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SUMMARY

The objective of this research is to develop a framework of a per-exemplar analysis

with MFoM fusion learning for multimedia retrieval and recounting. As a large volume

of digital video data becomes available, along with revolutionary advances in multimedia

technologies, demand related to efficiently retrieving and recounting multimedia data has

grown. However, the inherent complexity in representing and recognizing multimedia data,

especially for large-scale and unconstrained consumer videos, poses significant challenges.

In particular, the following challenges are major concerns in the proposed research.

One challenge is that consumer-video data (e.g., videos on YouTube) are mostly un-

structured; therefore, evidence for a targeted semantic category is often sparsely located

across time. To address the issue, a segmental multi-way local feature pooling method by

using scene concept analysis is proposed. This scheme demonstrated benefits over conven-

tional methods by constructing clip-level representations via average-based global pooling.

The key idea of the framework is to utilize similarities between two videos in terms of

various scene concepts and to improve a discriminative power by using kernelization tech-

niques. In particular, the proposed method utilizes scene concepts that are pre-constructed

by clustering video segments into categories in an unsupervised manner. Then, a video is

represented with multiple feature descriptors with respect to scene concepts. Finally, mul-

tiple kernels are constructed from the feature descriptors, and then, are combined into a

final kernel that improves the discriminative power for multimedia event detection.

Another challenge is that most semantic categories used for multimedia retrieval have

inherent within-class diversity that can be dramatic and can raise the question as to whether

conventional approaches are still successful and scalable. To consider such huge variability

and further improve recounting capabilities, a per-exemplar learning scheme is proposed

with a focus on fusing multiple types of heterogeneous features for video retrieval. While

the conventional approach for multimedia retrieval involves learning a single classifier per

xi



category, the proposed scheme learns multiple detection models, one for each training ex-

emplar. In particular, a local distance function is defined as a linear combination of element

distance measured by each features. Then, a weight vector of the local distance function is

learned in a discriminative learning method by taking only neighboring samples around an

exemplar as training samples. In this way, a retrieval problem is redefined as an association

problem, i.e., test samples are retrieved by association-based rules.

In addition, the quality of a multimedia-retrieval system is often evaluated by domain-

specific performance metrics that serve sophisticated user needs. To address such criteria

for evaluating a multimedia-retrieval system, in MFoM learning, novel algorithms were

proposed to explicitly optimize two challenging metrics, AP and a weighted sum of the

probabilities of false alarms and missed detections at a target error ratio. Most conventional

learning schemes attempt to optimize their own learning criteria, as opposed to domain-

specific performance measures. By addressing this discrepancy, the proposed learning

scheme approximates the given performance measure, which is discrete and makes it diffi-

cult to apply conventional optimization schemes, with a continuous and differentiable loss

function which can be directly optimized. Then, a GPD algorithm is applied to optimizing

this loss function.

xii



CHAPTER 1

INTRODUCTION

Along with advances in multimedia technologies, video data are being generated and shared

through the internet (e.g., YouTube and Facebook) at an unexpected pace. For example, on

YouTube, approximately 72 hours of video are being uploaded every minute, and over 4

million hours of video are watched each month [1]. Accordingly, the demand related to

retrieval, organization, and recounting of this huge amount of multimedia data has grown.

However, in real-world problems, the inherent complexity in representing and recognizing

multimedia data poses significant challenges. The research presented in this thesis con-

tributes to developing a novel framework that successfully addresses such challenges.

In this thesis, the author mainly examines a task of multimedia event detection (MED),

of which the goal is to search video recordings by the main event appearing in them. In

such a context, a multimedia event is defined as a combination of complex human actions,

processes, and activities that involve people interacting with other people and/or objects.

These events are loosely or tightly organized and have significant temporal and semantic

relationships with some overarching activities, e.g., making a sandwich or attempting a

board trick. In addition, the author explores a task of multimedia event recounting (MER),

in which the goal is to provide a user with a set of evidence to indicate the presence of a

multimedia event in a video.

For the MED and MER tasks, this thesis assumes the usage of real-world consumer

video data (e.g., videos on YouTube) that are usually of a large scale and unconstrained

in many ways, including the temporal, spatial, and contextual aspects. Such data give rise

to the following problems. First of all, they are mostly unstructured along the temporal

axis. Therefore, evidence for a multimedia event is often sparsely located across time. For

example, assume a video clip labeled with the wedding ceremony category. In the clip, all

sub-events occurring on a wedding day, e.g., sunrise, interviews from friends, make-up for

1



the bride, and the wedding march, may all be recorded in a random sequence. However,

only some sub-events can be highly correlated to the event category. Yet, because the video

clip is temporally unstructured, capturing such highly correlated parts in a coherent manner

is often not easy, e.g., it is difficult to directly apply conventional hidden Markov models

(HMMs) to even detection. Another issue is that most multimedia events have inherently

diverse within-category variations. For example, consider the feeding an animal category.

This event category conveys a large variety of animal types from a dog to a giraffe. Their ap-

pearances and ways to feed them could largely differ. Therefore, it is questionable whether

conventional techniques, which learn a detection model per class, can still be successful

and scalable. Yet another challenge is that the quality of a multimedia retrieval system

is often evaluated by domain-specific performance metrics that serve user needs. These

metrics sometimes require complex formulations over simple precision or recall, involving

rank ordering of retrieved results or a user-defined operating point. Solutions obtained with

conventional learning methods that reduce simple classification errors, e.g., support vector

machines (SVMs) [2], could obviously be not as consistent in performance measures as

those obtained with by learning methods that directly optimize the target metrics.

1.1 Contribution of this Research

Considering the aforementioned core research issues, the author presents a novel frame-

work for multimedia event detection and recounting. In particular, the proposed framework

incorporates novel developments into a system with the following three major contribu-

tions.

• Addressing sparseness of discriminative evidence in temporally unstructured videos

by using multiple feature descriptors with scene concept analysis.

• Capturing content variability within a multimedia event category and enhancing mul-

timedia recounting capability by per-exemplar learning.
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• Learning detection models that explicitly optimize domain-specific performance met-

rics that have been widely used for multimedia retrieval.

First, this thesis addresses the problem of representing temporally unstructured videos. A

conventional method to represent this type of videos is to extract features across all frames

(segments) in a clip and to average them into a single clip-level descriptor, as seen in [3, 4].

However, this method is likely to fail in dealing with the aforementioned sparseness of the

discriminative video parts, by diluting them with other competing yet less discriminative

ones. In contrast, the author proposes the use of multiple feature descriptors with scene

concept analysis. The proposed method leverages upon segment-level (sub-clip) informa-

tion and represents a video clip with multiple descriptors in which each of them is designed

to relate to a specific scene category. Detail on the related work will be presented in Chapter

4.

Second, this work proposes a novel per-exemplar learning scheme that deals with issues

regarding content variability within a multimedia event category. The diversity can be large,

especially when it involves sophisticated concepts and activities. This situation is difficult

to handle with the conventional thinking of one classifier per category technique, since

diverse local characteristics of training samples are not likely to be reflected to a single

global model. In contrast, the proposed scheme learns a local detection model per training

exemplar. In this way, a test sample is retrieved according to the similarity with respect

to various training exemplars provided by corresponding local models. In addition, MER

functions for a retrieved test sample can be enhanced by referring to its sufficiently similar

exemplars. This will be discussed in Chapter 5.

Finally, the author presents a learning scheme that explicitly optimizes two widely used

performance metrics for multimedia retrieval, i.e., average precision (AP) and a weighted

sum of the probabilities of missed detection and false alarms at a desired error ratio. These

metrics require complex formulations, e.g., rank ordering for the former and a user-specific
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operating point for the latter. The proposed learning scheme incorporates such formula-

tions into approximating target metrics, while it can be considered as an extension to a

recently proposed maximal figure-of-merit (MFoM) learning framework [5]. In particular,

the proposed scheme is applied to combining base classifier outputs learned from multiple

features in order to generate a final fusion score. More detail can be found in Chapter 6.

In all, the above three contributions are integrated into the proposed framework as fol-

lows: scene concept analysis for constructing feature descriptors, per-exemplar learning for

designing a fusion classifier, and MFoM learning for computing contribution-weights of

training exemplars to the final retrieval scores. In addition to the three major contributions,

this thesis provides studies on a set of various feature types, along with effective methods

to utilize them for the MED task with an extensive performance comparison among them.

Moreover, the MER capabilities of the proposed framework are also discussed by using

multiple features in various granularities.

1.2 Organization of the Dissertation

The remainder of the thesis is organized as follows. The related work to this study is

summarized in Chapter 2, covering various techniques discussed in the presented research.

In Chapter 3, the feature types used in this dissertation and their individual performance for

multimedia event retrieval are presented. The three major contributions of the presented

research are discussed in the following three chapters, respectively: scene concept analysis

in Chapter 4, per-exemplar learning in Chapter 5, and explicit optimization of domain-

specific performance metrics by MFoM in Chapter 6. In Chapter 7, the integrated system

that utilizes the advantages of the above three components for MED and MER tasks is

discussed. Finally, in Chapter 8, the proposed framework is summarized, and the future

work is discussed.
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CHAPTER 2

BACKGROUND AND RELATED WORK

With a focus on MFoM and per-exemplar learning with scene concepts, particularly for

large-scale consumer video data, the proposed research is related to five areas of work.

They are multimedia event detection and recounting (Section 2.1), local feature pooling for

image and video retrieval (Section 2.2), exemplar-based local learning (Section 2.3), multi-

modal feature fusion (Section 2.4), and explicit performance metric optimization (Section

2.5). An overview on each of the five topics are given in the following.

2.1 Multimedia Event Detection and Recounting

In the past, available video data were most movies, TV broadcasts, or homemade videos.

However, revolutionary advances in digital multimedia techniques have recently been wit-

nessed. As a result, online services for sharing and archiving personal videos have become

popular [1]. To satisfy the demand in processing such video data, research to develop

techniques for efficient and effective video retrieval and recounting has been conducted in

many areas, such as video shot detection [6], video classification [7], and multimedia event

detection (MED) [8, 9].

In the early stages (in the early 2000’s), research on video retrieval has been focused on

the use of pre-defined lexicons of concepts, e.g., large scale concept ontology for multime-

dia (LSCOM) [10, 11] and MediaMill [12]. Although these lexicons typically cover a wide

range of concepts, they fail to consider the fact that the appearance of a concept can vary

from one event category to another. For example, people may dress differently, depend-

ing on the environment, e.g., different cultures and weather conditions. In addition, most

existing work has used a very limited number of video examples in learning, since collect-

ing and labeling a large-scale dataset are usually painful and expensive in terms of both

time and human labor. Moreover, most early work oversimplified problems to constrained
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datasets, such as news broadcasting videos that consisted of videos collected in controlled

environments with clear backgrounds and little camera motion [13, 14]. However, it is

difficult to extend such techniques developed within these constrained videos to YouTube-

style consumer videos because of their unbounded properties in content, structure, length,

and quality. Overall, despite many efforts to tackle problems in the early stages of research,

most methods did not properly address the challenging aspects of consumer video analysis

[15].

To address the aforementioned issues, the computer vision and multimedia processing

communities have promoted research by simulating real-world environments. For example,

the Columbia consumer video (CCV) dataset, which is of large-scale, was provided in [16].

The dataset contains 9,317 YouTube videos in over 20 semantic categories, which were

collected with an extra care to ensure relevance to consumer’s interest and originality of

video content without post-editing. In [16], a set of precomputed features is also provided

to the community for research use. Another good example is the University of Central

Florida (UCF) YouTube action dataset [17, 18], which contains 11 action categories. This

collection is also a good test bed for real-world problems due to a large variation in camera

motion, object appearance and pose, object scale, viewpoint, cluttered background, and

illumination conditions.

Recently, a series of evaluation campaigns has been organized by the Text Retrieval

Conference (TREC), supported by the National Institute of Standards and Technology

(NIST). TREC has arranged a technical session devoted to video data as TREC video

(TRECVID) [19], and has provided numerous large-sized consumer video archives. An-

nual competitions with various challenging tasks in multimedia retrieval have been con-

ducted in TRECVID. For example, approximately 140,000 video clips, with a total running

time of 5,570 hours, and 30 classes of multimedia events were provided for the TRECVID

2012 MED task [20]. The dataset simulates various aspects of real-world problems. As an

example, there are only ~150 positive training samples for each multimedia event category,
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Table 1. The list of multimedia event classes for the TRECVID 2012 MED task.
ID Event Name ID Event Name

E001 Attempting a board trick E016 Doing homework or studying
E002 Feeding an animal E017 Hide and seek
E003 Landing a fish E018 Hiking
E004 Wedding ceremony E019 Installing flooring
E005 Working on a woodworking project E020 Writing text
E006 Birthday party E021 Attempting a bike trick
E007 Changing a vehicle tire E022 Cleaning an appliance
E008 Flash mob gathering E023 Dog show
E009 Getting a vehicle unstuck E024 Giving directions to a location
E010 Grooming an animal E025 Marriage proposal
E011 Making a sandwich E026 Renovating a home
E012 Parade E027 Rock climbing
E013 Parkour E028 Town hall meeting
E014 Repairing an appliance E029 Winning a race without a vehicle
E015 Working on a sewing project E030 Working on a metal crafts project

snowboard surfboard skateboard fingerboard
(a) E001-Attempting a board trick

dog cat horse tiger
(b) E002-Feeding an animal

church garden beach mid-eastern culture
(c) E004-Wedding ceremony

Figure 1. The diversity of visual content in the TRECVID 2012 MED classes.
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which creates a huge imbalance in the number of positive and negative samples. The length

and quality of video clips also differ drastically. Furthermore, because the dataset was col-

lected from the internet, semantic concepts used in multimedia event detection, shown in

Table 1, are complex in nature and consist of a number of human interactions among people

and/or objects that are often loosely organized. Accordingly, this large within-category con-

tent variability poses significant challenges in categorizing them. Such variability within a

multimedia event category is illustrated in Figure 1: (a) snowboard, surfboard, skateboard,

and fingerboard scenes in E001-Attempting a board trick; (b) dog, cat, horse, and tiger

scenes in E002-Feeding an animal; and (c) church, garden, beach, and Mid-eastern-culture

scenes in E004-Wedding ceremony. The TRECVID datasets have become one of the most

widely used multimedia corpora, and many state-of-the-art techniques have been devel-

oped and verified by using them. Overall system architectures of work in this area can be

found in [21, 22, 23, 24, 25], which have been reported along with the TRECVID annual

competitions.

2.2 Local Feature Pooling for Image and Video Retrieval

In the past, local feature pooling was studied mostly in the computer vision and multimedia

processing communities for image classification. In [26, 27], a spatial pyramid pooling

scheme was proposed to leverage the spatial layout of images into feature representation.

This scheme works by placing a sequence of increasingly coarser grids over the feature

space and separately applying bag-of-words (BoW) feature representations [28] at each

level of grid. Such spatial pyramid pooling scheme showcased significant improvement on

image scene categorization tasks, especially when a structured locale relationship among

object components exists, e.g., the sky and the sea are located in the upper and lower

regions of an image, respectively. On the other hand, in [29, 30, 31], a latent discriminative

learning scheme was proposed, where image regions with more relaxed spatial relationship

can be incorporated to recognize an object. As an example, this scheme can recognize a
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human body by using local features in arm and leg regions, while their location can vary by

postures. As for using multiple instances to detect an object, latent discriminative learning

is closely related to multiple instance learning (MIL) [32].

In terms of taking advantage of deforming a sample to sub-regions and learning dis-

criminative models, the proposed learning scheme, to be discussed in Chapter 4, is related

to a latent-SVM scheme [29, 30]. However, the two schemes are sufficiently different since

pooled features from all of the video regions are preserved in the proposed scheme, while

image patches are compactly represented as confidence scores for a few of the most dis-

criminative latent variables in the latent-SVM scheme [29, 30]. Furthermore, a latent-SVM

scheme requires a prolonged search to determine the most discriminative latent variables.

Therefore, applying it to a large-scale dataset is difficult because of the computational com-

plexity, especially for the case that kernelization is required such as the MED task examined

in this thesis.

Recently, research on local feature pooling has also been conducted for video retrieval

problems. While an image scene or object can be modeled with sub-region grids or image

patches, a video can be represented with sub-temporal regions or video segments. Recent

work that utilizes local feature pooling for video retrieval includes [33], [34], and [35].

To recognize human activities, [33] models temporal structures of decomposable motion

segments and learns a discriminative classifier for each of them. Then, recognition is made

based on the quality of matching between the learned classifiers and temporal segments in

a query sequence. While [33] showed promising performance in activity recognition, it is

still most suitable for videos with considerably regularized structures, such as the Olympic

sports activity dataset, provided in [33] along with the scheme. In contrast to [33], [34]

tackles the problem of understanding the temporal structure of complex events in highly

unstructured videos, by utilizing a conditional model that automatically discovers discrim-

inative segments of video. In particular, it introduces latent variables over the frames of

a video and assigning sequences of states that are most discriminative for a target event.
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The potential challenge for [34] is that the scheme is associated with a large number of

parameters, and accordingly, it often requires a large training dataset to learn such param-

eters. Moreover, non-linear kernelization techniques, which are known to be crucial for

multimedia retrieval tasks, were not utilized in [34]. In [35], a scene aligned pooling (SAP)

scheme was proposed based on the observation that a video clip is often composed of shots

involving different scenes. This scheme decomposes video features into concurrent scene

components, which are described by using a secondary image feature, e.g., GIST [36], and

constructs classification models that are adaptive to different scenes. However, using the

secondary feature type to construct scene clusters may introduce inconsistent scene align-

ment, especially when a considered feature type shows fairly different characteristics from

the secondary feature. Furthermore, the SAP scheme is limited to image-based features

only.

Among the previously related work about local feature pooling, [35] is related to the

proposed feature pooling scheme, to be discussed in Chapter 4, in terms of using multi-way

feature pooling. However, they are also fairly different because the proposed scheme does

not require a secondary image feature, and accordingly, is more general in its application to

various audio/visual feature types. In addition, the proposed scheme that utilizes kerneliza-

tion techniques without L1-normalization provides an improved discriminant power, when

the kernels from features by multi-way pooling are combined.

2.3 Exemplar-based Local Learning

Next, the proposed per-exemplar learning, to be discussed in Chapter 5, builds upon past

work in two areas. First of all, in terms of learning a local distance function around a train-

ing exemplar, it is related to association-based object recognition in images [37, 38, 39]. In

[37], a local learning scheme that exploits local perceptual distance for image retrieval and

classification was proposed. In the view of various image attributes, such as shape, color,

and texture, this local learning scheme aims to address the large variation among images
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within the same semantic category. In particular, a local distance function is learned for

each training image as a combination of elementary distances between patch-based visual

features. In addition, [38] proposed per-exemplar distance learning, which is suitable for

object recognition tasks. In particular, it trains a local function per training exemplar to re-

turn interpretable distances, which can be analyzed in absolute terms. Furthermore, in [39],

the concept of per-exemplar distance learning is extended to an exemplar-SVM scheme,

where decision boundaries of local functions can be learned in a flexible way. By forc-

ing a training exemplar to have a maximally attainable similarity, [39] showed enhanced

capability to incorporate input from negative samples into the learning process.

Second, on the subject of learning localized discriminative functions by using neigh-

boring samples, the proposed per-exemplar learning is related to a discriminative nearest-

neighbor learning scheme [40, 41]. In [40], a locally adaptive form of nearest neighbor

learning was proposed in an attempt to ameliorate a bias issue in high-dimensional feature

spaces. In particular, [40] estimated an effective metric for computing neighborhoods by

using a local linear discriminant analysis. Then, the local decision boundaries were deter-

mined from centroid information, and neighborhoods were shrunk in the directions orthog-

onal to these local decision boundaries. Thereafter, [40] argued that any neighborhood-

based classifier can be employed on these modified neighborhoods. On the other hand,

instead of deforming the distance metric, [41] proposed a k-nearest-neighbor SVM (KNN-

SVM) method that finds neighborhoods close to a query sample. The KNN-SVM method

preserves the distance function by learning a local SVM on the collection of neighbors.

Compared to the first category of research [37, 38, 39], the proposed per-exemplar

learning scheme, to be discussed in Chapter 5, exploits discriminative elementary distance

to identify the relevance of features per training exemplar. In particular, while [37, 38, 39]

used generative elementary distance, e.g., feature-wise L2-distance, the proposed scheme

uses discriminative elementary distance generated by a base classifier learned from each

feature type. This discriminative elementary distance is useful, especially when we need to
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incorporate multiple features in high-dimensional spaces, by alleviating a bias issue with

its compact representation. In addition, video retrieval tasks, examined in this thesis, are

usually quite different from image retrieval tasks, studied in [37, 38, 39]. With an extensive

usage of both visual and audio features, the proposed scheme provides a new perspective

beyond relatively constrained image retrieval problems. Compared to the discriminative

nearest-neighbor schemes [40, 41], the proposed scheme yields explicit and well-defined

distance functions and provides a principled manner to compute confidence scores for new

test samples, along with additional recounting capabilities.

2.4 Multi-modal Feature Fusion

The use of fusion to combine multi-modal features is crucial in multimedia event detec-

tion and recounting. Unlike speech or a text document, a video can convey multi-modal

features, including acoustic/speech, spatial vision, and temporal dynamic information. The

capability of fusion is particularly necessitated by the huge content variability in consumer

videos. As an example, consider a birthday party video, captured in a dark room showing

a cake with lighted candles. In such cases, evidence from only visual features may be too

weak to strongly trigger a system to identify the video as a hit. However, audio features

may provide strong evidence by capturing sound types such as a birthday song, laughter

and clapping.

The benefits of fusion for multimedia retrieval have been demonstrated in the recent

literature. For example, in [16], the CCV dataset was introduced with a benchmark sys-

tem that uses SVMs as fusion classifiers. It showed that retrieval performance gradually

improves when additional feature types are incorporated into the system by feature con-

catenation. In [42], for automatic categorization of videos, text-level label features, e.g.,

related videos, searched videos and text-based webpages, were fused by incorporating a

manually designed semantic hierarchy. It showed the effectiveness of the fusion scheme
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by extensive experiments on approximately 8,000 videos on YouTube. Moreover, fusion-

based tag-recommendation methods were presented in [43, 44]. They demonstrated that

the fusion of web tagging and audio-visual content in videos improves tag-recommendation

qualities on YouTube videos. Recently, feature fusion for multimedia event detection has

been widely studied by participants of the TRECVID tasks [9, 8, 45].

In the field of multimedia event detection and recounting, fusion can be largely cat-

egorized into two types: early and late fusion. An example of an early fusion method

is concatenating multiple feature vectors into a large feature representation. Consequently,

this early fusion method learns a fusion classifier by using all features jointly from the early

stages [16]. However, consider cases that each feature is represented as a high-dimensional

vector, such as a bag-of-words (BoW) representation with thousands codewords [28]. In

such cases, assuming that numerous feature types are available, this concatenation might

not be suitable for large-scale data because of both computational and memory-wise costs.

Another example of an early fusion method is multiple kernel learning (MKL) [46]. The

MKL scheme combines kernels constructed from multiple features into a fused kernel, by

linear combination, weighted products, or both. The combined kernel is usually more dis-

criminative than individual kernels. However, MKL does not systematically support the

optimization of domain-specific performance metrics, and reported results are not always

competitive [47].

On the other hand, in a late fusion method, a decision model is learned within a hier-

archical approach. First, weak base classifiers are separately trained by using individual

features. Then, outputs from the base classifiers, such as rankings, distance from a decision

boundary, or loss functions, are collected and used in learning a final fusion classifier. For

example, in [48, 49], a discriminative score fusion scheme, founded in model-based trans-

formation (MBT), was proposed. The MBT fusion scheme can be regarded as supervised

mapping from low- or intermediate-level feature space to high- or semantic-level space.

Another example of a late fusion method is the use of boosting for fusion [47, 17]. In
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terms of using outputs of base classifiers, the proposed research can be categorized into

late fusion.

Numerous late fusion methods have been studied across the communities of multimedia

processing, computer vision, and machine learning. Again, they can be grouped into three

categories. One category performs score normalization before output scores from base

classifiers are combined [50, 51, 52]. Normalizing scores is particularly necessitated when

types of base classifiers and their learning procedures are fairly different across systems,

and accordingly, the distribution of generated scores from the base classifiers is incon-

sistent. Under such circumstances, score normalization may improve the robustness of a

fusion classifier. However, normalization schemes by most of these methods require expert

knowledge, which are sometimes not available for unseen samples. In this thesis, it is as-

sumed that base classifiers are designed in a consistent manner, and therefore, the proposed

framework does not require sophisticated score normalization techniques.

Another category of late fusion applies fixed rules, e.g., a summation or product of base

classifier scores with uniform weights, regardless of the actual distributions of the scores. In

[53], various fusion rules were studied with extensive experiments. Recently, [54] reported

that the geometric mean works as effectively as other sophisticated rules, despite its simple

formation. Assigning different weights by cross validation prior to a combination of base

classifier scores can also be categorized into this group. However, despite advantage of

simplicity and non-dependency on expert knowledge, there may exist a chance to improve

fusion performance by systemically learned fusion schemes over simple fixed rules.

The third category of late fusion attempts to systemically learn a fusion classifier to

combine base classifier scores. For example, in [55], a fusion scheme learns weights by

optimizing different target metrics with various regularization methods. In [56], confidence

scores from base classifiers are collected in order to form a feature vector, and then a

fusion classifier is learned by a sample-based approach. In [57], multiple localized fusion

classifiers instead of a single fusion classifier are learned across multi-dimensional score
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space in a local expert forest (LEF) learning scheme. The fusion scheme, to be presented

in Chapter 6, also belongs to this category in terms of learning a fusion classifier in the

space of base classifier scores. In contrast to other methods in this category, the proposed

framework exploits a robust fusion learning scheme by addressing inconsistency between

scores of seen training and novel test samples.

2.5 Explicit Performance Metric Optimization

Finally, in many pattern recognition problems, the success of learning algorithms is often

evaluated by a domain-specific performance metric that simulates real-world user needs. In

particular, specific performance metrics, such as the weighted ratios of precision and recall,

false alarms, F-scores, or any combinations of these, count to measure the quality of the

system and the potential user experience. For example, the precision of top-ranked retrieval

results was used in [43, 16]; F1 scores were used in [42]; and the ratio of 12.5:1 between

the probability of missed detection and false alarms was used for the TRECVID MED task

in [19]. However, most learning methods use training according to their own learning cri-

teria, and not a preferred performance measure. This discrepancy could potentially create

mismatches between training and testing conditions, and thus could likely yield suboptimal

solutions.

Learning with explicit performance metric optimization has been studied mostly in the

machine learning community, albeit sparsely. The proposed learning scheme, to be pre-

sented in Chapter 6, is based on efforts attempting to directly optimize a targeted perfor-

mance metric. In particular, the proposed scheme introduces a continuous and differen-

tiable objective function that simulates a discrete performance measure of interest. A good

example of previous work in this area is the minimization of classification error rate (MCE)

learning [58]. The MCE learning addresses the fact that, in many realistic applications, the

distribution of features is rarely known, precisely. In particular, the MCE learning approx-

imates a misclassification measure to a continuous function regarding classifier parameters

15



and directly minimizes the approximated measure. In [59, 5], the maximal-figure-of-merit

(MFoM) learning was proposed to integrate more flexible performance metrics over a mis-

classification measure, such as accuracy, recall, precision, or F-scores. In particular, the

MFoM learning incorporates any performance metric that can be formulated with the four

essential components in the confusion table, i.e., true-positive, true-negative, false-positive

and false-negative terms, in a differentiable loss function. Then, the MFoM learning opti-

mizes the metric with advanced optimization techniques such as a generalized probabilistic

descent (GPD) algorithm [60].

The learning scheme, to be presented in Chapter 6, can be considered as an extension

of the previous research in the MFoM learning to optimizing the following performance

measures: (1) average precision (AP) [61] and (2) a weighted sum of the probability of

missed detection (PMD) and false alarms (PFA) at a preferred operating point [62]. These

metrics are more sophisticated over simple error rates, and accordingly, have been widely

used in evaluating multimedia retrieval systems while simulating user needs. Since they

involve complex formulations, which are ranking ordering for the former metric and a de-

sired operating point (ratio) for the latter one, it is difficult to directly apply the conventional

MFoM learning. The novel extended MFoM learning scheme that incorporates such com-

plex conditions was studied in [63, 64] as preliminary work for the research presented in

this thesis.

Optimization of ranking performance measures such as AP to be discussed in Section

6.2, has been studied mostly in the machine learning and information retrieval communi-

ties. In most conventional approaches, a loss function is defined by incorporating pair-wise

rankings, which are taken as sample instances for learning. Then, a classifier is trained

to correctly order the pairs. For example, in Ranking SVM [65] and RankBoost [66], a

surrogate loss function for a ranking measure is defined based on the pair-wise losses. In

[67], a neural network model was proposed to optimize the expected value of pair-wise

ranking metrics. In [68, 69], a pair-wise ranking is smoothed and used in formulating a
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differentiable objective function that simulates the area under a receiver operating charac-

teristic (ROC) curve (AUC-ROC) [70]. In addition, [71] proposed a pair-wise rank-based

loss function, considering good and bad neighbors of an instance.

Although learning schemes by using pair-wise rankings have shown promising per-

formance, an objective function of pair-wise learning is formalized to minimize errors in

ordering individual sample pairs, rather than minimizing errors in ordering an entire set of

samples. Moreover, it is often computationally too costly for practical uses. As an effort

to address these issues, [72, 73] proposed list-wise methods, in which sample lists instead

of pairs are adopted as learning instances. In addition, [74] proposed an efficient gradi-

ent computational approach to optimizing AP, based on the observation of AP values with

respect to individual score changes. To address the computational complexity issues, the

trade-off between accuracy and complexity for linear ranking functions was explicitly stud-

ied in [75]. In particular, a linear function along with a feature selection scheme showed

substantially reduced online complexity. In addition, an early-exit scheme was proposed

in [76], based on the context of decision tree ensembles. In this scheme, samples that do

not appear to be relevant to a given query were not further evaluated in the learning pro-

cess. Although [75, 76] have shown considerably reduced complexity, they are sufficiently

different from the proposed learning scheme that uses entire training data, to be discussed

in Chapter 6. In terms of considering AP as a function with respect to individual sample

scores, the proposed scheme is motivated by [74]. However, while AP is approximated

by using sparse sample points in [74], AP is approximated in a principled manner by us-

ing mathematical derivations around discontinuous points in the proposed scheme, to be

presented in Section 6.2.

A weighted sum of PMD and PFA at a target error ratio was originally suggested by

TRECVID for the MED tasks [62]. In particular, the task is evaluated by examining an

operating point at the ratio of PMD : PFA = 12.5 : 1. While optimizing the metric has not

yet been actively studied, it is closely related to the multi-objective programming (MOP)
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scheme [77]. In the MOP scheme, a composition of two objective functions (first, the

maximum likelihood of the model parameters from the in-domain data and, second, an

appropriate representation of prior information obtained from a general purpose corpus) is

considered and explicitly optimized for an application of the language model. The problem

with multiple constraints could be solved by incorporating a Lagrange multiplier [78] into

the objective function to be optimized for each constraint. The presented work related

to optimizing a weighted sum of PMD and PFA at a target error ratio is motivated by this

learning scheme, and is discussed in detail in Section 6.3.
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CHAPTER 3

FEATURE CONSTRUCTION AND BASE CLASSIFIER
EVALUATION

For successful multimedia event detection and recounting, this research makes use of a

large set of audio/visual features to facility the ability of capturing salient information

across diverse event classes. Feature types used in this research are briefly reported in [79].

In this chapter, these features are studied in detail. Furthermore, additionally discussing the

design of base classifiers and investigating various kernel types. Many feature descriptors

used in this work have been proposed in previous research; however, there still exist many

open issues in terms of how to efficiently use these descriptors, especially for representing

unstructured consumer videos. The presented feature representation schemes and experi-

mental results will provide insight into such issues, acquired through this research. It is also

noted that the features discussed in this chapter are used across all experiments reported in

the following chapters.

3.1 Visual Features

In this work, a set of low-level visual features is used. They are mostly quantized by a

codebook-based method. In particular, for the purpose of evaluating features and base

classifier performance, this chapter uses a single clip-level histogram representation that is

based on bag-of-words (BoW) models. In other words, feature descriptors are extracted

from image/video patches in a training corpus, collected, and quantized to codewords that

represents a corresponding visual feature. Then, an entire video clip is assumed to be a

single instance and is represented as a histogram of the constructed codewords for each

feature.

The list of low-level visual features used in this research includes 3-dimensional his-

togram of gradients HoG3D [80], GIST [36], color scale invariant feature transform (SIFT)
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[81], independent subspace analysis (ISA) [82], a transformed color histogram (TCH)

[81], and a set of visual features from [83] (called SUN09 in this work), including a his-

togram of gradients (HoG), a geometry texton histogram (GTH), a self-similarity measure,

dense/sparse SIFT, local binary patterns (LBP), and a tiny image. They are constructed in

a clip-level feature vector as the following schemes:

HoG3D: HoG3D [80] is a spatio-termpoal variant of a popular histogram of gradients

(HoG) descriptor, and additionally captures motion information beyond the standard HoG.

The rationale for including HoG3D features is to incorporate low-level motion and appear-

ance signals into the system. The raw 300-dimensional HoG3D features are densely com-

puted from videos at every 5th frames where the samples are drawn from resized videos for

consideration of speed and storage. Each video is rescaled such that its largest dimension

(height or width) becomes 160 pixels. Once HoG3D samples are collected, K-means clus-

tering is employed to create a codebook of 1000 words from a random subset of samples

from the training data only. Finally, an average histogram is built for every video clip to

form an HoG3D bag-of-words (BoW) descriptor.

GIST: In order to exploit correlations between event types and scenes where events take

place, the GIST feature [36] is incorporated. GIST features represent an image’s content in

particular spatial frequency bands, and has been shown to provide discrimination between

different types of environments such as natural versus man-made, open (i.e. outdoor) versus

closed (indoor), and the like. GIST features are extracted at every 10th frame of video clips.

Base classifiers are trained using per-frame features. Finally, the scores across frames of

clips are averaged to provide a single score for a clip, constituting a clip-level base classifier.

Color SIFT/TCH: Color SIFT and TCH, which are efficient at capturing color infor-

mation in a video clip, are extracted by [81]. For both feature types a spatial pyramid

histogram is applied to construct a feature vector. In particular, 1 global histogram and 3

spatial histograms pooled from the top, middle and bottom local sections are concatenated.

For all histograms, 4,096 codewords are used.
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Table 2. Properties of low-level visual features
Property

Feature C T G M B U P S
HoG3D x x o o o x o x

Gist x o x x x x x o
color SIFT o x o x o x o x

ISA x x x o o o x o
TCH o x x x o x o x

HOG∗ x x o x o x o x
GTH∗ x o x x o x o x

self-similarity∗ x x x x x x o x
dense SIFT∗ x x o x o x o x
sparse SIFT∗ x x o x o x o x

LBP∗ x o x x o x o x
tiny image∗ o x x x x x x o

∗SUN09 features

ISA: Hierarchical spatio-temporal information can be captured by ISA. As originally

proposed in [82], features are directly learned from video data in an unsupervised learning

manner, unlike hand-designed local features, such as SIFT or HoG. The extracted features

are clustered into 3,000 words, and a video is represented as a clip-level BoW feature.

SUN09: Various low-level features including HoG, GTH, dense/sparse SIFT, a self-

similarity measure, LBP, and a tiny image, are extracted by using the code provided by [83].

The feature extraction is very slow and is defined for images instead of videos. Therefore,

these features are extracted on down-sampled frames at a rate of 4 seconds per frame. The

same codebook provided by [83] is used to form clip-level histograms (or spatial pyramid

features for some features). The histograms are L1-normalized to form the final frame-level

features (each feature is treated separately). Then, the final clip-level features are computed

by taking the component-wise average of the frame-level features.

In Table 2, various types of visual information introduced by each low-level feature

are summarized. The visual information considered includes whether it involves color (C),

texture (T), gradient (G), temporal (M), BoW (B), unsupervised learning (U), patch-based

(P), and entire image scenes (S). As we can observe, each low-level feature can contain
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unique visual information. For example, GIST performs well especially in capturing tex-

tures and image scene information in the frames of a video, while color SIFT and TCH

provide color information in a video clip. The usefulness of features for multimedia event

detection can vary according to the type of a target event class, while it does not necessarily

follow intuition. The results of individual low-level features are reported in Section 3.4.

In addition to low-level visual features, high-level visual semantic information is also

utilized by Object Bank (OB) features [84]. Compared to traditional scene-level concepts

such as LSCOM [10, 11], OB features provide a semantic and descriptive understanding

of visual scenes at the object level. The OB framework is arbitrarily expandable and open,

which means that, regardless of the object classes, every object detector is trained in a

generic framework and can be easily plugged into the main system. The current OB imple-

mentation incorporates detectors for 177 object classes and is one of the main large-scale

object recognition system publicly available. These object classes are independent of event

categories.

In this work, spatial pyramid layout information, originally suggested by [84], is dis-

carded, because the variation of object locations within unconstrained videos is not regular-

ized, and the resulting lower-dimensional representation helps the generalization capability

during classifier training. In particular, first, the entire array of object detectors is applied

to images at various scales. Then, their responses are recorded along with spatial layout in-

formation to form high-dimensional scene appearance descriptors. ObjectBank is the most

computationally intensive among the visual features. Accordingly, to identify a set of key

frames from each video clip, a change detection technique based on color histograms is

applied, which takes approximately 100 hours on its own. Then, ObjectBank features are

computed only on those key frames. Because ObjectBank is applied on a per-image basis,

multiple ObjectBank features are agglomerated to produce a clip-level descriptor across

frames. In this work, using max-pooling and average-pooling has been observed to provide

good performance; hence, both max and average responses from each ObjectBank feature
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dimension across key frames are recorded at the clip-level feature.

3.2 Audio Features

For audio features, first, a low-level audio feature is considered to capture the general

audio information of a video. In particular, MFCC features are represented in a BoW

feature. At every 10ms with a 25ms frame size, 32-dimensional MFCCs are extracted.

Then, the frame-level features are quantized based on a codebook with a 1K size, using

hard-assignment.

This research also includes developing a new audio feature that involves high-level au-

dio semantics for MED tasks. A conventional way of exploiting audio semantics for MED

is to use a set of pre-defined audio concepts [85, 24]. However, using a fixed set of audio

concepts to perform event detection might not be suitable because consumer-level videos

tend to be unconstrained and unstructured. As such, there exists a wider range of variabil-

ity in audio signals. Alternatively, in this research, acoustic segment models (ASMs) [86]

to understand a broader range of mid-level audio semantics by capturing diverse temporal

structures within low-level audio signals are developed. ASMs build upon previous work

such as fundamental speech sound units for speech recognition [87], which have been ap-

plied to music genre classification [88] and speaker recognition [89]. This approach is the

first study of ASMs to MED by building bottom-up acoustic semantic words. In particular,

unlike previous work that exploits temporal acoustic structures in particular domains, e.g.,

speech or music, the developed ASMs provide an extended framework for generic audio

sound types.

In particular, ASMs are modeled as 3-state HMMs. They are trained with a set of

“representative” audio segments for given multimedia event classes; in particular, 8 ini-

tial segments are manually chosen from an event class. For example, initial segments for

Birthday party include singing a birthday song, cheering, laughing, and clapping, while

those for Getting a vehicle unstuck include tire spinning, motor, and street noise. Then,
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Viterbi decoding and Baum-Welch estimation are iteratively conducted in order to refine

the models until they converge. The typical length of decoded segments is 100–200ms.

Once ASMs are obtained, each audio clip is transformed into a BoW vector by considering

the N-best Viterbi sequences with unigram and bigram statistics.

Once ASMs are obtained, each audio clip in multimedia material is transformed into

a feature vector, treating each ASM as a basis of a vector space. To this end, ASM n-

grams are calculated, obtaining bag-of-sounds vectors similar to BoW vectors in informa-

tion retrieval. In particular, N-best Viterbi sequences are considered; then, the number of

occurrences of each ASM is counted in the Viterbi sequences (unigram). In addition, the

number of co-occurrences of two adjacent ASMs (bigram) is considered. In this work,

co-occurrence counts not only for adjacent ASMs, but also for any pairs of ASMs located

within a certain window are evaluated. More detail of modeling and learning of the pro-

posed audio feature representation by ASMs can be found in [86].

3.3 Evaluation of Non-linear Kernels for Learning Base classifiers

In recent research regarding MED [21, 22, 23, 24, 25], it has been reported that using

non-linear kernels can significantly improve the quality of MED systems beyond using

a linear kernel. Most features used in this research are based on BoW representation or

one of its variants. Therefore, the following 4 non-linear kernels, which can be applied

to histogram-based features, are considered for evaluation: the chi-squared kernel (CSK),

the Bhattacharyya kernel (BK) [90], the histogram intersection kernel (HIK) [91], and the

negative geodesic distance kernel (NGDK) [92]. The formulations of the kernels are as

follows:

kCS K(x, y) = 1 −
D∑

i=1

(xi − yi)2

1
2 (xi + yi)

, (1)

kBK(x, y) =

D∑
i=1

√
xiyi, (2)
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kHIK(x, y) =

D∑
i=1

min (xi, yi) , (3)

kNGDK(x, y) = −2 arccos

 D∑
i=1

√
xi

|x|
yi

|y|

 . (4)

When base classifiers for each feature type are learned, this research uses kernelization

techniques. In particular, base classifiers are learned and tested by a discriminative model,

e.g., SVMs, in a kernel space. The performance of kernel types is illustrated in Figure

2 by using a detection error tradeoff (DET) curve [93] for the two exemplar classes (it is

noted that similar performance has been shown in other event classes). In a DET plot,

the bottom-left location of a lined curve implies the superiority of a measured system, and

it is recommended as one of the metrics to evaluate multimedia event detection systems

by TRECVID [62]. We can observe that all non-linear kernels significantly outperform

the linear kernel, implying that using non-linear kernels is crucial to successfully perform

multimedia event detection. Among non-linear kernel types, NGDK shows the best per-

formance, followed by HIK. These two kernels are simple to apply and can be computed

within a reasonable amount of time. Therefore, in this research, NGDK and HIK are mainly

considered across the remaining experiments.

3.4 Evaluation of Feature Types

The base classifier performance over the 10 TRECVID MED ’11 event classes is summa-

rized in Table 3, evaluated by average precision (AP). To additionally evaluate the per-

formance of kernel types, different kernel types are applied to a feature, where the kernel

types are available. It is noted that some kernel types are not available based on the feature

characteristics, e.g., NGDK cannot be applied to GIST, since this feature type involves neg-

ative values. The mean AP (mAP) over the 10 event classes is also illustrated in Figure 3,

which clearly demonstrates overall feature performance and the effect of kernel types. We

can observe that overall, the SUN09 feature with MKL shows the best performance. This
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(a)

(b)

Figure 2. Comparison of kernel types in DET curves by using HoG3D on (a) E001-Attempting
a board trick and (b) E004-Wedding ceremony: we can clearly observe that non-linear kernels
significantly outperforms linear kernel (red), while NGDK (magenta) shows the best perfor-
mance followed by HIK (green).
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Table 3. Comparison of features by different base classifiers, evaluated in AP (%) for the 10
event classes. It is noted that the event-wise best AP is marked in bold. The best performance
is achieved by different types of features for different event classes.

Base classifier E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 mAP
GIST HIK 3.3 1.7 22.4 4.5 2.3 5.7 10.7 3.3 5.6 2.2 6.2

HoG3D Linear 3.3 1.2 11.9 3.8 1.1 1.8 10.0 4.1 2.2 1.3 4.1
HoG3D HIK 12.6 7.4 42.9 11.9 5.0 6.6 11.6 28.8 30.1 10.7 16.8
HoG3D NGD 12.9 11.1 42.8 17.8 6.2 10.4 23.9 30.5 31.5 10.5 19.8

ISA HIK 9.3 10.6 38.8 14.6 4.0 6.9 13.7 27.0 15.6 4.3 14.5
CSIFT Linear 2.4 2.0 14.6 4.8 1.1 2.0 11.1 1.6 5.8 1.4 4.7
CSIFT HIK 13.8 18.7 47.3 19.4 6.7 6.6 26.2 25.2 33.2 13.1 21.0
CSIFT NGD 9.8 23.8 47.5 19.8 6.7 13.7 25.7 27.2 36.8 13.3 22.4
TCH Linear 1.8 1.7 8.3 4.0 0.8 1.2 9.0 1.4 3.6 2.3 3.4
TCH HIK 7.8 12.7 36.1 17.8 5.1 8.9 25.7 16.0 31.4 11.8 17.3

TCH NGDK 8.7 13.8 35.2 17.2 6.2 9.8 24.3 19.5 34.3 11.3 18.0
OB-Avg Linear 3.7 3.1 19.9 10.7 1.6 3.4 7.9 2.1 2.9 3.8 5.9
OB-Max Linear 7.2 8.2 13.1 9.5 1.9 6.6 10.0 4.0 7.1 3.5 7.1

OB-Avg HIK 7.9 10.9 32.7 19.8 6.2 7.5 16.6 15.4 18.3 10.0 14.5
OB-Max HIK 9.5 13.5 31.0 17.0 5.6 9.8 18.4 10.7 25.7 7.7 14.9
SUN09 MKL 15.7 29.8 50.4 25.7 15.2 13.3 23.3 25.3 32.2 13.9 24.5

MFCCs Linear 7.9 1.9 4.0 1.4 0.7 1.2 4.0 1.5 13.5 1.7 3.8
MFCCs HIK 17.5 3.1 14.0 4.4 1.4 1.5 7.2 3.1 22.4 6.3 8.1

MFCCs NGDK 24.0 3.6 17.3 7.9 1.6 6.4 9.8 2.3 42.9 13.6 12.9
ASM HIK 14.3 4.5 10.5 5.7 1.6 5.8 10.8 1.9 31.1 7.7 9.4

ASM NGDK 23.6 4.9 16.4 7.1 1.6 7.1 13.2 2.4 43.6 13.8 13.4

might be because SUN09 incorporates multiple visual features with various granularities.

By comparing the different types of features and kernels, we can draw an interesting

observation. First, it has been observed that event detection performance is improved sig-

nificantly by non-linear kernels versus linear kernels across all feature types. Between HIK

and NGDK, NGDK shows consistent improvement compared to HIK. By this observation,

for the remaining experiments of this research, HIK and NGDK are mainly considered in

modeling base classifiers, while NGDK is preferred only if it is available.

Second, from the base classifier results in Table 3, we can also observe that the best

performance can be achieved by different feature types for different event classes. For

example, for E006-birthday party and E014-Repairing an appliance, the audio features

(MFCCs and ASM) show fairly strong performance, while the remaining visual features
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Figure 3. Comparison of features by different base classifiers, evaluated mAP (%) over the
10 event classes. Among kernel types, NGDK outperforms linear kernel and HIK. Overall,
SUN09 MKL shows the best performance.

show better performance for the other event classes. It is not surprising since for E006-

birthday party, cheering by guests or a birthday song can be strong evidence, and there

exists large variation in visual information, e.g., a video can be recorded in a dark room or at

party place. For E014-Repairing an appliance, the most discriminative cue for detecting the

event class is human speech since most samples are instructional video clips. Furthermore,

it is found that most features are complementary. In other words, when various features

are combined in a fusion method, performance for multimedia event detection consistently

improves. We will discuss this idea further in Chapter 6.

In addition, it is observed that low-level features show surprisingly competitive perfor-

mance compared to high-level features. In terms of quantitative performance, there does

not seem to be any significant advantage of high-level visual or audio features (OB and

ASM).
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CHAPTER 4

SCENE CONCEPT ANALYSIS FOR SPARSE EVIDENCE

Detection of complex events on unconstrained real-world videos (e.g., YouTube) is a chal-

lenging problem. Most complex events (e.g., birthday party and board trick) exhibit large

within-category variations, and videos frequently consist of multiple segments exhibiting

different and evolving contents that include not only a mixture of contents closely related to

events, but also temporal clutters such as caption screens or irrelevant contents arbitrarily

stitched-in by users.

For example, in Figure 4, the visual content of segments in a video clip labeled with

the Attempting a Board Trick class is illustrated. The first segment (seg_00) is rendered

in gray-scale, and accordingly, color information that might be useful for detecting sky or

snow regions is lost. The second, third, and last segments (seg_01, seg_02, and seg_13,

respectively) consist of black-screen scenes, which are possibly not distinctive for the At-

tempting a Board Trick class. Actual board-riding scenes appear at the remaining segments

(seg_03~seg_12); however, visual content still varies among these video segments, in both

temporal and spatial aspects, e.g., the visual stream is paused at seg_08 and seg_09, while

only audio is being played. It is clear that the discriminative power significantly differs

among video segments with different scenes. However, addressing such sparseness of ev-

idence with a conventional approach, which uses a single feature representation, e.g., a

video-level BoW representation, is challenging.

Many reported successful retrieval systems (e.g., [4, 94]) for unconstrained videos share

the common idea of constructing clip-level representations via average-based global pool-

ing. For each feature type, a bag-of-words (BoW) descriptor (or variation) is built per video

by pooling across the entire video. These globally pooled features work well, although the

fact that these methods do not exploit detailed segment information leaves room for further

research, which recent efforts have begun to address, such as [35, 34].
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Figure 4. The scene variance of video segments in a clip.

In this work, a multi-way local pooling (MLP) approach is presented, which uses de-

tailed segment-level information and boosts performance beyond the globally pooled de-

scriptors. The overall scheme is illustrated in Figure5. The approach builds multiple de-

scriptors per video, where each descriptor is designed to relate to one of the pre-built scene

concepts. These scene concepts can be understood as rough themes interchangeably ap-

pearing as segments in videos. From an input video, a separate descriptor is built per

scene concept by accumulating features from segments that are local (or similar) to the

represented scene concept. The rationale behind the MLP strategy is partly inspired by the

recently introduced theory of local pooling [95], which shows that pooling features similar

in multi-dimensional input space separately improve representational power, and classifi-

cation accuracy. In addition, it has been observed that the frequency of segment-to-concept

assignments provides a unique signature indicating the importance of each scene concept

in describing a video sample. Accordingly, the proposed approach intentionally avoids

normalization on each descriptor, which is in contrast to [95, 35].

Consider the example video of board trick in Figure 5, which consists of title screens at

both ends and actual snowboarding segments in the middle. First, there are a set of scene

concepts discovered by clustering segment-level features1, which include concepts such as

1For these results, (uncolored) HoG3D feature [80] is used.
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caption/titles, a moving object on a smooth background, and cube-2shaped large objects2.

It is worth noting that the proposed method is general and can be applied to various audio-

visual features developed for multimedia videos. Accordingly, scene concepts with motion

or audio patterns can be discovered as well, depending on the characteristics of the under-

lying features. For example, it can be seen in Figure 5 that, not only image-based concepts

but also motion-related concepts are discovered. Then, each per-concept descriptor is built

by pooling features from different parts of the input video using soft-assignment, based on

similarity between segments and scene concepts.

For classification, this work adopts the intersection kernel (IK) SVMs [91] to build

classifiers. In particular, the kernel between a pair of videos is computed by combining

per-concept kernels computed for every scene concept. It is important to note that the per-

concept kernel values on frequently assigned kernels tend to be high and vice-versa, due

to the captured frequency information. Accordingly, if certain scene concepts are poorly

represented in exemplar videos, they will contribute to kernel values in a limited way.

In addition, this work explores an alternative strategy to combine kernels using multiple

kernel learning (MKL), e.g., [96]. In essence, it is plausible that certain scene concepts are

more discriminative, even though they are rarely represented in exemplar videos, or vice-

versa. The use of MKL provides an opportunity to learn discriminative weights for kernel

combination.

The idea of multi-way pooling has been developed in [95], but it is only applied to

low-level raw visual feature descriptors for image recognition. This work is extended to

video recognition at a higher-level granularity of segments. Recent work that characterizes

videos at the segment-level includes [33], [34], and [35]. To represent complex activities,

[33] identifies distinctive temporal segments (i.e., sub-actions) along with the temporal

structures between them. Although the temporal structures allow certain flexibility, [33]

is still most suitable to videos with fairly regularized structures (e.g., Olympic dataset).

2These scene concepts are manually named a posteriori.
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Figure 5. Illustration of the Proposed Representation: a video clip consists of multiple seg-
ments. Each segment-level feature is pooled multi-way into different descriptors based on
their similarity and the corresponding pre-constructed scene concepts. Then, kernelization is
separately applied per descriptor. The final kernel combines multiple kernels and provides an
improved discriminant power.

In [34], a discriminative recursive hidden segmental Markov model is proposed to cope

better with less regularized temporal structures in consumer videos. However, the potential

challenge for [34] is that the model is associated with a large number of parameters, which

requires a large training dataset. In the closely related work of [35], features from images in

videos are pooled into different scene clusters, guided by the secondary GIST [36] feature.

Although using a secondary feature might be necessary to incorporate extremely sparse

feature types (e.g., sparse SIFT), it renders this method applicable to image-based features

only, and exploring a unified feature pooling method (without a secondary feature) for more

general feature types is necessary. In contrast, the proposed method is simpler and more

general because it is more widely applicable to diverse audio-visual features beyond image-

based ones, and can utilize audio/temporal concepts. In contrast to [35], the proposed

approach also explores MKL variations to combine kernels across different scene concepts.

4.1 Multi-way Local Pooling

The multi-way local pooling (MLP) method uses multiple descriptors instead of a single

descriptor given a feature type for a video clip, and then attempts to improve discriminant
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power using kernelization techniques. The key idea is to quantify and utilize similarities

between two video samples with respect to various scene concepts, especially in unstruc-

tured consumer video data, where it is difficult to apply conventional temporal models, e.g.,

HMMs.

The overall scheme is illustrated in Figure 5. First, we divide a video clip into video

segments and represent each segment with a given feature type. Then, every video segment

is soft-assigned to scene concepts. These scene concepts are pre-constructed by unsuper-

vised clustering from all segment-level feature descriptors in training data, and thus rep-

resent broad categories covering entire training corpus, e.g., caption/title, moving object

on smooth background, or cube-shaped large object. A large assignment value of a video

segment to an existing concept indicates that they are highly correlated, and vice-versa.

Soft-assignment is important because it can substantially alleviate the arbitrary space parti-

tioning built by unsupervised clustering of segments. Using this soft-assignment, segment-

level feature descriptors in a video are combined with different weights for each scene

concept. In other words, if we have M scene concepts, M video-level feature descriptors

are constructed in a way that a highly correlated video segment to a corresponding scene

concept contributes more. In a casual sense, the newly constructed video-level feature de-

scriptors can be considered to be projections of a video clip toward corresponding scene

concepts. After multiple descriptors are constructed with respect to scene concepts, ker-

nelization is separately applied. Thus, when a similarity kernel is used, e.g., IK, a kernel

function measures similarity of video samples with respect to each corresponding scene

concept. Finally, multiple kernels are combined to a final kernel to provide an improved

discriminant power for video recognition. For brevity, the detailed derivations below are

based on BoW features, although it can be generalized to other representations.

In detail, let x = {xi| xi ∈ RD, 1 ≤ i ≤ n} be a training video sample, where xi is a D-

dimensional BoW representation for the i-th segment, and n is the number of total segments

in a video sample x. It is assumed that scene concepts are already available by collecting all
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of the video segments from the training corpus and clustering them in the D-dimensional

feature space by an unsupervised k-means scheme. Then, the proposed approach uses

centroids of the clusters as scene concepts that compactly describe the segment types in

the video. Let S = {s j| s j ∈ RD, 1 ≤ j ≤ M} be a set of M scene concepts, which are

represented as D-dimensional vectors. Each D-dimensional feature descriptor of a video

x with respect to the j-th scene concept is formulated as a weighted-BoW representation

ϕ j(x) computed across the entire video segments {x1, x2, · · · , xn}, with corresponding soft-

assignment weights as

ϕ j(x) =
1
n

n∑
i=1

ω j(S , xi) · xi, (5)

where n is the number of video segments in a video sample x, and ω j(·) is a soft-weight

assignment function between a corresponding scene concept and a video segment. While

the choice for the soft-weight assignment is flexible, we have adopted the following variant

of the Gaussian function, which has shown superior performance across our experiments

with diverse features:

ω j

(
S , xi

)
= exp

−
{
d
(
s j, xi

)}2

α

 , (6)

where α is a positive parameter that controls the sensitivity on the distance d (·) between a

centroid and a sample point. For a distance measure, the negative geodesic distance (NGD)

that provides an effective distance measure on BoW features [92] is used, defined as the

following:

d
(
s j, xi

)
= −2 arccos

 D∑
k=1

√
s j,k

|s j|

xi
k

|xi|

 . (7)

The varying weights of video segments to a scene concept make the contributions of the

video segments differ in constructing the weighted-BoW representation for a specific scene

concept. For example, in Figure 6, the soft-assignment values for the video segments in

Figure 4 to 50 scene concepts are illustrated. Each column indicates a video segment with

a 50-dimensional assignment vector. The brighter the element is of an assignment vector,
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Figure 6. The soft-assignment vectors to 50 scene concepts for the video segments in Figure 4.
The assigned values to a scene concept varies across the video segments.

the more a video segment contributes to a corresponding scene concept, and vice-versa. In

a casual manner, the weighted-BoW representation ϕ j(x) can be considered as a projection

of a video sample x to the j-th scene concept space.

4.1.1 Comparison to SAP

According to the SAP method proposed in [35], one way to utilize such multiple fea-

ture representations from scene concepts is concatenating the features into a large (n × D)-

dimensional feature vector ψ(x), formulated as

ψ(x) = {ϕ
′

1(x), ϕ
′

2(x), · · · , ϕ
′

n(x)}, (8)

where ϕ
′

i(x) = ϕi(x)/‖ϕi(x)‖ is a variant of a feature representation for the i-th scene concept

ϕi(x) by using L1-normalization. However, considering that most state-of-the-art methods

in multimedia retrieval incorporate a large number of code words, the dimension of the

concatenated feature vectors can be extremely large. Therefore, learning a detection model

on the concatenated feature vectors may not be feasible for a large-scale dataset because

of both computational and memory-wise costs. Furthermore, since feature representations

for scene concepts are L1-normalized in a segment-wise manner, we may not take full
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Figure 7. The discriminative weights for 50 scene concepts learned by MKL with L2-
regularization.

advantages of the effects from soft-assignment. For example, consider a video clip that is

loosely correlated to a specific scene concept si across entire video segments. In this case,

since all segments in the video clip will have small soft-assignment values to the scene

concept si, ‖ϕi(x)‖ should small, and accordingly, the effects by the feature representation of

ϕi(x) for the scene concept si become trivial compared those from other strongly correlated

scene concepts. However, by segment-concept-wise L1-normalization, the effects from

all scene concepts become comparable, raising a question that advantages of multi-way

pooling are still fully implemented in the system.

4.1.2 Feature Combination by Kernelization

In contrast to constructing the large vector by concatenating multiple feature representa-

tions for scene concepts, the proposed method performs combining the multiple feature

representations by kernelization techniques without normalization. For a kernel type, the

popular IK is selected, along with the desirable property of not involving normalization

during kernel computation. The usefulness of IK is presented in Section 3.3 (IK is a slight

variant of HIK, which assumes that a feature vector is not L1-normalized). It is noted that

the constructed BoW feature ϕ j(x) for a scene concept s j is not L1-normalized. In this
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way, the IK K j (x, x′) between a video x and another video x′ is determined by not only

the similarity between the distribution of ϕ j(x) and ϕ j(x′), but also ‖ϕ j(x)‖ and ‖ϕ j(x′)‖,

which reflect their assignment frequency and correlation to a scene concept s j. In other

words, even if ϕ j(x) and ϕ j(x′) show similar distributions, K j (x, x′) might be small if one

or both samples are loosely correlated to a scene concept s j. Then, a final kernel K (x, x′) is

constructed as a linear combination of the multiple kernels constructed for multiple scene

concepts as following:

K
(
x, x

′
)

=

n∑
j=1

β jK j

(
x, x

′
)
, ∀ j, β j ≥ 0, (9)

where β j is a non-negative weight on the j-th kernel. We applied both equal weights and

those learned by MKL, and their results are reported in the following section. For example,

in Figure 7, the learned weights for 50 scene concepts by MKL with L2-regularization are

illustrated. It can be observed that the learned weights significantly vary.

4.2 Experiments and Analysis

The proposed method was evaluated on TRECVID 2011 MED corpus [20], which is a

challenging large-scale consumer video dataset. The dataset provides an excellent test-bed

for a real-world unconstrained video retrieval problem. It consists of 13K training and 32K

test samples with 10 annotated test event classes. The number of positive and negative

samples is highly imbalanced; e.g., there are only about 150 positive samples for each class

in both training/test sets. For each event class, we trained SVMs in a one-vs-all manner

across our experiments and report average precisions (APs) or mean AP (mAP) across

all ten events as metrics. For training protocol, the approach in a recent study [34] was

followed for fair comparison, across experiments.

The proposed approach is extensively compared with other strong baseline methods

and/or state-of-the-art methods for both visual and audio features. For the results, (visual)

HoG3D [80] with 1,000 codewords and (audio) MFCCs with 1,024 codewords are used,
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Table 4. Retrieval results w.r.t. varying number of scene concepts on HoG3D, in mAP (%).
# of SCs 1 20 40 60 80 100

mAP 7.00 9.43 9.75 9.74 9.75 9.72

respectively. For the length of video segments, a clip was regularly divided into fixed 2-

second-length segments, which is found to work well across feature types. Although the use

of variable-length segments based on techniques such as shot detection may be interesting,

it is beyond the scope of this study, and we could still verify the benefits of the proposed

method with the aforementioned video segments. The parameter α in Eq. (6) was set to be

α = 0.3π2, which is found through cross validation.

4.2.1 Robustness Against the Number of Scene Concepts

The first result analyzes the sensitivity of the proposed method against the number of scene

concepts (SCs). Table 4 summarizes the mAP results across all ten classes with respect

to varying number of scene concepts on HoG3D. It is noted that using only one scene

concept is equivalent to using a conventional kernelized SVM (KSVM). It can be observed

that significant improvement (relatively 39.3%) can be achieved as the number of scene

concepts is increased to 40. Beyond 40, the performance stabilizes, showing the desirable

property that the proposed approach is relatively immune to over-fitting even when large

number of SCs are used, which can be credited to the proposed distance and soft-weighting

schemes. Although the number of optimal scene concepts may differ by features types,

event types, and datasets, it is found that 30–50 SCs are generally sufficient to acquire the

benefits of the proposed method. For the remainder of the experimental results, 40 scene

concepts have been used.

4.2.2 Comparison with the State-of-the-art Methods

The main experimental results on 32K test samples using visual HoG3D features are sum-

marized in Table 5. The performance of Chance (i.e., random) is very low due to the

imbalance between positive and negative samples. For MLP approaches, two variations
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Table 5. Comparison in AP(%) among the baseline systems including state-of-the-arts, and
the proposed MLP methods. For each row, the best result is marked in bold. Overall, both
MLP-EQ and MLP-MKL consistently outperformed baselines, showing notable improvement
in mAP (illustrated in Fig 8 for more clarity).

event ID Chance LSVM Niebles Tang LSAP KSVM KSAP KSAP-H MLP-EQ MLP-MKL
E006 0.54 1.97 2.25 4.38 3.95 6.08 4.24 4.73 6.34 6.74
E007 0.35 1.25 0.76 0.92 2.88 2.87 2.86 2.26 3.01 2.98
E008 0.42 6.48 8.30 15.29 17.31 20.75 22.33 22.99 31.16 30.87
E009 0.26 2.15 1.95 2.04 4.33 6.25 5.36 7.61 7.54 7.50
E010 0.25 0.81 0.74 0.74 1.31 1.43 1.14 1.34 2.11 2.34
E011 0.43 1.10 1.48 0.84 1.94 2.29 2.57 2.65 4.07 3.86
E012 0.58 5.83 2.65 4.03 7.43 8.44 7.08 8.7 10.63 11.13
E013 0.32 2.58 2.05 3.04 9.78 9.44 9.33 10.43 15.57 15.25
E014 0.27 1.18 4.39 10.88 5.25 10.00 9.79 11.89 14.81 14.84
E015 0.26 0.92 0.61 5.48 1.54 2.49 2.02 2.4 2.25 1.82
mAP 0.37 2.43 2.52 4.76 5.57 7.00 6.67 7.50 9.75 9.73

using equal kernel weights (MLP-EQ) and those learned by generalized MKL [96] (MLP-

MKL) are reported. The compared approaches used in the experiments include linear SVM

(LSVM), KSVM, Niebles [33], Tang [34], and linear/kernelized SAP (LSAP/KSAP) [35].

It is noted that, for direct comparisons, we reproduced the results of Niebles and Tang

from [34] by using the same quantized features and training/test protocol, and also re-

implemented LSAP/KSAP using the same GIST[36] feature as a secondary image feature

and parameters suggested by the authors [35]. In addition, a variant of KSAP (denoted

as KSAP-H) is also evaluated, in which scene clusters are constructed by using the same

pooled feature (not a secondary image feature, suggested by [35]), i.e., HoG3D in this ex-

periment. For KSVM, KSAP, and KSAP-H, the same IK used in the proposed approach is

applied. Across all compared methods, the same HoG3D features have been used.

As shown in Table 5, the proposed approach consistently outperforms the compared

systems for most event classes. In particular, the proposed MLP approaches show signif-

icant improvement of (relatively) 30% on average beyond KSAP-H, which is found to be

the best baseline system. Such improvement was achieved by our soft-assignment scheme

based on NGD distance and kernel combination without concept-wise normalization. I has
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Figure 8. Comparison in mAP(%) among the baseline systems. The proposed methods, MLP-
EQ and MLP-MKL, marked in red, show significant improvement over the various baseline
systems, including the state-of-the-art methods.

also been observed that KSAP-H outperforms KSAP. This implies that the use of a consis-

tent feature in constructing SCs can improve the quality of SCs, when compared to the use

of a secondary image feature, especially for densely extracted feature types (it is noted that

the HoG3D feature is densely extracted, while features used in [35] are sparsely extracted).

In addition, it can be observed that KSVM outperformed the other latest methods without

kernelization (Niebles, Tang, and LSAP), which suggests that the use of kernelization is

one of the critical techniques for successful event detection.

In Table 6, the proposed method was also compared by using audio MFCC features

against two baselines (LSVM and KSVM). Other baseline systems are not included because

the non-image features can not be incorporated or they did not show better performance

than KSVM. In this experiment, about 2% of test videos without audio was excluded from

both training and test data, which makes the performance by Chance slightly different from

Table 5. It is clear that the proposed MLP methods provide advantages in audio as well,

showing on average 14.9% improvement (relative) over KSVM. These results show that

the proposed framework is fairly general and can yield benefits across different feature

modalities.
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Table 6. Results in mAP(%) using MFCCs (MLP with audio features).
Chance LSVM KSVM MLP-EQ MLP-MKL

E006 0.55 2.08 10.69 11.72 12.01
E007 0.35 0.79 1.82 2.89 2.78
E008 0.42 1.04 6.56 7.19 7.05
E009 0.26 0.54 1.33 2.29 2.45
E010 0.26 0.47 0.77 1.81 1.98
E011 0.40 0.85 1.59 2.12 2.34
E012 0.60 1.32 5.50 6.45 6.67
E013 0.32 1.22 2.50 2.87 2.91
E014 0.25 3.54 24.63 25.70 24.40
E015 0.23 0.64 4.38 5.21 6.11
mAP 0.36 1.25 5.98 6.83 6.87

Among the proposed methods, MLP-EQ and MLP-MKL showed comparable results

across all of the event classes, with slight improvement by one or the other, depending on

event classes. The surprising effectiveness of MLP-EQ can be attributed to the following

reasons: (1) individual kernels constructed for corresponding scene concepts are already

weighted by the assignment frequency, which seems to capture most discriminative infor-

mation; and (2) when underlying features are constructed effectively with little redundancy,

equally weighted kernels has been shown to have comparable performance to MKL [97].

These results suggest that, for time-sensitive applications, the use of MLP-EQ alone can be

a good approach at the loss of minor accuracy for some classes.

4.2.3 Video Categorization by Scene Concept Weights

In addition, it has been found that an assignment vector toward scene concepts can be

a robust and compact representation of videos, which can be used to measure similarity

among video samples. For example, Figure 9 illustrates clustering video samples by scene

concept assignment vectors given them. Each column in Figure 9 indicates an assignment

vector of a video clip, which is generated by averaging scene concept assignments across

all segments in the clip. More precisely, for a video x and a set of scene concepts S , a
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Figure 9. Assignment vectors regarding scene concepts of videos in E001-Attempting a board
trick: we can clearly observe patterns in the vectors, and videos can be categorized, while they
are all labeled as the same event class.

weight vector ΩS ,x is formulated as

ΩS ,x =
1
n

n∑
i=1

ω
(
S , xi

)
, (10)

where xi is the i-th segment of a video x; n is the number of video segments; and ω
(
S , xi

)
is a soft-weight vector, discussed in Eq. (6). The number of scene concepts used in this

example is 100, where scene concepts are represented in row-wise. The red color (bright) in

an assignment vector indicates strong correlation between a video clip and a corresponding

scene concept. The video clips represented in Figure 9 are all labeled as ’Attempting a

board trick’; however, we can clearly observe some patterns among the assignment vector

of them. The yellow lines indicate divisions of such patterns by k-means clustering (it is

noted that video clips are ordered by categories for better presentation). For example, the

first group of videos has strong correlation with the 73th scene concept, while the second

group of videos shows fairly strong response to the 84th scene concept.

In Figure 10, categorization of videos in E001-Attempting a board trick, by the assign-

ment vectors in Figure 9 are illustrated. Each column indicates a categorization of videos.
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Figure 10. Categorization of videos in E001-Attempting a board trick, by the assignment vectors
presented in Figure 9.

As we can see, the categorization provides reasonable division of video samples. For ex-

ample, videos in each category contain similar contents: riding a wakeboard on water in the

first category, attempting a skateboard trick on stairs in the second category, snowboarding

in plain snow region in the third category, and jumping with a skateboard in the street in

the forth category.

It has been found that these vector representations are useful to improve both multime-

dia event detection and multimedia recounting systems. The utilization of this information

will be more discussed in Chapter 7, for an integrated system that takes advantages of MLP

with scene concepts.
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4.3 Summary

In this chapter, a novel multi-way feature pooling approach is presented to address the

problem of complex event detection on unconstrained videos, especially to capture rele-

vant contents effectively from varying contents embedded within temporal structures. For

this purpose, the proposed method constructs multiple descriptors with respect to pre-

constructed scene concepts. The extensive experiments on the challenging TRECVID 2011

MED dataset demonstrate the usefulness of the proposed method, showing promising per-

formance against strong baselines and the state-of-the-art methods.
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CHAPTER 5

MULTIMEDIA EVENT DETECTION BY PER-EXEMPLAR
LEARNING

Most semantic categories used for multimedia retrieval have inherent within-class diversity.

For example, consider a video search for the concept class “wedding ceremony”. Across

different cultures, both their looks (visual) and music (audio) are fairly different. The di-

versity can be dramatic, which raises the question as to whether conventional approaches

(e.g., [16, 3]) that learn a single classifier per category can still be successful and scalable as

the number of concepts and diversity increase. Furthermore, when blackbox methods such

as SVMs are used, recounting the search results or an in-depth analysis of the underlying

training data has been challenging. Recounting here refers to the ability to automatically

explain to users why some results are retrieved at all, and what particular characteristics

triggered them to be returned as results. This process is a core high-level challenge that the

multimedia community needs to address.

In this chapter, a retrieval technique based on per-exemplar fusion associations, ini-

tially studied in [98], is proposed, as a solution to address the aforementioned challenges.

The proposed approach involves training samples as exemplars, and learns localized per-

exemplar distance functions centered around each sample. In this way, all of the diversity

within the training data is maintained in a straightforward manner. For a new sample,

each local distance function only associates itself with samples that are sufficiently similar.

Thus, the notion of retrieval is re-defined as an association problem where test data with a

relatively high ratio of positive associations are retrieved.

In particular, the per-exemplar learning method is designed to incorporate and fuse

multiple types of heterogeneous features, with an emphasis on video retrieval problems.

Overall, the resulting learning architecture can be understood as a non-parametric variant of

late-fusion approaches where discriminative per-feature base classifiers are used. In detail,
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an association between two samples is established by a set of distances across different

feature types. Furthermore, for every training exemplar, the relevance of each feature is

measured based on its discriminative power around its neighborhood. This is particularly

useful because some features may be more relevant for certain exemplars. For example,

imagine a birthday video clip recorded in a dark room with a crowd singing a birthday

song. It is crucial to learn that the audio (and not visual appearance) is the main relevant

feature, and similar samples are discovered mostly based on audio. It is shown that the

per-exemplar relevance of each feature as well as the importance of each exemplar, can be

automatically analyzed and incorporated to achieve competitive retrieval accuracy.

In addition, it is shown that the proposed method enables a rich set of recounting or

summarization capabilities. Due to the nature of association-based retrieval, it is straight-

forward to identify the exemplars that actually trigger the retrieved data. In addition, the

existing knowledge related to the relevant features can be transferred from the exemplars

to the target data to describe them. For example, if a large number of exemplars with a

metadata tag (e.g., dynamic motion or rock music) are associated with a clip, the metadata

can be used to automatically describe the new data. Furthermore, the relevance of each

feature dimension can be used to indicate the core evidence considered during the retrieval

process. For example, users can easily understand that a particular result has been retrieved

due to its audio and/or visual evidence.

The empirical usefulness of the proposed method is evaluated on a challenging real-

world dataset, where competitive retrieval accuracy is demonstrated to match or exceed

other conventional approaches. Furthermore, the aforementioned novel recounting aspects

of the proposed method are highlighted through qualitative analysis.

5.1 Per-exemplar Similarity

In this work, each training sample is regarded as an exemplar, and a local distance function

is defined for each exemplar to measure similarities of neighboring samples to the exemplar.
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It is assumed that there exist various types of features available, which represent a video

sample, including spatial/temporal vision and audio as discussed in Chapter 3. Let F =

{ fi |1 ≤ i ≤ N} be a set of N types of those features, where each feature represents a video

sample in a form of a high-dimensional vector.

5.1.1 Local Distance Function

Given a set of multiple features, a simple way to define a local distance measure between

samples is concatenating all features, which are high-dimensional, to a single big feature

vector (after normalization in each feature), and applying a conventional distance measure,

e.g., L2-distance. However, this method is likely to fail in meaningfully measuring distance

among neighboring samples because: (1) the concatenated feature vector may be sparse

(consider BoW feature vectors) in the extremely high-dimensional space, and accordingly,

distance from a sample point to each other can be equally too far, and (2) despite nor-

malization, the distribution of distance in each feature is not predictable, where a distance

measure can be dominated by a few features with large dynamic ranges.

One possible solution to address these concerns is defining a local distance measure as

a function of element distances that are derived from each feature types. In particular, the

local distance De (s) from an exemplar e to a test sample s can be measured by aggregating a

set of feature-wise elementary distances di (e, s) computed for each fi. Here, a feature-wise

elementary distance di (e, s) is pre-constructed in each feature type; detail of an elementary

distance used in this work will be discussed in the following sections. The local distance

De (s) is represented as a linear combination of these elementary distances, as follows:

De (s) =

N∑
i=1

ωi (e) × di (e, s) = 〈ω (e) · d (e, s)〉 , (11)

where ωi (e) ≥ 0 denotes the relevance weight for the i-th feature and the corresponding

elementary distance di (e, s).

Accordingly, each per-exemplar distance function is characterized by a 1×N parameter

vector ω (e). With a higher value of the weight ωi (e), the local distance function is more
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(a) Distribution of discriminative scores

(b) Elementary distance from e1 (c) Elementary distance from e2

Figure 11. The distribution of discriminative scores (a), and the elementary distance spaces
centered around two different exemplars (b) and (c), respectively. Each exemplar has its own
local distance function with different relevance weights, where the iso-local distance lines with
the different slopes in (b) and (c) appear as the iso-local distance ellipses with the different
ratios in (a).

heavily influenced by the similarity in the i-th feature, and vice-versa. The non-negative

condition for weights is imposed to ensure that larger elementary distances always lead to

larger overall aggregate distances and maintains the notion of distance, which is advocated

also in [37, 38].

Concretely, the objective of this method is, for each exemplar e, learning the weight

vector ω (e) in Eq. (11) in a discriminative learning scheme by taking neighboring samples

around the exemplar e as training data.

5.1.2 Discriminative Elementary Distance

Among many possible choices for an elementary distance measure, in the proposed per-

exemplar fusion approach, a discriminative distance measure is employed. In particular, in
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measuring distance between two samples, confidence scores estimated by a discriminative

model, e.g., SVMs, which is previously learned by using a corresponding feature type, are

used. Therefore, in this scheme, distance among samples is affected by how far they are

from a decision boundary. We observed that the proposed approach using the discriminative

elementary distance can improve the retrieval accuracy, showing results superior to other

approaches using generative elementary distance such as L2 distance as studied in [37, 38],

especially when a feature vector is high-dimensional and extremely sparse, e.g., bag-of-

words (BoW) features with thousands codewords.

By using the elementary distance based on discriminative scores, we could acquire

more discrimination power than using generative distance such as L2 distance, We can also

take advantage of kernelization in training base classifiers, which often shows significant

improvements in many multimedia applications. Moreover, the compact representation by

discriminative scores can provide a robust approach to fuse multiple types of heterogeneous

features by transforming them into a common vector space.

First, for each feature type fi, we learn a discriminative base classifier per concept

in a one-vs-all manner. Then, we derive an elementary distance di (e, s) from the scores

output by the discriminant function gi (·) learned from the i-th feature. (gi (·) measures the

confidence of its input matching a target class based on feature type fi.)

Specifically, the squared difference between discriminative scores is applied:

di (e, s) = |gi (e) − gi (s)|2 . (12)

Hence, with Eq. (12), a local distance between an exemplar e and a sample s is measured,

which is mapped from a feature space to a discriminative score space by the base classi-

fiers. With Eqs. (11) and (12), a local distance function, which is a linear combination of

elementary distances, appears as an ellipsoid centered around the corresponding exemplar

in a discriminative score space.

Figure 11 geometrically illustrates the local distance functions De1 (s) and De2 (s) of

the two exemplars e1 (green) and e2 (magenta). For clarity, only two types of features
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are considered in this example. In Figure 11(a), positive (red ‘o’) and negative (blue ‘x’)

samples are scattered in a two dimensional discriminative score space by their confidence

measures from discriminant functions g1 (·) and g2 (·) learned from different features. We

can observe that positive and negative samples are separated with some overlaps. At the top

right corner, samples have high scores from the both discriminant functions g1 (·) and g2 (·).

On the other hand, we can still see samples with a high score from only one discriminant

function, for example, e1 from g1 (·), and e2 from g2 (·); in other words, the remaining type

of score does not seem reliable. The proposed method attempts to learn a local distance

function in a way of suppressing the effect of a relatively unreliable score type, i.e., a

loosely related elementary distance.

Figures. 11(b) and (c) are drawn in the elementary distance space defined in Eq. (12)

from the two exemplars e1 and e2, respectively. The exemplars are located at the origin in

Figures. 11(b) and (c), where di(e, e) = 0. Each axis in the figures is transformed from the

corresponding axis in Figure 11(a) by Eq. (12), while the mapped value is non-negative. In

this example, we gave the exemplar e1 a higher relevance weight for the elementary distance

d1 (·) than d2 (·), while the exemplar e2 had a higher relevance weight for the elementary

distance d2 (·) than d1 (·). According to the definition of the local distance function in

Eq. (11), points that have equal distance from an exemplar can be drawn as a line, e.g.,

De1 (s) = 1 in Figure 11(b) and De2 (s) = 1 in Figure 11(c), while its inclination is decided

by a weight vector on elementary distance measures around the exemplar. It is clear that the

iso-local distance line De1 (s) = 1 of the exemplar e1 in Figure 11(b) is steeper compared

to De2 (s) = 1 of e2 in Figure 11(c). In addition, we can observe that the iso-local distance

lines in the elementary distance spaces in Figures. 11(b) and (c) appear as the ellipses with

the different ratios and radiuses in Figure 11(a). This illustration provides insights to the

influence of a weight vector that differs by an exemplar. A higher relevance weight makes

the local distance more heavily influenced by the similarity in the corresponding feature;

for example, the iso-local distance ellipse of e2 contains samples which share more similar
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scores from the second feature (g2 (·)-axis) than the first feature (g1 (·)-axis).

In this manner, we can determine which feature is more relevant to the similarity with

a given exemplar than other features. This is one of the key aspects of the proposed per-

exemplar learning algorithm, and examples for video recounting will be discussed in Sec-

tion 5.3.

5.2 Retrieval by Local Distance Function

In the following sections, the approach towards learning relevance weights in Eq. (11) for

elementary distance measures, provided by multiple features, is presented. At a high-level,

relevance weights of an exemplar e are learned to assign small distance to neighboring

samples with the same class with e, while assigning large distance to all the competing

samples. In particular, a discriminative learning scheme is applied, where only neighboring

positive samples and all negative samples are considered as training data. In this way, we

can avoid interruption in learning a local function by other remaining positive samples that

might be fairly different from a target exemplar due to huge within-class variability. In

addition, it is shown how the learned local distance functions can be combined to estimate

the classification probabilities for test samples.

5.2.1 Learning Feature Relevance Weights

In this approach, the set of feature relevance weights for an exemplar e belonging to a

particular concept class C is learned by an iterative discriminative neighborhood analysis.

During learning, we incorporate the set of the most similar K positive examples, which is

denoted as S e (C,K), and all the available negative examples S (C). Accordingly, training

samples for each exemplar is different by a set of neighboring positive examples, and can

be denoted as S e = S e (C,K) ∪ S (C). The use of only the nearest positive samples is to

ensure that localized relevance can be learned, differently per exemplar. Here, the set of

positive nearest samples S e (C,K) are found based on the distance function De (·) whose
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parameters ω (e) are iteratively updated to maximize discrimination among training sam-

ples. Accordingly, the learning process can be understood as the simultaneous estimation

of the weight vector ω (e) and the localized training subset S e(C,K). This overall iterative

optimization problem is formulated as the following max-margin learning problem with

hinge loss functions with respect to the non-negativity constraint imposed by the definition

of the local distance function De (·):

{
ω′∗ (e) , S ∗e

}
= argminω′(e),S e

f
(
ω′ (e) , S e

)
(13)

f (ω′ (e) , S e) = 1
2 ‖ω

′ (e)‖2

+c1
∑

j∈S e(C,K) ξ j + c2
∑

j∈S (C) ξ j

s.t. ∀i, j :
〈
ω′ (e) · d′

(
e, s j

)〉
≥ 1 − ξ j, ξ j ≥ 0, ωi (e) ≥ 0,

(14)

where the two extended vectorsω′ (e) =
[
βe;ω (e)

]
and d′ (·) = [1; d (·)] are used to consider

a bias term, and constant parameters c1and c2 control the effect of loss terms from the K

most similar and competing samples, respectively. Assuming that the ratio of positive and

negative samples affects error counts by corresponding class samples, c1and c2 are set as

c1 : c2 = # o f positive samples : # o f negative samples. (15)

Given a training subset S e, minimizing Eq. (14) is a conventional convex programming

problem, which can be solved by a quadratic programming (QP) method such as SVM

with the additional non-negative constraints, ∀i : ωi (e) ≥ 0. In this work, an approximated

implementation to solve14 is used, in a form of a variant of the conventional C-SVM [99].

In particular, the non-negativity constraint is imposed at every iteration of the SVM solver,

by setting negative values as 0. This approximation to impose non-negativity constraints

while learning SVMs has been studied in [100] and worked well in the proposed method.
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Data: ω′ (e) , S e

Result:
{
ω′∗ (e) , S ∗e

}
= argminω′(e),S e

f (ω′ (e) , S e)

k = 0;

ω′k (e) = 1;

while k < maxIter do

update S k
e;{

ω′k+1 (e) , S k+1
e

}
= argminω′k(e),S k

e
f
(
ω′k (e) , S k

e

)
;

if S k
e (C,K) = S k+1

e (C,K) then

break;

end

end

return =
{
ω′k (e) , S k

e

}
Algorithm 1: Learning a local disance function

Then, we can solve Eq. (13) iteratively, as illustrated in Algorithm 1. First, an initial

relevance weight vector is set to uniform weights as ω′0 (e) = [1, · · · , 1]. Then, at every

k-th iteration, the current training subset S k
e can be found based on a current weight vector

ω′k (e). By using S k
e and ω′k (e) as input of Eq. (13), the next training set and weight vector

S k+1
e and ω′k+1 (e) are estimated. This routine is repeated until the set of the K most similar

positive samples S e (C,K) converges, or it reaches maximum iterations allowed. Here, the

value of K can affect the computing time of the algorithm. For example, if K is large, the

chance thatK samples converge becomes low, and accordingly, the number of iterations be-

comes large. On the other hand, if K is fairly small, S e (C,K) estimated during iterations is

likely to swing among disjoint sets of K samples. Therefore, it is important to set an appro-

priate value of K. Moreover, a varying value of K according to the distribution of samples

around a target exemplar could be helpful. Imagine the cases that neighboring samples are

densely and sparsely distributed. If neighboring samples are densely distributed, a small

K might be helpful to generate a robust set of neighboring positive samples; on the other
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hand, if neighboring samples are sparsely distributed, a large K will be effective to avoid

possible overfitting. However, this varying size of neighboring positive samples is beyond

the scope of this work and will be remained for a future work. In this work, an appropriate

value of K is estimated by cross-validation, which still showed the benefits of the proposed

algorithm.

Solving Eq. (13) can be considered as a process of finding a decision boundary between

similar neighbors with the same class as an exemplar e and all competing samples with

different class labels. After acquiring the optimal relevance weights ω (e), we divide it

by the bias term βe to normalize so that the value of a learned local distance function

at the decision boundary becomes 1. Then, samples within the boundary are defined as

‘associated’ samples to the exemplar e. Due to the normalization, distances to all associated

samples are [0, 1). It is noted that although a decision boundary is learned by using K

neighboring positive samples, the number of positive samples inside the boundary is not

guaranteed to be K. In other words, according to a margin learned by SVMs, it can vary.

In addition, since a decision boundary learned in Eq. (14) is characterized by neighboring

training samples of each exemplar, the number of associated test samples may also differ for

each exemplar, while a conventional k-NN method keeps the same number of associations

across all samples.

5.2.2 Probability Estimation for Retrieval

In this work, we design the probability P̂ (C|s) of a test sample s being in a class C to be

estimated based on the general form shown in Eq. (16), where the set of all exemplars that

built associations with the test sample s is denoted by As, while a subset of them which are

positive samples of class C is denoted by AC
s .

P̂ (C|s) =
ε +

∑
e∈AC

s
h (De (s))

ε +
∑

e∈As
h (De (s))

(16)

Above, the influence function h(·) represents a class of arbitrary functions that decrease

with respect to the distance between an exemplar e and the a target sample s. Intuitively,
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Eq. (16) states that the probability is estimated as the sum of influence by the positive ex-

amples, divided by the total amount of influence by all associations. The term ε provides

smoothing prior which is helpful when the number of associations are sparse or heavily

skewed. We found that the proposed distance-based probability model can improve the re-

trieval accuracy for reasonable choices for h, delivering results superior to the conventional

approaches using P̂ (C|s) = |AC
s |/|As| which is employed by methods such as k-NN.

5.3 Experiments and Analysis

To assess the proposed method, we conducted experiments on a challenging real-world

video dataset. For our experiments, we employed the TRECVID 2011 multimedia event

detection (MED) data [20]. The MED data provides an excellent test-bed for real-world

video retrieval and recounting problems due to its large size and diversity. It consists of

consumer videos on the Internet. Accordingly, huge within-class content variability poses

significant challenges and fusion can improve retrieval. It consists of 13K training and

32K test video clips labeled with 10 event classes and a pure negative class. The 10 event

classes are follows: Birthday party (E006), Changing a vehicle tire (E007), Flash mob

gathering (E008), Getting a vehicle unstuck (E009), Grooming an animal (E010), Making

a sandwich (E011), Parade (E012), Parkour (E013), Repairing an appliance (E014), and

Working on a sewing project (E015). For each event class, the training data is substantially

imbalanced: there are ~150 positive training samples on average per class, while there are

more than 11K pure negative training video clips in total. In the test data, which consists

of 32K clips, there are ~120 positive examples (0.4 percent) for each class on average, and

approximately 31K videos were pure negative.

5.3.1 Features and Discriminative Distance

To capture diverse information from videos, total of 5 different features were computed.

They include 3 visual and 2 audio features: HoG3D bag-of-words (BoW) [80], Object

Bank (OB) [84], GIST [36], MFCC BoW, and acoustic segment models (ASMs) BoW
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(a) Comparison of AUC (higher is better)

(b) Comparison of PFA(%) at TER (lower is better)

Figure 12. Performance comparison for video retrieval by different approaches including
base classifiers without fusion, k-NN, fusion by a single SVM, and per-exemplar fusion. Two
metrics are used, including (a) area under curve (AUC), and (b) PFA at TER.

[87]. For each feature, standard SVMs are individually learned as base classifiers in a one-

vs-all manner for each event class. Then, they are used on test data to generate scores which

are used as basis to measure per-feature discriminative distance between samples.

5.3.2 Video Retrieval Performance and Comparison

The proposed per-exemplar fusion (PEF) algorithm for video retrieval is evaluated and

compared with other methods including per-feature base SVM classifiers, and two alter-

native fusion methods: (1) k-nearest neighbors (k-NN) and (2) a standard SVM fusion.

For k-NN, a score on a test clip was computed by the proportion of the positive neighbors

among k neighbors, where we used k = 70 (found by cross validation). NNs are found by

unweighted Euclidean distances based on discriminative distances, which is a special case

of our approach. For SVM fusion, a single SVM fusion classifier was trained using score

features formed by concatenating all available discriminative base classifier scores. Other
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non-discriminative distances have been studied, but, their results were inferior. Accord-

ingly, the direction has not been further pursued, which is omitted for brevity.

Two performance measures were adopted for our evaluation: (1) area under ROC curves

(AUC), and (2) the probability of false alarms (PFA) at a target error ratio (TER) of PFA

over the probability of missed detections (PMD) as

S τ = τ × PFA + PMD s.t. PMD : PFA = τ : 1. (17)

A specific TER can capture an aspect of user experience regarding the tolerance they are

willing to assume between a missed detection and a false alarm. The TER was set to be

PFA : PMD = 1 : 12.5 in this work. Note that, because positive samples constitute only

0.4 percent of the test data, the per-sample mis-classification cost is still ~16 times higher

for a positive sample than a negative one. In terms of implementation detail, the following

parameters were used for PEF, based on the analysis of data label imbalance and cross-

validation: {K, α, ε, c1, c2} = {5, 1.5, 20, 1}. For the influence function in Eq. (16), the

following variant of Gaussian function has been used for the result reported in this work:

h (De (s)) = exp
[
−α {De (s)}2

]
(18)

A summary of the classification results for the 10 test classes are shown in Figure 12.

For the two metrics, it can be observed that PEF and SVM fusion consistently outperform

all base classifiers, while k-NN shows degradation in AUC. Between PEF and SVM fu-

sion, we observe comparable classification performances: PEF (0.9138) is slightly better

than SVM fusion (0.9089) in AUC, but SVM fusion (3.27%) is slightly better than PEF

(3.36%) in PFA at TER. Given additional advantages provided by PEF, such as recounting

capabilities, the top-end video retrieval performance is appealing.

5.3.3 Qualitative Analysis and Multimedia Recounting

In addition to favorable retrieval performance, PEF provides notable advantages regarding

recounting, which is enabled by the association-based retrieval scheme. We can look into
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Figure 13. Example of video recounting for Parkour: HoG3D is most significant for associa-
tions with the given training exemplar, which contains fast movements of objects and frequent
shot changes. The consistent music sound type is also notable.

the learned relevance weights of per-exemplar local distance functions and obtain insights

about the core characteristics of the exemplar and their associations. In general, samples

are associated when highly weighted features are similar to the exemplar. Four examples

(Parkour, Grooming an animal, Changing a vehicle tire, and Flashmob gathering) are

shown in Figure 13-16 where the learned relevance weights are visualized for the training

examples at the top, along with the top-ranked associated test examples below. The test

examples that share identical labels with the exemplar are marked by circles, otherwise, by

crosses. Additionally, frames from each video clip are shown, along with manually marked

visual and audio characteristics.

Parkour: Figure 13 illustrates an example video for Parkour. The top row indicates

that the given training exemplar will associate with samples that have high correlation

for HoG3D followed by ASM. The top 5 associated test samples indeed show significant

temporal dynamics, i.e., jumping, running fast, tumbling, and etc. It can be observed that

the potential automatic recounting of those examples by transferring both temporal vision
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Figure 14. Example of video recounting for Grooming an animal: Both audio features are sig-
nificant, triggered by water-clapping sound for associations with the given training exemplar,
which includes water-clapping and laughter sound types.
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Figure 15. Example of video recounting for Changing a vehicle tire: ASM is most relevant
to associations with the given training exemplar. For the top 5 associations, speech and faint
noise are observed. HoG3D is also significant among visual features, where circular objects
and static camera motion can be captured by the dense spatio-temporal gradient descriptors.

59



Spatial vision Temporal vision Audio

frequent shot 
change, dynamic

street 
noise,
applause, 
rock music

T
op

 5
 a

ss
oc

ia
te

d 
te

st
 sa

m
pl

es

O
frequent shot 
change

street
noise, 
applause, 
rock music

O
frequent shot 
change

street 
noise, 
applause,
rock music

O
Frequent shot 
change, camera 
shake

street
noise, 
applause, 
pop music

O
camera shake applause, 

rock music

O
frequent shot 
change, a lot of 
camera shake

street 
noise, 
applause, 
rock music

Figure 16. Example of video recounting for Flashmob gathering: MFCC is most significant.
Street noise, applause and loud music are commonly observed. All the visual features are
fairly relevant, which capture a crowd and dynamics in temporal vision.

and audio characteristics of the exemplar will be fairly accurate, regardless of the diversity

in the data.

Grooming an animal: Another example for Grooming an animal is illustrated in Fig-

ure 14. In this exemplar, audio evidence such as water-clapping, cat crying, speech, and

laughter are strong, and it can be observed that the corresponding audio features are highly

weighted. The third associated sample contains very blurry spatial vision due to camera

shakes; however, it could be still accurately retrieved based on audio evidence. While the

accuracy of associations is limited in terms of the class label, it is notable that even the

incorrect results share similar audio properties. Among visual features, OB is the most

important, and it can be seen that associated examples indeed contain similar objects such

as cats and hands.

Changing a vehicle tire: Figure 15 illustrates an example video for Changing a ve-

hicle tire. In this exemplar, we can clearly observe circular objects at top associated test

samples. It is interesting that although the second associated test sample (row 3) is not
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involving the target event class, it contains big circular objects in the middle of the scenes,

and accordingly, is associated to the training exemplar. It is largely because HoG3D that

captures spatial texture is largely weighted. ASM feature is also important because across

the exemplar and associated test samples, human speech is strong evidence to relate these

video clips.

Flashmob gathering: In Figure 16, the most important evidence to associate the exem-

plar and retrieved test samples is MFCC that is efficient to capture general audio informa-

tion across video samples. We could observe that the video samples contain similar audio

sound including street noise, applause, and loud music. It is interesting that ASM, which is

also capable to capture various audio signatures, is lowly weighted. This might be because

between the ASM and MFCC features, MFCC is more efficient to capture such general

audio information occurring in the entire videos. The other visual features are also fairly

relevant that capture complex textures in the video scenes and dynamics in temporal vision.

5.4 Summary

We presented our novel PEF method for video retrieval and recounting. Our approach

incorporates novel schemes to learn and use discriminative local distance functions to as-

sociate with examples that share similar properties on core feature channels. Our experi-

mental results on a large consumer video archive is promising: (1) PEF shows favorable

retrieval results comparable to competitive alternatives, (2) Furthermore, PEF provides sub-

stantial advantages towards understanding core characteristics of each exemplar and auto-

matic tagging of associated samples and retrieval results, which straightforwardly leads to

detailed recounting.
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CHAPTER 6

EXPLICIT PERFORMANCE METRIC OPTIMIZATION BY
MAXIMAL FIGURE-OF-MERIT LEARNING

In many machine learning problems, the success of the learning algorithms is often mea-

sured by domain-specific performance metrics that simulate real-world needs or user ex-

perience. Such domain-specific performance metrics can be largely categorized into two

types. One metric type is based on the classification of competing samples as belonging

to a particular class. For example, the precision of top-ranked retrieval results is used in

[43, 16]; a weighted sum of the probabilities of missed detection and false alarms is pre-

ferred in the TRECVID multimedia event detection (MED) task [20]; and the F1-score

between precision and recall is used in [42]. In these performance metrics, a learning sys-

tem is evaluated by a true-false classification at a specific operating point. On the other

hand, by referring to multiple operating points, the other metric type evaluates the ranking

performance of a learning system according to the relevance of retrieved samples to a given

query, which has been emphasized in text-document or image/video retrieval systems. For

example, in “Google search,” orders of top ranked results among numerous test samples

can be regarded as more important than the true-false classification. In recent years, av-

erage precision (AP) and mean average precision (MAP) have also been widely used in

measuring such ranking performance (e.g., TRECVID high-level feature (HLF) extraction

tasks [101]).

Most conventional learning approaches attempt to optimize their own learning crite-

ria, as opposed to domain-specific performance measures (e.g., support vector machines

(SVMs) learn model parameters that maximize soft margins by incorporating hinge loss).

This discrepancy may introduce a mismatch between training and testing conditions, and
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may potentially yield sub-optimal solutions. As an effort to address this issue, a maxi-

mal figure-of-merit (MFoM) learning framework is proposed in [5]. In an MFoM frame-

work, the four basic elements in the confusion matrix, i.e., true-positve, false-positive, true-

negative, and false-negative terms, are approximated and combined to form a continuous

and differentiable objective function that simulates a target performance metric. Then, an

advanced optimization technique, such as a generalized probabilistic descent (GPD) algo-

rithm [60], is used to explicitly optimize the given performance metric. In this chapter, the

idea of MFoM is extended to the optimization of two challenging performance metrics that

have become popular in evaluating the qualities of multimedia retrieval systems, namely

AP and a weighted sum of the probabilities of false alarms (PFA) and missed detection

(PMD) at a target error ratio.

This chapter is organized as follows: first, the numerical formulation of MFoM learning

frameworks is presented in Section 6.1. Then, the optimization of AP by using an efficient

gradient-based approach is discussed in Section 6.2, with experimental results for an ap-

plication of automatic image annotation. In Section 6.3, the optimization of a weighted

sum of PMD and PFA at a target error ratio is discussed, along with a robust feature fusion

method for multimedia event detection.

6.1 MFoM Learning Framework

The proposed learning task is formulated within a discriminative framework. Let T ={
(x, y) | x ∈ RD, y ∈ C

}
be a set of training data, where x is a D-dimensional sample and

y is a class label belonging to one of two competing classes C = {C+,C−}, i.e., positive

and negative. In this work, a 1-vs-all detection problem is focused for clarity, although a

multi-class extension is straightforward [5].

Let d(x; Λ) ∈ (−∞,∞) be a anti-class confidence function which indicates the confi-

dence that a sample x belongs to the positive class, C+, where a large positive value corre-

sponds to a low confidence and vice-versa. Given d(·) and Λ, the following decision rule is
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applied for the test data:


Label x as C+, if d (x; Λ) < 0

Label x as C−, otherwise.
(19)

The goal is to learn the parameters Λ such that the target metric is minimized.

The core ideas of our MFoM-based learning approach are two-fold. First, we exploit

the fact that most custom target metrics and their sub-components, such as PMD and PFA,

can be expressed as a combination of the four sub-metrics from a confusion matrix: true

positive (TP), false positive (FP), true negative (TN), and false negative (FN). Second, a

target metric that is based on discrete error counts—making it difficult to applying con-

ventional optimization techniques—is approximated with a parameterized continuous and

differentiable loss function L (T ; Λ).

In particular, the four sub-metrics are approximated as continuous functions using (trun-

cated) sigmoid functions σ (·), which approaches one for high confidence for a positive

class C+, or approaches zero otherwise. In detail, the four approximated sub-metrics are

expressed as follows:

T̂ P =
∑

(x,y)|y∈C+

{
1 − σ

(
d(x; Λ)

)}
, (20)

F̂N =
∑

(x,y)|y∈C+

σ
(
d(x; Λ)

)
, (21)

F̂P =
∑

(x,y)|y∈C−

{
1 − σ

(
d(x; Λ)

)}
, (22)

T̂ N =
∑

(x,y)|y∈C−

σ
(
d(x; Λ)

)
, (23)

where the sigmoid function is parameterized by a positive constant α as follows:

σ
(
d(x; Λ)

)
=

1
1 + exp {−α · d (x; Λ)}

. (24)

In all, it can be observed that the loss function L(T ; Λ) is expressed as a function of the

distance function d(x; Λ).
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The anti-class confidence function di (x; Λ) should be designed to reflect the difference

of confidence measures for a corresponding class and competing classes, which is com-

puted from learned class-wise discriminant functions gi (x; Λ), as follows:

di (x; Λ) = −
{
gi (x; Λ) − gi (x; Λ)

}
. (25)

Above, gi (x; Λ) is the class-wise anti-discriminant function, which represents an aggregate

discriminant score for competing class models. In a general form, it can be defined as a

power mean of the competing discriminant functions, as follows:

gi (x; Λ) = log

 1

|Ci|

∑
j∈Ci

exp
{
g j (x; Λ)η

}
1/η

, (26)

where Ci represents the set of the competing classes against Ci, | · | is a cardinality of a set,

and η is a positive constant controlling the aggregation behavior of Eq. (26). In particular,

when η → ∞, gi(x; Λ) = max j∈Ci
g j(x; Λ). In the special case of a binary classification

problem, the class anti-discriminant function is simply formulated as a negative of gi(x; Λ)

which greatly simplifies Eq. (25).

The choice of gi(·) can be any differentiable discriminant functions. For example, a

linear discriminant function (LDF) can be used as

gi (x; Λ) = gi (x; Λi) =

D∑
j=1

ωi jx j + ωi0, (27)

where Λi = [ωi0, . . . , ωiD].

Finally, the optimal parameter Λopt that minimizes L (T ; Λ) is learned by advanced

optimization tools such as the generalized probabilistic descent (GPD) [60], where the

GPD conducts iterative descent steps with varying learning rate κt as follows (refer to [60]

for more detail):

Λt+1 ← Λt − κt ·
∂L (T ; Λt)

∂Λ
(28)

In all, there are three steps needed for the MFoM framework to be properly used for

problems at hand. First, an appropriate parameterized class-confidence function g(x; Λ)
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needs to be defined. The class of linear discriminant functions (LDF) is used in this work;

but, in general, any parameterized function can be used [5, 102] such as a kernelized dis-

criminant function [102]. Second, a good mapping function needs to be designed to pre-

cisely or approximately simulate the target metric. Finally, an effective constant α which

controls the slope of the sigmoid function needs to be selected. The larger α is, the more ac-

curate the approximations in Eq. (24). However, the smaller α is, the smoother the overall

approximation in Eq. (51), which facilitates learning when the dataset is small or severely

unbalanced. In practice, however, we observed that the choice of α affects convergence

speed, rather than accuracy, for most datasets with reasonable sizes.

6.2 Optimization of AP

In an MFoM framework, a learning scheme that approximates a discrete target metric with

a parameterized continuous and differentiable loss function has been well studied in [59,

5, 64]. However, unlike performance metrics studied in [59, 5, 64], which are based on

discrete error counts, AP is based on the orders of sample scores and cannot be smoothed

by approximating the four sub-metrics in the confusion matrix.

In this section, the problem optimizing AP is formulated in an MFoM learning frame-

work. In particular, by assuming AP is a function of individual sample scores, the author

proposes an MFoM learning framework that explicitly optimizes AP (MFoM-AP). It is

shown that AP behaves like a staircase function with respect to an individual sample score,

under the condition where other scores keep their current values. Then, by using a combi-

nation of sigmoid functions, the staircase-like AP function is approximated to a continuous

and differentiable form. Finally, the gradient of AP is formulated by using a chain rule, and

model parameters are estimated by using a GPD algorithm along with adjustment of bias

terms. Since the proposed algorithm does not use conventional pair-wise ranking functions,

which can be computationally too expensive for practical uses especially in large-scale data,

we achieved significantly reduced learning time. To verify the usefulness of the proposed
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method, experiments are conducted on two challenging image-retrieval datasets, the Corel

5k and TRECVID 2005 HLF datasets, while the usage of the algorithm in developing a

fusion system for multimedia event detection will be discussed in Chapter 7.

6.2.1 Multiple Sub-classes for the Negative Class

In this work, although we assumed a binary classification class, we used multiple sub-

classes for the negative class for enhanced discrimination power. In real-world applica-

tions, since it is usually necessary to incorporate imbalanced data, in which the negative

sample space is much broader then the positive sample space, dividing C− into several sub-

classes could give enhanced discrimination power against the positive class. Therefore,

the extended class set C = {C+,C−1 , . . . ,C
−
N} is used, where C−1 , . . . ,C

−
N denote the negative

sub-classes. For the set of model parameters Λ = {Λ+,Λ−1 , . . . ,Λ
−
N}, the class separation

function for a sample x is re-defined as

d(x; Λ) = −g+(x; Λ) + g(x; Λ), (29)

where g+(x; Λ) indicates a class confidence function for a positive class C+, and g(x; Λ)

represents an anti-class confidence function for the positive class, defined a

g(x; Λ) = log

 1
N

N∑
i=1

exp
(
g−i (x; Λ)

)η1/η

, (30)

which is a variant of a geometric average among confidence to all competing classes [5].

The positive parameter η controls the aggregation behavior of Eq. (30); in particular,

lim
η→∞

g (x; Λ) = max
i∈N

{
g−i (x; Λ)

}
. (31)

The benefits of using a set of multiple negative sub-classes are well studied in [103].

6.2.2 Complexity of Pair-wise Rankings for AP Optimization

One possible method to approximate AP is incorporating pair-wise rankings by a similar

manner studied in [68, 69]. Let a ranking score of a sample x be as following:

s(x) = −d(x; Λ), (32)
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of which a large negative value corresponds to a high confidence level. We introduced this

redundant definition to keep consistent notations with previous research in MFoM learning.

Assuming that the numbers of positive and negative samples are Mp and Mn, respectively,

we can sort ranking scores of samples given by a classifier. Let S = {s+
i , s−j |1 ≤ i ≤

Mp, 1 ≤ j ≤ Mn} be the set of sorted sample scores, where s+
i and s−j denote the i-th highest

ranking score among positive samples and the j-th highest ranking score among negative

samples, respectively. In [104], by introducing a pair-wise ranking function, AUC-ROC

is formulated as the normalized Wilcoxon-Mann-Whitney (WMW) ranking statistics. In a

similar manner, AP can also be represented as following:

AP =
1

Mp

Mp∑
i=1

Prec(i) (33)

=
1

Mp

Mp∑
i=1

i∑Mn
j=1 I(s−j − s+

i ) + i
, (34)

where Prec(i) denotes the precision computed on sorted sample scores when an operating

point is the i-th positive score s+
i , and I(·) is an indicator function that represents pair-wise

ranking as

I(s−j − s+
i ) =


1, if s−j − s+

i > 0

0, otherwise.
. (35)

To achieve a smooth overall loss function L (T ; Λ), previous research in [68, 69] tried

to approximate the discrete pair-wise ranking I(·) by using a parameterized sigmoid or

polynomial function [68] as

S (s−j − s+
i ) =

1

1 + e−β(s−j −s+
i )
, (36)

R1(s−j − s+
i ) =


{
−

(
s−j − s+

i − γ
)}p

, if s−j − s+
i < γ

0, otherwise.
, (37)

where β, γ, and p are positive parameters, and a Gaussian kernel-based or sigmoid-like

kernel density function [69] (refer to [69] for more detail).
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Although these approaches successfully design a smooth overall loss function L (T ; Λ)

and have shown promising performance, (Mp × Mn) pair-wise ranking functions still need

to be computed; assuming that most real-world problems convey a large number of training

samples, the use of pair-wise rankings requires considerable computation and maybe not

suitable for practical uses. This complexity issue is a major concern of this work, and

we propose an efficient method based on approximation of AP gradients, discussed in the

following sections.

6.2.3 AP as a Staircase Function

As discussed in Section 6.2.2, optimization of AP with pair-wise rankings requires consid-

erable computation, which would prohibit practical uses. In this section, AP is formulated

as a function of individual sample scores. It is noted that formulating AP as a function of

individual sample scores has been already discussed in [74]; however, in this work, the con-

cept is further developed based on the observation that AP behaves like a staircase function

with respect to a change of individual sample scores. This observation led us to develop an

explicit optimization algorithm that uses the approximation of AP gradients, discussed in

Section 6.2.4.

The proposed approach assumes that AP is a function of scores for all positive and

negative samples, given by a classifier, as

AP = f (s+
1 , s

+
2 , . . . , s

+
Mp
, s−1 , s

−
2 , . . . , s

−
Mn

). (38)

Then, by using the partial gradients of AP with respect to a positive and negative score, ∂AP
∂s+

i

and ∂AP
∂s−j

, the proposed method formulates the gradient of AP regarding model parameters

ω with a chain rule as following:

∂AP
∂ω

=

Mp∑
i=1

∂AP
∂s+

i

∂s+
i

∂ω
+

Mn∑
j=1

∂AP
∂s−j

∂s−j
∂ω

. (39)

However, AP is a discrete function with respect to order changes of sample scores. The par-

tial gradients ∂AP
∂s+

i
and ∂AP

∂s−j
are not available and need to be approximated to continuous and

differentiable forms to adopt advanced optimization techniques, such as a GPD algorithm.
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Figure 17. A change of one particular positive score s+
i . Scores are sorted in descending order:

positive scores and negative scores are marked as circles and triangles, respectively. A value
of the positive score s+

i , marked as a dark circle, is assumed to change from the current value
c+

i , while other positive and negative scores keep their current values.

The approximation scheme for the gradient of AP is based on the observation that the

AP function behaves like a staircase function with respect to a positive or negative score.

To observe this staircase-like behavior of the AP function, it is assumed that a value of

the i-th positive score s+
i can change, while other positive and negative scores keep their

current values. This assumption is illustrated in Figure 17, where all sample scores are

sorted in descending order, and positive and negative samples are marked as circles and

triangles, respectively. Let the dark circle in Figure 17 be the i-th positive score s+
i . The

current values of the positive and negative sample scores are denoted as c+ and c−, e.g., the

(j)-th negative value has its current value as c−j . Then, the condition that all positive and

negative scores, except the i-th positive score s+
i , keep their current values can be defined

as following:

D+
i = (s+

u = c+
u , s

−
v = c−v |1 ≤ u ≤ Mp, 1 ≤ v ≤ Mn, u , i). (40)

Now, we examine how the change of the i-th positive score s+
i affects an AP value. If

the i-th positive score s+
i increases marginally so that an order change between itself and a

neighboring score does not occur, as illustrated in Fig 17-(b), AP will keep the current value
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as AP(s+
i = c+

i |D
+
i ). If the positive score s+

i increases a bit further, as illustrated in Figure

17-(c), the order between itself and the (i-1)-th positive score s+
i−1, which is a higher-ranked

positive score than s+
i , will occur. However, in this case, AP will not change again since

the order change between s+
i and s+

i−1 results only exchanging the values of the precision

Prec(i) and Prec(i − 1) in Eq. (33), and the sum of these values does not change. Next,

imagine the case illustrated in Figure 17-(d), in which the order between the i-th positive

score s+
i and its nearest-higher-ranked negative score, denoted as s−i′ , changes. Unlike the

above cases, AP increases to AP(s+
i = c−i′ |D

+
i ) since the pair-wise ranking function I(s−i′− s+

i )

in Eq. (33) becomes zero from one by the order change. In other words, an order change

between a positive and negative scores makes a discrete step of the AP value. In Figure

17-(e), another order change between the positive scores s+
i and s+

i−2 is considered; similar

to the case illustrated in Figure 17-(b), the AP value is still equal to AP(s+
i = c−i′ |D

+
i ) .

With a further increase of the i-th positive score s+
i , as illustrated in Figure 17-(f), the order

change between the i-th positive score s+
i and the next negative score s−i′−1 occurs so that AP

increases to AP(s+
i = c−i′−1|D

+
i ) since the pair-wise ranking I(s−i′−1− s+

i ) additionally becomes

zero from one, resulting another step in the AP value. On the other hand, with a decrease of

the i-th positive score s+
i , the order change between s+

i and s−i′+1 occurs, illustrated in Figure

17-(g). We can observe a step, downward in this case, in the AP value to AP(s+
i = c−i′+2|D

+
i )

since the pair-wise ranking I(s−i′+1 − s+
i ) becomes one from zero.

The AP function with respect to the change of one particular positive score can be sum-

marized as follows: (1) since AP is based on ranking of sample scores, if any order change

among scores does not occur, AP keeps its value; (2) moreover, order changes among posi-

tive sample scores do not affect the AP value; and (3) when order changes between positive

and negative scores occur, the AP value jumps up or down. In Figure 18, this behavior

of the AP function is illustrated, which is similar to a staircase function. With the current

positive score value s+
i = c+

i , the AP value is equal to AP(s+
i = c+

i |D
+
i ). As the positive score
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Figure 18. The staircase-like AP function according to the change of one particular positive
sample AP(s+

i |D
+
i ) around its current value c+

i .

s+
i changes, the AP function has a discrete step at every point where the positive score be-

comes equal to the current value of a neighboring negative score, c−
i′+2

, c−
i′+1

, c−
i′
, or c−

i′−1
.

In a similar manner, it can be easily shown that the AP function with respect to the change

of one particular negative score s−j also behaves like a staircase function, but moves in the

opposite direction.

6.2.4 AP Optimization through Approximated Gradients

As discussed in the previous section, the AP function with respect to the i-th positive score

AP(s+
i |D

+
i ), illustrated in Figure 18, is a staircase-like function, and accordingly, discrete

and not differentiable—making it difficult to apply conventional optimization techniques.

The core idea of the proposed method is approximating the discrete staircase function

AP(s+
i |D

+
i ) to a continuous and differentiable form and applying a chain rule to acquire

approximated gradients of the AP function.

Assuming that two neighboring steps mostly affect the approximated gradient of a stair-

case function, the proposed method uses a combination of approximated functions around

the two neighboring steps, where s+
i = c−i′ and s+

i = c−i′+1. Among many options, in this

work, we used parameterized sigmoid functions in formulating the smoothed staircase
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function ÂP(s+
i |D

+
i ) as follows:

ÂP(s+
i |D

+
i ) =

σ1

(
s+

i

)
×

(
s+

i − c−i′+1

)
− σ2

(
s+

i

)
×

(
s+

i − c−i′
)

c−i′ − c−i′+1
,

(
c−i′+1 ≤ s+

i ≤ c−i′
)
, (41)

whereσ1

(
s+

i

)
andσ2

(
s+

i

)
denote the two sigmoid functions that approximate the two neigh-

boring steps. Using other functions in approximating a step function has previously been

studied, e.g., a polynomial differentiable function [68] and Gaussian or sigmoid-like kernel

density functions [69]; investigating those functions are beyond the scope of this work. In

a casual manner, the smoothed staircase function ÂP(s+
i |D

+
i ) is formulated as an internal

division of the values of the two neighboring sigmoid functions. In particular, the sigmoid

functions are defined as

σ1
(
s+

i
)

=
A1 − A2

1 + exp
[
−α1

(
s+

i − c−i′
)] + A2, (42)

σ2
(
s+

i
)

=
A2 − A3

1 + exp
[
−α2

(
s+

i − c−i′+1

)] + A3, (43)

where A1, A2, and A3 as following:

A1 = AP(s+
i = c−i′ |D

+
i ), (44)

A2 = AP(s+
i = c−i′+1|D

+
i ), (45)

A3 = AP(s+
i = c−i′+2|D

+
i ), (46)

making the approximated AP function continuous within the given interval of c−i′+1 ≤ s+
i ≤

c−i′ , between the two neighboring negative scores. At the boundaries, where only one neigh-

boring step exists, i.e., i′ < 1 or i′ + 1 > Mn, the proposed approach uses only one part of

the sigmoid functions. In a similar way, the smoothed staircase function with respect to

a particular negative score ÂP(s−j |D
−
j ) can also be formulated, of which the derivation is

trivial and omitted for brevity.

Finally, the gradient of AP with respect to classifier parameters can be formulated with

a chain rule as
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Figure 19. The effect of the parameter γ to the sigmoid functions approximating the AP func-
tion: (a) approximation of the two neighboring steps, σ1

(
s+

i

)
and σ2

(
s+

i

)
, (b) approximated

staircase function ÂP(s+
i |D

+
i ), and (c) approximated gradient ∂ÂP(s+

i |D
+
i )/∂s+

i .

∂AP
∂ω
≈

Mp∑
i=1

∂ÂP
(
s+

i |D
+
i

)
∂s+

i

∂s+
i

∂ω
+

Mn∑
j=1

∂ÂP
(
s−j |D

−
j

)
∂s−j

∂s−j
∂ω

, (47)

where ω indicates the model parameters. It is noted that the approximated partial gradi-

ent with respect to a positive score ∂ÂP
(
s+

i |D
+
i

)
/∂s+

i always has a positive value, since

ÂP(s+
i |D

+
i ) is an increasing function. On the other hand, the approximated partial gradi-

ent with respect to a negative score ∂ÂP
(
s−j |D

−
j

)
/∂s−j always has a negative value, since

ÂP(s−j |D
−
j ) is a decreasing function. With this approximation, we need to calculate only

(Mp + Mn) gradients, and the computational complexity is significantly reduced, when

compared to (Mp × Mn) gradients in pair-wise approaches.

The proposed approximation approach relies on appropriate parameter selection in Eqs.

(42-43), namely α1 and α2 in the sigmoid functions. Small α1 and α2 approximate the AP

function to a linear-like function. On the other hand, large α1 and α2 make the approximated

AP function steep around the two neighboring steps. The smoothness parameters α1 and

α2 could be set with constant values, which might introduce inappropriate learning-window

widths for varying intervals between neighboring scores. On the other hand, optimal values

for the parameters may be found through analytic approaches by learning good values in
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the training phase, e.g., automatically setting the smoothness through Parzen kernel (win-

dow) width estimation [105]. In fact, a more complex scheme of dynamically varying α1

and α2 during learning can be beneficial. The investigation of diverse detailed learning

strategies is beyond the scope of this work, so we focus on illustrating the proposed al-

gorithm with following parameter selection, which has shown competitive performance in

our experiments.

In this work, we defined the parameters of the sigmoid functions α1 and α2 as a func-

tion of another parameter γ normalized by an interval between neighboring scores as the

following:

α1 = α2 =
ln(1/γ − 1)
c−i′ − c−i′+1

, (0 < γ < 0.25). (48)

The parameter γ controls the smoothness of the sigmoid functions, and its effect is illus-

trated in Figure 19. It can be observed that, as γ increases, the gradient of the AP function

becomes large around the neighboring steps and small away from the steps; thus, an opti-

mization process is mainly affected by sample scores near to the steps.

6.2.5 Parameter Estimation with Bias-term Adjustment

Unlike evaluation metrics based on true-false decision making, e.g., precision, recall, and

F-score, the ranking performance, such as AP, does not rely on a learned decision boundary.

Instead, AP is defined by orders of scores from positive and negative samples, i.e., it is

decided by relative differences among the scores rather than their absolute values. This

implies that we can keep the same ranking performance in a training stage, while adjusting

bias terms by subtracting or adding a uniform value to the scores.

We observed that, although bias terms do not affect the AP value, they can affect the

stability of our learning process. In Figure 20-(a), the effect of a bias term is conceptually

illustrated with a simple binary model; two hyperplanes, Model-A and Model-B, are con-

sidered, which have same model parameters β, but differ only by a bias term β0. For a given

set of samples, denoted as Data in Figure 20-(a), the two hyperplanes generate the same
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Figure 20. (a) Models with only difference by β0 and (b) Two-step parameter estimation:(I)
Update using approximated ∂AP/∂β and (II) Adjustment of β0.

ranking statistics. However, assuming that a confidence score is computed by the distance

between an instance and a hyperplane, Model-B requires higher values of parameter up-

dates in a training stage to result the same amount of score change compared to Model-A.

On the other hand, small parameter updates in Model-A could result the large fluctuation of

scores, making it difficult for test performance to converge, especially when the distribution

of training and test instances is different. Moreover, Model-B is more robust in terms of

ranking statistics than Model-A, since normalized scores from Model-B are more discrimi-

native than those from Model-A. With this observation, we adopted a two-step method for

parameter estimation, which includes adjustment of constant terms, as follows:

• Step I. The entire parameter set is updated by a GPD algorithm with the approximated

gradient of AP in Eq. (47). Specifically, we used the inexact line search algorithm

[106] to find an appropriate learning rate.

• Step II. ∆ω is computed to maximize F1 by the following decision rules: positive

decision is made if d(x; Λ) + ∆ω < 0, and negative decision is made, otherwise.

Then, adjust a constant term for the positive class as

ω+
0 ← ω+

0 − ∆ω. (49)

This two-step method is conceptually illustrated in Figure 20-(b). With this manner, we also
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expect that the proposed algorithm can additionally provide reasonable decision results if

they are necessary as well as ranking performances.

6.2.6 Experiments and Analysis

The proposed MFoM-AP learning algorithm for AP optimization is analyzed on an auto-

matic image annotation (AIA) task using two challenging datasets. One is the Corel 5k

dataset, which contains 5,000 images–4,500 training and 500 test samples. The dataset

is labeled with 374 semantic concepts; in this work, 36 classes with at least 100 positive

training samples are evaluated. The other one is the TRECVID 2005 dataset, which is a

large-size dataset including 61,901 keyframes from 137 video clips of broadcast news. The

keyframes were labeled with 39 classes defined by the LSCOM-Lite annotation set [10].

Across the experiments, the same class-identification numbers arranged in [107] are used.

70% of the keyframes were randomly selected as a training set and the others are used as a

test set. We set γ = 10−5 in Eq. (48).

For the both experiments, we used color and texture features based on dense grids,

similar to those used in [49]. In particular, we divided an image into 8x8 dense grids.

Then, from each grid, we extracted a 12-dimensional color histogram, by using mean and

variance of RGB and LAB, and a 12-dimensional texture feature, by using energy of log

Gabor filter. The extracted features are separately quantized to color and texture codewords,

an image feature vector is constructed with a bag-of-word (BoW) representation. Since we

used 64 codewords for each color or texture feature and considered unigrams and bigrams,

the dimension of the feature vector for each feature is 65C2=2,080, considering an edge

as another codeword. Then, we applied latent semantic indexing (LSI) [108], and the

two features are fused in an early fusion manner by concatenating them. The dimension

of the final feature vectors was decided by cross-validation, resulting 1,200- and 1,270-

dimensional feature vectors for the Corel 5k and TRECVID 2005 datasets, respectively.
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Table 7. Comparison of MFoM-AP, pair-wise-AP and MFoM-F1 in mean AP of 36 semantic
classes for the Corel 5k dataset.

MFoM-AP pair-wise-AP MFoM-F1

Training 0.7921 0.7292 0.6478
Test 0.4283 0.4214 0.3925

6.2.6.1 Experiments on Corel 5k dataset

To verify the usefulness of the proposed MFoM-AP in improving AP, we compared its

performance with those obtained with a pair-wise AP optimization scheme (pair-wise-AP)

and an MFoM learning method optimizing F1 (MFoM-F1), by using the same confidence

scores defined in Eq. (32). In particular, for pair-wise-AP, we applied a sigmoid function

to approximate pair-wise rankings in Eq. (34), as studied in [68]. The experimental results

of mean average precision (MAP) over the 36 semantic classes in the Corel 5k dataset are

summarized in Table 7. Overall, MFoM-AP showed the best MAP performance (0.4283),

followed by pair-wise-AP (0.4214), and then MFoM-F1 (0.3925).

In Figure 21, examples of iterative performance by the proposed method are illustrated.

It is noted that training and test performance are drawn in separate scales for clarifica-

tion. We have observed that training performance is gradually improved and converged

as iterations proceed. Compared to training performance, test performance shows shaking

behaviors, especially at early iterations. This is because the number of test data are much

smaller than that of training data (one tenth in our experiments), and their ranking changes

can result large variation in AP values. Nevertheless, we can observe that the test perfor-

mance is stabilized as iterations proceed, and the final results show reasonable performance

through the iterations.

Since AP is largely affected by top ranked samples, we have also observed top retrieved

results in training and test data. Top 10 retrieved results for the grass and bear classes are

illustrated in Figure 22 and 23, respectively. It is interesting that although missed detections

are found in the test data, they are very similar to one of the top retrieved results in training

data. For example, in Figure 22, the second and third test samples correspond to the fifth
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Figure 21. Examples of iterative performance by MFoMAP on semantic classes in the Corel
5k dataset: (a) sun, (b) grass, (c) bear, and (d) snow. Training and test performance are drawn
in separate scales.

and second training samples, respectively, which can also be seen near misses. These near

misses showcase the benefit of the proposed method that retrieves test samples considerably

similar to top-ranked training samples.

For MFoM-AP, we need to perform an additional sorting routine, which can be done in

O
{
(Mp + Mn) log(Mp + Mn)

}
, and approximation process is more complex: two sigmoid

functions for MFoM-AP vs. one sigmoid function for pair-wise-AP. However, the number

of approximation computations significantly decreases by using MFoM (Mp + Mn) instead

of pair-wise-AP (Mp × Mn). For example, given 200 positive and 4.3k negative samples,

we need 4.5k computations of gradient approximation with MFoM-AP, but 860k com-

putations of pair-wise ranking approximation with pair-wise-AP. This reduced number of

approximation computations largely affects the learning time compared to the above men-

tioned additional cost since deriving approximated gradients involves large computations,
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Top 10 training results 

Top 10 test results 

Figure 22. Top 10 results for the grass class in the Corel 5k dataset. The results are sorted
from top-left to bottom-right, while missed detections are marked with red boxes.

Top 10 training results 

Top 10 test results 

Figure 23. Top 10 results for the bear class in the Corel 5k dataset. The results are sorted from
top-left to bottom-right, while missed detections are marked with red boxes.
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Table 8. Learning time ratio of MFoM-AP to pair-wise-AP on the Corel 5k dataset.

Semantic class # of Pos. # of Neg.
Learning time ratio

(pair-wise-AP / MFoM-AP)
sun 101 4399 43.8

grass 446 4054 132.3
bear 198 4302 80.4
snow 267 4233 83.6

Average of the 36 classes 255.4 4244.6 103.2

e.g., the dimension of feature vectors is usually high such as 1,200 for our experiments on

the Corel 5k dataset.

Therefore, although MFoM-AP and pair-wise-AP showed comparable results on the

Corel 5k dataset, we achieved remarkably reduced learning time–approximately 103.2

times faster in average–by using MFoM-AP. In Table 8, the learning time ratio of MFoM-

AP to pair-wise-AP is shown for some selected semantic classes on the Corel 5k dataset.

It showed a tendency that the efficiency of the proposed learning method is more improved

as the number of positive training data increases; in other words, positive and negative data

are more balanced.

6.2.6.2 Experiments on TRECVID 2005 dataset

For the TRECVID 2005 dataset, only MFoM-AP and MFoM-F1 are compared because of

the large size of the dataset and the above mentioned complexity issue. Table. 9 shows

the training and test results of MFoM-AP and MFoM-F1 in detail. We can observe that

MFoM-AP consistently outperforms MFoM-F1 in AP. The MAP of MFoM-AP among the

39 concepts were improved by 18.5% from 0.5356 of MFoM-F1 to 0.6346 for the training

data, and by 5.8% from 0.4039 to 0.4274 for the test data. The reason why the improvement

rates differs much between training and test stages is that AP can be easily improved in a

training stage especially for the concepts with the small number of positive samples, since

AP is largely influenced by top-ranked scores. However, these big improvements could not

be directly applied to the test performance, since the number of positive samples for those
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Table 9. Comparison of MFoM-AP and MFoM-F1 in AP for the TRECVID 2005 dataset.
MFoM_AP MFoM_F1 MFoM_AP MFoM_F1

con#1 pos#2 trn tst trn tst con# pos# trn tst trn tst

1 2245 .717 .631 .635 .572 21 4056 .526 .426 .494 .404
2 10466 .847 .802 .820 .792 22 1443 .437 .304 .379 .273
3 581 .804 .613 .626 .547 23 433 .508 .211 .342 .166
4 172 .825 .326 .626 .299 24 1967 .491 .359 .439 .345
5 1104 .486 .196 .395 .185 25 93 .782 .211 .600 .188
6 2434 .554 .493 .514 .473 26 393 .722 .460 .529 .448
7 5174 .920 .883 .886 .871 27 1903 .710 .622 .584 .580
8 16768 .789 .781 .768 .753 28 393 .657 .294 .471 .276
9 4840 .473 .404 .455 .391 29 422 .527 .115 .383 .094
10 476 .616 .251 .471 .232 30 3339 .534 .392 .504 .378
11 4238 .473 .402 .462 .382 31 216 .526 .188 .436 .162
12 658 .689 .435 .560 .414 32 504 .476 .087 .346 .078
13 3066 .470 .379 .440 .369 33 300 .784 .250 .480 .193
14 5626 .651 .598 .619 .563 34 4612 .356 .286 .366 .294
15 241 .761 .266 .549 .235 35 1060 .462 .260 .381 .236
16 4772 .470 .407 .442 .394 36 857 .531 .298 .422 .267
17 1304 .639 .482 .543 .479 37 374 .505 .154 .361 .137
18 6539 .620 .643 .605 .591 38 760 .818 .643 .697 .609
19 27596 .924 .912 .911 .907 39 406 .725 .267 .413 .283
20 32922 .945 .938 .937 .932 MAP .635 .536 .427 .404

1Class-identification number in TRECVID 2005 dataset
2The number of positive samples in the training data

concepts is relatively too small to cover the large variation of the test data set. We found

that 12 concepts, #1, #3, #15, #22, #23, #25, #29, #31, #32, #33, #35, and #36, showed

significant improvements as more than 10% in a test stage, while some concepts like #17,

#19, #20, and #34 showed improvements less than 1%.

AP is considered equivalent to the area under the precision-recall curve (AUC-PR). The

PR curves of some example classes in the TRECVID 2005 dataset are illustrated in Figure

24. It is notable that the curve of MFoM-F1 abruptly drops in Figures. 24-(b) and (d).

The breakpoints are the operating points, learned to maximize the F1 metric by MFoM-

F1. Although MFoM-F1 can outperform MFoM-AP in the F1 measure at these operating

points, it is clear that MFoM-AP outperforms MFoM-F1 in AUC-PR. This result can give
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(a) Outdoor (#8) (b) Mountain (#12)

(c) Road (#13) (d) Explosion-Fire (#36)

Figure 24. Precision-recall curve. Obviously, MFoM-AP outperforms MFoM-F1 in AUC-PR.

a good explanation as to why learning schemes minimizing classification errors cannot

guarantee optimizing ranking-performance metrics.

6.3 Optimization of PMD and PFA at a Target Error Ratio

In real-world retrieval tasks, the performance metrics that capture user desires can differ

widely from application to application. For example, for a ‘Google search’, the important

metric may be precision of the top-N, for small N (N = 10 to 50, say). For a statistical

analysis problem, on the other hand, recall may be the most important factor. In general,

a large class of these metrics can be thought of as the weighted combinations of PMD and

PFA at a particular operating point.
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In this section, the weighted sum of PMD and PFA at a particular ratio is mainly consid-

ered. Concretely, the goal is:

Minimize S τ = PMD + τ × PFA s.t.
PMD

PFA
= τ. (50)

In the following, the approach with regards to this particular metric is explained. For

example, τ = 12.5 is used for our experiments on TRECVID 2011 MED dataset [20].

However, we note again that the learning method is more general, and can be easily applied

to other metrics such as rankings, F1 or average precision [5, 63].

To optimize the metric in Eq. (50), a standard scheme is to learn a model with its

own learning objective functions (e.g. error rates) and adjust its detection threshold until

the desired ratio of PMD/PFA = τ is met where the metric S τ will be computed. With

this approach, however, there is no guarantee that the learning procedure will focus on

improving performance at particular operating points. The proposed solution described in

the following sections provides a principled approach to achieve such a goal.

In the MFoM learning framework, discussed in Section 6.1, the overall loss function

L (T ; Λ) is formulated from approximate sub-metrics (̂ . ) in Eqs. (20-23), using a mapping

function f (·) as follows:

S τ ≈ L (T ; Λ) = f
(
T̂ P, F̂P, T̂ N, F̂N|Λ

)
(51)

The role of the mapping function f is to reconstruct the loss function L accurately from

sub-metrics. In fact, if the given target metric is a simple combination of sub-metrics, a

precise mapping f is possible; e.g., for the F1 metric where F1 = 2T P/ (2T P + FN + FP).

In some cases, however, the loss function may involve complex conditions such as the ratio

constraint in Eq. (50), which needs approximation. This issue is further discussed in the

following section.

6.3.1 Strategies for Complex Target Metric Approximation

In this section, we present how a good mapping function f in Eq. (51) can be designed to

yield an accurate continuous loss function L(T ; Λ) for a given target metric, with focus on
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the example metric introduced in Eq. (50).

For cases where complex target metrics prohibit the use of precise mapping function f ,

the proposed method is to approximate the target metric as a combination of simpler sub-

functions. This usually involves a set of parameters Γ which control the relative weights

of sub-functions. Optimal values for Γ may be found through analytic approaches by min-

imizing the divergence between the resulting approximation f and the given target metric.

On the other hand, good values for Γ can be found through cross validation as well. In fact,

a more complex scheme of dynamically varying Γ during learning can be beneficial. For

example, in Eq. (50), an optimal value for Γ may differ according to varying values of PMD

and PFA during learning steps. The investigation of diverse detailed learning strategies is

beyond the scope of this work, so we focus on illustrating these ideas on a concrete example

below.

For the example target metric in Eq. (51), a linear sub-function for weighted error

rate
[
P̂MD + τ × P̂FA

]
can be incorporated in a straightforward manner where the approx-

imations P̂MD and P̂FA are set to be equal to F̂N and F̂P (in Eqs. (21) and (22)) divided

by the total number of positive and negative samples respectively. In addition, our map-

ping function should be designed to prefer user-specified target ratio τ between PMD and

PFA. To enforce such a ratio constraint, we include a sub-function R (τ, PMD/PFA) which

monotonically increases loss with respect to the difference between a target ratio τ and the

exhibited ratio P̂MD/P̂FA. By incorporating both terms with a weighting parameter Γ, the

loss function L(T ; Λ) that approximates Eq. (50) is finally defined as:

L (T ; Λ) =
[
P̂MD + τ × P̂FA

]
+ Γ ×

[
R

(
τ, P̂MD/P̂FA

)]
(52)

With small Γ, learning focuses more on minimizing the error rate; however, the learned

model is less likely to show a desired target error ratio τ, since the minimum value of the

weighted error rate could be derived by reducing PFA and sacrificing PMD, especially when

τ is large. On the other hand, with large Γ, learning will focus more on meeting target

error ratio, and less on decreasing error rates. In this work, Γ is set to a fixed constant by
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Figure 25. (a) Iso-contour curves of the loss function L(T ; Λ) defined in Eq. (52) when τ = 2
and γ = 1. The dashed straight line corresponds to a iso-ratio PMD/PFA = 2.
(b) Distribution of the confidence function d(x; Λ) after 1 and 100 iterations in MFoM learning
for positive and negative samples when τ = 5 . As expected, false positives are suppressed more
than false negatives, resulting in an error ratio of 4.68.

searching through cross-validation; this has shown promising results.

Among many options for the ratio constraint approximation term R, we found the fol-

lowing form to work well and used it in this work:

R
(
τ, P̂MD/P̂FA

)
=

log (τ) − log
 P̂MD

P̂FA


2

(53)

The logarithmic squared form used above provides a computational advantage in that over-

all gradients can be easily computed as a sum of two terms (i.e., the gradients of PMD and

PFA), avoiding the complications potentially caused by the direct use of division PMD/PFA.

Furthermore, it is found that the use of logarithmic functions provides a balancing effect
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which alleviates unintended severe dominance of the target ratio error term during opti-

mization.

To showcase the quality of the approximation in Eq. (52), Figure 25(a) illustrates the

iso-contour curves of the loss function, along with the dashed line which corresponds to

the ratio constraint for the case of τ = 2. It can be clearly seen that the designed loss

function is correlated with and declines towards the iso-ratio line. This implies that the

minimum value of the loss function defined in Eq. (52) can be found near the iso-ratio line

and left-bottom of the plot through the gradient descent procedures given in Eq. (28).

More in detail, the behavior of the proposed approach during learning is our MFoM

learning framework in depicted in Figure 25(b). It plots the values of class-confidence

function d(x; Λ) for positive and negative samples for the 1st and 100th iterations when

τ = 5 (i.e., when a desired operating point is PMD/PFA = 5). Observe that as learning

proceeds, the overall error rate (i.e., the weighted sum of PMD and PFA) has been decreased

as larger separation between positive and negative classes is achieved. More interestingly,

for a fixed threshold of zero for the operating point, the ratio of PMD to PFA approaches the

desired value of 5, guided by the constraint term in Eq. (53).

6.3.2 Fusion Framework

The fusion-based video retrieval architecture used in this work is formulated within the

late fusion paradigm, e.g., [47]. By late fusion, we mean that scores are computed in-

dependently by multiple base classifiers, one per feature type, and fusion classification is

conducted on the base classifier scores. The MFoM approach to learn the fusion classifier

parameters is used, which simultaneously optimizes target performance metrics explicitly.

In particular, a specific training approach for late fusion systems is used, described below,

which turns out to be crucial to maintaining performance on novel test data.

The overall architecture for discriminative score fusion is illustrated in Figure 26(a),

where three separate data flows are shown, for proxy base classifier training (blue dashed),

fusion classifier training (green dashed), and test phase (solid red) respectively. During the
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Figure 26. (a) The proposed discriminative score fusion framework, with separate data flows
for training and test phases: (b)-(c) Comparison between score distributions from a base clas-
sifier on (b) training data seen during learning the base classifier and (c) unseen test data; Blue
and red lines indicate distributions of positive and negative samples, respectively. There exists
inconsistency between scores in (b) and (c); scores in (b) are unrealistically accurate, and not
suitable to be used to train a fusion classifier.

test phase, the classification system at the bottom in Figure 26(a) applies base classifiers

on test data to produce per-feature test scores, e.g., audio and video independently. These

base classifiers are trained a priori using all available training data. Then, these scores are

concatenated and used as an input vector to a fusion classifier which produces a single final

score.

During training, each base classifier is trained in a one-vs-all manner as well, and is

used to generate a single score for the target class. For base classifiers, we used SVMs [99]

1 and their estimated probabilities as base classifier scores.

1In theory, MFoM can be used for the training of base classifiers. The hierarchical joint learning is beyond
the scope of this work and will be omitted for clarity.
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For a fusion classifier, we used MFoM learning scheme and adopted LDF as our class-

confidence function in Eq. (19) as g (x; Λ) =
∑

j ω jx j + ω0, where x is the score vector

from base classifiers. Accordingly, MFoM systematically learns the weights for each score

dimension for the target class, while explicitly optimizing the desired performance metric.

This way, the fusion classifier becomes confident when multiple base classifier scores are

high, and vice-versa.

In particular, during the training phase, our system divides training data into sets where

they are used separately to train proxy base classifiers and a fusion classifier, which is

a crucial factor to maintain performance on novel data. By proxy base classifiers, we

mean temporarily constructed base classifiers which are learned from a subset of available

training data. Then, remaining training data are fed into these proxy base classifiers and per-

feature train scores are generated, which are then used as inputs to learn fusion classifiers.

In detail, it is tempting to apply the base classifiers shown at the bottom left of Figure

26(a) on the training data to produce base classifier outputs to be used as training data for

the fusion classifier. However, this approach fails to learn an accurate fusion classifier.

The reason is that the base classifier has already seen all the training data, accordingly, the

generated outputs are unrealistically accurate. For example, Figure 26(b)-(c) show score

distributions generated by a base classifier on already seen training data and unseen test data

respectively. In particular, Figure 26(b) shows the scores by a base classifier on training

data, which are separated very cleanly. Then, Figure 26(c) shows more realistic spread-out

score distribution on unseen test data. Because these two distributions are distinct, a fusion

classifier learned from the unrealistically accurate scores shown in Figure 26(b) is unlikely

to perform well on novel data. Our solution is illustrated in Figure 26(a) as dashed training

flows. In detail, training data is divided into N subsets and proxy base classifiers are learned

with (N − 1) subsets, then used to generate scores on a remaining subset. This procedure

is repeated N times to generate scores for entire training data. This way, we can obtain

more realistic base classifier outputs to be used to train a fusion classifier. This strategy is
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particularly beneficial for datasets with a small number of positive training samples, e.g.,

the TRECVID MED dataset, since it provides a way to use available training data fully for

fusion training.

To improve the performance of the fusion classifier further, we have investigated the

use of additional non-target base classifier scores as inputs for 1-vs-All fusion classifiers,

and observed consistent improvement in the final fusion classification. For example, we

can incorporate the output by a base classifier trained for Birthday party for the training of

a fusion system for the target class of Wedding. In this scheme, our fusion classifier uses

(M × K)-dimensional discriminative scores as its inputs, where there are K features and M

base classifiers available. Abstractly, base classifier outputs can be regarded as supervised

mappings from low-level feature space to score space, and a fusion classifier as a mapping

from scores to a confidence score for a target class. The improvement is expected to be

obtained because a fusion classifier systematically incorporates the correlation among event

classes. Negative correlation as well as positive correlation could be helpful to acquire more

discriminant power, i.e., high probabilities of outdoor event classes infer low confidence on

indoor event classes. Figure 31 illustrates the learned model parameters of fusion classifiers

for the 10 test event classes from TRECVID 2011 MED. The detail of this experimental

results, in addition to the comparison of performance with and without the use of non-target

scores illustrated in Figure 27 is described in Section 6.3.3.

However, it is also noted that this approach assumes reliability of base classifiers; in

other words, additional usage of scores from unreliable base classifiers such as random

perturbation could harm fusion learning. Feature selection on the score space would be an

interesting topic and left for extended works.

6.3.3 Experiments and Analysis

To measure the usefulness of the proposed approach, we have applied our video retrieval

framework on two challenging large-scale consumer video datasets including TRECVID

2011 MED dataset [20] and Columbia Consumer Video (CCV) dataset [16]. Both datasets
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have been collected from video sharing websites and the visual contents are unconstrained

as most YouTube videos. Both the size and complexity of the datasets are beyond other

alternatives such as YouTube Sports [17] or Hollywood datasets [109]. For example, clips

were frequently captured under unconstrained lighting and camera motion, exhibiting di-

verse degrees of encoding artifacts, and heavily edited by owners through shot stitching.

For comparison purposes, the proposed methods is compared against other fusion meth-

ods based on logistic regression (LR) and linear SVM, which are standard fusion techniques

[47, 42]. In addition, final fusion results are compared with and without non-target base

classifier scores, as discussed in Section 6.3.2. For all experiments, performance measure

in the form of Eq. (50) has been used, with different values of τ. For the training of

comparative approaches, we have assigned the weights equal to τ to positive samples. Op-

erating points were selected on the training performance curves where the specified ratio τ

is satisfied. Finally, the performance metrics are computed at the selected operating points.

6.3.3.1 Experiments on TRECVID 2011 MED dataset

The first experiment used the TRECVID 2011 multimedia event detection (MED) corpus

[20], which provides an excellent test-bed for real-world video retrieval problems due to

its large size (45K video clips) and huge inter- and intra-class content variability. For the

MED task, there are 10 annotated event classes: Birthday party (E006), Changing a vehicle

tire (E007), Flashmob gathering (E008), Getting a vehicle unstuck (E009), Grooming an

animal (E010), Making a sandwich (E011), Parade (E012), Parkour (E013), Repairing an

appliance (E014), and Working on a sewing project (E015). For each class, there are 150

positive training samples on average, and there are more than 11K purely negative (i.e., not

from any of the classes) training video clips. As is clear from the list, the event classes

are extremely varied. Moreover, the exemplars within each event class are also extremely

varied. The duration of each clip varied significantly (on average, the duration is about 4

minutes); short clips lasts only tens of seconds, while long videos are more than 1 hour. In

the test data of 33K clips, there are 120 positive examples (0.4 percent) for each class on
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(a)

(b)

Figure 27. Comparison of performance metrics (lower is better). Results by base classifiers,
LR fusion, SVM fusion, and MFoM fusion with only target class scores (‘_S’) and additional
non-target class scores (‘_M’) are shown; (a) 10 classes and average from the TRECVID 2011
MED dataset and (b) Average of 20 classes from the CCV dataset

average, and approximately 31K videos were purely negative.

Five different types of features are used in our experiments. They include both video

and audio features at different granularities: HoG3D [80], Object Bank (OB) [84], GIST

[36], MFCCs [87], and acoustic segment models (ASMs) [87]. The features are computed

on video segments and aggregated into clip-level features.

The overall performance of compared methods for 10 test classes TRECVID dataset is

summarized in Figure 27(a) where lower bars indicate superior performance. For training

of different fusion classifiers (MFoM, SVM, LR), identical base classifier scores were used

where the results with and without non-target class scores are denoted by postfixes _M and

_S respectively. Performance by individual base classifiers are shown as well. It can be

observed that Fusion_MFoM_M (S τ=0.7374) achieves the best performance consistently
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Figure 28. Comparison among the fusion results for three event classes, E007, E008, and E015.
MFoM outperforms SVM and LR, especially along with the isoline of PFM : PMD = 1 : 12.5.
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Figure 29. Comparison among the results by the base and fusion classifiers for E012. The
proposed MFoM fusion with visual features (blue line) outperforms the individual per-feature
base classifiers. The fusion with all the visual and audio features (red line) also shows im-
provement by audio features.
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Top 30 results by fusion

Top 10 results by HoG3D

Top 10 results by OB

Figure 30. Top 30 results by the proposed fusion algorithm, top 10 results by HoG3D and OB;
sorted from top-left to bottom-right. True positives are marked with green boxes.

Figure 31. Learned model parameters of LDF for the event classes E006–E015 on the MED
dataset. Each row is the 50-dimensional model parameter of one-versus-all fusion classifiers
for every event. Each column corresponds to one of 50 base classifiers.

across all events, where it shows meaningful improvement of 12.9% on average, against

Fusion_LR_M (S τ=0.8326) and 7.3% from Fusion_SVM_M (S τ=0.7916). A similar result

holds when using only target-class scores (_S), indicating the generality of our approach.

The benefits of explicit performance metric optimization by our methods can be exam-

ined in more detail by looking at the the detection error tradeoff (DET) curves [93] for three

test event classes shown in Figure 28. DET curves show error tradeoff of a classification

system in the logarithmic-scaled PFA and PMD space. For the three event classes, the DET

curves of the proposed MFoM approach (red) is superior or comparable to other events.
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Other remaining seven event classes showed similar patterns. However, while MFoM per-

forms better than other methods around the operating point, it is not always better away

from the operating point (e.g. E15 (solid) and E07 (dot-dash)). This is not unexpected,

since the goal of our approach is to explicitly improve performance at the operating point.

In terms of training parameters, the MFoM fusion classifiers were trained with the

following parameters: α = 30, and γ = 0.2 ∼ 0.4. γ varies across classes, and was

determined by cross-validation. Similar cross validation schemes were used to identify

optimal parameters for SVM and LR.

Among the individual features shown in Figure 27(a), HoG3D shows the best perfor-

mance on average. It is especially competitive for event classes with temporal dynamics,

such as Parkour. Next, OB is followed, which is competitive for relatively static classes,

such as Making a sandwich. Notably, audio features provide best performance for audio-

rich events such as Birthday party.

All the fusion methods consistently outperform per-feature base classifiers, showing

the clear benefits of fusion for consumer video retrieval tasks. For example, Figure 29

illustrates the effect of fusion by the proposed algorithm for E012 in the DET plot. It is

notable that the fusion of the visual features (blue line) is better than the individual visual

features (HoG3D, OB, and GIST). Furthermore, the final fusion result (red line) is more

improved by additionally incorporating the audio features.

For a qualitative assessment of the fusion algorithm, Figure 30 shows the top retrieved

results for Getting a vehicle unstuck from the fusion classifier and two of the base classi-

fiers. The results are sorted from top-left to bottom-right, and true positives are marked

with green boxes. It is interesting to see that the two visual features seem complemen-

tary. HoG3D captures textures of video scenes as well as temporal dynamics, while OB

outputs responses from object detectors in video frames. Accordingly, some of the top

results by HoG3D are mainly triggered by only textures of video frames such as roads or

plain background, while most of the top results by OB contain a vehicle in the middle of
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frames. Combining textures of scenes and responses from object detectors, the fusion re-

sults show much better performance that mostly have a vehicle object and a consistency in

spatio-temporal dynamics.

The learned model parameters of our MFoM fusion scheme are shown in Figure 31.

Each row represents 50-dimensional LDF parameters, which is composed of the weights

for the 10-dimensional scores from each feature block. A high positive value indicates

strong positive correlation of the corresponding score element to a target class, while a

negative value implies a negative correlation. Diagonal structures are observed because

base classifiers learned for the same target class are more discriminative, as expected. It is

also interesting to see correlations between different event types. For example, the fusion

classifier for making a sandwich (row 6) shows positive correlation with ObjectBank base

classifiers (column 11) for birthday party, perhaps because both events frequently occur in

dining rooms.

6.3.3.2 Experiments on CCV dataset

As the second dataset, we applied the proposed fusion scheme on Columbia Consumer

Video (CCV) dataset [16], which is another publicly available large-scale consumer video

dataset. In total, it includes 9,317 consumer videos and is labeled for 20 classes which

mostly include complex events such as ice skating and graduation. In addition, it provides

three types of precomputed bag-of-words features for SIFT, STIP [109], and MFCC. There

are 180 training positive samples for each class on average.

The identical experiments are conducted on CCV dataset, and the proposed fusion

method is compared against SVM and LR. A performance metric of S τ with τ = 10 was as-

sumed for this evaluation. For all three types of features, base classifiers are learned using

HIK SVMs. Then, fusion classifiers were learned on top of the identical base classifiers.

Experimental results on CCV dataset are summarized on Figure 27(b). Patterns iden-

tical to the results on TRECVID dataset has been observed for all 20 event classes. For

brevity, only the average performance across all classes is shown here. Overall, there is an
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average gain of 10.1% and 6.3% achieved by MFoM-based fusion (MFoM_M, S τ=0.5208),

over the LR fusion method (LR_M, S τ=0.5637) and the SVM fusion method (SVM_M,

S τ=0.5536), respectively.

6.4 Summary

In this chapter, we have presented the novel frameworks that explicitly optimize given per-

formance metrics. First, a novel learning scheme that optimizes a ranking performance

measure in an MFoM framework was proposed, with a focus on one of the most widely

used ranking performance metrics, AP. We discussed the behavior of AP as a staircase

function with respect to each individual sample score. Our approximation scheme for AP

gradients showed remarkably reduced computational complexity when compared to the

pair-wise ranking approximation. The experimental results on the two challenging datasets

showcased the usefulness of the proposed algorithm, while showing a meaningful improve-

ment over a learning scheme maximizing F1 and significantly reduced learning time over a

pair-wise method. The framework is more general and easy to be applied to other ranking

performance metrics.

In addition, we showcased an effective approximation scheme for the important class of

weighted metrics which can include sub-metrics such as PMD and PFA. The experimental

results on two large consumer video archives are promising, and suggest that our approach

will add value for real-world computer vision applications with sophisticated user needs.
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CHAPTER 7

AN INTEGRATED SYSTEM FOR MULTIMEDIA EVENT
DETECTION AND RECOUNTING

Throughout Chapters 4-6, a few techniques for multimedia event detection and recounting

have been studied, by separately addressing the challenging issues at different stages of

a multimedia retrieval system, especially in large-scale and unconstrained consumer video

data. In particular, in Chapter 4, the multi-way local feature pooling method is proposed, by

using scene concept analysis. In Chapter 5, it is presented that the per-exemplar learning

efficiently address within-class diversity in a complex multimedia event class. Finally,

in Chapter 6, efficient fusion methods that explicitly optimize sophisticated performance

metrics, which are widely used in measuring the quality of multimedia retrieval system.

In this chapter, an integrated system is proposed, which attempts to take full advantages

of the proposed techniques, by using each scheme as a module of an entire system. It is

noted that the suggested approach is an example of utilizing the benefits of previously stud-

ied techniques, and they can be flexibly deployed for general uses. Extensive experiments

have been conducted on the integrated system, by evaluating effects of the implemented

sub-routines in contrast to conventional methods.

7.1 Overview of the Integrated System

The suggested integration is summarized in Figure 32, which is based on a hierarchical ap-

proach. It is noted that the system is applied to each multimedia event class type. First, once

features are extracted from a video clip, the multiple local feature pooling method (MLP),

discussed in Chapter 4, is applied, in contrast to a conventional video-level feature pooling

method. Then, an HIK-SVM is learned as a base classifier on the constructed feature, while

generating a confidence score by a corresponding feature type to a target event class. In

addition, assignment vectors regarding multiple scene concepts, generated by Eq. (10), are
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Figure 32. Diagram of the proposed integrated system: it takes the frameworks developed in
the previous chapters as sub-routines, and improves the quality of multimedia event detection
and recounting.

also collected and concatenated in a vector form with the additional confidence score. For

example, if an algorithm involves M scene concepts, an (M + 1)-dimensional feature vector

is constructed for each feature type. The reason of incorporating the soft-assignment values

into the feature representation is to further improve multimedia recounting capabilities of

the integrated system. In this way, we can take advantages of MLP in representing a video

clip and the useful information from correlation between a video clip and constructed scene

concepts.

The second module in Fig. 32 is to fuse multiple features by using the per-exemplar

learning method, presented in Chapter 5. In particular, the base classifier results from var-

ious features are concatenated into a vector form as input for fusion. It is assumed that

there are N types of features; accordingly, the dimension of the concatenated vector is

N× (M + 1). As studied in Chapter 5, a fusion method based on per-exemplar learning pro-

vides a competitive fusion results and additional multimedia recounting capabilities. Since

the soft-assignment weights regarding constructed scene concepts are used as elementary

distance measures to learn a local distance function of per-exemplar learning, multime-

dia recounting can be conducted on various scene types (in total, N × M scene concepts

from different feature types) in a video as well as feature types by confidence scores from

base classifiers. For multimedia retrieval, learned local distance functions for all training

exemplars are delivered to the next module in Fig. 32.
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After fusion is made by per-exemplar learning, the proposed MFoM learning frame-

works, discussed in Chapter 6, are used to improve the search quality of the integrated sys-

tem. In particular, effects from different training exemplars toward final retrieval scores are

learned in a way to explicitly optimize a given performance metric, in this dissertation, AP

or a weighted sum of PMD and PFA at a target error ratio. Let E =
{
ei|ei ∈ RN×(M+1), 1 ≤ i ≤ Ntrn

}
and X =

{
x j|x j ∈ RN×(M+1), 1 ≤ j ≤ Ntst

}
be a set of training exemplars and test samples, re-

spectively. Then, a final retrieval score for the j-th test sample x j is defined as a linear

combination of local distance functions learned for training exemplars, provided by the

previous fusion sub-routine in per-exemplar learning as following:

s j =

Ntrn∑
i=1

λiDei

(
x j

)
, (54)

where Dei (·) is a local distance function learned for the i-th training exemplar ei, as in Eq.

(11). Then, model parameters Λ = {λi|1 ≤ i ≤ Ntrn} are learned by the MFoM learning

frameworks, discussed in Chapter 6. In this way, a final retrieval score is recomputed from

local distance measures to simulate user needs, characterized by a preferred performance

metric.

In all, while the proposed integration scheme involves multiple and complex sub-routines,

its objectives are clear: improving the quality of multimedia event detection and recounting,

by addressing sophisticated user needs as well as unstructured contents and within-class

variability in consumer video data.

7.2 Experiments and Analysis

The proposed integration has been evaluated by using TRECVID 2011 MED data. For fea-

ture types, to fully verify the system in various feature modalities, a large array of features

including both visual and audio features is considered as following: HoG3D [80], GIST

[36], Color SIFT [81], ISA [82], TCH [81], SUN09 [83], ObjectBank [84], MFCCs, and

ASMs [86]. The detail of the features can be found in Chapter 3. It is noted that MLP

is only applied to HoG3D, GIST, ObjectBank, MFCCs, and ASMs, since the other feature
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Table 10. Comparison of per-exemplar learning(PEL) with and without scene concept assign-
ments in mAP (%).

eventID Chance PEL /wo SC assignments PEL /w SC assignments
E006 0.54 34.66 34.76
E007 0.35 37.54 38.34
E008 0.42 60.66 60.40
E009 0.26 35.20 36.26
E010 0.25 12.74 12.82
E011 0.43 15.82 16.01
E012 0.58 34.43 34.88
E013 0.32 41.70 42.28
E014 0.27 51.37 51.62
E015 0.26 20.73 21.81
mAP 0.37 34.49 34.92

types are extremely sparse, or frame-level features are not available. For such features, base

classifiers are trained on a clip-level feature with HIK-SVM, and only confidence scores

are delivered to the fusion sub-routine.

7.2.1 Multimedia Event Detection

To evaluate the effects of the sub-routines implemented in the proposed integration, the

following experiments were conducted: (1) per-exemplar fusion learning with vs. without

scene concept assignments, and (2) association-based fusion scores by per-exemplar learn-

ing only vs. scores recomputed by MFoM that optimizes a domain specific performance

metric, defined in Eq (54). It is noted that the usefulness of MLP per feature type has

already been studied in Section 4.2.

First, in Table 10, the per exemplar learning methods with and without scene concept

assignments are compared in mAP (%). We can observe consistent improvement by per-

exemplar learning with scene concept assignments over that without scene concept assign-

ments. While the improvement is not very significant, the use of scene concept assignments

additionally improves multimedia recounting capabilities, discussed in the following sec-

tion. Furthermore, since the soft assignment values to scene concepts for a video clip are

already computed during learning base classifiers, no additional computation is required,
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Table 11. Comparison of average performance of fusion scores learned by association-based
per-exemplar learning, and recomputed by MFoM-AP and MFoM-S τ (S τ can be found in Eq.
(50)). For brevity, mean performance across the 10 event classes, mean PFA @ a target error
ratio (TER) (%) and mAP (%), is presented.

Chance Assoc.-based PEL MFoM-AP MFoM-S τ

mean PFA @ a TER 7.41 2.46 2.45 2.17
mAP 0.37 34.92 36.34 34.15

which makes it appealing to include the scene concept assignments in per-exemplar learn-

ing.

The second experiment was conducted to verify effects of fusion score re-computation

by MFoM learning. As two performance metrics were discussed in Chapter 6, namely AP

and a weighted sum of PFA and PMD at a target error ratio (TER), two MFoM schemes,

which are denoted as MFoM-AP and MFoM-S τ, respectively, were compared with the

association-based per-exemplar learning. The results are summarized in Table 11, in the

corresponding performance metrics. It is noted that PFA at a TER (PFA : PMD = 1 : 12.5,

as suggested by [20]) delivers the same quality of a weighted sum of PFA and PMD at

a target error ratio (TER); however, it is more compactly presented. The results clearly

demonstrate the benefits of MFoM learning in recomputing fusion scores at the back-end

of the proposed system: MFoM-S τ shows superior performance in mean PFA @ a TER,

while MFoM-AP can improve mAP.

7.2.2 Multimedia Recounting

The proposed system provides further improved multimedia recounting capabilities beyond

the per-exemplar learning on discriminative element distance measures, discussed in Chap-

ter 5. Such improvement is particularly enabled by using a rich set of scene concepts. In

Figure 33, examples of video segments for corresponding scene concepts by HoG3D are

presented. Across the presented scene concepts, common spatio-temporal visual aspects

have been found, which are imposed by HoG3D. For example, in Figure 33(a), visual con-

tents in the video segments look similar. These segments are included in one scene concept,
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(a)

(b)

(c)

(d)

Figure 33. Examples of video segments for corresponding scene concepts by HoG3D: (a)
complex textures (often involving crowd), (b) plain region, (c) human standing, and (d) a big
square-shaped object.

which involves complex textures, e.g., crowd scenes. On the other hand, we can observe

that video segments in Figure 33(b) convey plain region such as sand or see. In Figure

33(c), most video segments include a human standing in the middle of video scenes, while

video segments in Figure 33(d) contain a big square-shaped object, mostly a vehicle.

As studied in Section 5.3, the per-exemplar learning method generates a unique weight

vector on an elementary distance, which is measured by a similarity with respect to scene

concepts in the integrated system, per training exemplar. It is expected that a retrieved video

sample can be reasoned with the associated training exemplars in terms of its relevance to

the exemplars by referring to a rich set of scene concepts.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

This dissertation discussed the schemes that effectively improve the quality of multimedia

event detection systems by addressing challenging issues that have not been intensively

studied in previous research. Such challenging issues include the sparseness of strong evi-

dence in unstructured video data, the within-class content variability in complex multime-

dia event categories, and the necessity to design a detection model that explicitly optimizes

a domain-specific performance metric to simulate user experiences. Through extensive

experiments by comparison with many state-of-the-art schemes, the usefulness of the pro-

posed schemes is verified.

8.1 Summary of the Research in this Dissertation

The research presented in this dissertation is summarized as following. First, in Chapter

3, various features for representing multimedia data are discussed. The detailed methods

to construct feature vectors from audio/visual and low/high-level features are presented,

along with their capabilities to describe various types of information in multimedia data. In

addition, non-linear kernels, which have been widely used in the communities of computer

vision and multimedia processing, are evaluated for the tasks. The extensive comparison

among the features provides useful information to efficiently utilize them for video repre-

sentations.

In Chapter 4, a segmental multi-way local feature pooling method by using scene con-

cept analysis is proposed. This scheme demonstrated benefits over conventional methods

by constructing clip-level representations via average-based global pooling. The key idea

of the framework is to utilize similarities between two videos in terms of various scene

concepts and to improve a discriminative power by using kernelization techniques. In par-

ticular, the proposed method utilizes scene concepts that are pre-constructed by clustering
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video segments into categories in an unsupervised manner. Then, a video is represented

with multiple feature descriptors with respect to scene concepts. Finally, multiple kernels

are constructed from the feature descriptors, and then, are combined into a final kernel that

improves the discriminative power for multimedia event detection. This method is evalu-

ated on TRECVID 2011 MED data with an extensive comparison to other state-of-the-art

methods. The experimental results showcased the usefulness of the proposed multi-way

local feature pooling method on widely used visual and audio features.

In Chapter 5, a per-exemplar learning scheme is proposed with a focus on fusing multi-

ple types of heterogeneous features for video retrieval. While the conventional approach for

multimedia retrieval involves learning a single classifier per category, the proposed scheme

learns multiple detection models, one for each training exemplar. In particular, a local dis-

tance function is defined as a linear combination of element distance measured by each

features. Then, a weight vector of the local distance function is learned in a discrimina-

tive learning method by taking only neighboring samples around an exemplar as training

samples. In this way, a retrieval problem is redefined as an association problem, i.e., test

samples are retrieved by association-based rules. In addition, it is shown that the proposed

per-exemplar learning scheme can enable a rich set of recounting capabilities, where the

rationale for each retrieval result can be automatically described to users in order to aid

their interaction with the system. The algorithm is verified on challenging consumer video

corpora, the TRECVID 2011 MED and CCV data, while showing competitive fusion per-

formance compared to other state-of-the-art fusion methods. Moreover, multimedia event

recounting capabilities are demonstrated on real video examples.

In Chapter 6, in MFoM learning, novel algorithms were proposed to explicitly optimize

two challenging metrics, AP and a weighted sum of PMD and PFA at a target error ratio.

Most conventional learning schemes attempt to optimize their own learning criteria, as

opposed to domain-specific performance measures. By addressing this discrepancy, the

proposed learning scheme approximates the given performance measure, which is discrete
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and makes it difficult to apply conventional optimization schemes, with a continuous and

differentiable loss function which can be directly optimized. Then, a GPD algorithm is

applied to optimizing this loss function. In particular, a key contribution in Chapter 6 is

extending the MFoM learning to the two challenging metrics, which are complex compared

to simple error metrics, e.g., precision or F-scores. Optimizing AP was evaluated in an

AIA problem, and minimizing a weighted sum of PMD and PFA at a target error ratio was

verified on a fusion problem for multimedia retrieval. For both studies, experiments were

conducted on large-scale image/video data, along with extensive comparison with state-of-

the-art methods. The experimental results are appealing, while suggesting the usefulness

of the proposed algorithm for multimedia retrieval.

Finally, in Chapter 7, an integrated framework, via taking advantage of the aforemen-

tioned schemes, is discussed. The extensive experimental results demonstrate the advan-

tages of each scheme, while the full advantage has been achieved by using a combination

of all proposed schemes. It is noted that the integrated framework involves an exemplar

usage of the proposed schemes, which are more flexible for general uses.

8.2 Avenues for Future Work

Although this dissertation presents a novel framework for multimedia event detection and

recounting, there still exists room for further improvements. One immediate future research

venue concerns investigating more feature types, which can provide further information

embedded in consumer videos. It has been observed that most features from different gran-

ularities have complementary properties, i.e., a system usually improves, when additional

features are combined by a fusion scheme. Such features may include high-level semantic

features beyond low-level features, which are primarily used in this thesis. However, ex-

tracting meaningful and robust high-level semantic features still seems challenging due to

unconstrained contents in consumer videos.

Another future work worthy of consideration is to extend the proposed per-exemplar
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learning to incorporating low-level features beyond base classifier scores. While base clas-

sifier scores provide useful discriminative distance measures, multimedia recounting capa-

bilities can be further improved by directly using low-level features. For example, within

an image feature, local distances in the low-level feature spaces can provide more detailed

recounting information, by suggesting specific scene-types. For this purpose, a compact

description of the low-level features needs to be studied, e.g., features selection or dimen-

sion reduction, since most low-level features are represented in a BoW descriptor with

thousands codewords and may introduce bias issues in high-dimensional spaces.

In addition, we can also investigate extended uses of the proposed fusion learning

scheme beyond a linear combination of base classifier scores. For example, fusion by

the geometric mean has been found to show competitive performance when compared to a

linear discriminant function. This investigation will naturally involve the study of effective

score normalization methods. The distribution of base classifier scores can significantly

differ by feature/classifier types. In such cases, learning only linear weights on these scores

might not address the large variance of score distributions, and accordingly, will generate

a less optimal solution. A normalization scheme can be defined in a parameterized model,

and then, learned while training a fusion classifier.

In all, this dissertation involves a valuable discussion on multimedia event detection

and recounting. It is hoped that the research presented in this dissertation contributes to

further developments in this area.
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