

sup
{t:‖t‖=1,supp(t)⊆Λ}

∑
ω∈Λ

|tω|‖Sω‖2

≤ max
{Λ⊆[k]:|Λ|≤s}

sup
{t:‖t‖=1,supp(t)⊆Λ}

∑
ω∈Λ

|tω|

≤ max
{Λ⊆[k]:|Λ|≤s}

sup
{t:‖t‖=1,supp(t)⊆Λ}

‖tΛ‖1

≤ max
{Λ⊆[k]:|Λ|≤s}

sup
{t:‖t‖=1,supp(t)⊆Λ}

√
s‖tΛ‖2

=
√

s.

2.8.5 Covering numbers

For a Banach space E of dimension d , the ε-covering numbers of the radius r ball of E are

bounded as N (rBE , ε) ≤ (4r/ε)d (Cucker and Smale, 2002, Chapter I, Proposition 5).

For spaces of dictionaries obeying some deterministic property, such as

Dµ = {D ∈ D : µs(D) ≥ µ},

one must be careful to use a proper ε-cover so that the representative elements of the cover

also obey the desired property; a proper cover is more restricted than a cover in that a

proper cover must be a subset of the set being covered, rather than simply being a subset

of the ambient Banach space. That is, if A is a proper cover of a subset T of a Banach

space E , then A ⊆ T . For a cover, we need only A ⊆ E . The following bound relates proper

covering numbers to covering numbers (a simple proof can be found in Vidyasagar 2002,
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Lemma 2.1): If E is a Banach space and T ⊆ E is a bounded subset, then

N (E , ε,T ) ≤ Nproper(E , ε/2,T ).

Let d , k ∈ N. Define Eµ := {E ∈ (BRd )k : µs(D) ≥ µ} and W := rBRd . The following

bounds derive directly from the above.

Proposition 2.26. The proper ε-covering number of Eµ is bounded by (8/ε)dk .

Proposition 2.27. The product of the proper ε-covering number of Eµ and the ε-covering

number of W is bounded by (
8(r/2)1/(d+1)

ε

)(d+1)k

.
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CHAPTER 3

MULTI-TASK PREDICTIVE SPARSE CODING

3.1 Introduction

The previous chapter looked at the sample complexity of dictionary learning for sparse

coding. The upper bounds presented there are the first and (at this time) only upper

bounds on the generalization error of predictive sparse coding. In the overcomplete setting,

we saw that the estimation error decays roughly at the rate O(
√

dk/m), where d is the

dimension of the input space, k is the dimension of the learned feature space, and m is the

size of the training sample. However, in many real-world learning settings, a large amount

of data might not available for individual tasks, and consequently, it may be impossible to

learn a good predictive sparse coding representation from a single task. In some of these

scenarios, it can be beneficial to pool together multiple related tasks, each with limited

data, in order to learn a shared representation for all of them.

Predictive sparse coding may be an ideal candidate for multi-task learning for two rea-

sons: the sample complexity of predictive sparse coding may be quite high, and furthermore,

predictive sparse coding involves learning a representation that can be shared across tasks.

This chapter introduces a multi-task learning formulation of predictive sparse coding, as

well as a new model for multi-task sparse coding as an intermediate step.

The form of the new dictionary model distills to each task having its own two-part

dictionary, consisting of a shared part that is common to all the dictionaries and a task-

specific part that is exclusive to that task. In the extreme where the size of the task-specific

subdictionaries goes to zero, all tasks use the same global sparse coding representation.
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In the other extreme where the size of the shared subdictionary goes to zero, each task

independently learns its own representation, and the multi-task learning problem collapses

into independent single-task problems.

Since this multi-task extension takes place at the dictionary level, the resulting multi-

task sparse coding model can operate in both the unsupervised and supervised settings and

gives rise to multi-task sparse coding and multi-task predictive sparse coding respectively.

While the ideas for the unsupervised multi-task sparse coding model existed in some sense in

a multi-class classification work of Ramirez et al. (2010), their model never explicitly shares

atoms between the different dictionaries, and their multi-class formulation is different from a

typical multi-task formulation. There are some previous works that considered the extreme

settings of full sharing (no task-specific part) and no sharing (no shared part). Mairal et al.

(2009) considered supervised learning of a single shared dictionary in a multi-class setting,

using a multi-class loss function. Since they did not reduce the multi-class task to multiple

tasks, this model was not a multi-task model. In a later work, Mairal et al. (2012) used

predictive sparse coding in a multi-task setting via a reduction of multi-class classification

with c classes to c one-vs-all binary classification problems. The difference is that, after

the reduction, they did not consider learning a single, shared dictionary nor using multiple

dictionaries with partial sharing; instead, they trained a separate dictionary for each class.

Notably, Mairal et al. (2012) did consider a semi-supervised learning model, and although

we do not analyze the effect of unlabeled data here, this would be a very good direction

for future work. Finally, Yu et al. (2009b) considered learning a dictionary that is shared

across a set of 10 one-vs-all tasks from the MNIST digits classification problem. Although

they did not pursue supervised dictionary learning, the bounds presented in this chapter

still apply to their setting in the case of the sparse coding model.

Contributions The first contribution of this chapter is a new multi-task dictionary model

that allows for atoms to be shared across the tasks’ dictionaries. In addition, we have

developed two new models, theoretical results supporting these models, and algorithms for

learning. Specific developments include:

1. Multi-task sparse coding and multi-task predictive sparse coding, each of which use
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the multi-task dictionary model.

2. For the unsupervised setting of multi-task sparse coding, Theorem 3.1 provides a

bound on the average estimation error for dictionary learning that decays with the

number of tasks and the number of points per task.

3. For multi-task predictive sparse coding, a suitably adapted multi-task version of the

analysis for the single-task case gives rise to the generalization error bound of Theo-

rem 3.2.

4. A stochastic subgradient descent learning algorithm for multi-task predictive sparse

coding (see Section 3.5) and empirical support for this algorithm in Section 3.6.

In the next section, we formally introduce the new multi-task dictionary model, multi-

task sparse coding, and multi-task predictive sparse coding. Section 3.3 presents the main

results, proofs of which can be found in Section 3.4. A learning algorithm for multi-task

predictive sparse coding is developed in Section 3.5. Finally, Section 3.6 presents the results

of experiments that used this algorithm to compare dictionary models with varying levels

of sharing, and we close with a discussion.

3.2 Multi-task predictive sparse coding

3.2.1 Representation

In the new multi-task dictionary model, each task maintains its own dictionary, but certain

constraints are placed to enforce similarity between the dictionaries. The first ks atoms

of each task’s subdictionary are shared, while the remaining ke = k − ks atoms of each

task’s dictionary are exclusive to that task. More precisely, we denote the dictionary for

the t th task via D̄(t) = (D(0) D(t)), where D(0) ∈ D(s) and D(t) ∈ D(e). Here, D(s)

and D(e) are the spaces of dictionaries of ks atoms and ke atoms respectively all with `2-

norm bounded by 1. From the partial sharing property of dictionaries D̄(1), . . . , D̄(T ), the

constraint (D̄(s))j = (D̄(t))j holds for any s, t ∈ [T ] and 1 ≤ j ≤ ks , where T is the number

of tasks. Since this model allows atoms between dictionaries to be shared, we sometimes
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refer to the model as the atomic sharing model.

Some remarks are in order. Intuitively, with regards to the shared subdictionary D(0)

the average estimation error should decay with the total number of points T m (for T tasks

and m points per task), and hence the size of the shared subdictionary can grow with the

number of tasks. Conversely, with respect to the task-specific subdictionaries D(1), . . . ,D(T )

the average estimation error should decay only with m, the number of points per task.

Additionally, when ke = 0, the dictionary D̄(t) for each task is equal to D(0); consequently,

the average estimation error depends only on the estimation of D(0) and hence should decay

with the total number of points T m.

Using this atomic sharing model with standard (unsupervised) sparse coding gives rise

to a flexible multi-task sparse coding model. This model can be further extended to a

flexible multi-task predictive sparse coding model. We will proceed by starting with single-

task sparse coding, shifting to multi-task sparse coding, and finally deriving multi-task

predictive sparse coding.

Sparse coding Recall from (2.1) the sparse auto-encoder ϕD(x) = argminz
1
2‖x−Dz‖22+

λ‖z‖1, for some dictionary D. Let P be a probability measure on BRd , recalling that the

input space BRd is the unit `2-ball in Rd . In the unsupervised, single-task setting, the goal

is to minimize the (regularized) reconstruction error objective

min
D∈D

Ex∼P ‖x − DϕD(x)‖22 + λ‖ϕD(x)‖1.

It will be useful to define the dictionary-indexed function class F := {fD : D ∈ D},

where

fD(x) = min
z∈Rk

1

2
‖x − Dz‖22 + λ‖z‖1.

With this definition in place, the ideal objective can be rewritten as minf ∈F P f . In practice,

we only have access to a sample x composed of m points x1, . . . , xm drawn iid from P. The

central theoretical question can then be framed as finding a good high probability upper
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bound on

sup
f ∈F

(P−Px)f ,

where Px is the empirical measure with respect to x, acting on a function g of Rd as Px =

1
m

∑m
j=1 g(xj). Such bounds were obtained by Maurer and Pontil (2008), and in particular

they apply to empirical risk minimization (or local minima obtained when attempting to

solve the non-convex empirical risk minimization problem).

Multi-task sparse coding We now move to the multi-task sparse coding model. Let

P1, . . . , PT be probability measures on BRd . In the multi-task sparse coding model, the ideal

objective is

min
D(0)∈D(s)

D(1),...,D(T )∈D(e)

1

T

T∑
t=1

(
Ex∼Pt ‖x − DϕD̄(t)(x)‖22 + λ‖ϕD̄(t)‖1

)
. (3.1)

By redefining F as

F :=
{
(fD̄(1) , . . . , fD̄(T )) : D(0) ∈ D(s),D(1), . . . ,D(T ) ∈ D(e)

}
,

with (as before)

fD̄(t)(x) := min
z∈Rk

1

2

∥∥x − D̄(t)z
∥∥2
2
+ λ‖z‖1,

the objective (3.1) can be rewritten as

min
f∈F

1

T

T∑
t=1

Pt ft .

In the above, the notation f encapsulates the T component functions as f = (f1, . . . , fT ).

This notation will be used from here on out. As before, in practice rather than observing

the probability measures P1, . . . , PT we instead only observe an empirical sample. In this

case, the sample actually is a meta-sample, consisting of T m-samples x(1), . . . ,x(T ), where
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x(t) is the t th task’s m-sample containing points x
(t)
1 , . . . , x

(t)
m . To this end, consider the

empirical risk minimization surrogate objective

min
f∈F

1

T

T∑
t=1

Px(t) ft .

To characterize our performance when using the surrogate empirical objective, it is of theo-

retical importance to obtain high probability upper bounds on the uniform (over F) average

estimation error

sup
f∈F

{
1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Px(t) ft

}
.

We will further analyze this quantity in the next section.

Multi-task predictive sparse coding In multi-task predictive sparse coding, the prob-

ability measures P1, . . . , PT are instead over BRd×Y, where Y is a space of univariate labels.

The learner additionally maintains a linear hypothesis in W := rBRk for each task, with

linear hypothesis Wt corresponding to the t th task. The ideal objective is

min
D(0)∈D(s)

D(1),...,D(T )∈D(e)

W1,...,WT∈W

1

T

T∑
t=1

E(x ,y)∼Pt
` (y , 〈Wt ,ϕD̄(t)(x)〉) . (3.2)

Empirically, we observe a meta-sample, consisting of T labeled m-samples z(1), . . . , z(T ),

where z(t) is the t th task’s m-sample containing labeled points z
(t)
1 , . . . , z

(t)
m , and any labeled

point z
(t)
j is equal to (x

(t)
j , y

(t)
j ). The (regularized) empirical objective which is optimized

in practice, is

min
D(0)∈D(s)

D(1),...,D(T )∈D(e)

W1,...,WT∈W

1

T

T∑
t=1

 1

m

m∑
j=1

`
(

y
(t)
j ,
〈

Wt ,ϕD̄(t)(x
(t)
j )
〉)

+
1

r
‖Wt‖22

 . (3.3)

It is useful to rewrite (3.3) as a global optimization over the shared representation pa-

rameter D(0) and T independent optimizations (conditional on D(0)) over the task-specific
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parameters (D(1),w (1)), . . . , (D(T ),w (T )):

min
D(0)∈D(s)

1

T

T∑
t=1

min
D(t)∈D(e)

Wt∈W

1

m

m∑
j=1

`
(

y
(t)
j ,
〈

Wt ,ϕD̄(t)(x
(t)
j )
〉)

+
1

r
‖Wt‖22.

As before, we frame the ideal objective and (unregularized) empirical objective in terms

of a function class F , now redefined as

F :=
{
(fD̄(1),W1

, . . . , fD̄(T ),WT
) : D(0) ∈ D(s),D(1), . . . ,D(T ) ∈ D(e),W1, . . . ,WT ∈ W

}

with

fD,w (x , y) := ` (y , 〈w ,ϕD(x)〉) .

The main theoretical question then is to obtain a high probability upper bound on

1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Pz(t) ft , (3.4)

that holds for all f = (f1, . . . , fT ) ∈ F simultaneously. As compared to the unsupervised

setting, we will entertain bounds that can depend on the particular hypothesis f , rather

than obtaining uniform upper confidence bounds on (3.4). This difference is owed to our

reuse of the data-and-hypothesis dependent analysis for single-task predictive sparse coding,

which appears to be much more difficult to analyze than (unsupervised) single-task sparse

coding. We analyze (3.4) in the next section.

3.3 Generalization error bounds

This section contains the statement of the two main learning bounds for the unsupervised

and supervised settings respectively. We first present the bound for (unsupervised) multi-

task sparse coding.
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Theorem 3.1 (Unsupervised Learning Bound). Let F be the function class

F :=
{
(fD̄(1) , . . . , fD̄(T )) : D(0) ∈ D(s),D(1), . . . ,D(T ) ∈ D(e)

}

with fD̄(t)(x) := min
z∈Rk

1

2
‖x− D̄(t)z‖22+λ‖z‖1. Suppose P1, . . . , PT are probability measures on

BRd and for each t ∈ [T ], x(t) is an m-sample composed of x
(t)
1 , . . . , x

(t)
m drawn iid from Pt .

Then with probability at least 1− δ, all f ∈ F satisfy

1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Px(t) ft ≤ b

√(
dks

T m
+

dke

m

)
log(8T m) +

log 1
δ

T m
+

4

λ

1

T m
.

In the case when all the tasks use the same dictionary (k = ks , ke = 0), the estimation

error decays at the rate
√

dk
T m (ignoring log terms). Hence, the number of points per task

m can be much less than dk provided that the number of tasks is sufficiently large. Of

course, it only makes sense to set ke = 0 if there exists a single dictionary which provides a

good sparse code representation for all of the tasks; if this is not the case, then the average

(regularized) empirical risk 1
T Px(t) ft will not be small.

When might it be reasonable to select ke > 0? Suppose that m is much larger than

d . Then for ke small, dke
m should be very small. In addition, our bound on the estimation

error is dominated by dke
m until the number of shared atoms ks exceeds roughly T ke . As

the number of tasks in multi-task learning often is very large, it therefore is reasonable to

select ks to be very large whenever ke is non-zero.

For multi-task predictive sparse coding, we have the following learning bound.

Theorem 3.2. With probability at least 1 − δ over z(1) ∼ (P1)
m, . . . , z(T ) ∼ (PT )m, for

any s ∈ [k] and any f = (D(0),D(1), . . . ,D(T ),w (1), . . . ,w (T )) ∈ F satisfying (for all

t ∈ [T ]) s-sparse(ϕD̄(t)(x(t))) and T m > 243
mint∈[T ] margins(D̄

(t),x(t))2λ
, the generalization error
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∑T
t=1 Pt `(·, ft)−

∑T
t=1 Pz(t) `(·, ft) is bounded by:

2
√
2b

√√√√ksd log(16T m)

T m
+

(ks + (d + 1)ke) log(16T m) + (ks + ke) log
r
4 + log

2π2
(
log2

4
µs (D̄)

)2
k

3δ

m

+ 2b

d(ks
T + ke) log

3888
mint∈[T ] margin2s (D̄

(t),x(t))·λ

m
+

log(2T m + 1) + log
2π2

(
log2

4
µs (D̄)

)2
k

3δ

T m


+

2L

T m

(
1

λ
(1 +

6r
√

s

µs(D)
)

)
.

Although daunting, the important thing to note is that the estimation error due to

dictionary learning can be controlled similar to the unsupervised multi-task sparse coding

setting, with qualifications on the incoherence and s-margin properties of the learned dic-

tionaries that were anticipated from the single-task predictive sparse coding learning bound

Theorem 2.5. Unlike the bound for unsupervised multi-task sparse coding, even when ke = 0

it no longer is sufficient for dks
T m to be small in order to obtain a useful bound; since multi-

task predictive sparse coding involves learning a linear hypothesis Wt for each task t, we

roughly need k
m to be small as well. However, this is still a substantial improvement upon

single-task predictive sparse coding, wherein we roughly needed dk
m to be small to obtain a

useful bound.

3.4 Proofs for generalization error bounds

This section contains the narrative for proving the main results, including all technical

proofs. We first handle Theorem 3.1, the result for the unsupervised setting, and then

prove the predictive setting result of Theorem 3.2.

3.4.1 Unsupervised setting: proof of Theorem 3.1

For the generalization error bound in the unsupervised setting, the goal is to control

sup
f ∈F

1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Px(t) ft .
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Recall that in the unsupervised sparse coding setting,

F :=
{
(fD̄(1) , . . . , fD̄(T )) : D(0) ∈ D(s),D(1), . . . ,D(T ) ∈ D(e)

}

with

fD̄(t)(x) := min
z∈Rk

1

2
‖x − D̄(t)z‖22 + λ‖z‖1.

Our high-level strategy will involve constructing a finite ε-net for F and then using

large deviation bounds for each element of this ε-net. To advance toward this goal, we first

study the behavior of some function element fD , evaluated at an arbitrary point x , under

perturbations to the dictionary D.

Let D,D ′ ∈ D be dictionaries satisfying ‖D − D ′‖2 ≤ ε. One way to understand how

some element fD behaves under perturbations is to bound the size of supx∈BRd
|fD(x)−fD′(x)|.

For an arbitrary x ∈ BRd , let z∗ be a minimizer of fD(x) and let z ′∗ be a minimizer of fD′(x).

Observe that

fD(x)− fD′(x)

=

(
1

2
‖x − Dz∗‖22 + λ‖z∗‖1

)
−
(
1

2
‖x − D ′z ′∗‖22 + λ‖z ′∗‖1

)
≤
(
1

2
‖x − Dz ′∗‖22 + λ‖z ′∗‖1

)
−
(
1

2
‖x − D ′z ′∗‖22 + λ‖z ′∗‖1

)
=

1

2

(
‖x − Dz ′∗‖22 − ‖x − D ′z ′∗‖22

)
.
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Let D ′ = D + E . Some simple linear algebra yields

‖x − Dz ′∗‖22 − ‖x − D ′z ′∗‖22

= ‖x‖22 − 2〈x ,Dz ′∗〉+ ‖Dz ′∗‖22 − ‖x‖22 + 2〈x ,D ′z ′∗〉 − ‖D ′z ′∗‖22

= 2〈x , (D ′ − D)z ′∗〉+ ‖Dz ′∗‖22 − ‖D ′z ′∗‖22

= 2〈x ,E z ′∗〉+ ‖(D ′ − E )z ′∗‖22 − ‖D ′z ′∗‖22

≤ 2〈x ,E z ′∗〉+ ‖D ′z ′∗‖22 + 2‖D ′z ′∗‖2‖E z ′∗‖2 + ‖E z ′∗‖22 − ‖D ′z ′∗‖22

= 2〈x ,E z ′∗〉+ 2‖D ′z ′∗‖2‖E z ′∗‖2 + ‖E z ′∗‖22

≤ ε
λ
+

2ε

λ
+
( ε
2λ

)2
≤ 13

4

ε

λ
,

where the penultimate inequality follows since ‖D ′z ′∗‖2 ≤ 2 by the triangle inequality (using

‖x‖2 ≤ 1 and ‖x − D ′z ′∗‖2 ≤ 1, the latter of which follows from the optimality of z ′∗ for

fD′(x)). Consequently,

fD(x)− fD′(x) ≤
13

8

ε

λ
≤ 2ε

λ
.

A symmetric argument works for bounding fD′(x)− fD(x).

We have just proved the following lemma.

Lemma 3.3. Let D,D ′ ∈ D be dictionaries satisfying ‖D − D ′‖2 ≤ ε. Then

sup
x∈BRd

|fD(x)− fD′(x)| ≤
2ε

λ
.

This lemma establishes that if two dictionaries are close, then their sparse coding optimal

objective values are uniformly close (for all x in the `2-ball of Rd). Recall that we are

seeking an upper confidence bound on the deviation 1
T

∑T
t=1 Pt ft − 1

T

∑T
t=1 Px(t) that holds

uniformly over F . If we can approximate F with a finite approximating set (an ε-net), then

such bounds readily follow from a simple application of the union bound and Hoeffding’s

inequality. Our strategy therefore will be to construct such an ε-net.

78



To this end, observe that every f ∈ F is fully specified by a choice (D(0),D(1), . . . ,D(T ))

in D(s) ×
(
D(e)

)T
. If we can find a finite approximating set for D(s) ×

(
D(e)

)T
such that

the dictionary for each task (e.g. D̄(t) for the t th task) has a close representative in the

approximating set, then Lemma 3.3 implies that this finite approximating set induces a finite

approximating set for F as well. It will be convenient to endow the space D(s) ×
(
D(e)

)T

with the metric

∆
((

D(0),D(1), . . . ,D(T )
)
,
(
D ′(0),D ′(1), . . . ,D ′(T )

))
:= max

t∈[t]
‖D̄(t) − D̄ ′(t)‖2, (3.5)

where D̄ ′(t) is the dictionary (D ′(0)D ′(t)), for t ∈ [T ]. The advantage of this metric is that

if a finite set is a good approximation for D(s) ×
(
D(e)

)T
in this metric, then the finite set

gives rise to a good approximation for every task’s dictionary.

Constructing a good finite approximating set turns out to be easy, as shown by the

following lemma.

Lemma 3.4. If D(s)
ε is an ε1-net for D(s), and if D(e)

ε is an ε2-net for D(e), then D(s)
ε ×(

D(e)
ε

)T
is an (ε1 + ε2)-net for D(s) ×

(
D(e)

)T
in the metric (3.5).

Proof. Below, we denote the coordinate projection of z onto the first ks coordinates as z(0)

and the coordinate projection onto the remaining ke coordinates as z(1).

Let (D(0),D(1), . . . ,D(T )) and (D ′(0),D ′(1), . . . ,D ′(T )) be arbitrary elements ofD(s)×
(
D(e)

)T
.

Now, observe that for any t ∈ [T ]:

sup
‖z‖2=1

∥∥∥((D(0) D(t))− (D ′(0) D ′(t))
)
z
∥∥∥
2

= sup
‖z‖2=1

∥∥∥(D(0) − D ′(0))z(0) + (D(t) − D ′(t))z(1)
∥∥∥
2

≤ sup
‖z‖2=1

∥∥∥(D(0) − D ′(0))z(0)
∥∥∥
2
+
∥∥∥(D(t) − D ′(t))z(1)

∥∥∥
2

≤ sup
‖z(0)‖2=1

∥∥∥(D(0) − D ′(0))z(0)
∥∥∥
2
+ sup
‖z(1)‖2=1

∥∥∥(D(t) − D ′(t))z(1)
∥∥∥
2

= ‖D(0) − D ′(0))‖2 + ‖D(t) − D ′(t))‖2.
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Consequently,

max
t∈[T ]

‖D̄(t) − D̄ ′(t)‖2 ≤ ‖D(0) − D ′(0)‖2 + max
t∈[T ]

‖D(t) − D ′(t)‖2.

Now, let (D(0),D(1), . . . ,D(T )) be an arbitrary element of the space D(s) ×
(
D(e)

)T
.

By definition, there exists a choice (D ′(0),D ′(1), . . . ,D ′(T )) in the approximating set D(s)
ε ×(

D(e)
ε

)T
satisfying ‖D(0) − D ′(0)‖ ≤ ε1. and ‖D(t) − D ′(t)‖ ≤ ε2 for t ∈ [T ]. This implies

that maxt∈[T ] ‖D̄(t) − D̄ ′(t)‖2 ≤ ε1 + ε2.

We now bound the cardinality of the approximating set D(s)
ε ×

(
D(e)
ε

)T
, after which

nearly everything will be in place for the final result. We can use Proposition 2.26 (with

a factor 4 rather than 8, since proper ε-covering numbers are not required here) to bound

the cardinality of this set by

inf
ε1,ε2>0
ε1+ε2=ε

(
4

ε1

)dks
(

4

ε2

)T dke

.

Selecting ε1 = ε2 =
ε
2 yields an ε-net D(s)

ε ×
(
D(e)
ε

)T
of cardinality at most

(
8

ε

)d(ks+T ke)

.

Recall that the goal is to obtain a high probability bound on

1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Px(t) ft .

We now have sufficient results to do this.

Proof (of Theorem 3.1). Let ε′ = 2ε
λ . From the ε′-net Fε induced from D(s)

ε ×
(
D(e)
ε

)T
, we
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have:

Pr

{
∃f ∈ F :

1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Px(t) ft ≥ α

}

≤ Pr

{
∃f ∈ Fε :

1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Px(t) ft ≥ α− 2ε′

}
,

which for arbitrary f ∈ Fε, is not greater than

|Fε|Pr

{
1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Px(t) ft ≥ α− 2ε′

}
.

Expanding this last expression, we see that it is just

Pr

{
1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Px(t) ft ≥ α− 2ε′

}

= Pr

 1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

1

m

m∑
j=1

ft(x
(t)
j ) ≥ α− 2ε′

 .

Now, observe that

E

 1

T

T∑
t=1

1

m

m∑
j=1

ft(x
(t)
j )

 = P1 . . .PT
1

T

T∑
t=1

1

m

m∑
j=1

ft(x
(t)
j )

=
1

T

T∑
t=1

Pt
1

m

m∑
j=1

ft(x
(t)
j )

=
1

T

T∑
t=1

Pt ft .

This observation, combined with the fact that for any f , t, j we have f (x
(t)
j ) ∈ [0, b] surely

(by assumption), unlocks an application of Hoeffding’s inequality:

Pr

 1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

1

m

m∑
j=1

ft(x
(t)
j ) ≥ β

 ≤ exp

(
−2T mβ2

b2

)
,

for β := α− 2ε′.
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Gathering the above results, it follows that

Pr

{
∃f ∈ F :

1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Px(t) ft ≥ α

}
≤ |Fε| exp

(
−2T mβ2

b2

)

≤
(
8

ε

)d(ks+T ke)

exp

(
−2T mβ2

b2

)
.

Setting δ equal to the last line above and solving for β yields:

β = b

√(
dks

T m
+

dke

m

)
log

8

ε
+

log 1
δ

T m
.

The result follows after substituting α = β+ 4ε
λ and selecting ε = 1

T m .

3.4.2 Predictive setting: proof of Theorem 3.2

As in the unsupervised setting, we again seek to control

1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Pz(t) ft .

However, in the predictive sparse coding setting, the function class F is defined as

F :=
{
(fD̄(1),W1

, . . . , fD̄(T ),WT
: D(0) ∈ D(s),D(1), . . . ,D(T ) ∈ D(e),W1, . . . ,WT ∈ W

}

with

fD,w (x , y) := ` (y , 〈w ,ϕD(x)〉) .

At a high level, the proof strategy for the multi-task setting of predictive sparse cod-

ing mimics the strategy for single-task predictive sparse coding (which was presented in

Chapter 2). In the single-task setting (where T = 1), the key steps were:

1. For hypotheses where the dictionary has large s-margin, showing that the probability

of the true risk exceeding the empirical risk by a large amount is not much greater than

the probability of a large deviation between the empirical risks on two independent
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m-samples. This was handled by Proposition 2.12.

2. Applying the Good Ghost Lemma (Lemma 2.13) in order to guarantee that the learned

auto-encoder has large s-margin on a second iid sample.

3. Applying Lemma 2.14 to bound the probability of a large deviation between the risks

on two independent m-samples.

The steps from the single-task setting straightforwardly carry forward with significant but

relatively easy modifications throughout. We will present multi-task versions of each of the

above three results before concluding with a proof of Theorem 3.2

Notation The exposition of our proof will assisted by some notation. It will be convenient

to collect the random variables z(1), . . . , z(T ) into a meta-sample z. Similarly, in the below

ghost samples z′(1), . . . , z′(T ) are collected into a ghost meta-sample z′.

Let x̃ ⊆η x indicate that x̃ is a meta-sample collecting samples x̃(1), . . . , x̃(T ) obeying

the following constraints:

1. For t ∈ [T ], the sample x̃(t) is a subset of sample x(t).

2. For t ∈ [T ], let ct be the number of elements of x(t) that are not in x̃(t). Then∑T
t=1 ct ≤ η. That is, cumulatively over the points in x̃(1), . . . , x̃(T ), at most η

elements of the points in x(1), . . . ,x(T ) have been removed.

Finally, define Eµ := {(D(0),D(1), . . . ,D(T )) ∈ D(s) ×
(
D(e)

)T
: µs(D̄

(t)) ≥ µ, t ∈ [T ]},

which is the subset of D(s) ×
(
D(e)

)T
for which all task dictionaries are µ-incoherent (for

some fixed s).

Proof exposition The first result is a straightforward multi-task extension of Lemma

2.2 of Mendelson and Philips (2004), which applies symmetrization by a ghost sample for

random subclasses.
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Lemma 3.5. If α2 ≥ 2b2

T m , then

Pr

{
∃f ∈ F(z), 1

T

T∑
t=1

Pt ft −
1

T

T∑
t=1

Pz(t) ft ≥ α

}

≤ 2Pr

{
∃f ∈ F(z), 1

T

T∑
t=1

Pz(t) ft −
1

T

T∑
t=1

Pz’(t) ft ≥ α/2

}
.

Proof. Define two stochastic processes Ui and Wi via:

Uj(f) =
1

T

T∑
t=1

ft(z
(t)
j )− Pt ft(z

(t)
j ) Wj(f) =

1

T

T∑
t=1

ft(z
′(t)
j )− Pt ft(z

′(t)
j ).

Observe from the triangle inequality that 1
m

∑m
j=1 Uj(f) ≥ α and 1

m

∑m
j=1 Wj(f) ≤ α/2

imply that 1
m

∑m
j=1(Uj(f)−Wj(f)) ≥ α/2.

Now, let A be the set

A = {z : ∃f ∈ F(z),
m∑

j=1

Uj(f) ≥ t}.

Observe that for every element of A, there exists a f ∈ F(z) as well as a realization of U

such that 1
m

∑m
j=1 Uj(f ) ≥ α. Hence, from the triangle inequality, for this f and U it follows

that

Pr

z′ :
1

m

m∑
j=1

Wj(f) ≤ α/2

 ≤ Pr

z′ :
1

m

m∑
j=1

(Uj(f)−Wj(f)) ≥ α/2

 .

The LHS is lower bounded by taking the infimum of the probability, with respect to f ,

and likewise the RHS is upper bounded by taking the supremum (with respect to f ∈ F(z)):

inf
f∈F

Pr

 1

m

m∑
j=1

Wj(f) ≤ α/2

 ≤ Pr

z′ : ∃f ∈ F(z), 1
m

m∑
j=1

(Uj(f)−Wj(f)) ≥ α/2

 .

The inequality does not depend on the particular f from before. This inequality holds not

only with respect to the particular realization of U we selected but in fact holds for any

element of A.
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Taking the probability measure of z on the set A yields:

Pr

∃f ∈ F(z),
m∑

j=1

Uj(f) ≥ t}

 inf
f∈F

Pr

 1

m

m∑
j=1

Uj(f) ≤ α/2


≤ Pr

∃f ∈ F(z), 1m
m∑

j=1

(Uj(f)−Wj(f)) ≥ α/2
)

and
( m∑

j=1

Uj(f) ≥ t
)

≤ Pr

∃f ∈ F(z), 1m
m∑

j=1

(Uj(f)−Wj(f)) ≥ α/2

 .

Now, observe that for any f ∈ F , Chebyshev’s inequality implies that

Pr

 1

m

m∑
j=1

Uj(f) > α/2


= Pr

 1

m

m∑
j=1

1

T

T∑
t=1

(
ft(z

(t)
j )− Pt ft(z

(t)
j )
)
> α/2


≤

4Var
(

1
T

∑T
t=1 ft(z

(t)
1 )
)

mα2

≤ b2

T mα2
,

where the last line follows because we assume the range of each ft is in [0, b] and hence its

variance is at most b2

4 . Since the above works for any f , we have

(
1− b2

T mα2

)
Pr

∃f ∈ F(z),
m∑

j=1

Uj(f) ≥ t}


≤ Pr

∃f ∈ F(z), 1m
m∑

j=1

(Uj(f)−Wj(f)) ≥ α/2

 .

Finally, selecting α2 ≥ 2b2

T m finishes the proof.

The following corollary specializes this result to a mirror image of Proposition 2.12.

Similar to the single task analysis of predictive sparse coding, Fµ will denote the subclass

of F induced by restricting to dictionaries D̄(1), . . . , D̄(T ) with s-incoherence of at least µ.
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Corollary 3.6. If T m ≥ 2
(

b
α

)2
, then

Prz
{
∃f ∈ Fµ,

(
∀t ∈ [T ] :

[
margins(D̄

(t),x(t))) > ι
])

and ((P−Pz)`(·, f ) > α)
}

≤ 2Prz,z′
{
∃f ∈ Fµ,

(
∀t ∈ [T ] :

[
margins(D̄

(t),x(t)) > ι
])

and ((Pz’−Pz)`(·, f ) > α/2)
}
.

Similar to the single-task setting, in the RHS above, let the event whose probability is

being measured be

J :=
{

z z′ : ∃f ∈ Fµ,
(
∀t ∈ [T ] :

[
margins(D̄

(t),x(t)) > ι
])

and ((Pz’−Pz)`(·, f ) > α/2)
}
.

Again, similar to the single-task setting, define Z as the event that there exists a hy-

pothesis with stable codes on each task’s original sample (using that task’s dictionary in

the hypothesis), in the sense of the Sparse Coding Stability Theorem (Theorem 2.4), but

more than η(T ,m, d , k,D,x, δ) points of the ghost samples (in aggregate) whose codes are

not guaranteed stable by the Sparse Coding Stability Theorem:

Z :=

z z′ :
∃f ∈ Fµ,

(
∀t ∈ [T ] :

[
margins(D̄

(t),x(t)) > ι
])

and
(
@ x̃ ⊆η x′

(
∀t ∈ [T ] :

[
margins(D̄

(t), x̃(t)) > 1
3margins(D̄

(t),x(t))
]))

 .

We will bound Pr(J) = Pr(J ∩ Z̄ ) +Pr(J ∩Z ) by bounding Pr(J ∩ Z̄ ) +Pr(Z ). The next

lemma establishes an upper bound on Pr(Z ). It is a multi-task adaptation of the Good

Ghost Lemma (Lemma 2.13).

Lemma 3.7 (MTL Good Ghost). Fix µ, λ > 0, and s ∈ [k]. With probability at least

1 − δ over T m-samples x(1) ∼ (P1)
m, . . . ,x(T ) ∼ (PT )m and T second m-samples x′(1) ∼

(P1)
m, . . . ,x′(T ) ∼ (PT )m, for any (D(0),D(1), . . . ,D(T )) such that for all t ∈ [T ]:

1. D̄(t) ∈ Dµ

2. ϕD̄(t) is s-sparse on x(t),

it holds for all t ∈ [T ] that at least m − η(T ,m, d , k , D̄, x , δ) points x′(t) ⊆η x′(t) satisfy
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[
margins(D̄

(t),x′(t)) > 1
3 mint∈[T ]margins(D̄

(t),x(t))
]
, with

η := d(ks + T ke) log
3888

mint∈[T ]margin2s (D̄
(t),x(t)) · λ

+ log(2T m + 1) + log
1

δ
.

Proof. We begin with a fixed (D(0),D(1), . . . ,D(T )) ∈ Eµ. Also, for now let the minimal

margin τ = mint∈[T ]margins(D̄
(t),x(t)) be fixed a priori. We later extend to the general

case of arbitrary (D(0),D(1), . . . ,D(T )) ∈ Eµ and τ.

Let ε =
( 1
3
τ)2·λ
27 , and take Eε to be a minimum-cardinality proper ε-cover of Eµ. Let

(D ′(0),D ′(1), . . . ,D ′(T )) be a candidate element of Eε satisfying ‖D̄(t) − D̄ ′(t)‖2 ≤ ε, for

t ∈ [T ]. Then the Sparse Coding Stability Theorem (Theorem 2.4) implies that for each

t ∈ [T ] the coding margin of D̄ ′(t) on x(t) retains over two-thirds the coding margin of D̄(t)

on x(t); that is,
[
margins(D̄

′(t),x(t)) > 2
3τ
]
.

Next, we consider how many points from any of the ghost samples, in aggregate for all

t ∈ [T ], fail to satisfy
[
margins(D̄

′(t), ·) > 2
3τ
]
. We tentatively take (D(0),D(1), . . . ,D(T )) and

hence (D ′(0),D ′(1), . . . ,D ′(T )) as fixed. Suppose there are at least η violations in aggregate

over the ghost samples. In particular, consider the case that there are at least ct violations

in ghost sample x′(t) for t ∈ [T ]; that is, we fix a particular choice (c1, . . . , cT ) satisfying

ct ≥ 0 and
∑

t∈[T ] ct = η. Without loss of generality, assume that the violations in x′(t)

occur in the first ct slots.

It is readily apparent that the probability that we see 0 violations in sample x(t) but

at least ct violations in the ghost sample x′(t) is at most 2−ct . Consequently, the prob-

ability of seeing 0 violations in samples x(1), . . . ,x(T ) but at least c1, . . . , cT violations in

x′(1), . . . ,x′(T ) respectively is at most 2−η. This bound holds regardless of our particu-

lar choice of (c1, . . . , cT ), and hence marginalizing over the (c1, . . . , cT ), we conclude that

the probability of seeing 0 violations (in aggregate) on the original samples but at least η

violations (in aggregate) on the ghost samples is at most 2−η.

This result easily extends to the case where τ is not fixed a priori. Since the VC-

dimension of a threshold functions is 1, for a fixed hypothesis there are only 2T m + 1

ways to label each of the 2T m points in terms of whether or not they violate the margin

threshold. Hence, only with probability at most (2T m + 1)2−η do at least η points of the
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ghost samples (in aggregate over t ∈ [T ]) violate their respective conditions

[
margins(D̄

′(t), ·) > 2

3
min

t∈[T ]
margins(D̄

(t),x(t))
]
, for t ∈ [T ]. (3.6)

This result also can be extended for arbitrary (D ′(0),D ′(1), . . . ,D ′(T )) ∈ Eε using a bound

on the proper covering numbers of D(s) ×
(
D(e)

)T
in the metric (3.5), yielding: for all

(D ′(0),D ′(1), . . . ,D ′(T )) ∈ Eε, only with probability at most

(
log

16

ε

)d(ks+T ke)

(2T m + 1)2−η

do at least η points (in aggregate over t ∈ [T ]) violate their respective conditions (3.6).

Finally, consider the at least T m−η points in the ghost samples (in aggregate) satisfying

their respective conditions (3.6). Since ‖D̄ ′(t) − D̄(t)‖ ≤ ε for t ∈ [T ], the Sparse Coding

Stability Theorem (Theorem 2.4) implies that these points satisfy their respective conditions

[
margins(D̄

(t), ·) > 1

3
min

t∈[T ]
margins(D̄

(t),x(t))
]
, for t ∈ [T ].

The last piece of the puzzle is to present a multi-task version of Lemma 2.14. We will

need a particular ε-net composed of the product of a proper ε-net for the dictionaries and

a (not necessarily proper) ε-net for the set of linear hypotheses:

Proposition 3.8. The product of proper ε-covering numbers for Eµ and the ε-covering

numbers for WT is bounded by

(
16

ε

)ks(d+T )+ke T (d+1) ( r

4

)T (ks+ke)
.

Lemma 3.9 (MTL Large Deviation on Good Ghost). Let $ := α/2−
(
2Lβ+ bη

T m

)
,

β := ε
2λ

(
1 + 3r

√
s

µ

)
. Then

Pr(J ∩ Z̄ ) ≤
(
16

ε

)ks(d+T )+ke T (d+1) ( r

4

)T (ks+ke)
exp(−T m$2/(2b2)).

88



The proof of Lemma 3.9 is withheld as it is nearly identical to the proof of Lemma 2.14, with

small modifications for the multi-task setting. The only crucial difference is the size of the

ε-net used to cover the hypothesis space and the better concentration in the application of

Hoeffding’s inequality (as we are averaging over T m bounded independent random variables

in the sum rather than only m bounded independent random variables).

Finally, by following the derivation of the final learning bound for the single-task setting

(Theorem 2.5), we arrive at the multi-task predictive sparse coding generalization error

bound (Theorem 3.2).

3.5 Learning

This section presents a simple learning algorithm for multi-task predictive sparse coding

using stochastic subgradient descent. The main difficulty is to work out the subgradient

computations; fortunately, in the single-task setting Mairal et al. (2012) already worked out

a subgradient of the expected loss with respect to the dictionary. We first summarize the

updates in the single-task setting due to Mairal et al. (2012), after which the updates for

the multi-task setting with partially shared dictionaries will follow naturally.

Single-task setting In single-task predictive sparse coding, the model parameters consist

of a dictionary D ∈ Rd×k of k atoms in Rd and a linear estimator w ∈ Rk . The goal is to

minimize the (regularized) stochastic objective

E(x ,y)∼P `
(
y , 〈w ,ϕD(x)

)
+ λw‖w‖22

using a labeled m-sample z consisting of labeled points (x1, y1), . . . , (xm, ym).

This objective can be minimized via stochastic subgradient descent, provided that we

can compute a subgradient of the objective

`
(
y , 〈w ,ϕD(x)

)
+ λw‖w‖22,

where (x , y) is a labeled point randomly drawn from distribution P.
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For completeness, the subgradient computations shown by Mairal et al. (2012, Proposi-

tion 1) will be reproduced here. To simplify the exposition, define the sparse code variable

α := ϕD(x) and the support variable J := supp(ϕD(x)). One choice of subgradient of the

objective with respect to D can be described in terms of a subgradient with respect to the

active subdictionary DJ and the gradient with respect to inactive subdictionary DJc (where

Jc is the complement, [k] \ J). The choice of subgradient with respect to DJ will be

−DJβα
T + (x − Dα)βT ,

with

β := (DT
J DJ)

−1 ∂`

∂αJ

(
y ,
〈
w ,α

〉)
.

The gradient with respect to DJc is simply 0. The subdifferential of the objective with

respect to w follows easily from the chain rule and is

∂

∂w

[
`
(
y , 〈w ,α〉

)
+ λw‖w‖22

]∣∣∣∣
(w ,α)

= α

(
∂`
(
y , ŷ

)
∂ŷ

∣∣∣
〈w ,α〉

)
+ 2λw w .

The experiments in the next section will employ the hinge loss `(y , ŷ) = max{0, 1−y ŷ},

and so we provide the updates for this case. First, consider the case when 1− y〈w ,α〉 ≥ 0.

In this case, −αy + 2λw w is an element of the subdifferential

∂

∂w

[
`
(
y , 〈w ,α〉

)
+ λw‖w‖22

]∣∣∣∣
(w ,α)

,

and subdifferential with respect to DJ contains, among others, the subgradient element

y
(

DJ(D
T
J DJ)

−1wJα
T − (x − Dα)w T

J (DT
J DJ)

−1
)
.

In the case when 1− y〈w ,α〉) < 0, the gradients for both w and D are zero, and hence no

update is made. This outcome is business as usual with the hinge loss.
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Multi-task setting In multi-task predictive sparse coding, recall that the dictionary D̄(t)

for each task consists of a ks -atom shared subdictionary D(0) ∈ (BRd )ks and a task-specific

ke-atom subdictionary D(t) ∈ (BRd )ke , and recall that these subdictionaries are combined

as D̄(t) = (D(0) D(t)).

Before writing the ideal objective, we first define Q as the uniform probability measure

over the probability measures P1, . . . , PT . The goal is then to minimize the (regularized)

stochastic objective

EP∼Q

[
E(x ,y)∼P

T∑
t=1

δPt (P)`
(
y ,
〈
Wt ,ϕD̄(t)(x)

〉)]
+ λw

T∑
t=1

‖Wt‖22. (3.7)

Performing stochastic subgradient descent with the multi-task objective (3.7) is similar

to stochastic subgradient descent in the single-task setting. Define the objective for a single

point-label pair z = (x , y) from the t th task as

ft,z(D
(0),D(t),Wt) := `

(
y ,
〈
Wt ,ϕD̄(t)(x)

〉)
+ λw‖Wt‖22. (3.8)

Algorithm 1 shows a mini-batch stochastic subgradient descent algorithm for approx-

imately optimizing the regularized stochastic objective using a meta-sample of T labeled

m-samples z(1), . . . , z(T ).

To do an update, this algorithm draws a task uniformly at random by drawing a probabil-

ity measure Pt from Q, approximately draws a mini-batch of q examples (x1, y1), . . . , (xq, yq)

from Pt by drawing some (x
(t)
j1

, y
(t)
j1

), . . . , (x
(t)
jq

, y
(t)
jq

) from the empirical measure Pz(t)), and

finally uses the subgradient updates shown in Figure 3.1. The choice of step size, ηi :=

1
q min

{
1, n

10i

}
, was adopted from Mairal et al. (2012); observe that the step size is nor-

malized by the mini-batch size so that for each of the n rounds the step size is effectively

min
{
1, n

10i

}
.

Considering the full dictionary D̄(t) = (D(0) D(t)), the updates come readily from the

single-task setting updates shown above. An update to D(0) in the multi-task model trans-

lates to an update to the first ks columns of D in the single-task model; similarly, an update

to D(t) in the multi-task model corresponds to an update to the remaining ke columns of
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Algorithm 1: A mini-batch stochastic subgradient descent learning algorithm for
multi-task predictive sparse coding. The subgradient computations can be found in
Figure 3.1.

Input: T datasets
{
z(t)
}

r∈[T ]
, where z(t) =

{
(x

(t)
j ,y

(t)
j )
}

j∈[m]
for t ∈ [T ]

begin
for i = 1→ n do

ηi :=
1

q
min

{
1,

n

10i

}
Draw t uniformly at random over [T ]

z′ := [q points drawn from z(t) uniformly at random]

(D
(0)
new,D

(t)
new,wnew) := (D(0),D(t),Wt)

for j = 1→ q do

Let fz ′j
be objective induced by z ′j , (D

(0),D(t)), and Wt .

D
(0)
new := D

(0)
new − ηi

∂ft,z ′j

∂D(0)
(D(0),D(t),Wt)

D
(t)
new := D

(t)
new − ηi

∂ft,z ′j

∂D(t)
(D(0),D(t),Wt)

wnew := wnew − ηi

∂ft,z ′j

∂Wt
(D(0),D(t),Wt)

end

(D(0),D(t),Wt) := (D
(0)
new,D

(t)
new,wnew)

end

end

D in the single-task model.

3.6 Experiments

In this section, we explore the extent to which multi-task learning helps (or hurts) the

performance of predictive sparse coding. The approach taken here will be to focus on

several controlled experiments in which a single parameter, such as the number of exclusive

atoms ke , is varied while all other parameters are fixed. We are not aware of any previous

study in this setting comparing the relative differences between models with varying levels

of sharing/exclusivity between tasks.

All the experiments in this section use the MNIST digits dataset (LeCun et al., 1998)

with the official training / test splits. The 10-class digit classification task was reduced

with a one-vs-all decomposition into 10 binary classification tasks suitable for the multi-
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∂ft,z

∂D(0)
(D(0),D(t),Wt) =

∂` (y , 〈Wt ,ϕD̄(t)(x)〉)
∂D(0)

∣∣∣
(D(0),D(t),Wt)

∂ft,z

∂D(l)
(D(0),D(t),Wt) =


∂` (y , 〈Wt ,ϕD̄(t)(x)〉)

∂D(t)

∣∣∣
(D(0),D(t),Wt)

if l = t

0 if l 6= t

∂ft,z

∂W (l)
(D(0),D(t),Wt) =


∂` (y , 〈Wt ,ϕD̄(t)(x)〉)

∂Wt

∣∣∣
(D(0),D(t),Wt)

+ 2λw Wt if l = t

0 if l 6= t

Figure 3.1: Subgradient updates for multi-task predictive sparse coding.

task setting. For c ∈ {0, 1, . . . , 9}, the c th task involves discriminating between the digit c

versus a class that is a union of all the rest of the digits {0, 1, . . . , 9} \ {c}.

Experimental intricacies In all the experiments, the hinge loss `
(
y , y ′

)
= max{0, 1 −

yy ′} was used, the linear hypothesis regularization parameter λw was set to 10−4, the `1-

norm regularization parameter was set to 0.1, and the mini-batch size n was set to 10. Prior

to dictionary learning, dictionaries were initialized via the following method. First, each

dictionary atom was set to the average of 3 random selected data points in the training set,

scaled to unit `2 norm. The resulting initial random dictionary was then trained via 50

iterations of the standard bi-convex alternating algorithm for sparse coding (using LARS

for the sparse coding step and the dual method of Lee et al. (2007) for the dictionary

update step). For multi-task models that use several dictionaries, such as when ke > 0

(and in particular when ks = 0 and ke = k), all of the dictionaries were initialized to the

same dictionary using the described procedure. For each task, the linear hypothesis Wt

was initialized by running 105 iterations of Pegasos (Shalev-Shwartz et al., 2011) on the

labeled points for that task; here, the input space representation arose from the sparse-

coding-initialized dictionary.

After this initialization procedure, learning proceeded as per the multi-task predictive

sparse coding algorithm described in Algorithm 1, with a few modifications. First, rather

than drawing random points for the mini-batch z′, we instead cycled over a permuted version
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of the data, grabbing q points in each mini-batch. Once all the points had been traversed,

the last mini-batch was closed (possibly being smaller in size than the other mini-batches),

and the data again was placed into a random permutation. Additionally, after running this

version of Algorithm 1, for each task Pegasos again was run for 105 iterations to learn Wt .

We have not yet described the number of training iterations n for which multi-task

predictive sparse coding ran. For each model configuration (ks , ke), the number of iterations

of training was determined as follows. For each value of n in some set, the first 80% of the

unpermuted training data was used for training and the remaining 20% for validation. The

selected value of n had the lowest average multi-class test error across the five repetitions.

We tried values of n ranging from 10,000 to 180,000 iterations, in increments of 10,000.

Hence, for different settings of ks and ke , it is possible that a different number of training

iterations was used.

Experimental investigations The first investigation fixes the cumulative number of

atoms ks + T ke in the multi-task model while varying their allocation across the shared

dictionary and the task-specific dictionaries. Since there are ten tasks, a one atom increase

to ke must be compensated by decreasing ks by ten atoms. Figure 3.2a shows the results

of this experiment. From the plot, it appears more beneficial to use full-sharing (ke = 0),

at least compared to small departures from the full sharing model in which ke is small.

The second experiment fixes the size of the shared dictionary at ks = 50 and compares

the performances of the cases of 0, 5, or 10 exclusive atoms per task-specific dictionary. The

results are shown in Figure 3.2b. This experiment is more of a sanity check to test whether

Algorithm 1 is able to learn from complicated partial-sharing models. As the dataset size

is large relative to the dictionary sizes, overlearning does not appear to take place as the

model size increases, and the additional task-exclusive atoms appear to decrease the test

error.

The third and final experiment compares three full sharing models, in which ke is set to

zero and ks varies between 50 and 300, and a fully exclusive (single-task) model in which

each task uses its own 50-atom dictionary. The fully exclusive model translates to 500 atoms

cumulatively, and so if it is possible to achieve similar performance using fewer cumulative
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Figure 3.2: Results of three experiments investigating performance of the sharing model
of multi-task predictive sparse coding. The plot (a) compares two models each with 100
atoms cumulatively, and it also compares two models each with 150 atoms cumulatively.
The plot (b) compares three models, each with 50 shared atoms, and a varying number of
exclusive atoms per task-specific dictionary. In plot (c), the effect of increasing the size of
the dictionary in a full-sharing model is compared to 50-atom per dictionary fully exclusive
model.

atoms in a shared model, then stronger generalization error guarantees can be made using

the results from Section 3.3. As shown by the results in Figure 3.2c, the full sharing model
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makes progress toward the test error achieved by the fully exclusive model; however, further

experiments with larger full sharing models (up to ks = 500) are necessary to see if the full

sharing model can match or even outperform the fully exclusive model.

3.7 Discussion

This chapter introduced a new multi-task dictionary model for sparse coding. This model

can be applied in the unsupervised and supervised settings, yielding multi-task sparse coding

and multi-task predictive sparse coding respectively. In the unsupervised setting, it was

shown with high probability that the task-wise average of the expected reconstruction error

for any hypothesis exceeds the task-wise average of that hypothesis’s empirically observed

reconstruction errors by at most O(
√

dks/(T m) +
√

dke/m). Hence, when the number

of tasks is very large, the size of the shared dictionary (ks) also can be very large. A

similar result holds in the predictive setting, with additional modifications due to sparse

auto-encoder stability properties and the statistical cost of estimating a separate linear

estimator for each task.

The empirical results suggest that when the number of cumulative atoms in the multi-

task dictionary model is fixed, it is beneficial to use a non-trivial amount of sharing (ks > 0).

Additionally, the simple stochastic subgradient descent algorithm for the sharing model

of multi-task predictive sparse coding appears to work well. An interesting avenue for

future exploration would be to experiment with much larger dictionary sizes, to the point

where using a fully exclusive model severely overlearns; in this setting, the learning bounds

developed in this work suggest that incorporating sharing into the multi-task dictionary

model can stave off overlearning in common low-sample regimes.
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CHAPTER 4

MINIMAX MULTI-TASK LEARNING

4.1 Introduction

The essence of machine learning is to exploit what we observe in order to form accurate

predictors of what we cannot. A multi-task learning (MTL) algorithm learns an inductive

bias to learn several tasks together. MTL is incredibly pervasive in machine learning: it has

natural connections to random effects models (Yu et al., 2009a); user preference prediction

(including collaborative filtering) can be framed as MTL (Zhang et al., 2011); multi-class

classification admits the popular one-vs-all and all-pairs MTL reductions; and MTL admits

provably good learning in settings where single-task learning is hopeless (Baxter, 2000;

Maurer, 2009). But if we see examples from a random set of tasks today, which of these

tasks will matter tomorrow? Not knowing in the present what challenges nature has in store

for the future, a sensible strategy is to mitigate the worst case by ensuring some minimum

proficiency on each task.

Consider a simple learning scenario: A music preference prediction company is in the

business of predicting what 5-star ratings different users would assign to songs. At training

time, the company learns a shared representation for predicting the users’ song ratings by

pooling together the company’s limited data on each user’s preferences. Given this learned

representation, a separate predictor for each user can be trained very quickly. At test time,

the environment draws a user according to some (possibly randomized) rule and solicits from

the company a prediction of that user’s preference for a particular song. The environment

may also ask for predictions about new users, described by a few ratings each, and so
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the company must leverage its existing representation to rapidly learn new predictors and

produce ratings for these new users.

Classically, multi-task learning has sought to minimize the (regularized) sum of the

empirical risks over a set of tasks. In this way, classical MTL implicitly assumes that once

the learner has been trained, it will be tested on test tasks drawn uniformly at random from

the empirical task distribution of the training tasks. Notably, there are several reasons why

classical MTL may not be ideal:

• While at training time the usual flavor of MTL commits to a fixed distribution over

users (typically either uniform or proportional to the number of ratings available for

each user), at test time there is no guarantee what user distribution we will encounter.

In fact, there may not exist any fixed user distribution: the sequence of users for which

ratings are elicited could be adversarial.

• Even in the case when the distribution over tasks is not adversarial, it may be in the

interest of the music preference prediction company to guarantee some minimum level

of accuracy per user in order to minimize negative feedback and a potential loss of

business, rather than maximizing the mean level of accuracy over all users.

• Whereas minimizing the average prediction error is very much a teleological endeavor,

typically at the expense of some locally egregious outcomes, minimizing the worst-case

prediction error respects a notion of fairness to all tasks (or people).

This chapter introduces minimax multi-task learning as a response to the above sce-

nario.1 In addition, we cast a spectrum of multi-task learning. At one end of the spectrum

lies minimax MTL, and departing from this point progressively relaxes the “hardness” of

the maximum until full relaxation reaches the second endpoint and recovers classical MTL.

We further sculpt a generalized loss-compositional paradigm for MTL which includes this

spectrum and several other new MTL formulations. This paradigm equally applies to the

problem of learning to learn (LTL), in which the goal is to learn a hypothesis space from a

set of training tasks such that this representation admits good hypotheses on future tasks.

1Note that minimax MTL does not refer to the minimax estimators of statistical decision theory.
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In truth, MTL and LTL typically are handled equivalently at training time — this work

will be no exception — and they diverge only in their test settings and hence the learning

theoretic inquiries they inspire.

Contributions. The first contribution of this chapter is to introduce minimax MTL and a

continuum of relaxations. Second, we introduce a generalized loss-compositional paradigm

for MTL which admits a number of new MTL formulations and also includes classical

MTL as a special case. Third, we empirically evaluate the performance of several MTL

formulations from this paradigm in the multi-task learning and learning to learn settings,

under the task-wise maximum test risk and task-wise mean test risk criteria, on four datasets

(one synthetic, three real). Finally, Theorem 4.1 is the core theoretical contribution of this

chapter and shows the following: If it is possible to obtain maximum empirical risk across

a set of training tasks below some level γ, then it is likely that the maximum true risk

obtained by the learner on a new task is bounded by roughly γ. Hence, if the goal is

to minimize the worst case outcome over new tasks, the theory suggests minimizing the

maximum of the empirical risks across the training tasks rather than their mean.

In the next section, we recall the settings of multi-task learning and learning to learn,

formally introduce minimax MTL, and motivate it theoretically. In Section 4.3, we in-

troduce a continuously parameterized family of minimax MTL relaxations and the new

generalized loss-compositional paradigm. Section 4.4 presents an empirical evaluation of

various MTL/LTL formulations with different models on four datasets. Finally, we close

with a discussion.

4.2 Minimax multi-task learning

We begin with a promenade through the basic MTL and LTL setups, with an effort to

abide by the notation introduced by Baxter (2000). Throughout the rest of the chapter,

each labeled example (x , y) will live in X × Y for input instance x and label y . Typical

choices of X include Rn or a compact subset thereof, while Y typically is a compact subset of

R or the binary {−1, 1}. In addition, define a loss function ` : R×Y → R+. For simplicity,

100



this chapter considers `2 loss (squared loss) `(y , y ′) = (y − y ′)2 for regression and hinge loss

`(y , y ′) = max{0, 1− yy ′} for classification.

MTL and LTL often are framed as applying an inductive bias to learn a common hy-

pothesis space, selected from a fixed family of hypothesis spaces, and thereafter learning

from this hypothesis space a hypothesis for each task observed at training time. It will be

useful to formalize the various sets and elements present in the preceding statement. Let H

be a family of hypothesis spaces. Any hypothesis space H ∈ H itself is a set of hypotheses;

each hypothesis h ∈ H is a map h : X → R.

Learning to learn. In learning to learn, the goal is to achieve inductive transfer to learn

the best H from H. Unlike in MTL, there is a notion of an environment of tasks: an

unknown probability measure Q over a space of task probability measures P. The goal is

to find the optimal representation via the objective

inf
H∈H

EP∼Q inf
h∈H

E(x ,y)∼P `(y , h(x)). (4.1)

In practice, T (unobservable) training task probability measures P1, . . . , PT ∈P are drawn

iid from Q, and from each task t a set of m examples are drawn iid from Pt .

Multi-task learning. Whereas in learning to learn there is a distribution over tasks, in

multi-task learning there is a fixed, finite set of tasks indexed by [T ] := {1, . . . ,T}. Each

task t ∈ [T ] is coupled with a fixed but unknown probability measure Pt . Classically, the

goal of MTL is to minimize the expected loss at test time under the uniform distribution

on [T ]:

inf
H∈H

1

T

∑
t∈[T ]

inf
h∈H

E(x ,y)∼Pt
`(y , h(x)). (4.2)

Notably, this objective is equivalent to (4.1) when Q is the uniform distribution on the set

of probability measures {P1, . . . , PT}. In terms of the data generation model, MTL differs

from LTL since the tasks are fixed; however, just as in LTL, from each task t a set of m

examples are drawn iid from Pt .
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4.2.1 Minimax MTL

A natural generalization of classical MTL results by introducing a prior distribution π over

the index set of tasks [T ]. Given π, the (idealized) objective of this generalized MTL is

inf
H∈H

Et∼π inf
h∈H

E(x ,y)∼Pt
`(y , h(x)), (4.3)

given only the training data {(x (t)
1 , y

(t)
1 ), . . . , (x

(t)
m , y

(t)
m )}t∈[T ]. The classical MTL objective

(4.2) equals (4.3) when π is taken to be the uniform prior over [T ]. We argue that in many

instances, that which is most relevant to minimize is not the expected error under a uniform

distribution over tasks, or even any pre-specified π, but rather the expected error for the

worst π. We propose to minimize the maximum error over tasks under an adversarial choice

of π, yielding the objective:

inf
H∈H

sup
π

Et∼π inf
h∈H

E(x ,y)∼Pt
`(y , h(x)),

where the supremum is taken over the T -dimensional simplex. As the supremum (assuming

it is attained) is attained at an extreme point of the simplex, this objective is equivalent to

inf
H∈H

max
t∈[T ]

inf
h∈H

E(x ,y)∼Pt
`(y , h(x)).

In practice, we approximate the true objective via a regularized form of the empirical

objective

inf
H∈H

max
t∈[T ]

inf
h∈H

m∑
i=1

`(y
(t)
i , h(x

(t)
i )).

In the next section, we motivate minimax MTL theoretically by showing that the worst-

case performance on future tasks likely will not be much higher than the maximum of the

empirical risks for the training tasks. We restrict attention to the case of finite H.
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4.2.2 A learning to learn bound for the maximum risk

In this subsection, we use the following notation. Let P1, . . . , PT be probability measures

drawn iid from Q, and for t ∈ [T ] let z(t) be an m-sample (a sample of m points) from

Pt with corresponding empirical measure Pz(t) . Also, if P is a probability measure then

P `(·, h) := E `(y , h(x)); similarly, if Pz is an empirical measure with respect to m-sample z,

then Pz `(·, h) := 1
m

∑m
i=1 `(yi , h(xi )).

Our focus is the learning to learn setting with a minimax lens: when one learns a

representation H ∈ H from multiple training tasks and observes maximum empirical risk γ,

we would like to guarantee that H’s true risk on a newly drawn test task will be bounded

by roughly γ. Such a goal is in striking contrast to the classical emphasis of learning to

learn, where the goal is to obtain bounds on H’s expected true risk. Using H’s expected

true risk and Markov’s inequality, Baxter (2000, the display prior to (25) ) showed that the

probability that H’s true risk on a newly drawn test task is above some level γ decays as

the expected true risk over γ:

Pr

{
inf

h∈H
P `(·, h) ≥ γ

}
≤

1
T

∑
t∈[T ] Pz(t) `(·, ht) + ε

γ
(4.4)

where the size of ε is controlled by T , m, and the complexities of certain spaces.

The expected true risk is not of primary interest for controlling the tail of the (random)

true risk, and a more direct approach yields a much better bound. We restrict the space

of representations H to be finite with cardinality C; in this case, the analysis is particularly

simple and illuminates the idea for proving the general case. The next theorem is the main

result of this section:

Theorem 4.1. Let |H| = C, and let the loss ` be L-Lipschitz in its second argument and

bounded by B. Suppose T tasks P1, . . . , PT are drawn iid from Q and from each task Pt

an iid m-sample z(t) is drawn. Suppose there exists H ∈ H such that all t ∈ [T ] satisfy

minh∈H Pz(t) `(·, h) ≤ γ. Let P be newly drawn probability measure from Q. Let ĥ be the

empirical risk minimizer over the test m-sample. With probability at least 1−δ with respect
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to the random draw of the T tasks and their T corresponding m-samples:

Pr

P `
(
·, ĥ
)
> γ+

1

T
+ Lmax

H∈H
Rm(H) + B

√
log 2

δ

2m

 ≤ log 2C
δ + logdBe+ log(T + 1)

T
.

(4.5)

In the above, Rm(H) is the Rademacher complexity of H (cf. (Bartlett and Mendelson,

2002)), defined as

Rm(H) := Ex Eσ sup
h∈H

2

m

m∑
i=1

σj h(xi ),

where σ1, . . . ,σm are iid Rademacher random variables (uniform over {−1, 1}. Critically, in

(4.5) the probability of observing a task with high true risk decays with T , whereas in (4.4)

the decay is independent of T . Hence, when the goal is to minimize the probability of bad

performance on future tasks uniformly, this theorem motivates minimizing the maximum

of the empirical risks as opposed to their mean.

For the proof of Theorem 4.1, first consider the singleton case H = {H1}. Sup-

pose that for γ fixed a priori, the maximum of the empirical risks is bounded by γ, i.e.

maxt∈[T ]minh∈H1 Pz(t) `(·, h) ≤ γ.

Let a new probability measure P drawn from Q correspond to a new test task, with

accompanying m-sample z. Suppose the probability of the event [minh∈H1 Pz `(·, h) > γ] is at

least ε. Then the probability that γ bounds all T empirical risks is at most (1−ε)T ≤ e−Tε.

Hence, with probability at least 1− e−Tε:

Pr

{
min

h∈H1

Pz `(·, h) > γ

}
≤ ε.

A simple application of the union bound extends this result for finite H:

Lemma 4.2. Under the same conditions as Theorem 4.1, with probability at least 1− δ/2

with respect to the random draw of the T tasks and their T corresponding m-samples:

Pr

{
min
h∈H

Pz `(·, h) > γ

}
≤

log 2C
δ

T
.
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The bound in the lemma states a 1/T rate of decay for the probability that the empirical

risk obtained by H on a new task exceeds γ. Next, we relate this empirical risk to the true

risk obtained by the empirical risk minimizer. Note that at test time H is fixed and hence

independent of any test m-sample. Then, from standard learning theory results shown

below:

Lemma 4.3. Take loss ` as in Theorem 4.1. With probability at least 1−δ/2, for all h ∈ H

uniformly:

P `(·, h) ≤ Pz `(·, h) + LRm(H) + B

√
log(2/δ)

2m
.

Proof sketch From the bounded differences inequality (Theorem 2.11), with probability

at least 1− δ/2 the random quantity suph∈H P `(·, h)− Pz is upper bounded by the its ex-

pectation plus B
√

log(2/δ)
2m . From symmetrization, E suph∈H P `(·, h)− Pz is upper bounded

by Rm({`(·, h) : h ∈ H}), which from Meir and Zhang (2003, Theorem 7) is upper bounded

by LRm(H).

In particular, with high probability the true risk of the empirical risk minimizer is not

much larger than its empirical risk. Theorem 4.1 now follows from Lemmas 4.2 and 4.3

and a union bound over γ ∈ Γ := {0, 1/T , 2/T , . . . , dBe}; note that mapping the observed

maximum empirical risk γ to min{γ′ ∈ Γ | γ ≤ γ′} picks up the additional 1
T term in (4.5).

In the next section, we introduce a loss-compositional paradigm for multi-task learning

which includes as special cases minimax MTL and classical MTL.

4.3 A generalized loss-compositional paradigm for MTL

The paradigm can benefit from a bit of notation. Given a set of T tasks, we represent the

empirical risk for hypothesis ht ∈ H (∈ H) on task t ∈ [T ] as ˆ̀
t(ht) :=

∑m
i=1 `(y

(t)
i , ht(x

(t)
i )).

Additionally define a set of hypotheses for multiple tasks h := (h1, . . . , hT ) ∈ HT and the

vector of empirical risks ˆ̀(h) := (ˆ̀1(h1), . . . , ˆ̀
T (hT )).
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With this notation set, the proposed loss-compositional paradigm encompasses any reg-

ularized minimization of a (typically convex) function φ : RT
+ → R+ of the empirical risks:

inf
H∈H

inf
h∈HT

φ
(

ˆ̀(h)
)
+ Ω

(
(H,h)

)
, (4.6)

where Ω(·) : H× ∪H∈HHT → R+ is a regularizer.

`p MTL. One notable specialization that is still quite general is the case when φ is an

`p-norm, yielding `p MTL. This subfamily encompasses classical MTL and many new MTL

formulations:

• Classical MTL as `1 MTL:

inf
H∈H

inf
h∈HT

1

T

∑
t∈[T ]

ˆ̀(ht) + Ω
(
(H,h)

)
≡ inf
H∈H

inf
h∈HT

1

T
‖ˆ̀(h)‖1 + Ω

(
(H,h)

)
.

• Minimax MTL as `∞ MTL:

inf
H∈H

inf
h∈HT

max
t∈[T ]

ˆ̀(ht) + Ω
(
(H,h)

)
≡ inf
H∈H

inf
h∈HT

‖ˆ̀(h)‖∞ + Ω
(
(H,h)

)
.

• A new formulation, `2 MTL:

inf
H∈H

inf
h∈HT

( 1

T

∑
t∈[T ]

(
ˆ̀(ht)

)2)1/2
+Ω
(
(H,h)

)
≡ inf
H∈H

inf
h∈HT

1√
T
‖ˆ̀(h)‖2+Ω

(
(H,h)

)
.

A natural question is why one might consider minimizing `p-norms of the empirical risks

vector for 1 < p < ∞, as in `2 MTL. The contour of the `1-norm of the empirical risks

evenly trades off empirical risks between different tasks; however, it has been observed that

overfitting often happens near the end of learning, rather than the beginning (Roux et al.,

2008). More precisely, when the empirical risk is high, the gradient of the empirical risk

(taken with respect to the parameter (H,h)) is likely to have positive inner product with

the gradient of the true risk. Therefore, given a candidate solution with a corresponding

vector of empirical risks, a sensible strategy is to take a step in solution space which places

more emphasis on tasks with higher empirical risk. This strategy is particularly appropriate

when the class of learners has high capacity relative to the amount of available data. This

observation sets the foundation for an approach that minimizes norms of the empirical risks.
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In this work, we also discuss an interesting subset of the loss-compositional paradigm

which does not fit into `p MTL; this subfamily embodies a continuum of relaxations of

minimax MTL.

ααα-minimax MTL. In some cases, minimizing the maximum loss can exhibit certain

disadvantages because the maximum loss is not robust to situations when a small fraction

of the tasks are fundamentally harder than the remaining tasks. Consider the case when

the empirical risk for each task in this small fraction can not be reduced below a level u.

Rather than rigidly minimizing the maximum loss, a more robust alternative is to minimize

the maximize loss in a soft way. Intuitively, the idea is to ensure that most tasks have low

empirical risk, but a small fraction of tasks are permitted to have higher loss. We formalize

this as α-minimax MTL, via the relaxed objective:

minimize
H∈H,h∈HT

min
b≥0

{
b +

1

α

∑
t∈[T ]

max{0, ˆ̀
t(ht)− b}

}
+ Ω

(
(H,h)

)
.

In the above, φ from the loss-compositional paradigm (4.6) is a variational function of the

empirical risks vector. The above optimization problem is equivalent to the perhaps more

intuitive problem:

minimize
H∈H,h∈HT ,b≥0,ξξξ≥0

b +
1

α

∑
t∈[T ]

ξt + Ω
(
(H,h)

)
subject to ˆ̀

t(ht) ≤ b + ξt , t ∈ [T ].

Here, b plays the role of the relaxed maximum, and each ξt ’s deviation from zero indicates

the deviation from the (loosely enforced) maximum. We expect ξξξ to be sparse.

To help understand how α affects the learning problem, let us consider a few cases:

(1) When α > T , the optimal value of b is zero, and the problem is equivalent to classical

MTL. To see this, note that for a given candidate solution with b > 0 the objective

always can be reduced by reducing b by some ε and increasing each ξt by the same ε.

(2) Suppose one task is much harder than all the other tasks (e.g. an outlier task), and

its empirical risk is separated from the maximum empirical risk of the other tasks by
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ρ. Let 1 < α < 2; now, at the optimal hard maximum solution (where ξξξ = 0), the

objective can be reduced by increasing one of the ξt ’s by ρ and decreasing b by ρ.

Thus, the objective can focus on minimizing the maximum risk of the set of T − 1

easier tasks. In this special setting, this argument can be extended to the more general

case k < α < k + 1 and k outlier tasks, for k ∈ [T ].

(3) As α approaches 0, we recover the hard maximum case of minimax MTL.

This work focuses on α-minimax MTL with α = 2/(d0.1T + 0.5e−1 + d0.1T + 1.5e−1)

i.e. the harmonic mean of d0.1T +0.5e and d0.1T +1.5e. The reason for this choice is that

in the idealized case (2) above, for large T this setting of α makes the relaxed maximum

consider all but the hardest 10% of the tasks. We also try the 20% level (i.e. 0.2T replacing

0.1T in the above).

After the work in this chapter was published (see (Mehta et al., 2012)), we discovered a

work by Dekel et al. (2007) that performs multi-task learning in an online setting, using a

framework similar to ours. A key difference however is that their analysis focuses on certain

online learning guarantees for multi-task learning, whereas our analysis focuses on learning

to learn guarantees for the offline learning setting. Additionally, it is unclear whether the α-

minimax MTL relaxation fits into the framework of Dekel et al. (2007). This point appears

to be an important one, because the experimental results in Section 4.4 indicate that α-

minimax MTL often performs better than the other MTL formulations that fall out of our

paradigm.

Models. We now provide examples of how specific models fit into this framework. We

consider two convex multi-task learning formulations: Evgeniou and Pontil’s regularized

multi-task learning (the EP model) (Evgeniou and Pontil, 2004) and Argyriou, Evgeniou,

and Pontil’s convex multi-task feature learning (the AEP model) (Argyriou et al., 2008).

The EP model is a linear model with a shared parameter v0 ∈ Rd and task-specific param-

eters vt ∈ Rd (for t ∈ [T ]). Evgeniou and Pontil presented this model as

min
v0,{vt}t∈[T ]

∑
t∈[T ]

m∑
i=1

`(y
(t)
i , 〈v0 + vt , x

(t)
i 〉) + λ0‖v0‖

2 +
λ1

T

∑
t∈[T ]

‖vt‖2,
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for ` the hinge loss or squared loss. This can be set in the new paradigm via H = {Hv0 |

v0 ∈ Rd}, Hv0 = {h : x 7→ 〈v0+ vt , x〉 | vt ∈ Rd}, and ˆ̀
t(ht) =

1
m

∑m
i=1 `

(
y
(t)
i , 〈v0+ vt , x

(t)
i 〉
)
.

The AEP model minimizes the task-wise average loss with the trace norm (nuclear

norm) penalty:

min
W

∑
t

m∑
i=1

`(y
(t)
i , 〈Wt , x

(t)
i 〉) + λ‖W ‖tr,

where ‖ · ‖tr : W 7→
∑

i σi (W ) is the trace norm. In the new paradigm, H is a set where

each element is a k-dimensional subspace of linear estimators (for k � d). Each ht =

Wt in some H ∈ H lives in H’s corresponding low-dimensional subspace. Also, ˆ̀
t(ht) =

1
m

∑m
i=1 `

(
y
(t)
i , 〈ht , x

(t)
i 〉
)
.

For easy empirical comparison between the various MTL formulations from the paradigm,

at times it will be convenient to use constrained formulations of the EP and AEP model. If

the regularized forms are used, a fair comparison of the methods warrants plotting results

according to the size of the optimal parameter found (i.e. ‖W ‖tr for AEP). For EP, the

constrained form is:

minimize
v0,{vt}t∈[T ]

∑
t∈[T ]

m∑
i=1

`(y
(t)
i , 〈v0 + vt , x

(t)
i 〉)

subject to ‖v0‖ ≤ τ0,

‖vt‖ ≤ τ1, t ∈ [T ].

For AEP, the constrained form is:

minimize
W

∑
t

m∑
i=1

`(y
(t)
i , 〈Wt , x

(t)
i 〉)

subject to ‖W ‖tr ≤ r .

4.4 Empirical evaluation

We consider four learning problems; the first three involve regression (MTL model in paren-

theses):
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• A synthetic dataset composed from two modes of tasks (EP model),

• The school dataset from the Inner London Education Authority (EP model),

• The conjoint analysis personal computer ratings dataset 2 (Lenk et al., 1996) (AEP

model).

The fourth problem is multi-class classification from the MNIST digits dataset (LeCun

et al., 1998) with a reduction to multi-task learning using a tournament of pairwise (binary)

classifiers. We use the AEP model. Given data, each problem involved a choice of MTL

formulation (e.g. minimax MTL), model (EP or AEP), and choice of regularized versus

constrained. All the problems were solved with just a few lines of code using CVX (Grant

and Boyd, 2011, 2008). In this work, we considered convex multi-task learning formulations

in order to make clear statements about the optimal solutions attained for various learning

problems.

Two modes. The two modes regression problem consists of 50 linear prediction tasks

for the first type of task and 5 linear prediction tasks for the second task type. The true

parameter for the first task type is a vector µ drawn uniformly from the sphere of radius 5;

the true parameter for the second task type is −2µ. Each task is drawn from an isotropic

Gaussian with mean taken from the task type and the standard deviation of all dimensions

set to σtask. Each data point for each task is drawn from a product of 10 standard normals

(so x
(t)
i ∈ R10). The targets are generated according to 〈Wt , x

(t)
i 〉 + εt , where the εt ’s are

iid univariate centered normals with standard deviation σnoise. We fixed τ0 to a large value

(in this case, τ0 = 10 is sufficient since the mean for the largest task fits into a ball of radius

10) and τ1 to a small value (τ1 = 2). We compute the average mean and maximum test

error over 100 instances of the 55-task multi-task problem. Each task’s training set and

test set are 5 and 15 points respectively. The average maximum (mean) test error is the

100-experiment-average of the task-wise maximum (mean) of the `2 risks. For each LTL

experiment, 55 new test tasks were drawn using the same µ as from the training tasks.

2This data, collected at the University of Michigan MBA program, generously was provided by Peter
Lenk.
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Figure 4.1: Max `2-risk (Top two lines) and mean `2-risk (Bottom two lines). At Top
Left and Top Right: `2-risk vs noise level, for σtask = 0.1 and σtask = 0.5 respectively. At
Bottom: `2-risk vs task variation, for σnoise = 0.1. Dashed red is `1, dashed blue is minimax.
Error bars indicate one standard deviation. MTL results (not shown) were similar to LTL
results (shown), with MTL-LTL relative difference below 6.8% for all points plotted.

Figure 4.1 shows a tradeoff: when each task group is fairly homogeneous (left and center

plots), minimax is better at minimizing the maximum of the test risks while `1 is better at

minimizing the mean of the test risks. As task homogeneity decreases (right plot), the gap

in performance closes with respect to the maximum of the test risks and remains roughly

the same with respect to the mean.

School. The school dataset has appeared in many previous works (Goldstein, 1991; Bakker

and Heskes, 2003; Evgeniou et al., 2007). For brevity we just say the goal is to predict

student test scores using certain student-level features. Each school is treated as a separate

task. We report both the task-wise maximum of the root mean square error (RMSE) and

the task-wise mean of the RMSE (normalized by number of points per task, as in previous

works).

The results (see Figure 4.2) demonstrate that when the learner has moderate shared
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Figure 4.2: Maximum RMSE (Top) and normalized mean RMSE (Bottom) versus task-
specific parameter bound τ1, for shared parameter bound τ0 fixed. In each figure, Left
section is τ0 is 0.2 and Right section is τ0 = 0.6. Solid red � is `1, solid blue • is minimax,
dashed green N is (0.1T )-minimax, dashed black H is (0.2T )-minimax. The results for `2
MTL were visually identical to `1 MTL and hence were not plotted.

capacity τ0 and high task-specific capacity τ1, minimax MTL outperforms `1 MTL for

the max objective; additionally, for the max objective in almost all parameter settings

(0.1T )-minimax and (0.2T )-minimax MTL outperform `1 MTL, and they also outperform

minimax MTL when the task-specific capacity τ1 is not too large. We hypothesize that

minimax MTL performs the best in the high−τ1 regime because stopping learning once

the maximum of the empirical risks cannot be improved invokes early stopping and its

built-in regularization properties (see e.g. (Murata and Amari, 1999)). Interestingly, for

the normalized mean RMSE objective, both minimax relaxations are competitive with `1

MTL; however, when the shared capacity τ0 is high (right section, right plot), `1 MTL

performs the best. For high task-specific capacity τ1, minimax MTL and its relaxations

again seem to resist overfitting compared to `1 MTL.
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Figure 4.3: MTL (Top) and LTL (Bottom). Maximum `2 risk (Left) and Mean `2 risk
(Right) vs bound on ‖W ‖tr. LTL used 10-fold cross-validation (10% of tasks left out in
each fold). Solid red � is `1, solid blue • is minimax, dashed green N is (0.1T )-minimax,
dashed black H is (0.2T )-minimax, solid gold � is `2.

Personal computer. The personal computer dataset is composed of 189 human subjects

each of which rated on a 0-10 scale the same 20 computers (16 training, 4 test). Each

computer has 13 binary features (amount of memory, screen size, price, etc.).

The results are shown in Figure 4.3. In the MTL setting, for both the maximum RMSE

objective and the mean RMSE objective, `1 MTL appears to perform the best. When the

trace norm of W is high, minimax MTL displays resistance to overfitting and obtains the

lowest mean RMSE. In the LTL setting for the maximum RMSE objective, `2, minimax,

and (0.1T )-minimax MTL all outperform `1 MTL. For the mean RMSE, `1 MTL obtains

the lowest risk for almost all parameter settings.

MNIST. The MNIST task is a 10-class problem; we approach it via a reduction to a

tournament of 45 binary classifiers trained via the AEP model. The dimensionality was
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Figure 4.4: Test multiclass 0-1 loss vs ‖W ‖tr. Solid red is `1 MTL, solid blue is minimax,
dashed green is (0.1T )-minimax, dashed black is (0.2T )-minimax. Regularized AEP used
for speed and trace norm of W ’s computed, so samples differ per curve.

reduced to 50 using principal component analysis (computed on the full training set), and

only the first 2% of each class’s training points were used for training.

Intuitively, the performance of the tournament tree of binary classifiers can only be as

accurate as its paths, and the accuracy of each path depends on the accuracy of the nodes.

Hence, our hypothesis is that minimax MTL should outperform `1 MTL. The results in

Figure 4.4 confirm our hypothesis. Minimax MTL outperforms `1 MTL when the capacity

‖W ‖tr is somewhat limited, with the gap widening as the capacity decreases. Furthermore,

at every capacity minimax MTL is competitive with `1 MTL.

4.5 Discussion

We have established a continuum of formulations for MTL which recovers as special cases

classical MTL and the newly formulated minimax MTL. In between these extreme points

lies a continuum of relaxed minimax MTL formulations. More generally, we introduced a

loss-compositional paradigm that operates on the vector of empirical risks, inducing the

additional `p MTL paradigms. The empirical evaluations indicate that α-minimax MTL

at either the 10% or 20% level often outperforms `1 MTL in terms of the maximum test

risk objective and sometimes even in the mean test risk objective. All the minimax or
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α-minimax MTL formulations exhibit a built-in safeguard against overfitting in the case of

learning with a model that is very complex relative to the available data.

Although efficient algorithms may make the various new MTL learning formulations

practical for large problems, a proper effort to develop fast algorithms in this setting would

have detracted from the main point of this first study. A good direction for the future is

to obtain efficient algorithms for minimax and α-minimax MTL. In fact, such algorithms

might have applications beyond MTL and even machine learning. Another area ripe for

exploration is to establish more general learning bounds for minimax MTL and to extend

these bounds to α-minimax MTL.
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CHAPTER 5

SAMPLE VARIANCE PENALIZED META-LEARNING

5.1 Introduction

The choice of representation is a fundamental problem in machine learning. In machine

learning pop culture, there is a common sentiment that given the “right” features, learning

problems become easy. A natural way by which to judge the performance of a representation

is by how it performs on tasks drawn from some environment. For instance, we might

conclude that we found good visual features if those features make it easy to solve a variety

of visual tasks such as object recognition and scene classification; similarly, if a set of features

that describe music can be used linearly to accurately predict individual people’s musical

preferences, the representation embodying those features probably is a good one.

Given samples from training tasks drawn from the environment, a meta-learner seeks to

learn a representation, or hypothesis space, that affords good hypotheses for the training

tasks. Once a representation is learned, certain questions arise about the performance of

this representation on future tasks, such as:

Q1. What is the true risk of the learned hypothesis space’s empirical risk minimizer on a

new task, in expectation over the draw of the new task?

Q2. What is the probability that the true risk of the learned hypothesis space’s empirical

risk minimizer on a new task exceeds some level ε?

This chapter introduces sample variance penalized meta-learning, a new mode of meta-

learning designed to perform well on average across all tasks while also obtaining stable
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performance across tasks. By stable, we mean that the meta-learner’s performance on

new tasks should have low variance. Since the new tasks are drawn randomly within this

framework, the performance is a random variable even after conditioning on the training

samples of the training tasks.

In addition to introducing sample variance penalized meta-learning, the core contribu-

tions of this chapter are:

• High probability learning theoretic guarantees answering Q1 and Q2.

• A forward stepwise learner for sample variance penalized meta-learning when selecting

a representation corresponds to feature selection.

• A simple convex relaxation of sample variance penalized meta-learning which arises

from a similar, new convex relaxation of sample variance penalized empirical risk

minimization in the single-task setting.

5.2 Meta-learning & sample variance penalization

We begin with a standard single-task learning setup. Consider an input space X , an output

space Y, and a joint space Z := X × Y. Let P be a probability measure on Z. In this

setup, m labeled points z1, . . . , zm are drawn iid from P, with zj = (xj , yj) for j ∈ [m]. This

m-sample is collected into z. Throughout this chapter, ` : Y × R → [0, b] will be a loss

function that is L-Lipschitz in its second argument, for some constant b > 0. To simplify

the theoretical results in the next section, we will take b = 1 without loss of generality. The

case of finite b > 1 can be recovered by rescaling. We frequently use the loss-composed

function `(·, h) : Y × X → [0, b], defined as the map (x , y) 7→ `
(
y , h(x)

)
.

A popular and principled approach in single-task learning is to use regularized empirical

risk minimization. For a hypothesis space H and a regularizer Ω : H×Zm → R+, define

the Ω-regularized empirical risk minimization algorithm as

AH(z) = argmin
h∈H

1

m

m∑
j=1

`
(
yj , h(xj)

)
+ Ω(h, z).
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From this definition, AH is a map from a space of labeled m-samples Zm to the hypothesis

space H. The algorithm AH(z) minimizes an empirical objective, but of course its true

purpose, lurking in the shadows of optimization, is to find a hypothesis h ∈ H that minimizes

the true risk Ez∼P `
(
y , h(x)

)
.

Meta-learning Suppose that H is no longer fixed but instead can be selected by a higher-

level learning algorithm, the meta-learner. The meta-learner will select the hypothesis space

from H, a family of hypothesis spaces, or meta-hypothesis space. The quality of the true

risk minimizer depends intimately on the choice of hypothesis space.

In order to describe the input of the meta-learner, we proceed with a generative model

for how these inputs are drawn. Adopting the setting of Baxter (2000), T tasks P1, . . . , PT

are drawn iid from an environment, a distribution over tasks. Here, tasks are identified with

probability measures over Z. Next, for each task Pt , an m-sample z(t) = (z
(t)
1 , . . . , z

(t)
m ) is

generated by drawing the examples z
(t)
1 , . . . , z

(t)
m iid from Pt . Let us collect the m-samples

z(1), . . . , z(T ) into a meta-sample z.

We now can introduce the meta-learner. The meta-learner A is a map from meta-

samples to algorithms, or more formally, A : (Zm)T → A , where A is a set of learning

algorithms. In this chapter, A will be the set of regularized empirical risk minimizers

A := {AH : H ∈ H} induced by the family H of hypothesis spaces.

Learning representations In this chapter, we consider a special but powerful class of

meta-hypothesis spaces. For meta-hypothesis spaces in this class, choosing a hypothesis

space is equivalent to choosing a representation: a set of features arrived at by processing

the original features of X in some way. Each hypothesis will be fully specified by selecting a

representation and a linear function acting on this representation. Hence, meta-learning a

hypothesis space Ĥ in the meta-hypothesis space H simply corresponds to learning a set of

features. Then, for an individual task, empirical risk minimization over Ĥ corresponds to

finding the best hypothesis that is linear in the learned representation. We further constrain

the linear hypothesis to have an `2-norm of at most r .

A natural measure of value for a representation is how well it can be leveraged to
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solve predictions tasks from a class of interest. Given the “right” features, learning in

these tasks becomes easy. Examples of this are character recognition using sparse codes

with a learned dictionary, discriminating faces using hand-crafted geometric features, and

predicting people’s music preferences via musician-crafted features. A common element of

these applications is the presence of many tasks, perhaps even infinitely many drawn from

a pool, and the need to learn a representation that performs well for most of them. Hence,

meta-learning is a natural lens through which we can study representation learning.

Sample variance penalization The sample variance of a sample a1, . . . , am is the sym-

metric function

Vm(a1, . . . , am) =
1

m(m − 1)

∑
1≤i<j≤m

(ai − aj)
2

2
.

We then can express the sample variance of the loss of hypothesis h with respect to sample

z as

Vz(h) := Vm

(
`
(
y1, h(x1)

)
, . . . , `

(
ym, h(xm)

))
.

Similarly, the sample variance of AH on z, i.e. the sample variance of empirical risk mini-

mization over H on meta-sample z, is

Vz(AH) := VT

(
Pz(1) `

(
·,AH(z(1))

)
, . . . , Pz(T) `

(
·,AH(z(T ))

))
.

5.3 Learning guarantees

Notation Before embarking on a tour of a theoretical landscape, it will pay off to equip

ourselves with some notation. A probability measure P on Z operates on functions with do-

main Z as P f = Ez∼P f (z). We denote the empirical measure associated with some sample z

as Pz, which is defined as Pz := 1
m

∑m
j=1 δzj for δz the Dirac measure concentrated at z ∈ Z.

The empirical measure operates as Pz f = 1
m

∑m
j=1 f (zj). In the meta-learning setting, the

environment is specified by a probability measure Q over tasks, the tasks themselves being
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average empirical risk
1
T

∑T
t=1 Pz(t) `

(
·,AH(z(t))

) Baxter- average true risk
1
T

∑T
t=1 Pt `

(
·,AH(z(t))

)

expected empirical risk
EP∼Q Ez∼Pm Pz `

(
·,AH(z)

)
Maurer
?

Maurer- expected true risk
EP∼Q Ez∼Pm P `

(
·,AH(z)

)
Baxter
?

Figure 5.1: Commutative diagram showing different strategies for bounding transfer risk
in terms of empirical risk.

identified with probability measures. Formally, Q will be a probability measure on a space

P of probability measures on Z. As mentioned previously, the theoretical results in this

section assume that the loss function ` is a map from Y ×R into [0, 1], and it is L-Lipschitz

in its second argument.

Risk bounds The transfer risk of an algorithm AH (Maurer, 2005) is

EP∼Q Ez∼Pm P `
(
·,AH

)
. (5.1)

The objective of meta-learning is to select a hypothesis space that minimizes the transfer

risk. In practice the environment Q is unknown and a meta-learner only has access to a

meta-sample z, consisting of z(1), . . . , z(T ). The most direct way to attempt to minimize

the transfer risk given the meta-sample is to use a meta-learner that performs regularized

empirical risk minimization via the objective

min
H∈H

1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
+ Ω(H, z),

where Ω(·) : H× (Zm)T → R+ is a regularizer that typically does not depend on the meta-

sample z. However, since our main purpose is to minimize the mean of the empirical risks

with a penalty on the sample variance of the empirical risks, in this work Ω(·) will depend

intimately on z.
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In particular, the regularizer in play will be a function of the empirical risks of the

empirical risk minimizers AH(z(1)), . . . ,AH(z(T )) on their respective m-samples. A critical

point, and a seemingly devastating one, is that the regularizer is algorithmic in that it

depends on the empirical risk minimizers of H on the m-samples in the meta-sample. We

will expand on this point in Section 5.5.

We are now equipped enough to state the theoretical goals of this chapter. First, we

seek upper confidence bounds on the transfer risk by bounding

EP∼Q Ez∼Pm P `
(
y ,AH(z)

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
(5.2)

simultaneously for all H ∈ H; however, rather than seeking uniform bounds, we seek

algorithm-and-data-dependent bounds so as to attain higher resolution when the learned

representation is stable across the observed tasks.

For the second goal, consider a second sample of T̃ test tasks, P̃1, . . . , P̃T̃
, drawn iid

from Q, with respective m-samples z̃(1), . . . , z̃(T̃ ). For the representation learned from z, we

wish to obtain tail bounds on the average true risk of empirical risk minimization (induced

by the learned representation) on the test tasks. This will be accomplished by obtaining

tail bounds on the quantity

1

T̃

T̃∑
s=1

P̃s`
(
y ,AH(z̃(s))

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
. (5.3)

We will show Chebyshev-type tail bounds by exploiting the sample variance of the empirical

risks to arrive at an empirical Chebyshev bound.

We first discuss bounding the transfer risk and then address the relatively easier Chebyshev-

type bound. Two strategies previously have been applied to bounding the transfer risk in

meta-learning. The first strategy decomposes (5.2) into two large deviation bounds:

• a bound on the deviation between the average empirical risk (the right-most term of

(5.2)) and the average true risk 1
T

∑T
t=1 Pt `

(
·,AH(z(t))

)
, and

• a bound on the deviation between the average true risk and the transfer risk (5.1).
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Baxter (2000) previously used a similar approach, except rather than using the transfer

risk of empirical risk minimization in the left term of (5.2), he considered the expected

Bayes risk EP∼Q infh∈H P `(·, h). The second strategy also decomposes (5.2) into two large

deviation bounds:

• a bound on the deviation between the average empirical risk and the expected empir-

ical risk EP∼Q Ez∼Pm Pz `
(
·,AH

)
, and

• a bound on the deviation between the expected empirical risk and the transfer risk.

Maurer (2009) and Maurer et al. (2012, see proof of Theorem 2)1 used this strategy in a

setting where the representation is induced by a choice of linear preprocessor for the original

features.

These two strategies are shown in the commutative diagram in Figure 5.1. The second

strategy seems more attractive for our goal because we can incorporate the sample variance

of the tasks’ empirical risks when going from the average empirical risk to the expected

empirical risk. We therefore will employ this strategy.

In order to state the main theoretical results, we need to introduce the conditional

Rademacher complexity and uniform Rademacher complexity of a function class F . Let

σ1, . . . ,σm be iid Rademacher random variables (uniformly distributed on {−1, 1}). The

conditional Rademacher complexity of a function class H with respect to an m-sample x is

defined as

Rm|z(H) := Eσ sup
h∈H

2

m

m∑
j=1

σj h(xj),

and the uniform Rademacher complexity of H is defined as

Rm(H) := sup
x∈Xm

Rm|x(H).

We now present bounds for two settings, the case of finite H and an extension for an

important subclass of infinite H’s.

1Maurer et al. (2012) actually bound the deviation between the transfer risk of the empirically optimal H
and the Bayes transfer risk infH∈H EP∼Q infh∈H P `

(
·, h
)
, but in the process they essentially follow the second

strategy mentioned above.
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Theorem 5.1. Let H be finite. With probability at least 1 − δ over the meta-sample z =

(z(1), . . . , z(T )), all H ∈ H satisfy

EP∼Q Ez∼Pm P `
(
·,AH(z)

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
≤ Lmax

H∈H
Rm(H) +

√
2Vz(AH) ln 2|H|

δ

T
+

7 ln 2|H|
δ

3(T − 1)
.

We now consider a powerful and important class of infinite families of representations. In

this class, H is indexed by a parameter θ living in some metric space (Θ, ‖ · ‖); furthermore,

a choice θ ∈ Θ gives rise to hypothesis space Hθ using a representation induced by a

preprocessor ϕθ : X → Rk . Finally, we assume that the class of feature maps {ϕθ : θ ∈ Θ}

satisfies

‖θ− θ′‖ ≤ ε⇒ sup
x∈X
‖ϕθ(x)−ϕθ′(x)‖ ≤ Cε, (5.4)

for some constant C . The utility of (5.4) is that it implies that the ε-net for Θ is a (Cε)-net

for the space of feature maps {ϕθ : θ ∈ Θ}, as measured in sup-norm over X . We will use

N (Θ, ε) to indicate the minimum cardinality of an optimal ε-net for Θ (in the norm ‖ · ‖).

Theorem 5.2. Let H be metrizable via a metric space Θ, let a choice of θ correspond to

a choice of feature map ϕθ : X → Rk , and let ϕθ be C -Lipschitz in θ as in (5.4). With

probability at least 1− δ over the meta-sample z = (z(1), . . . , z(T )), all H ∈ H satisfy

EP∼Q Ez∼Pm P `
(
·,AH(z)

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)

≤ L sup
H∈H
Rm(H) +

√
2Vz(AH) ln

2N (Θ, 1
T
)

δ

T
+

7 ln
2N (Θ, 1

T
)

δ

3(T − 1)
+

2LC r

T
.

Finally, the following result provides a tail bound for the average risk on a collection of

T̃ tasks drawn in the future:

Theorem 5.3. Let H be as in Theorem 5.2. Let P̃1, . . . , P̃T̃
be drawn iid from Q. The
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probability that

∣∣∣∣∣∣ 1T̃
T̃∑

s=1

P̃s`
(
·,AH(z̃(s))

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)∣∣∣∣∣∣
> α+ L sup

H∈H
Rm(H) +

√
2Vz(AH) ln

2N (Θ, 1
T
)

δ

T
+

7 ln
2N (Θ, 1

T
)

δ

3(T − 1)
+

2LC r

T

is at most

Vz(AH) +

√
2Vz(AH) log

N (Θ, 1
T

)

δ
T−1

T̃α2
+ 2δ.

Since δ can be chosen to be very small, Theorem 5.3 yields linear decay in T̃ while also

enjoying higher confidence when the sample variance is low. The proof of this empirical

Chebyshev bound is straightforward given a bound on the expected empirical risk and the

variance of the empirical risk, where expectations are over a random task and a random

m-sample drawn from that task.

All three theorems are proved in the next section.

5.4 Proof sketches

We now discuss our strategy for obtaining upper confidence bounds on (5.2) (adopted from

Maurer (2009)). First, observe that for any H ∈ H:

EP∼Q Ez∼Pm P `
(
·,AH(z)

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
≤

EP∼Q Ez∼Pm P `
(
·,AH(z)

)
− EP∼Q Ez∼Pm Pz `

(
·,AH(z)

)
(5.5)

+ EP∼Q Ez∼Pm Pz `
(
·,AH(z)

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
. (5.6)

Hence, it is sufficient to bound (5.5) and (5.6) for all H ∈ H with high probability.
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Bounding (5.5) Let us first bound (5.5). We first let H ∈ H and P be arbitrary and

consider

Ez∼Pm P `
(
·,AH(z)

)
− Ez∼Pm Pz `

(
·,AH(z)

)
. (5.7)

Let z′ be an independent copy of z. This expression is bounded above by

Ez∼Pm sup
h∈H

(
P−Pz)`

(
·,AH(z)

))
= Ez∼Pm sup

h∈H
Ez′∼Pm

1

m

m∑
j=1

(
`
(
y ′j , h(x ′j )

)
− `
(
yj , h(xj)

))
≤ Ez∼Pm Ez′∼Pm sup

h∈H

1

m

m∑
j=1

(
`
(
y ′j , h(x ′j )

)
− `
(
yj , h(xj)

))
,

where the last step is due to Jensen’s inequality. For iid Rademacher random variables

σ1, . . . ,σm (uniformly distributed on {−1, 1}), the above is equal to

Eσσσ E z∼Pm

z′∼Pm
sup
h∈H

1

m

m∑
j=1

σj

(
`
(
y ′j , h(x ′j )

)
− `
(
yj , h(xj)

))
≤ Eσ Ez∼Pm sup

h∈H

2

m

m∑
j=1

σj`
(
h(xj), yj

)
,

where the last step follows from the triangle inequality.

Rewriting the last expression in terms of the conditional Rademacher complexity, we

have that (5.7) is upper bounded by

Ez∼Pm Rm|z({`(·, h) : h ∈ H}) ≤ LEz∼Pm Rm|z(H),

where the inequality follows from the fact that ` is L-Lipschitz in its second argument, after

which it is possible to apply Theorem 7 of Meir and Zhang (2003) to bound the conditional

Rademacher complexity of the loss-composed H in terms of the conditional Rademacher

complexity of H.
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Using this result, it follows that (5.5) is bounded by

L sup
H∈H

EP∼Q Ez∼Pm Rm|z(H).

Since the uniform Rademacher complexity Rm(H) always upper bounds the conditional

Rademacher complexity, it follows that

Ez∼Pm P `
(
·,AH(z)

)
− Ez∼Pm Pz `

(
·,AH(z)

)
≤ L sup

H∈H
Rm(H). (5.8)

Bounding (5.6) For now, take a fixed H ∈ H. It will be convenient to define the proba-

bility measure ρ on task m-samples, defined as

ρ(z) := EP∼Q Pm(z).

Rewriting (5.6) as

Ez∼ρ Pz `
(
·,AH(z)

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
,

it is now easy to see that we can apply the empirical Bernstein bound of Maurer and Pontil

(2009, Theorem 11), yielding that with probability at least 1− δ over z:

Ez∼ρ Pz `
(
·,AH(z)

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
≤

√
2Vz(AH) ln 2

δ

T
+

7 ln 2
δ

3(T − 1)
. (5.9)

Proofs of the theorems In the case of finite meta-hypothesis spaces, the bounds on

(5.5) and (5.6), provided by (5.8) and (5.9) respectively, along with a union bound over H,

yields Theorem 5.1.

For the case of meta-hypothesis spaces as in Theorem 5.2, consider an optimal 1
T -

covering Hε of H of cardinality N (Θ, ε). Using a union bound over Hε and picking up

approximation error at most 2Cr
T (recall that we restrict linear hypotheses to norm at most

r), Theorem 11 of Maurer and Pontil (2009) can be extended over all of H, yielding Theo-

rem 5.2.

126



The proof of Theorem 5.3 follows by an application of an empirical version of Cheby-

shev’s inequality followed by single-task concentration. To apply Chebyshev’s inequality, we

first control the expected empirical risk, Ez∼ρ Pz `
(
·,AH(z)

)
, and the (true) variance of the

empirical risk, which can be written as EVz(AH). For the expected empirical risk bound,

applying (5.9) with a union bound over Hε yields that with probability at least 1 − δ, all

H ∈ H satisfy

Ez∼ρ Pz `
(
·,AH(z)

)
− 1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)

≤

√
2Vz(AH) ln

2N (Θ, 1
T
)

δ

T
+

7 ln
2N (Θ, 1

T
)

δ

3(T − 1)
+

2LC r

T
. (5.10)

We now turn to the variance bound. Maurer and Pontil (2009, Equation 5) showed that if

G = (G1, . . . ,Gn) is a vector of independent random variables in [0, 1], then

Pr{EVG−VG ≥ s} ≤ exp

(
−(n − 1)s2

2VG

)
.

By inversion, it follows that with probability at least 1− δ,

EVG ≤ VG+

√
2VG log 1

δ

n − 1
.

Specializing to our setting, we have with probability at least 1− δ,

EVz(AH) ≤ Vz(AH) +

√
2Vz(AH) log 1

δ

T − 1
. (5.11)

The proof of Theorem 5.3 is completed by applying Chebyshev’s inequality (using the

bound (5.10) on the expected empirical risk and the bound (5.11) on the variance) and

finally applying the single-task concentration result (5.8).
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5.5 Convexity & algorithms

This section focuses on schemes for sample variance penalization. In general, direct sample

variance penalization of the empirical risk is non-convex due to the sample variance term;

however, when the penalty is sufficiently light, it turns out that the objective admits a

convenient convex relaxation.

We first consider the linear single-task setting, both due to its simplicity and because we

are not aware of previous results characterizing when sample variance penalized empirical

risk minimization is convex in the single-task setting. Let z be an m-sample and h a

hypothesis. Recall that Vz(h) is the sample variance of the empirical losses. We assume the

loss ` : Y × R → [0, b] is convex. The optimization problem for sample variance penalized

empirical risk minimization is

min
h∈H

1

m

m∑
j=1

`
(
yj , h(xj)

)
+ λVz(h), (5.12)

where λ ≥ 0. This objective is non-convex.

Rather than optimizing this objective, consider an alternative convex relaxation, for

ρ ≥ 0:

min
h∈H

1

m

m∑
j=1

`
(
yj , h(xj)

)
+ ρ

1

m

m∑
j=1

`2
(
yj , h(xj)

)
. (5.13)

A simple exercise in linear algebra yields the identity

1

m

m∑
j=1

`2
(
yj , h(xj)

)
=

 1

m

m∑
j=1

`
(
yj , h(xj)

)2

+
m

m − 1
Vz(h),

implying that (5.13) is equivalent to

min
h∈H

1

m

m∑
j=1

`
(
yj , h(xj)

)
+ ρ

 1

m

m∑
j=1

`
(
yj , h(xj)

)2

+ ρ
m

m − 1
Vz(h). (5.14)
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For losses in [0, b], it follows that

 1

m

m∑
j=1

`
(
yj , h(xj)

)2

≤ b
1

m

m∑
j=1

`
(
yj , h(xj)

)
.

Hence, the objective (5.14) places a relatively heavier penalty on the sample variance than

min
h∈H

1

m

m∑
j=1

`
(
yj , h(xj)

)
+

1
1
ρ + b

m

m − 1
Vz(h). (5.15)

Taking ρ ∈ [0,∞), it follows that for λ ∈
[
0,
(

m
m−1

)
1
b

]
, (5.12) admits the convex lower

bound (5.13), and this convex problem places a relatively heavier penalty on the variance

than does (5.12).

Extension to meta-learning The ideal objective for sample variance penalized meta-

learning is

min
H∈H

1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
+ λVz(AH). (5.16)

Not only is this problem non-convex, but the sample variance penalty for each hypothesis

space H depends on H’s empirical risk minimizer AH. Consequently, a näıve multi-task

formulation such as

min
H∈H

h1,...,hT∈H

1

T

T∑
t=1

Pz(t) `
(
·, ht

)
+ λVT (Pz(1) `

(
·, h1

)
, . . . , Pz(T) `

(
·, hT

)
) (5.17)

does not lead to the desired variance penalization of empirical risk minimization. The issue

is that for any fixed H the h1, . . . , hT that are optimal for (5.17) might not correspond to

the empirical risk minimizers {AH(z(t))}t∈[T ]. Therefore, even if the variance term is small

for the learned representation H, empirical risk minimization using H might still have high

variance.

The ideal objective (5.16) in fact belongs to a class of optimization problems known as
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bilevel programs. When rewritten canonically as a bilevel program, (5.16) takes the form

min
H∈H

1

T

T∑
t=1

Pz(t) `
(
·, ht

)
+ λVT (Pz(1) `

(
·, h1

)
, . . . , Pz(T ) `

(
·, hT

)
)

s.t. ht ∈ argmin
h∈H

Pz(t) `
(
·, h
)
, t ∈ [T ].

(5.18)

Although there is a good amount of literature on seeking local optima for bilevel pro-

grams, at this stage we prefer selecting the regularization parameter to be light enough

where the overall problem is convex.

Problem (5.13) can be extended to the meta-learning setting, yielding the objective:

min
H∈H

1

T

T∑
t=1

min
h∈H

{
Pz(t) `

(
·, h
)
+ ρ

(
Pz(t) `

(
·, h
))2}

. (5.19)

For a fixed H, the learning problem separates into T single-task learning problems of the

form minh∈H Pz(t) `
(
·, h
)
+ρ (Pz(t))

2. Furthermore, since each problem’s objective monotoni-

cally increases with its respective empirical risk, by takingAH as empirical risk minimization

over H, the objective can be rewritten as

min
H∈H

1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
+ ρ

(
Pz(t) `

(
·,AH(z(t))

))2
. (5.20)

Finally, similar to (5.15), this last problem places a relatively heavier penalty on the sample

variance than

min
h∈H

1

T

T∑
t=1

Pz(t) `
(
·,AH(z(t))

)
+

1
1
ρ + b

T

T − 1
Vz(AH).

Algorithm for feature selection representations In some situations, the meta-learning

objective (5.16) might not be convex: this can happen either because λ is not sufficiently

small or because even standard meta-learning (minimization of the average empirical risk

with respect to H ∈ H and h1, . . . , hT ∈ H) is non-convex. Recalling the comments above

on problem (5.17), we cannot simply locally (or even globally, were it possible) optimize

(5.17) and hope for a representation with low variance.
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In the case where a choice of meta-hypothesis H ∈ H corresponds to feature selection,

a simple forward stepwise approach to meta-learning can be used to locally optimize the

bilevel program (5.18). Let d be the number of features. If J ⊂ [d ], then HJ ∈ H will be

the space of linear hypotheses restricted to use the features indexed by J.

Algorithm 2: Forward Stepwise Meta-Learner.

Input: A meta-sample z(1), . . . , z(T )

begin
J = {}
v∗last =∞
while |J| < d do

for j ∈ {1, . . . , d} \ J do
J ′ = J ∪ {j}
for t = 1 to T do

ht = AHJ′ (z
(t))

rt = Pz(t) `
(
·, ht

)
end

vj =
1

T

T∑
t=1

rt + λ
√
VT (r1, . . . , rT )

end
j∗ = argmin

1≤j≤d
vj

v∗ = min
1≤j≤d

vj

if v∗ < v∗last then
J = J ∪ {j∗}
v∗last = v∗

else
return HJ

end

end
return HJ

end

Algorithm 2 contains the forward stepwise algorithm. In the algorithm, the meta-learner

iteratively adds one feature at a time to the representation. In each round, the meta-learner

computes the value of the sample variance penalized objective for each potential feature

addition, and it selects the feature that minimizes the objective. The algorithm terminates

once no feature addition improves upon the objective.

One alternatively could frame a forward-and-backward stepwise version, allowing for

both feature addition and deletion up until some stopping criterion is met. Such a variant
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will not be further developed here.

5.6 Experiments

We employed a very simple two-dimensional model to highlight situations when sample

variance penalized meta-learning can perform better than a meta-learner that minimizes

the task-average of the empirical risks.

The data for each task is generated as follows. For all tasks, each input point x
(t)
j is

drawn iid from the uniform distribution on the two-dimensional square [−1, 1]2 ⊂ R2. For

each task t, a random vector w (t) in R2 is drawn by selecting the first component w
(t)
1 from

a univariate normal distribution with mean µ1 and standard deviation σ(w). The second

component is set to a constant value µ2. For the t th task and the j th input point x
(t)
j , the

corresponding output/target was drawn from a univariate normal distribution with mean

〈w (t), x
(t)
j 〉 and standard deviation σ(y).

In the experiments, we set the distributional parameters as (µ1,σ
(w)) = (1.01, 0.2), µ2 =

1, and σ(y) = 0.01. The task of the meta-learner was to select a single feature from a training

meta-sample, after which this feature would be used to learn a single linear regression

coefficient for each test task’s training sample. The choice of distributional parameters

ensured that the meta-learner’s optimal strategy for transfer risk minimization was to select

the first feature, as it had slightly larger correlation with the output.

We used 100 training tasks, 10 training points per task, and 1000 test tasks, again with

10 training points per task. In addition, 100 test points were drawn from each test task to

form an unbiased empirical estimate of the meta-learner’s transfer risk.

This random experiment was repeated 10000 times, and the results are plotted in Fig-

ure 5.2. The meta-learner that uses empirical risk minimization (henceforth referred to as

the ERM meta-learner) expresses much more variance in its test transfer risk than does the

the sample variance penalized meta-learner (henceforth the SVP meta-learner). The reason

for its higher variance is simple: in many experiments, the ERM meta-learner selects the

second feature, whereas selecting the first feature leads to a lower transfer risk. Also, when

the first feature is selected, the transfer risk is more heavily concentrated than when the
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Figure 5.2: The empirically observed test transfer risk on the simulated data, for both
empirical risk minimization (ERM) and sample variance penalized meta learning (SVP).

second feature is selected.

The first experiment paints an impressionistic picture for how the ERM and SVP meta-

learners differ for a particular number of training tasks. The next experiment compares the

empirical rates of decrease of the ERM and SVP meta-learners’ transfer risk as the number

of training tasks increases. In this experiment, we varied the number of training tasks from

10 to 1000, in increments of 10. For each setting of the number of training tasks, 10000

random experiments were performed. The results of this simulation, with standard errors

(clipped below zero), are shown in Figure 5.3a. Rather than plotting the test transfer risk,

the excess test transfer risk is instead plotted. The excess test transfer risk is an average

like the test transfer risk, except the optimal test transfer risk (exhibited by a meta-learner

that always picks up the first feature) is subtracted from the test transfer risk.

For this simulated data, it is evident that sample variance penalization enables a meta-

learner to select the correct hypothesis space (i.e. feature) with high probability after having
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seen only a small number of training tasks. In contrast, the ERM meta-learner requires a

much larger number of training tasks before it converges onto the right hypothesis space.

Although the differences in the experiment-wise averages of the excess test transfer risks

may appear small (see the solid lines), the sample variance of the ERM meta-learner’s excess

test transfer risk is much higher than that of the SVP meta-learner; consequently, the tail

of the ERM meta-learner’s excess test transfer risk has a much larger extent.

We conducted a similar version of the second experiment, this time zooming in on the

regime of low training task size. In this experiment, we varied the number of training tasks

from every integer from 2 to 100. The results of this simulation are shown in Figure 5.3b.

This figure shows more clearly that in the small training task regime, the SVP meta-learner

already has an excess test transfer risk that rapidly decays to zero. In contrast, the ERM

meta-learner exhibits much slower decay.

5.7 Discussion

We have presented potentially tighter bounds on the transfer risk of a meta-learner, as well

as new high probability tail bounds on the average true risk suffered on new test tasks.

These bounds incorporate the observable sample variance of the empirical risks suffered

by a meta-learner on training tasks. Moreover, the bounds suggest incorporating sample

variance penalization into the meta-learner’s objective, yielding sample variance penalized

meta-learning. Although this objective is non-convex, it was shown that in a certain regime

of sample variance penalization a very natural convex relaxation is possible.

For the special case of meta-learners whose task is feature selection, we presented a

forward stepwise meta-learning algorithm. Empirical simulations comparing a meta-learner

that minimizes the average empirical risk with a meta-learner that uses sample variance

penalization suggest that sample variance penalized meta-learning potentially can offer a

faster decrease in the transfer risk as well as a more sharply decreasing tail. For future

work, it would be interesting to study the performance of sample variance penalized meta

learning, or its convex relaxation, on real-world datasets.
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(a) Excess test transfer risk with standard errors.
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(b) Excess test transfer risk for low number of training tasks.

Figure 5.3: The top and bottom plots show the excess test transfer risk, computed by
comparing against the optimal meta-hypothesis which selects the first feature, for the em-
pirical risk minimization (ERM) meta-learner and the sample variance penalization (SVP)
meta-learner. Each point on each line represents the excess test risk averaged over 10,000
experiments. In the top plot, the shaded regions (clipped at zero) represent one standard
deviation above and below the mean. The bottom plot zooms in on the regime of a small
number of training tasks.
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CHAPTER 6

CONCLUSION

This thesis set out with the dual purposes of obtaining a theoretical understanding of

learning sparse representations and establishing new representation learning paradigms for

multi-task and meta-learning. The main contributions of this thesis were:

• the s-margin, a new, sample-dependent way of measuring the coding stability of the

LASSO-based sparse auto-encoder

• the Sparse Coding Stability Theorem, a result on the stability of the Lasso with

respect to dictionary perturbations

• the first generalization error bounds for predictive sparse coding, with versions spe-

cialized to the overcomplete setting and the high/infinite-dimensional setting

• a new multi-task dictionary model for sparse coding, giving rise to a new unsupervised

multi-task sparse coding model and multi-task predictive sparse coding model

• generalization error bounds for these two models showing how multi-task learning

helps to reduce the estimation error due to dictionary learning

• a new framework for multi-task and meta-learning, including minimax multi-task

learning and the α-relaxed minimax MTL relaxations

• tail bounds on the future test risk, which are directly optimized by minimax MTL

• potentially tighter upper confidence bounds on the transfer risk, using the sample

variance of the empirical risks
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• tail bounds for the future test risk of a meta-learner, using the sample variance of the

empirical risks

• a new framework for meta-learning, sample variance penalized meta-learning

A common theme in this work was to further develop the area of representation learning,

both in terms of the kinds of learning frameworks that are used and the kinds of learning

guarantees that can be made. In the minimax MTL and sample variance penalized meta-

learning works, new theoretical questions on future performance have been asked and first

attempts have been made to answer them. Although epistemological reasons prevent any

definitive assessments, the field of machine learning appears to be moving quickly and the

state of single-task learning (ignoring very interesting develops in frameworks like active

learning) seems stable. On the other hand, representation learning naturally lends itself

to pooling together information from multiple related tasks, and much less focus has been

given to theoretical guarantees about the future performance of meta-learners on new tasks.

Such kinds of guarantees may bring us closer to developing more versatile learning agents

that can automatically learn the inductive biases necessary for learning new tasks. The hope

is that this thesis helps set the stage for future theoretical work on representation learning,

including a deeper understanding of the difficulties in learning sparse representations.

Future work With respect to learning sparse representations, interesting directions for

future work include a learning theoretic analysis of convex relaxations of sparse coding, such

as the convex coding work of Bradley and Bagnell (2009a). Additionally, since many of

the multi-task applications for predictive sparse coding arise from the multi-class setting, a

proper multi-class treatment of the theory would be very useful for the machine learning and

computer vision communities. On the meta-learning of representations front, one weakness

is that much of the analysis of meta-learning or learning to learn relies on quite rigid

assumptions that all tasks be drawn iid from an environment. The theory for meta-learning

would be considerably more useful if it could apply to much less idealized models, including

adversarial environments. Minimax MTL was a first step in addressing this problem, but

even our theoretical results for minimax MTL adhere to the classical iid version of the
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environment. Perhaps the best way to take on adaptive environments is by studying meta-

learning in the online setting.
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