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SUMMARY 

 

Stress can be a driving force for new evolutionary changes leading to local 

adaptation, or may be responded to with pre-existing, ancestral tolerance mechanisms. 

Using brachionid rotifers (microzooplankton) as a study system, I demonstrate roles of 

both conserved physiological mechanisms (heat shock protein induction) and rapid 

evolution of traits in response to ecologically relevant stressors such as temperature and 

hydroperiod. Rapid evolution of higher levels of sex and dormancy in cultures mimicking 

temporary waters represents an eco-evolutionary dynamic, with trait evolution feeding 

back into effects on ecology (i.e., reduced population growth). I also reveal that 

prolonged culture in a benign laboratory environment leads to evolution of increased 

lifespan and fecundity, perhaps due to reduction of extrinsic mortality factors. Potential 

mechanisms (e.g., hormonal signals) are suggested that may control evolvability of facets 

of the stress response. Due to prior studies suggesting a role of progesterone signaling in 

rotifer sex and dormancy, the membrane associated progesterone receptor is assayed as a 

candidate gene that could show positive selection indicating rapid divergence. Despite 

some sequence variation that may contribute to functional differences among species, 

results indicate this hormone receptor is under purifying selection.  

Detailed analyses of multiple stress responses and their evolution as performed 

here will be imperative to understanding current patterns of local adaptation and trait-

environment correlations. Such research also is key to predicting persistence of species 

upon introduction to novel habitats and exposure to new stressors (e.g., warming due to 

climate change). Perhaps one of the most intriguing results of this dissertation is the 



 x 

rapid, adaptive change in levels of sex and dormancy in a metazoan through new 

mutations or re-arrangements of the genetic material. This suggests species may be able 

to rapidly evolve tolerance of new stressors, even if standing genetic variation does not 

currently encompass the suite of alleles necessary for survival.  
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CHAPTER 1 

INTRODUCTION 

 

Environmental Stress and the Biota, with an Emphasis on Thermal Stress and 

Hydroperiod 

 Stress is recognized as an important force structuring ecosystems and driving 

evolution, imposing selection pressure for adaptations to increase fitness and affecting 

persistence of species and populations (Parsons 1991, Chippindale et al. 1998, Bijlsma 

and Loeschcke 2005, Sabo and Post 2008). Stress responses determine limits of species’ 

tolerance ranges for environmental conditions and extremes (Roelofs et al. 2008). Due to 

different physiological tolerances among taxa, what constitutes stress varies among 

species and can be difficult to define (Bijlsma and Loeschcke 2005, Liancourt et al. 

2005). Typical expectations are for organisms to be most stressed under conditions 

outside those normally experienced in their environment (Bijlsma and Loeschcke 2005). 

However, frequent exposure to environmental conditions does not guarantee that those 

conditions are not perceived as stressful. For example, organisms in the highly variable 

intertidal region are exposed to greater thermal fluctuations than subtidal taxa, but still 

induce a heat shock response at temperatures experienced in their natural habitat 

(Tomanek 2010). Here I define stress as anything causing a reduction in performance, 

growth and reproduction, or viability—something endangering the function or survival of 

organisms or causing a harmful change (Bradshaw and Hardwick 1989, Parsons 1991, 

Schimel et al. 2007, Sabo and Post 2008). Specifically I focus on externally imposed 

environmental stressors. 
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Studies of stress tolerance are particularly timely considering increasing 

anthropogenic changes to the environment. Stressful conditions may include fluctuating 

but predictable environmental changes such as salinity shifts in estuaries (Elliott and 

Quintino 2007), or atypical conditions like those encountered upon migration to a new 

environment (Ghalambor et al. 2007). Stress also includes pulse events resulting in 

mortality and thereby potentially clearing space for new colonizers; such disturbances 

may alter diversity, food chain length, and ecosystem processes (Connell 1978, Schimel 

et al. 2007, Sabo and Post 2008). Anthropogenic influences can add new sources of stress 

or exacerbate natural ones by altering or destroying habitats. In toads, elevated levels of 

the stress hormone corticosterone are associated with low habitat availability or high 

levels of fragmentation (Janin et al. 2011). Anthropogenic effects can indirectly impose 

stressful conditions as well, exemplified by human-mediated increases in greenhouse 

gases that are contributing to climate change (Crowley 2000). Elevated carbon dioxide 

levels and climate change are predicted to impact an array of environmental factors 

including temperature, precipitation and drought events, and ocean acidification; these in 

turn can affect species’ survival and distribution (Pearson and Dawson 2003, Brooks 

2004, Reusch and Wood 2007, Hofmann and Todgham 2010). 

 Temperature constitutes one of the most obvious environmental conditions altered 

by climate change (Reusch and Wood 2007, Hofmann and Todgham 2010). Research has 

already documented effects of global warming on ecosystems and the biota, including 

altered phenology—the timing of seasonal events such as flowering in plants, and egg-

laying in birds (Dunn and Winkler 1999, Hughes 2000, McCarty 2001, Miller-Rushing 

and Primack 2008). In Lake Baikal, warming over the past 60 years is associated with 
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shifts in the planktonic community, including over a 300% increase in cladoceran density 

(Hampton et al. 2008). Thermal regimes and climate change influence a variety of 

properties from shifts in species distributions to individual physiology (Harley et al. 

2006, Hofmann and Todgham 2010). At the cellular level, elevated temperatures can alter 

enzymatic reaction rates, or denature proteins and disrupt membrane fluidity (Hofmann 

and Todgham 2010). Furthermore, thermal shifts exert indirect effects by modifying 

other environmental conditions. In aquatic habitats altered temperature and precipitation 

patterns as anticipated under climate change can influence hydroperiod, the length of 

inundation in temporary waters such as vernal pools (Brooks 2004, 2009). 

 In addition to temperature, hydroperiod presents a key source of stress. For both 

terrestrial and aquatic taxa, dehydration is listed as one of the most critical forms of stress 

(Watanabe 2006), and for aquatic species habitat desiccation can lead to mortality. 

Hydroperiod is one of the most important forces structuring communities in temporary 

pools (De Meester et al. 2005, Jocque et al. 2010). Hydroperiod impacts community 

composition and distribution of a diverse range of taxa, including aquatic macrophytes, 

macro- and microinvertebrates, and amphibians (Schneider and Frost 1996, Snodgrass et 

al. 2000, Brock et al. 2003, Céréghino et al. 2008). Typically, species richness is higher 

in more permanent systems, but ephemeral waters may house rare species (Collinson et 

al. 1995, Wellborn et al. 1996, Serrano and Fahd 2005, Frisch et al. 2006, Fahd et al. 

2007). Hydroperiod also affects the relative importance of biotic interactions; higher 

abundance and diversity of predators can increase the role of predation in more 

permanent water bodies (Schneider and Frost 1996, Wissinger et al. 2003, De Meester et 

al. 2005, Marion and Hay 2011). 
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Stress Tolerance and Evolution of Adaptations 

 Stressful conditions may exceed a species’ tolerance limits resulting in extirpation 

or emigration, but some individuals may persist through phenotypic plasticity (Piersma 

and Drent 2003), physiological stress response mechanisms (Sørensen 2010), or life 

history adaptations such as dormancy (Cáceres 1997, Brock et al. 2003). Tolerance 

mechanisms of organisms are wide-ranging. Responses to stress include changes in gene 

expression, homeostasis and folding of proteins, organization of the cytoskeleton, 

metabolic activity, and progression through the cell cycle (Kültz 2005, de Nadal et al. 

2011). Gene transcription can be up- and/or down-regulated within minutes of stress 

exposure (de Nadal et al. 2011). Associations of traits with environmental gradients may 

suggest evolved adaptations; indeed, most research on evolved responses to climate 

change consists of correlative studies (Reusch and Wood 2007). 

Commonalities in the stress response have been studied at the level of 

evolutionary conservation across taxa, as well as responses to different types of stressors. 

It has been suggested that signal transcription factors differ more between soil 

invertebrates and plants than effector genes in the stress response, with effector 

(endpoint) genes including heat shock proteins that act as molecular chaperones (Roelofs 

et al. 2008). In contrast, in a review focusing on yeast, Drosophila melanogaster, and 

mammals, de Nadal and colleagues (2011) propose stress sensors and effectors are less 

conserved than signal transduction pathways such as stress-activated protein kinase 

pathways. In comparing responses to different types of stressors experienced by soil 

invertebrates and plants, Roelofs et al. (2008) report that greater similarities exist in 

genomic and transcriptomic regulation in response to drought, salinity, and cold, with 
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heavy metals or heat affecting more distinct molecular pathways. Genes involved in 

oxidative stress responses are affected by several different types of stressors (e.g., hot or 

cold temperatures) (Roelofs et al. 2008). Research spanning archaea, eubacteria, yeast, 

and humans pinpoints several molecular chaperones including heat shock proteins (e.g., 

DNAJ/HSP40, HSP60 chaperonin, and HSP70) as part of the minimal stress proteome, a 

suite of universally conserved proteins implicated in the cellular stress response (Kültz 

2005). Heat shock proteins facilitate survival of several stressors besides heat (Feder and 

Hofmann 1999, Sørensen 2010). Despite these attempts to elucidate conservation or 

divergence of responses across different stressors, and by different organisms, this 

remains a very broad field of research requiring more information to facilitate 

comparisons. 

 In addition to cellular physiological responses, adaptations to stress include life 

history modifications and dormancy. In temporary waters, organisms from aquatic insects 

in the larval stage to zooplankton and fishes tend to show accelerated development and 

shortened life cycles compared to their permanent water counterparts (Valdesalici and 

Cellerino 2003, Wissinger et al. 2003, Suhling et al. 2005, Schröder et al. 2007). More 

rapid development is thought to be adaptive, allowing completion of the life cycle before 

habitats dry. When spatial migration is not possible and adults cannot survive in the 

habitat, dormancy provides a means for persistence (Cáceres 1997). Dormancy—a resting 

stage comprised of arrested development and/or metabolism—can be subdivided into 

quiescence (initiated and maintained by external conditions) and diapause (regulated by 

internal physiology) (Hand 1991, Cáceres 1997). In ephemeral habitats diapause is 

employed by plants and many invertebrate phyla, including sponges, zooplankton, 
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insects, and even higher taxa such as some fishes (Cáceres 1997, Hand and Podrabsky 

2000, Simon et al. 2002, Brock et al. 2003, Valdesalici and Cellerino 2003, Watanabe 

2006). Diapause is often associated with sex, particularly among facultative or cyclical 

parthenogens that alternate between asexual and sexual reproduction (Simon et al. 2002, 

Brock et al. 2003, Serra and Snell 2009). Sex itself may foster survival in changing or 

heterogeneous environments, for example, by providing new genetic variation through 

meiotic recombination and segregation (Hurst and Peck 1996, Burt 2000, Becks and 

Agrawal 2010). The association between sex and dormancy also may lead to eco-

evolutionary feedbacks, whereby ecology influences evolution, which in turn impacts 

ecological dynamics (Schoener 2011). For instance, ecological factors such as stress 

levels may influence the evolution of sex, and ultimately incur a cost to population 

growth (Stelzer 2012).  

 Associations of species or traits with stressful habitat conditions may reflect 

species selection or sorting where environmental conditions filter species based on pre-

existing adaptations or traits (Jablonski 2008), or local adaptation and evolution in situ 

(Kawecki and Ebert 2004). It is generally accepted that stress has a role in evolution; 

environmental stress has been defined by some as a driving force for evolved adaptations 

to environmental change (Parsons 1991, Bijlsma and Loeschcke 2005). Yet evolutionary 

mechanisms and causes of trait-environment correlations can be challenging to identify, 

and often are poorly understood (Badyaev 2005). Manipulative experiments can be used 

to test whether fitness differences across environmental gradients are due to local 

adaptation to a habitat feature of interest (Kawecki and Ebert 2004). 
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Experimental evolution research is beginning to shed light on the process of 

adaptation to stressful conditions and rapid evolution. In these studies, environmental 

conditions are manipulated but the researcher does not directly select for a specific 

adaptive trait; evolution results from differential fitness among individuals via natural 

selection (Buckling et al. 2009). Experimental evolution approaches have uncovered 

several instances of rapid evolution. Rapid evolution can be considered as contemporary 

evolutionary changes that occur swiftly enough to affect ecological dynamics (Hairston et 

al. 2005, Ellner et al. 2011). For instance, Fussmann et al. (2007b) suggest rapid 

evolution occurs within ~1000 generations. Rapid evolution in response to stress, and 

stress-induced hypermutation (elevated genomic mutation rates), are features of diverse 

bacteria and eukaryotes (Goldman and Travisano 2011, Ram and Hadany 2012). Using 

experimental evolution techniques, researchers can track the roles of either standing 

genetic variation or new mutations in providing the raw material for rapid evolution and 

stress tolerance. Several studies including both experimental evolution and theoretical 

approaches document an important role of initial levels of variation, and attribute rapid 

evolution of resistance to predators, parasites, or competitors to shifts in initial clone or 

genotype frequency (Duffy and Sivars-Becker 2007, Fussmann et al. 2007b, Becks et al. 

2010, Turcotte et al. 2011). Other studies have tracked microbial evolution to abiotic 

stressors, including responses to thermal stress (Duncan et al. 2011), and de novo 

mutations facilitating rapid evolution of ultraviolet radiation tolerance (Goldman and 

Travisano 2011).  

The ability for such evolutionary change can be described as evolvability 

(Pigliucci 2008), and research on the nature of evolvability may facilitate understanding 
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of the evolution of cellular and/or life history adaptations to stress. Here the definition of 

Colegrave and Collins (2008) is followed; these authors describe evolvability as the 

capacity to respond to the force of natural selection through creation and use of genetic 

variation. Typically, evolvability is thought to be augmented by modularity, robustness, 

and genetic exchange or recombination (Pigliucci 2008, Masel and Trotter 2010). 

Modularity may be viewed as independence of phenotypic characters or their underlying 

genetic networks, and robustness as the average effect of perturbations on phenotypes, 

with high robustness associated with greater resistance to changes (Pigliucci 2008, Masel 

and Trotter 2010). Nonetheless support for the role of these factors in evolvability is 

mixed. Some studies indicate stress response networks may be grouped into evolutionary 

modules, and others suggest that modularity may increase evolvability in some cases and 

be inversely related in others (Hansen 2003, Griswold 2006, Singh et al. 2008).  

Invertebrate Study Systems and Evolution of Stress Tolerance 

Invertebrates represent a particularly intriguing group for investigations of the 

stress response, both due to studies suggesting their capacity for rapid evolution, and the 

need for research on hitherto under-studied groups to advance understanding of general 

paradigms. Invertebrates outnumber vertebrates in sheer numbers of species and play 

important roles in ecosystem functioning (Wilson 1987). Their diverse life history 

strategies and typical ease of culture compared to vertebrates make them useful for 

manipulative assays of stress tolerance adaptations. Within the Bilateria, the Ecydsozoa 

(e.g., nematodes, arthropods), Deuterostomia (including echinoderms, tunicates, and 

chordates), and Lophotrochozoa or Spiralia (e.g., rotifers, mollusks) represent three 

superclades (Tessmar-Raible and Arendt 2003, Paps et al. 2009, Edgecombe et al. 2011). 
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Lophotrochozoans contain some genes once thought to be vertebrate-specific (Tessmar-

Raible and Arendt 2003), and are said to be the most morphologically diverse bilaterian 

branch (Halanych and Borda 2009). Thus while the Lophotrochozoa have been under-

studied compared to the other two superclades, research on this group may help address 

gaps in knowledge and understanding of evolutionary trajectories from more basal 

metazoans through such derived taxa as vertebrates (Tessmar-Raible and Arendt 2003).  

The focal subjects of my dissertation are members of the Brachionus plicatilis 

species complex (Phylum Rotifera). Rotifers are zooplankton comprising over 2000 

species of microscopic metazoans that live in freshwater and marine environments; 

though less common, their habitats also include thin water films as found on mosses and 

liverworts (Wallace and Smith 2009, Wallace and Snell 2010). Rotifers’ breadth of 

habitats, from desert rock pools to pockets of melted water in ice (Wallace and Smith 

2009), can present a variety of stressors such as temperature extremes and desiccation. 

Short lifespans around 10–20 d and ease of culture (Snell et al. 2012) facilitate use of 

brachionid rotifers in life history assays. Reports of rapid evolution in the group and eco-

evolutionary dynamics recommend their utility for experimental evolution studies of the 

stress response (Fussmann 2011, Stelzer 2012). Brachionid rotifers are in subclass 

Monogononta, a group of cyclical parthenogens that primarily reproduce asexually, but 

through sex produce diapausing embryos capable of withstanding conditions (e.g., 

desiccation) lethal to active animals (Wallace and Smith 2009, Robles-Vargas and Snell 

2010, Wallace and Snell 2010). 

 The overall aim of my research is to advance understanding of evolutionary 

trajectories including rates and drivers of evolution, with an emphasis on evolution of the 
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stress response and reproduction in brachionid rotifers. I hypothesize that the stress 

response in Brachionus spp. derives both from conserved stress response systems, as well 

as ability for rapid contemporary evolution facilitating local adaptation to new levels or 

types of stress.  

In the second chapter, I posit that functional conservation of HSPs as part of a 

universal stress response manifests in a role of hsp genes in rotifer thermotolerance. 

Specifically, I test genes encoding members of the DNAJ/HSP40, HSP60 chaperonin, 

HSP70, and HSP90 protein families for their roles in brachionid heat shock survival. 

Detailed phylogenetic analysis of relatedness of the specific hsp genes assayed with 

thermoregulatory HSPs across eukaryotes is beyond the scope of this study, and will 

require future work to obtain the complete rotifer gene sequences. In general, members of 

these four HSP families are known to contribute to organisms’ thermal stress response, 

but individual genes and families involved in thermotolerance vary among species 

(Guimarães et al. 2011, Hahn et al. 2011, Leggat et al. 2011, Mikulski et al. 2011, Miot et 

al. 2011). Differences even exist in hsp gene expression between coral-algal symbionts 

(Leggat et al. 2011). In rotifers heat shock proteins have been associated with various 

stressors ranging from temperature to toxic metals (Cochrane et al. 1991, Wheelock et al. 

1999, Rios-Arana et al. 2005), but prior studies relied on correlations of stress exposure 

and protein expression. I test the role of multiple hsp genes, using interference RNA (Fire 

et al. 1998, Snell et al. 2011) to individually suppress hsp genes and assay their necessity 

for surviving heat shock. 

In the third chapter, I test the ability for rapid evolution of adaptations to 

hydroperiod using laboratory cultures mimicking ephemeral or permanent ponds. This 
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experimental evolution study assesses life history traits, including the frequency of sex 

and diapausing embryo production, for adaptive changes. In the fourth chapter, I analyze 

rapid evolution of lifespan and fecundity in these experimental cultures in greater detail. I 

discuss controls on the evolvability of rotifer lifespan and reproduction, including the 

potential for hormonal regulation. Hormones are bioregulatory compounds that 

coordinate physiological processes (local, autocrine; adjacent, paracrine; or distant, 

endocrine) and alter cell function or gene transcription (Ketterson and Nolan 1999, 

Denver et al. 2009). These signaling molecules may possess key roles in evolvability.  

In the fifth chapter I report on molecular evolution of a sex steroid receptor—the 

membrane associated progesterone receptor (MAPR). Exogenous additions of 

progesterone can increase production of brachionid diapausing embryos, and MAPR is 

the only known progesterone receptor gene in rotifers to date (Snell and DesRosiers 

2008, Stout et al. 2010). Reproductive proteins often exhibit signs of rapid evolution 

(Civetta and Singh 1998, Swanson and Vacquier 2002); thus this hormone receptor was 

anticipated to show positive selection in the Brachionus plicatilis species complex. 

Finally, the sixth chapter presents conclusions and future directions. In all, this 

dissertation reports on ecology and evolution of the stress response in brachionid rotifers, 

including tests of both extant adaptations such as heat shock proteins, and the ability for 

rapid evolution upon exposure to or removal from environmental stressors.  
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CHAPTER 2 

THREE HEAT SHOCK PROTEINS ARE ESSENTIAL FOR 

ROTIFER THERMOTOLERANCE 

(This chapter has been published in the Journal of Experimental Marine Biology 
and Ecology at http://dx.doi.org/10.1016/j.jembe.2011.11.027.) 

 

Abstract 

Heat shock proteins (HSPs) are important molecules in the stress response of 

organisms from prokaryotes to mammals, and thus may be useful biomarkers for 

environmental stress. Here we characterize the functional roles of genes belonging to four 

distinct families of HSPs (hsp40, hsp60, hsp70, and hsp90) in the monogonont rotifer 

Brachionus manjavacas. Because B. manjavacas inhabits ponds of varying thermal 

regimes, including ephemeral ponds that may experience temperature fluctuations, HSP-

mediated thermotolerance likely is important to its survival and adaptation. Using 

interference RNA (RNAi), we provide the first conclusive evidence that HSPs are 

required for rotifer survival following heat stress. Effective RNAi-mediated suppression 

of all hsp genes except hsp90 was verified via quantitative PCR. Hsp40, hsp60, and 

hsp70 are required for rotifer thermotolerance (P<0.05); however, our data do not 

indicate hsp90 is essential. Quantitative PCR further revealed immediate up-regulation of 

hsp40 mRNA following heat stress. Additionally, we demonstrated expression of hsp40 

mRNA in multiple tissues using fluorescent in situ hybridization. Our characterization of 

mRNA expression and functional roles for four distinct hsp genes provides a baseline for 

molecular-level comparisons of the stress response of rotifers with other taxonomic 

groups, and the technique for in-depth studies of the role of specific genes in rotifer stress 
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responses. Considering the potential for ambient temperatures to impact species survival, 

competitive interactions, and body size of individuals, thermotolerance may be an 

important influence on zooplankton community structure.   

Introduction 

Heat shock proteins (HSPs) comprise several families of constitutive and 

inducible proteins with conserved roles in both housekeeping and stress tolerance (Parsell 

and Lindquist 1993). Heat shock proteins promote stress survival by targeting damaged 

proteins for degradation or proteolysis, or by serving as molecular chaperones that aid 

refolding of proteins denatured by stresses such as heat shock (Parsell and Lindquist 

1993, Feder and Hofmann 1999, Buckley et al. 2001). Numerous studies have 

demonstrated that the general role of HSPs in the stress response is conserved from 

prokaryotes to higher eukaryotes, but the specific genes involved and conditions for 

induction may vary among taxa (Parsell and Lindquist 1993, Feder and Hofmann 1999). 

Much of the foundational literature relies on protein electrophoresis or autoradiography 

studies, in which the proteins detected may constitute one or several HSPs of similar size 

(Feder and Hofmann 1999). More recently, studies have attributed specific HSPs and 

their encoding genes to particular stressors, and investigated the role of HSPs in 

adaptation of natural populations (Clegg et al. 2001, Tanguay et al. 2004, Sørensen 

2010).   

Rotifers are a group of micrometazoans for which in-depth studies are only 

beginning to reveal genes involved in the heat shock response. As basal consumers 

rotifers play an important role in aquatic food webs, forming a link between the microbial 

food loop and classical food web, and are found in diverse aquatic and limnoterrestrial 
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habitats (Wallace and Smith 2009). Thus, research on the ability of rotifers to withstand 

environmental perturbations may be important to forecasting the health of aquatic food 

webs. Moreover, in rotifers HSPs may serve as bioindicators for stressors ranging from 

heavy metal and crude oil pollution to thermal stress and ultraviolet radiation (Cochrane 

et al. 1991, Wheelock et al. 1999, Rios-Arana et al. 2005, Kim et al. 2011). In nature, 

stressful conditions such as heat exposure are associated with both active populations and 

dormant structures, e.g., the resting eggs (diapausing embryos) produced during sexual 

reproduction of cyclically parthenogenetic monogonont rotifers (Denekamp et al. 2009).  

Thermal stress is particularly relevant to rotifer populations given they may 

experience thermal fluctuations, especially in shallow and temporary water bodies 

(Stemberger 1995, Denekamp et al. 2009, Dupuis and Hann 2009). Rotifers in the 

Brachionus plicatilis species complex inhabit brackish environments that may vary in 

hydroperiod, with habitats being wet permanently or only episodically (García-Roger et 

al. 2006). While this species can persist desiccation by entering a metabolically quiescent 

state as diapausing embryos, the embryos in dry sediment banks may be exposed to high 

temperatures (García-Roger et al. 2005). In the brine shrimp Artemia, higher HSP 

expression in encysted embryos has been linked to natural adaptation to warmer habitats 

(Clegg et al. 2001). In rotifers less is known of the role of HSPs in natural adaptation, but 

recent research shows hsp genes are expressed by diapausing embryos (Denekamp et al. 

2009). In active populations, temperature preferences affect rotifers’ ability to survive at 

different food concentrations and may impact competitive ability (Stelzer 1998, Ortells et 

al. 2003). Moreover, in aquatic systems higher temperatures are associated with shifts to 

smaller zooplankton individuals and species, which tend to be an inferior food source for 
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fish (Moore and Folt 1993). Considering the ramifications of thermal regimes for aquatic 

community structure, mechanisms such as the HSP pathways that regulate heat tolerance 

and potentially species survival are worthy of further study.  

A major limitation of all HSP research to date in rotifers, and many studies in other 

taxa, is the restriction of functional studies to primarily correlation-based assays of 

expression. Recent development of methods to suppress gene expression in rotifers via 

interference RNA (RNAi) (Snell et al. 2011) provides a method we employ here to 

directly test the role of HSPs in thermotolerance. We individually suppress hsps 

belonging to four distinct families to compare their roles in survival following thermal 

stress. Because expression may vary across tissue types (Sørensen 2010), we performed 

fluorescent in situ hybridization (FISH) to investigate mRNA localization, and used 

quantitative PCR (qPCR) to assess thermally-induced up-regulation of one hsp gene. We 

hypothesized that all four hsps would be essential to survivorship following thermal 

stress, with mRNA induction following heat shock, and anticipated that expression would 

be localized to certain organs (e.g., reproductive organs critical to fitness).  

Methods 

Thermotolerance Bioassays 

Interference RNA (RNAi) via transfection of rotifers with double-stranded RNA 

(dsRNA) synthesized in vitro was used to individually suppress one of four hsps (hsp40, 

hsp60, hsp70, and hsp90), or a non-hsp control (actin), following (Snell et al. 2011). All 

bioassays were conducted with Brachionus manjavacas (Russian strain), formerly B. 

plicatilis (Fontaneto et al. 2007). Culture conditions followed (Snell et al. 2011).  
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Our work extends the collection of hsp sequences for Brachionus in GenBank; 

most published sequences to date are from Brachionus ibericus. Primers for synthesis of 

actin and hsp90 are as in (Snell et al. 2011). Primers for the three other hsp genes were 

designed in this study (Table 2.1) based on hsp40 and hsp60 sequences in Brachionus 

spp. expressed sequence tag (EST) libraries developed by D. Mark Welch and colleagues, 

e.g., (Suga et al. 2007), and the hsp70-3 EST sequence in (Denekamp et al. 2009). PCR 

amplicons of all five genes were cloned and sequenced as in (Smith et al. 2011) to 

confirm amplification of the target genes from B. manjavacas genomic DNA (GenBank 

accessions HQ901982-HQ901986). Blastn searches of GenBank with our hsp40, hsp60, 

and hsp90 sequences revealed >80% identity to Brachionus ibericus sequences for hsp40, 

hsp60, and hsp90α1 (Kim et al. 2011), but did not yield a DNA sequence for a 

Brachionus homolog of hsp70-3. Lack of brachionid hsp sequences in GenBank limits 

comparisons within the genus, but comparison with other organisms confirms the identity 

of genes studied here. Blastn matches of hsp40 with ≥80% identity and E-values ≤6e-06 

include hsp40/dnaJ homologs in the silk moth Bombyx mori and pea aphid Acrythosiphon 

pisum. For hsp60, blastn matches with >80% identity and E-values ≤3e-20 include 

homologs to hsp60 in the chironomid Polypedium vanderplanki and snail Biomphalaria 

glabrata. For hsp90, the sequence in B. manjavacas already has been published (Snell et 

al. 2011); a blastn search reveals a match to hsp90 from the planarian Dugesia japonica 

with 76% identity and an E-value of 8e-61. Our hsp70-3 sequence matches the B. 

plicatilis hsp70-3 EST of (Denekamp et al. 2009), GenBank accession FM930314, with 

89% identity, and an E-value of 5e-160.  
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Table 2.1. Primers and GenBank accession references for genes in this study. Sizes are 
internal to PCR primers. For T7 PCR, the PCR primers were preceded at the 5' end with 
the bacterial T7 promoter sequence TAATACGACTCACTATAGG.  
 

Gene PCR primers (5'-3') GenBank accession Size (bp) qPCR primers (5'-3')
for: GGCTTTGACTGGTTTCAAAC for: TGCTCTTCAGCATCGACAGG
rev: TGGCTAGCACATTGAACTCG rev: GCAAAATGGCGAAATTGAAC
for: GAAAGATTGGCCAAATTGAG for: GGCATTTTGAGAGCTCGTCG
rev: TCTTTGCTGGCATCATAACC rev: GAAGGTATCGTCCCAGGTGG
for: CATCACCCTTAGCTGGAAAGG for: TGCCCAGGGAGAAAATAGTG
rev: AAGAAGGTCGATGCTTTTGG rev: GGCAACTTCAACCTCAAAGG
for: ACCGACCCCATTGACAAGTA for: GGAGTTGCCAGAAGACGAAG
rev: CAATCGGATGGTCAGGATTT rev: GCAGCCCATCCATACTGACT
for: CCGCGACCTGACTGACTATT for: GCATCCACGAGACCACCTAT
rev: GCTTCGAAATCCACATGCTT rev: TAGGATCGAACCACCAATCC

347

313

431

326

493

HQ901983

HQ901985

HQ901984

HQ901986

hsp40

hsp60

hsp70-3

hsp90

HQ901982actin
 

 

For each gene, approximately 60 neonate (24 h post-hatch, previously maintained 

at 25°C) females transfected with dsRNA for a single gene (Snell et al. 2011) were 

transferred into 0.6 mL thin-walled PCR tubes in ca. 100 µL of 15 ppt artificial seawater 

(ASW; Instant Ocean salts). Tubes were incubated at 40°C for 1 h for heat shock 

exposure; heat shock at this temperature has been shown to induce significant mortality 

in the closely related congener B. plicatilis (Wheelock et al. 1999). After exposure, 

rotifers were incubated in 15 ppt ASW at 25°C for 24 h, and percent mortality was 

recorded. Initially, four separate heat shock exposures were conducted on rotifers that had 

been transfected with dsRNA for the hsp60 or actin gene. Mortality between animals 

transfected with hsp60 versus actin was compared by a paired t-test, with pairs 

constituting percent mortality for hsp60 and actin treatments in each of the bioassays 

(N=4). Verification of impacts on mortality (see Results) motivated investigation of other 

hsps. In these subsequent bioassays rotifers were transfected with hsp40, hsp70-3, hsp90, 

or actin; results were analyzed with a one-way ANOVA, and Dunnett t-tests for post-hoc 

comparisons. Because assays of hsp40, hsp70-3, and hsp90 were conducted later we 
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analyzed the results independently from that of the original hsp60 bioassays to account 

for any unknown, uncontrollable variables, and compared their effects on survivorship to 

that of actin control treatments performed simultaneously. All statistical analyses were 

conducted in IBM SPSS v. 18 on the arcsine square root transformed percentage 

mortality. 

Fluorescent In Situ Hybridization  

To identify localized regions of hsp40 expression within rotifers, fluorescein-

labeled dsRNA probes were prepared for each gene using T7 PCR product as the DNA 

template; T7 product was made as in (Snell et al. 2011). Probe was synthesized in a final 

volume of 19.5 µL with 10 µL of T7 template, 40 U T7 RNA Polymerase (Promega), 1X 

transcription buffer (Promega), 1X DIG RNA labeling mix (Roche), and 7.69 mM DDT 

(final concentrations). After a 2 h incubation at 37°C, dsRNA was ethanol precipitated, 

and re-suspended in 5 µL RNase-free water. Probes were prepared separately for both 

actin and hsp40 genes. 

The protocol for hybridizing the probe to animals and solution preparation was 

adopted from (Tautz 2000), with minor modifications as follows. Briefly, for each gene 

probe (hsp40 or actin) B. manjavacas neonate females 24 h post-hatch were exposed to 1 

h heat shock at 40°C, or as a non-heat shock control left at room temperature (~22°C) in 

15 ppt ASW. Subsequent steps were performed separately on heat-treated and control 

females. Immediately after the 1 h exposure, animals in ASW were prepared for 

hybridization by anesthetizing ~40 females with club soda, then fixing them with 

formalin (~1%). For prehybridization, ASW was replaced with 200 µL phosphate 

buffered Tween 20 (PBT); subsequently another 200 µL PBT containing 30 µg/mL 
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Proteinase K was added. After an incubation of 2–5 min. at room temperature, the 

reaction was terminated by addition of 200 µL PBT containing 2 mg/mL glycine. For 

hybridization, animals were washed for 10 min. in hybridization solution. Rotifers were 

heated in the solution for 20 min. at 45°C. Meanwhile, 2 µL of the dsRNA fluorescein 

probe was added to a 5 µL solution of hybridization buffer containing 2 mg/mL sonicated 

salmon sperm DNA. Probe and sperm DNA were denatured 3 min. at 100°C, cooled on 

ice, then added to the rotifers for a 2 h hybridization at 65°C. To wash, supernatant was 

replaced with 400 µL pre-warmed hybridization solution, and incubated 10 min. at 65°C. 

The process was repeated for a second wash with 400 µL PBT.  

For analysis, washed females were transferred to a microscope slide for 

visualization on a BH-2 Olympus compound microscope (100X magnification) with a 

fluorescein filter. Fluorescent pixel intensity was quantified in the corona (apical ciliated 

organ for motion and sensory perception), ovary/vitellarium, and developing oocytes 

within females using ImageJ (http://rsbweb.nih.gov/ij/). To account for background 

fluorescence, a control probe was prepared and hybridized to another ~40 females as 

above, but using 10 µL sterile water in lieu of T7 template DNA during probe synthesis. 

Hence, any fluorescent activity from this reaction would be attributed to carry-over and 

incorporation of individual DIG-labeled ribonucleotides. Mean pixel intensity for the 

water control in each tissue region, averaged for 8–10 females, was subtracted from pixel 

intensity in the corresponding tissue for each female hybridized to actin or hsp40 dsRNA 

probe as a normalization step. Experiments were repeated three times for each gene probe 

and temperature exposure (~22°C room temperature control, or 40°C heat shock).  



 20 

Images were assessed for fluorescent pixel intensity of hsp40 or actin in each of the three 

tissue regions with a MANOVA, performed in SPSS. 

Quantitative PCR 

Quantitative PCR of individual rotifers was used to confirm that hsp expression 

was indeed suppressed by RNAi, and to determine whether differential expression of 

rotifer hsp genes was elicited in response to thermal stress. To validate RNAi suppression 

of hsp expression, B. manjavacas females were transfected as described above with 

dsRNA to initiate RNAi, or with phosphate buffered saline (PBS) as a control. 

Transfected neonates (ca. 24 h old) were maintained at 25°C with no heat shock. In a 

separate experiment to evaluate changes in hsp expression in response to thermal stress, 

neonate females were either exposed to a 1 h 40°C heat shock or kept for 1 h at room 

temperature (~22°C, no heat shock control). These rotifers were not transfected, so hsp 

activity was not artificially suppressed. 

Individual rotifers were preserved in 5 µl RNAlater (Qiagen) and total RNA was 

extracted from each rotifer using the RNeasy Micro Kit (Qiagen) following modifications 

in (Snell et al. 2011). The qPCR primers for actin and hsp90 as well as qPCR conditions 

using EXPRESS One-Step SYBR GreenER Kit (Invitrogen) followed (Snell et al. 2011), 

and primers for hsp40, hsp60 and hsp70-3 were designed based on EST sequences as 

above (Table 2.1). Amplification and detection of target (hsp) and reference 

housekeeping (actin) genes were conducted using a Mastercycler Realplex 2 (Eppendorf) 

for 12 replicate rotifers for each treatment and corresponding control. Expression levels 

of target genes were normalized to actin levels. Relative expression of target genes in 

target dsRNA-transfected rotifers versus PBS control rotifers (validation of RNAi 
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knockdown), or heat-shocked rotifers versus room temperature controls (stress response 

induction), was determined using the ΔΔCT method (Livak and Schmittgen 2001). 

Statistics also were performed on ∆CT values (Yuan et al. 2006), using t-tests to reveal 

significant differences in expression of treated rotifers relative to controls. Relative 

expression was used to calculate percent knockdown (% KD) calculated as: % KD = (1 – 

2-ΔΔCT) x 100 (Cheng et al. 2008).  

Results 

Thermotolerance Bioassays 

Significantly higher mortality after heat shock occurred in rotifers transfected 

with dsRNA for hsp60 compared to actin (one tail t-test, P=0.030; Figure 2.1). Likewise, 

one-way ANOVA for bioassays on the remaining three hsps demonstrated a significant 

effect of the gene used in transfections on survivorship (P=0.004). Post-hoc Dunnett t-

tests (one-tail) comparing hsp to actin transfections revealed the effect was attributed to 

knockdown of hsp40 (P=0.004) and hsp70-3 (P=0.001), with no significant effect of 

hsp90 (P=0.075). 
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Figure 2.1. Mean mortality and standard deviation 24 h following heat shock in rotifers 
transfected with actin (control) or hsp genes. Significantly higher mortality from hsp 
relative to actin transfectants was compared by a t-test (four bioassays of actin versus 
hsp60) (right side) or ANOVA with Dunnett t-tests (five bioassays of actin versus hsp40, 
hsp70-3, and hsp90) (left side). Significant results are indicated as * (P<0.05) or ** 
(P<0.01). 
 

Fluorescent In Situ Hybridization  

Both hsp40 and actin mRNA were expressed in the corona, ovary/vitellarium, and 

internal developing oocytes of the rotifers. MANOVA comparing the treatment of heat 

shock and no heat shock on expression of hsp40 or actin did not show a significant effect 

of gene, nor an interaction effect of heat treatment and gene, on mRNA levels 

(fluorescent pixel intensity) in the three aforementioned tissue regions. However, heat 

treatment did significantly affect mRNA levels (P=0.01). Post-hoc univariate F tests to 

examine the effect of treatment in each tissue type revealed significant increases in 

mRNA levels (pixel intensity) due to heat shock (P<0.05, Figure 2.2).  
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Figure 2.2. Mean pixel intensity and standard deviation for fluorescent in situ 
hybridization. Data for three tissue types showing mRNA levels of hsp40 and actin 
following 1 h heat shock (40°C) or 1 h at room temperature (~22°C, control). 
Significantly greater expression following heat shock (P<0.05) is indicated by *.  

 

Quantitative PCR 

Transfection of B. manjavacas with hsp dsRNA resulted in a 0.8–6.9-fold 

reduction in expression of each respective gene relative to the PBS control treatment 

(Figure 2.3A). While knockdown of hsp40, hsp60, and hsp70-3 genes was efficient, that 

is, all biological replicates (N=12) exhibited 100% knockout of gene expression, hsp90 

demonstrated variability in knockdown success with a mean of 46.3±7.6% knockdown of 

gene expression (Figure 2.3B). T-tests determined rotifers transfected with hsp40, hsp60, 

and hsp70-3 dsRNA demonstrated significantly lower expression of the target gene 

relative to the PBS control based on ∆CT values (P<0.0001); however, expression of 

hsp90-treated rotifers was not different from PBS controls (P=0.44). In tests to determine 
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whether hsp40 was induced in response to heat stress, a 3.5-fold increase in hsp40 

expression was observed. This represented significant up-regulation of the hsp40 gene in 

rotifers exposed to 1 h of heat shock at 40°C relative to incubation at room temperature, 

based on ∆CT values (-7.86±0.90 and -6.06±1.24, respectively; t-test, P=0.0006) (Figure 

2.4). 
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Figure 2.3. Quantitative PCR verification of gene suppression. (A) Fold change in 
Brachionus manjavacas gene expression due to RNAi treatments with heat shock genes 
relative to PBS controls. Negative values indicate reductions in gene expression due to 
treatment. Gene expression was normalized to the actin housekeeping gene. *** indicates 
a significant difference (P<0.0001) in expression of target gene, based on ∆CT, between 
rotifers transfected with hsp dsRNA and PBS controls. (B) Percent knockdown of gene 
expression in individual rotifers (N=12 per treatment) due to RNAi treatments with hsp 
genes relative to PBS controls. Circles indicate the percent knockdown within an 
individual rotifer after transfection with dsRNA for the target gene.  
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Figure 2.4. Up-regulation of hsp40 gene expression in heat-shocked rotifers (N=12 
individuals per treatment), represented by cycles of qPCR amplification required to reach 
a target threshold. Values of ∆CT result from normalizing threshold cycle number for 
hsp40 by subtracting threshold cycles for amplification of the reference gene (actin); 
negative cycle values result from higher cycle numbers for reference amplification. The 
lower ∆CT for 40°C heat shock versus room temperature (~22°C) indicates a higher 
quantity of hsp40 mRNA in the rotifer and hence reduced need for amplification, with ** 
indicating a significant difference (P<0.01).  

 

Discussion 

 Here we report the first test in rotifers to definitively demonstrate the necessity of 

specific hsp genes for thermotolerance. Using RNAi to suppress expression of hsp genes, 

this study provides empirical evidence that hsp40, hsp60, and hsp70-3 are essential for 

thermotolerance in rotifers. By assessing multiple genes we shed light on the potential for 

the role of a multi-protein complex or multiple chaperone pathways in rotifer 

thermotolerance, as hsp40, hsp60, and hsp70-3 were each, individually required for 

survival following heat shock (Figure 2.1).  

Quantitative PCR revealed 100% knockdown efficiency of hsp40, hsp60, and 

hsp70-3 genes, evidence that the increase in rotifer mortality following RNAi and heat 
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shock can be attributed to suppression of hsp mRNA (Figure 2.2). While suppression of 

hsp90 did not decrease thermotolerance, qPCR demonstrated only 46.3% mRNA 

knockdown, or a 0.79-fold reduction attributed to RNAi. Thus additional study is needed 

to improve knockdown efficiency in order to conclusively determine the influence of 

hsp90 on rotifer thermotolerance. In the congener B. ibericus, basal levels of the hsp90 

ortholog exceed those of 12 other hsp genes (Kim et al. 2011); hence high constitutive 

levels of hsp90 may explain our difficulty suppressing its activity.    

For hsp40, the only hsp gene in which we evaluated induction of expression in 

response to heat stress, qPCR did show induction of expression following 1 h heat shock. 

Heat shock responses are rapid and can be detected shortly after the onset of increased 

temperatures (Morimoto 1993, Parsell and Lindquist 1993, Feder and Hofmann 1999). In 

a study of B. ibericus induction of four hsp genes, maximum up-regulation in response to 

ultraviolet radiation occurred within 3 h of exposure (Kim et al. 2011). Here, the apparent 

up-regulation of both hsp40 and actin after heat stress, as demonstrated with FISH 

bioassays, indicated that the magnitude of the hsp40 up-regulation found during qPCR 

might be masked due to the use of actin as a housekeeping gene to calculate relative 

expression. Thus induced hsp40 expression is likely to be higher than determined in this 

analysis. Future studies are warranted to better characterize these genes as constitutive or 

induced by heat shock in rotifers.  

Contrary to expectations for localization, expression of hsp40 and actin was 

demonstrated in multiple regions, with fluorescence indicating mRNA presence in the 

corona as well as reproductive tissues. Because the organs of rotifers largely are syncytial 

(Wallace and Smith 2009), lack of cellular compartmentalization may lead to a more 
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global distribution of hsp mRNA. The hsp40 gene was selected for further analysis 

(qPCR and FISH) due to its having a significant but intermediate effect on rotifer 

mortality, with mean mortality after hsp40 suppression being slightly below that for 

hsp70-3 (Figure 2.1). Hence it was chosen as a representative hsp gene with intermediate, 

but significant, effects on thermotolerance. Further studies are warranted on additional 

hsp genes. 

Although the 40°C heat stress used in our study is unlikely to be commonly 

experienced by B. manjavacas in nature, with the thermal tolerance of the closely related 

B. plicatilis as ca. 5–29°C (Walker 1981), rotifers have been found at temperatures as 

high as 40°C in waterways receiving thermal effluents (Oden 1979). Rotifers in such 

extreme environments, as well as active populations in shallow waters or the diapausing 

embryos in dried sediment banks of ephemeral ponds, may be particularly dependent for 

survival on stress response systems such as HSPs. Of interest is the fact that the gene for 

hsp70-3, shown here to be required for thermotolerance, also is expressed in B. plicatilis 

diapausing embryos (Denekamp et al. 2009). Moreover, while some rotifer species are 

polythermal, others have narrow temperature ranges, and egg production may cease at 

high temperatures (May 1983, Bērzinš and Pejler 1989). Investigating the potential for 

differential hsp expression across taxa may shed insight into their thermal sensitivities. 

With the potential for temperature to impact zooplankton species richness, competitive 

interactions, and body size, as well as for cascading effects on higher trophic levels such 

as planktivorous fish, thermotolerance may be an important driver for aquatic community 

structure (Moore and Folt 1993, Stemberger et al. 1996, Stelzer 1998). 
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Conclusions 

By demonstrating the role of specific genes in the rotifer stress response and a 

way for controlling expression of at least three hsps genes, we extend the utility of rotifer 

HSPs as biomarkers for stressful conditions and natural adaptation. Previous studies have 

suggested a role for a ca. 60 kDa protein in rotifer stress tolerance (Cochrane et al. 1991, 

Rios-Arana et al. 2005). Members of the HSP70 family are implicated in natural 

adaptation to thermal stress in a range of taxa, including Drosophila, lizards, and brine 

shrimp (Clegg et al. 2001, Sørensen 2010). Our finding that hsp40 suppression also 

impacts heat shock survival in B. manjavacas may reflect coordination among heat shock 

proteins; indeed (Fan et al. 2003) has argued that a major role of HSP40 is the regulation 

of HSP70 activity. With the potential for climate change to cause elevated temperatures 

(Moore and Folt 1993), better knowledge of the ability of organisms to respond to heat 

stress will be critical to forecasting the effects on aquatic communities.  
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CHAPTER 3 

RAPID EVOLUTION OF SEX FREQUENCY AND DORMANCY AS 

HYDROPERIOD ADAPTATIONS 

(This chapter has been submitted to the Journal of Evolutionary Biology.) 
 

Abstract 

Dormancy can serve as an adaptation to persist in variable habitats, and often is 

coupled with sex. In cyclically parthenogenetic rotifers an asexual phase enables rapid 

population growth, whereas sex produces diapausing embryos capable of tolerating 

desiccation. Few studies have experimentally tested whether sex-dormancy associations 

in temporary waters reflect evolution in response to the short hydroperiod selecting for 

diapause ability. Here we demonstrate evolution of higher propensity for sex and 

dormancy in ephemeral rotifer cultures mimicking temporary ponds, and lower 

propensity in permanent cultures. Results are consistent with rapid evolution, with 

evolutionary changes occurring in a short timeframe (385 d, ~84 generations), and 

affecting ecological dynamics (population density). We also provide insight into 

mechanisms for rapid evolution in basal metazoans. The evolutionary change observed 

likely involved new mutations and/or recombination, rather than being simply a shift in 

clone or genotype frequency. 

Introduction 

In ephemeral aquatic systems, taxa from macrophytes to zooplankton produce 

dormant stages, e.g., resting eggs (diapausing embryos) or seeds that remain quiescent 

during dry spells and hatch when water returns (Brock et al. 2003). For many facultative 
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asexuals and cyclical parthenogens that engage in asexual and sexual reproduction, 

dormant stages are the product of sex (Simon et al. 2002, Brock et al. 2003, Cáceres and 

Tessier 2004, Serra and Snell 2009). Sex-dormancy associations are found in organisms 

ranging from aphids to zooplankton (Simon et al. 2002, Serra and Snell 2009); sex and 

dormant seed banks also play a role in persistence of aquatic plant communities (Lokker 

et al. 1997). Yet little is known of the mechanism and pace of evolution of dormancy and 

sex as adaptations to stressors such as desiccation.  

 Research on the loss of sex and dormancy suggests the potential for these traits to 

undergo rapid evolution, whereby contemporary evolutionary changes occur swiftly 

enough to affect ecological dynamics (Hairston et al. 2005, Ellner et al. 2011). Several 

studies have documented sex loss in the cyclically parthenogenetic rotifer (zooplankton) 

Brachionus calyciflorus in periods of months to years (Bennett and Boraas 1989, 

Fussmann et al. 2003, Becks and Agrawal 2010, Stelzer et al. 2010). Typically, asexual 

brachionid females produce subitaneous female eggs; the females also excrete a protein 

signal into the water that accumulates with increasing rotifer density (Snell et al. 2006). 

At high densities, the signal reaches a threshold concentration that induces sex in a 

process analogous to microbial quorum sensing (Kubanek and Snell 2008). A fraction of 

the asexual brachionid females start producing sexual daughters; the rest continue with 

asexual reproduction. The sexual daughters produce males (which are smaller, haploid, 

and do not feed), or if fertilized by a male, produce diapausing embryos that hatch after a 

period of obligate dormancy (Wallace and Smith 2009, Wallace and Snell 2010). Yet 

some rotifers lose ability for sex. It has been proposed that brachionid sex loss constitutes 

an eco-evolutionary feedback, with the ecological dynamic of density-dependent sex 
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induction undergoing evolution, which in turn impacts population densities (Stelzer 

2012). 

 Sex-dormancy associations and their evolution provide an opportunity for 

investigating both the role and mechanism of rapid evolution. The significance of eco-

evolutionary changes and rapid evolution has been questioned, with preliminary evidence 

suggesting these forces do play important roles in community and ecosystem structure 

and function (Ellner et al. 2011, Becks et al. 2012). Rapid evolution of sex and dormancy 

may be critical for species’ survival, particularly given the potential for climate change to 

alter hydroperiod and habitat permanence (Brooks 2004). Field-based and theoretical 

studies show correlations of rotifer traits associated with sexual reproduction and 

dormancy to hydroperiod (Serra and King 1999, Schröder et al. 2007, Serra and Snell 

2009, Gilbert and Diéguez 2010, Campillo et al. 2011), with the tendency for higher 

levels of sex and dormancy in ephemeral habitats. Several studies have attributed rapid 

evolution and eco-evolutionary dynamics to clonal selection—including assays of rotifer 

sex loss (Fussmann et al. 2003), aphid growth rate (Turcotte et al. 2011), and cladoceran 

parasite resistance (Duffy and Sivars-Becker 2007, Fussmann et al. 2007b). However, the 

necessity of pre-existing variation and generality of clonal selection as the mechanism for 

rapid evolution of traits such as dormancy remain unknown.  

 Here we describe an experimental evolution study designed to test the hypothesis 

that the requirement for dormancy in environments mimicking ephemeral or permanently 

filled aquatic habitats results in rapid evolution of diapause and sex, and report on the 

role of clonal selection. Laboratory Brachionus plicatilis s.s. cultures were maintained for 

385 d divided into six, 9-week growth seasons; ephemeral systems were reset (restarted 
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from diapausing embryo hatchlings) at the end of each season but permanent cultures 

were not reset. Hence ephemeral cultures underwent five rounds of sex between seasons, 

whereas in permanent cultures sexual embryos were removed and only asexual 

propagation contributed to population growth. We compared the cultures for evolutionary 

changes in sex induction propensity, sex frequency, and the production and hatching 

frequency of diapausing embryos. We also assayed lifespan and fecundity for both 

asexual and sexual females to test for evolution of traits less directly associated with sex 

and dormancy, and monitored population density to assess the cost of sex to population 

growth. Results are consistent with rapid evolution of higher propensity for sex and 

dormancy in ephemeral as compared to permanent cultures. 

Methods 

Cultures and Hydroperiod Treatments 

Subcultures of 15 separate lineages of Brachionus plicatilis s.s. from the pond 

Poza Sur, Spain were provided by our colleague Dimas-Flores. Seven lineages 

corresponded to the “high density sex” group (high density for sex induction; range, 7.8–

149.7 females mL-1), and eight represented the “low density sex” group (2.2–30 females 

mL-1) described in (Carmona et al. 2009). We confirmed identity of all lines as B. 

plicatilis s.s. with restriction fragment length polymorphism of cytochrome c oxidase 

subunit 1 and gel electrophoresis, following (Berrieman et al. 2005). Ten asexually 

produced clonemates from each of the 15 lineages were used to inoculate each of six 

chemostat containers; chemostats were maintained for 385 d. 

Cylindrical CelliftTM bioreactors (Ventrex; Portland, ME, USA), each holding ca. 

570 mL of medium, were used as chemostat (continuous flow) culture containers, with a 
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flow rate of ca. 150 mL d-1 controlled by a Manostat cassette pump. Inflow medium 

consisted of the green alga Tetraselmis suecica grown on F medium (Guillard and Ryther 

1962), and diluted with 15 ppt artificial seawater (ASW, Instant Ocean® sea salts) to 1 

million cells mL-1. Chemostats were maintained in an Environmental Growth Chamber at 

22°C below a 40 Watt fluorescent light; location of the chemostats was randomized and 

altered every 9 weeks.  

Three chemostats were randomly chosen to represent an ephemeral environment, 

and three a permanent environment. Resets of ephemeral chambers were conducted to 

mimic the desiccation and refilling of an ephemeral pond. At the end of 9 weeks, all 

chemostats were cleaned to remove algal buildup on the walls. Debris settled at the base 

of the chemostat—including diapausing embryos, which sink—was collected and set 

aside. Removal of diapausing embryos was conducted to reflect conditions of a deep 

permanent lake, where embryos may sink to layers too deep for exposure to hatching 

stimuli (e.g., light) (García-Roger et al. 2005). At the reset each ephemeral chemostat was 

re-inoculated with fresh algae and hatchlings of diapausing embryos that had been 

harvested from its chamber 6 weeks prior and kept in diapause (dark, 5°C) to promote 

hatching. Immediately before a reset approximately 800 diapausing embryos per 

ephemeral chemostat were incubated for ~74 h (22°C, constant light from the 40 Watt 

lamp) and all hatchlings were used to refill (restart) the chemostat (Figure 3.1). 

Permanent chemostats were re-inoculated with their adult animals and old medium after 

chamber cleaning and removal of debris and diapausing embryos. Periods between these 

9-week resets are referred to as growth seasons. Conditions in permanent chemostats 

allowed for continuous asexual growth. A total of 5 resets between seasons in ephemeral 
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chambers; however, interrupted asexual growth and required re-colonization by 

hatchlings of sexually produced diapausing embryos. 

 

 
 
Figure 3.1. Schematic of timeline for an ephemeral chemostat. Horizontal line with 
arrow represents the 385-d experiment. Symbols show approximate timing of events: c, 
collection of diapausing embryos for use at the next reset; S, sex induction density assay; 
L, life history assay (lifespan, fecundity). Vertical lines denote the initial inoculation, and 
resets between 9-week growth seasons. (Diapausing embryo collection for reset 1 was 
postponed to day 44.) At each reset, all diapausing embryos in the chemostat were 
harvested, and used for quantification and asssessment of hatching rates after the 385-d 
experiment. 
 
 

Sex Induction, Sex Frequency, and Diapausing Embryo Production 

Bioassays testing relative propensity for sex induction were conducted at the first 

and final two growth seasons. Protocols were adapted from (Carmona et al. 2009), 

recording the female density at which males first appeared—signifying the transition to 

sex. Low densities suggest early induction, or a high propensity for sex. To minimize 

maternal effects and allow induction densities to reflect intrinsic properties of females 

rather than chemostat conditions, we performed a pre-experimental step following 

(Carmona et al. 2009): i.e., two asexual generations were maintained individually in Petri 

plates in low-density conditions (1 female in 25 mL medium). After two generations, a 
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group of females from each hydroperiod treatment was assayed for sex-induction density 

with sample sizes as follows: season 1, N=19 per hydroperiod; season 5, N=22 ephemeral 

and 35 permanent; season 6, N=30 ephemeral and 32 permanent. For the bioassay, 

females were allowed 10 d to produce males. Due to nonlinear dynamics in sex induction, 

culture volume can affect inducing densities (Carmona et al. 2011). Our use of a single, 

small volume (0.5 mL) precludes determination of absolute threshold densities for 

induction; we likely over-estimate absolute thresholds. However, use of the same 

conditions and volume allows comparison of relative sex induction propensity among 

cultures. 

In the final season we monitored the frequency of sexual relative to total females 

every 8 d. Asexual and sexual females are indistinguishable morphologically, and can 

only be differentiated based on their progeny (asexual females produce females, sexual 

females produce males or diapausing embryos). On some dates most adult females were 

non-ovigerous; some may have been post-reproductive (sexual status indeterminate). 

Thus we analyzed sex frequency of cohorts of subitaneous female eggs laid in the 

chemostat. Because brachionids’ sexual status is determined in utero (Snell et al. 2006, 

Gilbert 2007), the status of these eggs was determined while they formed in the 

chemostat. We collected ovigerous asexual females from each chemostat. Females were 

maintained separately in 1 mL medium in 24 well plates until their eggs hatched; 1 

hatchling per female was individually transferred to fresh medium and produced male or 

female progeny in ~2 d. Analyses compared mean frequencies of sexual females (N=8 

assays or days); each frequency was from testing 19–24 females per chemostat per assay. 

At the end of each season, all diapausing embryos were collected by filtration of 
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settled debris at the base of each chemostat (53 µm Nitex mesh), allowed to air dry, and 

weighed. These were used to assess diapausing embryo production (not for ephemeral 

resets). From each season’s collection from each chemostat, a random sample (~5 mg) of 

dried diapausing embryos was weighed, rehydrated in 4.75 mL 15 ppt ASW, and sub-

sampled (100 µL). All embryos in the sub-sample were counted (mean number of 

diapausing embryos per sub-sample ± 1 SE, 105 ± 13). These counts were used to 

determine the density of the dried embryos (embryos / gram), which was multiplied by 

the total mass of dried embryos from the chemostat to yield total diapausing embryo 

production per chemostat per season. From ephemeral cultures, at least ~1000 embryos 

also had been harvested early in each season for resets so we added 1000 to final 

estimates of ephemeral diapausing embryo production. Because we did not count total 

numbers of embryos collected for resets, diapausing embryo production reported for 

ephemeral cultures may slightly underestimate total values.  

To test hatching ability, 100 of the diapausing embryos collected from each of the 

6 chemostats at the season’s end were incubated to hatch. Embryos were placed in 3 mL 

15 ppt ASW and incubated to hatch (22°C, 40 Watt lamp) for 1 week. All embryos were 

incubated to hatch simultaneously; they had been maintained in diapause (dark, 5°C) 

until 9.5 weeks after the end of the final (6th) season. 

Population Density, Individual Lifespan, and Individual Fecundity 

Density of total females, sexual females carrying diapausing embryos, and males 

was determined from manual counts every 4 d from pooling three, 1 mL samples of the 

chemostat outflow (total of ~93 counts per chemostat in the 385 d). Most females were 

non-ovigerous so their sexual status could not be determined. To estimate asexual female 
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density at each density count, we subtracted the density of unfertilized and fertilized 

sexual females from the total female density. Fertilized sexual female density was 

determined from direct counts of females bearing diapausing embryos. We estimated the 

number of unfertilized (male-producing) sexual females based on the male density count, 

and mean individual fecundity of unfertilized sexual females that lay male eggs (from life 

history bioassays, below). In essence, we calculated the number of unfertilized sexual 

females required to produce the current male density. Our final calculation of asexual 

density (AD) was as follows: AD = total female density – (male density / daily fecundity 

of unfertilized sexual females) – fertilized sexual female density. This formula does not 

give an exact count of AD, as it does not account for factors such as the potential for 

more males to be produced during the day after the density count, or for sexual fertilized 

females not currently carrying a diapausing embryo. However, application of the same 

formula allowed comparison of relative AD of ephemeral and permanent cultures in this 

study. Any estimated asexual density ≤0 due to densities below detection was converted 

to 0.01 females mL-1 before statistical analysis and production of graphs.  

During the first and the final two seasons, a life history bioassay was conducted to 

monitor total lifespan and fecundity of a cohort of asexual and unfertilized sexual 

females. We isolated ovigerous, asexual females from the outflow of each chemostat. 

Each ovigerous female was placed in 1 mL of medium (5x105 cells mL-1 T. suecica in 

ASW). The following day one neonate hatchling (F1 generation) per mother was 

transferred to fresh medium; the mothers were discarded. Every day until death, females 

of the F1 cohort were individually transferred to new medium, and their progeny (F2) 

were counted. For asexual females, ephemeral sample size combining chemostats was 59, 
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66, and 71 F1 females in the 1st, 5th, and 6th season, respectively (16≤N≤24 per chemostat 

per season); permanent sample size was 53, 71, and 70 in the 1st, 5th, and 6th season, 

respectively (17≤N≤24 per chemostat per season). For unfertilized sexual females, 

ephemeral sample size combining chemostats was 31, 42, and 65 F1 females in the 1st, 

5th, and 6th season, respectively (8≤N≤24 per chemostat per season); permanent sample 

size was 41, 29, and 22 in the 1st, 5th, and 6th season, respectively (3≤N≤22 per chemostat 

per season). Lower sample size of sexual females reflected lower densities of sexual 

females in the chemostats.  

Statistical Analyses 

Statistics were performed at α<0.05 in SPSS v.18. Animals were randomized 

across wells and plates in all bioassays. Transformations (log10 for counts; arcsine square 

root for frequencies) were made to improve normality for repeated measures analysis of 

variance (RM-ANOVA) and nested analysis of covariance (nested ANCOVA). Repeated 

measures ANOVAs were used for assays in which the level of replication was the 

chemostat population (i.e., sexual female frequency, total population diapausing embryo 

production, and female population density). We included season as the temporal within-

subjects repeated factor for diapausing embryo production and day as the repeated factor 

for sexual female frequency and population density, with hydroperiod (ephemeral, 

permanent) as a between-subjects factor. Chemostats were inoculated with identical 

populations initially and anticipated to evolve over time across seasons, but with the type 

of change affected by the hydroperiod regime. Thus analysis of differences over seasons 

between ephemeral and permanent hydroperiods was performed by testing the 

significance of the hydroperiod*season or hydroperiod*day interaction in both the 
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ANCOVA and RM-ANOVAs. One exception was the sex frequency assay in which all 

measurements were made in the last season; here analysis focused on the main effect of 

hydroperiod. For statistical analysis of total female densities a small value (0.01, ~6 

females chemostat-1) was added to all densities before log transformation to account for 

any densities below the limit of detection. 

For the sex induction bioassay, a nested ANCOVA was used rather than a RM-

ANOVA because the level of replication was the individual female assayed, and females 

assayed in seasons 1, 5, and 6 were not repeated due to natural turnover within 

populations and random sampling of animals from chemostats. The nested ANCOVA 

was implemented as a univariate analysis of variance with chemostat as a random effect, 

testing effects of season as a covariate (continuous), hydroperiod treatment, the 

hydroperiod*season interaction, and chemostat nested within hydroperiod. Nesting 

chemostat within hydroperiod and inclusion of chemostat as a factor in the model was 

done to avoid pseudoreplication by not accounting for chemostat-specific effects. While 

presence of a hydroperiod*season interaction would suggest heterogeneity of slopes and 

necessitates caution interpreting the main effect of hydroperiod alone on rotifer traits, we 

note that the express purpose of the ANCOVA was to test for existence of a significant 

interaction. 

Lifespan and fecundity did not appear to follow normal distributions and thus 

were not analyzed with analyses of variance. Analyses of total lifespan were done with a 

log-rank Mantel-Cox test implemented in the Kaplan Meier analysis of SPSS with 

Strata=Season. Data were pooled from the last two seasons (5, 6) to compare final 

outcomes of hydroperiod treatment on lifespan. Generalized linear models with Poisson 
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distribution, log link, and Pearson χ2 scaling parameter were used to test for effects on 

fecundity with Wald’s χ2 statistics. As with the ANCOVA, analyses of fecundity tested 

for effects of season, hydroperiod treatment, the hydroperiod*season interaction term, 

and chemostat nested within hydroperiod.   

Results 

Sex Induction, Sex Frequency, and Diapausing Embryo Production 

Rotifers in ephemeral versus permanent hydroperiod treatments evolved 

significantly different propensities for inducing sex across seasons (P=0.008) (Figure 

3.2A, Table 3.1). The relatively higher densities for male production by permanent 

cultures in later seasons reflected evolution of decreased propensity to induce sex. Before 

inoculation in the chemostat, induction densities ranged from 2–150 females mL-1 

(Carmona et al. 2009). Our results from season 1 are similar (10–139 females mL-1). By 

the end of the experiment, inducing densities for some females in permanent populations 

exceeded initial levels by an order of magnitude (18–1610 females mL-1 and 18–1486 

females mL-1 in seasons 5 and 6, respectively). Between seasons 1 and 6, mean sex 

induction density for permanent cultures rose from 55 to 688 (Figure 3.2A). In seasons 5 

and 6, a substantial number of females in permanent systems failed to produce males (up 

to 87% in one permanent culture in season 5); final densities for females that did not 

produce males during the 10 d assay were recorded as the inducing density. 

 Frequency of sex in the final season, quantified as the proportion of sexual 

relative to total females, was higher in ephemeral versus permanent chemostats (Figure 

3.2B). There was a significant difference in sex frequency between hydroperiod 
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treatments (P=0.024), but within this final season there was no change across days 

(P=0.483) or differential evolution between ephemeral and permanent cultures (P=0.977) 

(Table 3.1). Over time, total diapausing embryo production per season (Figure 3.3) 

evolved to higher levels for ephemeral than permanent populations (P=0.048) (Table 

3.1). Hatching frequency of the diapausing embryos did not show differential evolution 

between hydroperiods across seasons (P=0.338) (Table 3.1), but overall declined in later 

seasons (P=0.016). 

 

 
 
Figure 3.2. Higher sex propensity in ephemeral chemostats. Error bars are ± 1 SE. (A) 
Mean ± 1 SE female density for sex induction (first appearance of males) in the first and 
final two 9-week seasons, showing differential evolution of ephemeral and permanent 
cultures (P=0.008). Higher densities in permanent cultures for later seasons reflect 
evolution for lower sex induction propensity. (B) Frequency of sexual relative to total 
females was significantly higher in ephemeral versus permanent cultures in the 6th growth 
season (P=0.024). Circles represent mean sex frequency from assays every 8 d. 
Interpolating lines between data points are included to aid visualization. 
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Figure 3.3. Total diapausing embryo production during each season in ephemeral and 
permanent cultures. Bars represent mean numbers of embryos (± 1 SE). Differential 
evolution in ephemeral and permanent hydroperiods was significant, with a trend towards 
higher production by ephemeral cultures in later seasons, and lower production by 
permanent cultures (P=0.048). 
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Population Density, Individual Lifespan, and Individual Fecundity 

Total female density was higher for permanent populations in later days, and 

hence seasons, (P<0.001) (Figure 3.4A, Table 3.1). Evolution also led to higher mean 

asexual densities for permanent compared to ephemeral cultures in later days (P=0.001) 

(Figure 3.4B, Table 3.1), with percent differences between hydroperiods ≥76% in seasons 

3–6. When a Bonferroni correction is applied due to potential redundancy in testing both 

asexual and total female density such that α=0.025, conclusions do not change: both total 

and asexual female density became significantly lower over time in the ephemeral versus 

permanent hydroperiod. Although the decrease in ephemeral density at a reset (i.e., re-

inoculation with hatchlings of the 800 diapausing embryos) may have contributed to the 

results, rapid population growth makes it unlikely that resetting alone explains the lower 

size of ephemeral cultures. By the 4th density count following each reset, at least one of 

the ephemeral cultures had attained a density in the range of densities for the permanent 

cultures.  

Lifespan and fecundity did not evolve in response to hydroperiod. Data pooled 

from the last two seasons revealed that the difference in lifespan between ephemeral and 

permanent cultures was not significant for asexual or unfertilized sexual females 

(P≥0.176) (Table 3.2). Mean lifespan in days (± 1 SE) for asexual females was 11.0 (± 

0.3) in ephemeral, and 10.5 (± 0.2) in permanent chemostats. For unfertilized sexual 

females, lifespans were 8.5 (± 0.3) in ephemeral, and 8.3 (± 0.3) in permanent 

chemostats. Generalized linear model tests of Wald’s χ2 statistic of total lifetime 

fecundity showed no evolutionary response to hydroperiod treatment across seasons for 

asexual or unfertilized sexual females (P≥0.081) (Table 3.2). Pooling data from the final 
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two seasons, for asexual rotifers the mean number of progeny per female (± 1 SE) was 

18.3 (± 0.3) in ephemeral, and 17.1 (± 0.4) for permanent cultures. For sexual females in 

the final two seasons, mean progeny per female was 13.0 (± 0.4) for ephemeral, and 13.2 

(± 0.4) for permanent cultures. 
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Figure 3.4. Cost of sex incurred as reduced population growth in the more sex-prone 
ephemeral cultures. Circles represent mean female density per season (± 1 SE). 
Interpolating lines between data points are included to aid visualization. Female density 
was higher for permanent than ephemeral cultures in later seasons, as seen both for (A) 
total female density (P<0.001), and (B) asexual female density (P=0.001). 
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Discussion 

Here we provide experimental evidence that ephemeral habitats requiring 

dormancy for survival, contrasted to permanent environments, impose differential 

selection pressure leading to rapid evolution (~84 generations, or 385 d) of sex propensity 

and dormancy, with an ecological impact on population density. Our selection regime 

was designed to mirror the pressures imposed by hydroperiod in nature by requiring or 

eliminating the need for dormancy, itself the outcome of sex in brachionid rotifers, but 

did not specifically select for individual traits such as sexual female frequency. We 

observed multiple responses at the individual (e.g., sex induction density) and population 

level (e.g., total diapausing embryo production). The requirement of diapausing embryo 

production for survival in ephemeral cultures was sufficient for evolution of higher sex 

frequency and dormancy relative to permanent populations.  

In nature, aquatic habitat permanence correlates with gradients in community 

composition and adaptive life history traits (Wellborn et al. 1996, Simon et al. 2002, 

Brock et al. 2003, Jocque et al. 2010). Our laboratory experiment demonstrates that rapid 

evolution may allow for hydroperiod adaptation in situ, suggesting a causal mechanism 

for these correlations. Standing genetic variation may be important to rapid adaptations; 

initial trait variation can play a decisive role in whether eco-evolutionary dynamics 

maintain heritable variation in prey defense (Becks et al. 2010). Previous studies have 

proposed rapid evolution occurred through clonal selection, or changes in the frequency 

of clones and genotypes (Fussmann et al. 2003, Fussmann et al. 2007b, Turcotte et al. 

2011). In contrast, we suggest our results occur through creation of new genetic material 

or combinations, and not solely a shift in initial genotypes or clonal lines. Females in 
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permanent populations in later seasons induced sex at densities higher than we observed 

in the first season, and higher than that reported by (Carmona et al. 2009) for any lineage 

in our founding populations.  

The new, evolved sex-induction densities we observed could have occurred 

through recombination or segregation leading to novel arrangements of the genetic 

material. However, these meiotic processes seem unlikely in permanent cultures due to 

our removal of the sexually produced diapausing embryos, and the extent of the change 

(about an order of magnitude increase). It is known that inheritance of the op locus in B. 

calyciflorus results in inability to respond to the cue for sex induction via Mendelian 

inheritance; loss of sex is recessive (Stelzer et al. 2010, Scheuerl et al. 2011). Yet op 

heterozygotes do not differ in sex induction density from homozygous dominant rotifers 

(Scheuerl et al. 2011); thus recombination at this locus cannot fully explain the evolution 

of decreased sex induction propensity in permanent hydroperiods. De novo mutations 

(sensu lato) seem a more plausible explanation, although verification of exact 

mechanisms will require detailed genetic analyses. Be it from re-arrangements or 

mutations, the likely role of new genetic material in rapid evolution of a basal metazoan 

represents a significant extension of earlier reports of clonal selection.  

Unlike some studies that have demonstrated complete loss of sex in continuous 

cultures of Brachionus calyciflorus rotifers (Bennett and Boraas 1989, Fussmann et al. 

2003, Stelzer 2007, Becks and Agrawal 2010, Stelzer et al. 2010, Fussmann 2011), we 

demonstrate a decline in sex frequency in permanent B. plicatilis cultures. Our emphasis 

on evolution of sex frequency is congruent with studies reporting variation in sex 

propensity among clones for both rotifers and cladocerans (Schröder and Gilbert 2004, 
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Tessier and Cáceres 2004, Gilbert and Schröder 2007, Carmona et al. 2009). In 

permanent systems at later seasons, we observed initiation of male production by females 

at densities higher than any observed initially (>900 females mL-1 for some females in 

seasons 5 and 6), consistent with evolution of lower propensity for sex rather than 

complete loss of induction ability. Slight increases in inducing densities for ephemeral 

chemostats across seasons could reflect mild inbreeding depression due to the low 

(N=15) number of distinct lineages (genotypes) in each original population (Tortajada et 

al. 2009). Alternatively this may reflect adaptation to laboratory conditions, or genetic 

slippage from sex (Lynch and Deng 1994).  

Although ephemeral systems maintained higher frequencies of sexual females in 

the final season, we do not report a significant difference in the change in sex frequency 

between ephemeral and permanent hydroperiods within a growing season. Neither was 

there a change in sex frequency independent of hydroperiod within the season, perhaps 

reflecting the somewhat short (9 week) season duration. Lower responsiveness to sex 

induction stimuli immediately after the reset may explain the increase in sex frequency 

between days 7 and 15 (Figure 3.2B) in ephemeral cultures. Brachionid diapausing 

embryo hatchlings and the first few generations of descendants often show reduced 

propensity for sex (Gilbert 2002). 

 Diapausing embryo production increased in ephemeral and decreased in 

permanent cultures. This may reflect the higher frequency of sexual females in ephemeral 

cultures, and/or evolution of fecundity for sexual, fertilized females. The results support 

the finding of a negative correlation between hydroperiod of ponds in nature, and B. 

plicatilis diapausing embryo production (Campillo et al. 2011). The initial large increase 
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in diapausing embryo production by ephemeral cultures between the first and second 

season may be due to the very strong selection pressure imposed on ephemeral 

populations by only using diapausing embryo hatchlings for re-colonization after resets. 

Decreased production by permanent cultures was not evident until later seasons. Delaying 

sex induction until a higher population density is reached can increase total diapausing 

embryo production (Serra et al. 2005); larger populations can produce more diapausing 

embryos because more females are available to reproduce. Yet despite their lower female 

density, ephemeral populations still produced more diapausing embryos than permanent 

cultures in later seasons. We found no differential evolution of diapausing embryo 

hatching success between hydroperiod treatments. 

Our results are consistent with the theme of eco-evolutionary dynamics, with 

evolution of rotifer density-dependent sex induction affecting the ecological dynamic of 

population density (Stelzer 2012). This experimental evolution study also reinforces 

theoretical predictions that higher proportions of sexual offspring increase the cost of sex 

(Stelzer 2011). In the final season, asexual female density was about twice as high in 

permanent compared to ephemeral populations, supporting the historical idea of a 

twofold cost of males and sex to population growth (Maynard Smith 1978). Life history 

assays of cohorts showed no significant difference in fecundity or lifespan between 

hydroperiods for asexual or unfertilized sexual females. Thus we suggest that differences 

in population growth reflect higher allocation to sex (and dormancy) versus evolution of 

fecundity. Lower total female density in ephemeral cultures indicates the cost of sex to 

asexual density represents more than just a tradeoff between proportions of asexual and 

sexual females. Low asexual female density may further reduce population size by 



 53 

slowing population growth.  

It should be noted that the different numbers of generations adds another 

distinction between ephemeral and permanent populations. The portion of ephemeral 

populations that survived a reset existed as a diapausing embryo for the final 6 weeks for 

seasons 1–5; thus permanent cultures experienced ~84 generations, whereas ephemeral 

cultures would have experienced ~37 generations with the remaining time in dormancy. 

The greater number of generations in permanent cultures, their larger population size, and 

absence of the population bottleneck that occurred in ephemeral cultures at resets, could 

have fostered the ability of natural selection to act in permanent populations. Perhaps this 

promoted fixation of mutations, e.g., for lower sex propensity. Though it could be argued 

that one should compare equivalent numbers of generations for evolution, our study was 

designed to test effects of the environmental driver of hydroperiod. In nature, one might 

expect ephemeral pond populations to spend greater time in dormancy. 

Applied to natural populations, results of this study suggest the potential for rapid 

evolution of dormancy to facilitate evolutionary rescue (Kinnison and Hairston 2007) 

from stressors such as altered hydroperiod, an anticipated effect of climate change 

(Brooks 2004). Furthermore, rapid evolution and adaptation could help explain the 

dispersal-gene flow paradox of aquatic organisms: namely, cryptic speciation and high 

levels of diversification among neighboring communities, despite the potential for 

dispersal and homogenization via gene flow (De Meester et al. 2002). Finally, the 

generation of new phenotypes through mutations or re-arrangements such as 

recombination is an intriguing addition to clonal selection for future studies of the 

mechanism of rapid evolution in eukaryotes. 
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CHAPTER 4 

EVOLVABILITY OF LIFESPAN AND REPRODUCTION 

(This chapter will be submitted to the journal BMC Ecology.) 
 

Abstract 

Here we perform one of the first investigations of evolvability of lifespan and 

reproduction in metazoans, examining both extrinsic and intrinsic factors. We tested 

effects on senescence of an environmental variable (simulated lake hydroperiod, the 

length of time an aquatic habitat is inundated), female reproductive physiology (sexual or 

asexual), and time in a benign culture environment (minimal if any external mortality). 

To do this we established permanent and ephemeral chemostat cultures of the rotifer 

Brachionus plicatilis s.s. and maintained the cultures for 385 d, or 6 simulated growth 

seasons. Although there was no significant difference in lifespan between chemostat 

hydroperiod treatments (ephemeral versus permanent), rotifers at the experiment’s end 

lived longer, suggesting that maintenance in laboratory conditions leads to decelerated 

aging. Asexual females showed a 26% increase in lifespan (23% decrease in rate of 

aging) and 56% increase in fecundity, whereas these traits did not change significantly in 

sexual females. In later seasons asexual females remained reproductive longer, and had a 

longer post-reproductive period, than in earlier generations. The increased longevity and 

fecundity of asexual but not sexual females may reflect regulation of evolvability through 

epigenetic differences, and/or through endocrine signaling pathways related to 

reproductive physiology. Contrary to the typically negative relationship postulated by the 

antagonistic pleiotropy and disposable soma theories of aging, we found a positive 
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correlation between fecundity and lifespan, with both showing significant increases over 

time. Overall, our study demonstrates the importance of external environmental 

conditions and reproductive physiology to the evolutionary potential of lifespan and 

fecundity.  

Introduction 

Research aimed at extending animal longevity through lifestyle changes such as 

dietary restriction (Lee et al. 1999, Grandison et al. 2009, Meydani et al. 2011), or drugs 

and supplements (Kenyon 2010, Le Couteur et al. 2012), presupposes that ability for life 

extension exists if the right conditions are met. Based on success stories of increased 

lifespan in research with laboratory animals, it has been suggested that animals possess a 

latent potential for living longer (Kenyon 2010). Efforts to study the evolution of 

senescence in wild populations (Monaghan et al. 2008, Ricklefs 2008) may reveal how 

senescence has evolved in nature in response to different factors. The ability of selective 

pressures to drive an evolutionary response in senescence requires a sufficiently flexible 

target for modification or adaptation. The capacity for heritable changes in response to 

selection pressure, or the ability to evolve, comprises an organism’s evolvability 

(Pigliucci 2008). Much as understanding mechanisms such as hormesis (Le Couteur et al. 

2012) may aid efforts to extend lifespan via non-heritable mechanisms (e.g., dietary 

restriction), understanding forces influencing evolvability may aid interpretation of the 

reasons for different rates of aging and life histories among species and populations.  

 Some of the features proposed to enhance evolvability also affect aging 

(senescence). In addition to standing levels of genetic variation, mechanisms guiding the 

way in which genotypes map onto phenotypes can impact levels of evolvability (Pigliucci 
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2008). These mechanisms include modularity and robustness. Subdivision into modular 

networks may promote evolution by allowing natural selection to act upon one trait 

without influencing others, much in the same way that meiotic recombination may 

enhance natural selection by disrupting linkage disequilibrium. Existence of networks 

and aging pathways (Southworth et al. 2009, Fortney et al. 2010, Peysselon and Ricard-

Blum 2011) may provide the modular organization scheme for evolvability of aging. 

Likewise, epigenetic mechanisms are thought to underlie part of the aging process 

(Bandyopadhyay and Medrano 2003, Fraga and Esteller 2007), and may contribute to 

evolvability (Jamniczky et al. 2010, Johnson and Tricker 2010). Such epigenetic 

mechanisms can be heritable across generations (Youngson and Whitelaw 2008). Hence, 

the framework for controls of evolvability of senescence may already be in place in 

organisms, but the extent and basis of such a framework has yet to be revealed, and few 

studies of the evolvability of aging exist, c.f. (Goldsmith 2008).  

 Here we examine the evolvability of senescence in rotifers (Figure 4.1), basal 

metazoans with a long history of use in aging studies (Enesco 1993, Snell and Stelzer 

2005, Wallace and Snell 2010). Rapid turnover (typical lifespans up to a few weeks) 

(Wallace and Smith 2009, Wallace and Snell 2010) allows studies of evolutionary 

dynamics for these zooplankton in a tractable timescale. To assess factors involved in 

evolvability of senescence—particularly lifespan and reproduction—we established six 

flow-through cultures (chemostats) of Brachionus plicatilis s.s. rotifers. Brachionids are 

cyclical parthenogens that reproduce as asexual (amictic) females until induced to 

produce sexual (mictic) daughters; sexual daughters produce male progeny, or if 

fertilized make resting eggs (diapausing embryos) (Wallace et al. 2006, Wallace and 
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Smith 2009, Wallace and Snell 2010) (Figure 4.1). We tested effects on senescence of (1) 

an environmental variable (simulated lake hydroperiod, the length of time an aquatic 

habitat holds water), (2) female reproductive physiology (sexual or asexual), and (3) time 

in a benign laboratory culture environment (minimal if any extrinsic mortality factors). 

Results are discussed in light of the role of these factors in evolvability of aging and 

reproduction. Although some natural populations exhibit faster development rates or 

shortened lifespans in ephemeral hydroperiods (Valdesalici and Cellerino 2003, Schröder 

et al. 2007, De Block et al. 2008), ephemeral versus permanent cultures did not differ in 

lifespan or fecundity. However our findings show positive correlations of lifespan and 

reproduction, with both increasing over time in chemostat culture for asexual, but not 

sexual, females.  
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Figure 4.1. Brachionus plicatilis pedigree from two parental (P) asexual females through 
three progeny generations (F1-F3). Gray shading encompasses females with the same 
genotype (i.e., a P1 female and her asexually produced progeny). A single locus with two 
alleles is represented in the homozygous (AA or aa) and heterozygous (Aa) state to aid 
tracking of genotypes. Females are diploid; males are small and haploid. A diapausing 
embryo is produced when a male fertilizes a young (neonate) sexual female, and will 
hatch after obligate dormancy to yield an asexual female. Unfertilized sexual females 
produce males. Stars depict where meiosis occurs to produce progeny; all other 
reproduction is ameiotic.  
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Methods 

Cultures and Hydroperiod Treatments 

Chemostat culture treatment and maintenance is described in a companion paper 

investigating evolution of sex and dormancy in response to hydroperiod treatment 

(chapter three). For discussion of setup of rotifer chemostat systems in general, see 

(Stelzer 2009). In brief, 15 distinct lineages of Brachionus plicatilis s.s. Müller, 1786 

monogonont rotifers were isolated from water samples from the pond Poza Sur (Spain) 

and maintained as separate, asexually propagated lineages (Carmona et al. 2009). Lineage 

subcultures were provided by Dimas-Flores and used to initiate six replicate chemostat 

populations, each inoculated with 10 asexual clonemates of each of the 15 lineages 

(N=150 animals per chemostat). Cultures were maintained for 385 d in CelliftTM 

bioreactors (Ventrex), each containing 570 mL medium: 1 million cells mL-1 of the alga 

Tetraselmis suecica in 15 ppt artificial seawater (ASW, Instant Ocean® sea salts). Flow 

rate was 150 mL d-1, and chambers were kept at 22°C with continuous lighting. Location 

of chambers was randomized, and re-randomized every 9 weeks. 

The six chemostats were randomly assigned to ephemeral or permanent 

hydroperiod treatments. Although sample size (N=3 each) was low due to resource 

availability, it was sufficient to detect significant evolution in sex propensity and 

dormancy (chapter three). The 385-d timeframe was divided into six growth seasons; at 

the end of each 9-week season ephemeral chambers were reset to mimic desiccation-

refilling of ephemeral pools. For a reset, the chamber’s contents were emptied, and it was 

re-inoculated with hatchlings of diapausing embryos (~800) produced in that chemostat 

in the season immediately prior to the reset. In ephemeral cultures population growth 



 61 

occurred asexually during the season, but induction of sex and production of diapausing 

embryos during the season was required to survive each reset (N=5). Concomitant to 

ephemeral resets, every 9th week permanent cultures were cleaned to remove biofilm on 

the chamber walls and settled debris (including diapausing embryos, which sink and 

remain dormant until hatching is induced). Cleaned permanent chambers were refilled 

with their active populations and old medium, minus debris and diapausing embryos. 

Thus permanent cultures propagated asexually; sexual reproduction occurred but did not 

contribute to population growth due to removal of diapausing embryos.  

Bioassays and Analysis 

In the latter half of the 1st and the final two (5th and 6th) growth seasons, we 

conducted life history bioassays to assess total female lifespan and fecundity. Protocols 

followed those outlined in chapter three, but here we performed more extensive analyses 

of lifespan and reproduction, including factors independent of hydroperiod. Ovigerous 

females (P generation) were isolated from chemostat outflow and placed individually in 1 

mL medium (5x105 cells mL-1 T. suecica in 15 ppt ASW) in the well of a 24 well plate. 

To establish a cohort from the F1 generation, the next day one neonate progeny from 

each female was transferred individually to a second plate in 1 mL medium; the mother 

was discarded. Every day, cohort females were transferred to fresh medium and their 

progeny (F2) were counted and discarded. For asexual females, sample size combining 

chemostats was 59, 66, and 71 in the 1st, 5th, and 6th season, respectively (16≤N≤24 per 

chemostat per season); permanent sample size was 53, 71, and 70 in the 1st, 5th, and 6th 

season, respectively (17≤N≤24 per chemostat per season). For sexual females, ephemeral 

sample size combining chemostats was 31, 42, and 65 in the 1st, 5th, and 6th season, 
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respectively (8≤N≤24 per chemostat per season); permanent sample size was 41, 29, and 

22 in the 1st, 5th, and 6th season, respectively (3≤N≤22 per chemostat per season). 

Inability to distinguish cohort females as asexual (yielding female progeny) or sexual 

(male progeny) until they reproduced led to unequal sample sizes. Although sample size 

was low per chemostat, there was no effect of chemostats (see Results; P>0.05), and thus 

individuals could be pooled across chemostats for statistical analysis. During bioassays, 

location of test females from the six chemostats was randomized within and among 24 

well plates. 

Statistical analyses were performed in IBM SPSS v.18 at α=0.05. Separate Cox 

regressions were performed as a proportional hazards (mortality) model analyzed with 

Wald’s χ2 statistic (Cox 1972, Fleming and Lin 2000) to test effects of the covariate time 

(growth season), hydroperiod, and the season*hydroperiod interaction on total lifespan, 

as well as pre-reproductive, reproductive, and post-reproductive lifespan. The 

reproductive phase was distinguished by presence of live progeny in the medium (versus 

unhatched eggs). Total fecundity per female was assessed via Generalized Linear Models 

with Poisson distribution, log link function, and Pearson χ2 scale parameter. Lifespan-

fecundity correlations were tested with non-parametric Spearman’s rank correlation (two-

tailed). A Multivariate General Linear Model (GLM) was used to test effects of season, 

hydroperiod, and hydroperiod*season on population summary statistics, specifically 

cohort generation time, T; net fecundity, Ro; and the rate of aging, ω.  

Generation time and net fecundity were computed with PopTools 

(http://www.poptools.org). The rate of aging was calculated using the Weibull aging 

function as ! ="1/ 1+#( )  (Ricklefs 2008); this is an alternative to the Gompertz model and 
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mortality rate doubling time, and is less sensitive to initial mortality rates (Ricklefs and 

Scheuerlein 2002). To compute ω, we first used SPSS for nonlinear regression to 

estimate the values of α and β from the formula lx = exp(!mox !
ax!+1

! +1
)  as in (Ricklefs 

1998), where lx represents the proportion of females surviving to age x, and m0 is the 

initial mortality rate. Initial values were input as m0 = 0, α = 0.0001, and β=3; see 

(Ricklefs 1998) for comparison of parameters in mammals and birds.  

Results 

Separate Cox regressions on asexual and sexual females’ showed lengthening of 

lifespan over time (six simulated growth seasons) for asexual but not sexual females 

(Figure 4.2). Results are based on cohort life history assays in the 1st and final two growth 

seasons (5th, 6th). Identity of the individual chemostat culture chamber did not 

significantly affect lifespan (asexual females: Wald’s χ2 statistic=9.690; df=5; P=0.085; 

sexual females: χ2=4.246; df=5, P=0.515). Thus chemostats were pooled to test for 

effects of hydroperiod treatment (ephemeral or permanent) and the covariate time 

(growth season). For asexual females, there was a positive relation between lifespan and 

growth season (P<0.001) but no influence of permanent or ephemeral hydroperiod (Table 

4.1). Mean asexual lifespan in days (± 1 SE) increased 26% over six seasons: season 1, 

8.4 (± 0.3); season 5, 11.0 (± 0.2); season 6, 10.5 (± 0.3). However for sexual females, we 

did not find significant changes in lifespan with time or hydroperiod. For sexual females, 

mean lifespan in days (± 1 SE) did not change significantly: season 1, 8.1 (± 0.3); season 

5, 8.5 (± 0.4); season 6, 8.4 (± 0.3). 
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Figure 4.2. Survivorship curves of asexual (panel A) and unfertilized sexual (panel B) 
females. Curves depict the proportion (lx) of females surviving to age x for the 1st and 
final two 9-week growth seasons (5th and 6th). 
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Table 4.1. Asexual female lifespan increased significantly with time in culture (season), 
as analyzed by Cox regression. For each term, df=1. 
 

Life stage Rotifer 
Type 

Season Hydroperiod Hydroperiod*Season 
Wald’s χ2 P Wald’s χ2 P Wald’s χ2 P 

Total lifespan asexual 32.203 <0.001 1.357 0.244 0.433 0.511 
sexual 0.088 0.767 0.151 0.697 0.040 0.841 

Pre-
reproductive 
lifespan 

asexual 19.004 <0.001 0.151 0.698 0.364 0.547 
sexual 0.108 0.742 0.610 0.435 0.255 0.614 

Reproductive 
lifespan 

asexual 6.896 0.009 0.003 0.959 0.258 0.612 
sexual 0.039 0.844 0.444 0.505 1.392 0.238 

Post-
reproductive 
lifespan 

asexual 38.349 <0.001 0.994 0.319 0.297 0.586 
sexual 0.248 0.619 0.412 0.521 0.017 0.898 

 
 
 
The increase in total lifespan of asexual females resulted from an increase in 

reproductive and post-reproductive phases, with a small but significant decrease in the 

pre-reproductive phase shown by Cox regression (Figure 4.3). Chemostat effects were 

not significant on any phase for either asexual or sexual females (P≥0.082); hence, 

chemostats were combined for analyses. For asexual females, there was a significant 

effect of season on the pre-reproductive, reproductive, and post-reproductive phases 

(P≤0.009), but no effect of hydroperiod (Table 4.1). In contrast for sexual females, there 

was no significant effect of any factor on pre-reproductive, reproductive, or post-

reproductive lifespan (P≥0.435 for all factors and lifespan phases).  
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Figure 4.3. Pre-reproductive, reproductive, and post-reproductive lifespan of (A) asexual 
and (B) unfertilized sexual females. 
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Generalized linear models of asexual fecundity showed significant increases in 

later seasons but no effects of hydroperiod, and no evolutionary change in sexual female 

fecundity, as reported in a companion study on evolution of sex and dormancy in 

response to hydroperiod (chapter three). Here we note that asexual lifetime fecundity 

increased by 56% across seasons, from a mean of 11.8 progeny (± 0.5) in the 1st season to 

18.4 (± 0.3) in the 6th season. We report a positive correlation between total fecundity and 

female lifespan for asexual females (Figure 4.4) pooling data for seasons 1, 5, and 6 

(Spearman’s rho=0.412, P<0.001); similar results were found for sexual females 

(Spearman’s rho=0.237, P<0.001). After controlling for the effect of season via partial 

correlation analysis, the positive correlation was still significant for asexual (Spearman’s 

partial rho=0.340, P<0.001) and sexual (Spearman’s partial rho =0.238, P<0.001) 

females. Analyzing seasons individually revealed the correlation of fecundity and 

lifespan was weaker for the final two seasons compared to the initial season, with 77% 

lower correlation coefficients for data from the last two seasons combined (asexual 

Spearman’s rho=0.137, P=0.023; sexual Spearman’s rho=0.160, P=0.044) versus in the 

first season (asexual Spearman’s rho=0.609, P<0.001; sexual Spearman’s rho=0.402, 

P=0.001). 
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Figure 4.4. Correlation of total lifetime fecundity and lifespan for asexual females. 
Trendlines from separate linear regressions of data from seasons 1, 5, and 6 are included 
to facilitate visualization of lifespan-fecundity relationships. After controlling for the 
effect of season via partial correlation analysis, the positive correlation between fecundity 
and lifespan was still significant for asexual females (Spearman’s rho=0.340, P<0.001). 
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Levene’s test for homogeneity of variances revealed no change in the variance for 

asexual female lifespan among seasons 1, 5, and 6 (P=0.744), with standard errors of 

0.28, 0.24, and 0.25, respectively. However, variance decreased significantly for lifetime 

fecundity of asexual females (P<0.001), with standard errors in seasons 1, 5, and 6 of 

0.52, 0.35, and 0.34, respectively. 

 For asexual females, a multivariate General Linear Model (GLM) with growth 

season as a covariate testing for effects on three population summary statistics—

generation time (T) (Figure 4.5), net reproductive rate (Ro) (Figure 4.6), and the rate of 

aging (ω) (Table 4.2)—showed a significant effect of season (season: Wilk’s λ, 

F=11.443, df=3, P=0.003). There was no effect of chemostat, hydroperiod, or the 

season*hydroperiod interaction (P≥0.440 each). Post-hoc tests showed a significant 

decrease of T (P=0.010), increase of Ro (P=0.002), and decrease of ω (P<0.001) across 

seasons (Table 4.3). For sexual females, a GLM testing for effects on T, Ro, and ω again 

showed significant effects of season (Wilk’s λ, F=4.859, df=3, P=0.033), but not 

chemostat, hydroperiod, or hydroperiod*season (P≥0.083). Post-hoc tests showed that 

season only significantly affected T, which decreased slightly across seasons (P=0.004). 

There was no significant effect of season on either Ro or ω (P≥0.287 each).  



 70 

 
 
Figure 4.5. Generation time of asexual and sexual females for the first and final two 
seasons. Bars represent means (± 1 SE). 
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Figure 4.6. Net reproductive rate of asexual and sexual females for the first and final two 
seasons. Bars represent means (± 1 SE). 
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Table 4.2. Rate of aging (ω) of asexual and sexual female rotifers. Initial inputs for 
nonlinear regression estimation of parameters were mo=0, α=1.00E-4, β=3; values of ω 
were computed per chemostat from estimated parameters and averaged across 
chemostats. Reported values are means for the six chemostats (± 1 SE). Parameter 
estimation and calculation of ω followed (Ricklefs 1998). 
 
Growth 
season 

Rotifer 
type 

mo α  β  ω  (d-1) 

1 asexual 1.17E-3 (1.17E-3) 5.61E-3 (2.38E-3) 2.28 (0.31) 0.167 (0.005) 
5 asexual 3.95E-3 (3.57E-3) 5.82E-5 (4.80E-5) 4.49 (0.42) 0.120 (0.003) 
6 asexual 

 
1.47E-3 (6.95E-4) 6.31E-4 (4.76E-4) 4.09 (0.70) 0.128 (0.004) 

1 sexual 0.00 (0.00) 7.58E-3 (4.28E-3) 2.33 (0.39) 0.173 (0.007) 
5 sexual 9.34E-3 (6.83E-3) 1.64E-3 (7.57E-4) 2.96 (0.45) 0.155 (0.010) 
6 sexual 3.56E-3 (2.70E-3) 3.15E-3 (1.43E-3) 2.99 (0.52) 0.169 (0.007) 

 
 
 
Table 4.3. Net reproductive rate and rate of aging evolved in asexual but not sexual 
females. These post-hoc tests were run after multivariate GLM with Wilk’s λ confirmed 
significant impacts of season on the combination of the three rotifer life history factors 
(asexual: P=0.003; sexual: P=0.033).  
 
Rotifer 

type 
 Generation time  Net reproductive 

rate  
 Rate of aging 

 F df P F df P F df P 
Asexual  10.109 1 0.010  16.878 1 0.002  32.729 1 <0.001 
Sexual  13.808 1 0.004  1.267 1 0.287  0.481 1 0.504 
 



 73 

Discussion 

Our study represents one of the first to experimentally investigate intrinsic and 

environmental factors affecting evolvability of the metazoan lifespan. Hydroperiod 

(aquatic habitat permanence) did not significantly affect lifespan. Inhabitants of 

temporary waters including cladocerans (Dudycha and Tessier 1999, Jocque et al. 2010) 

and juvenile phases of aquatic insects (Wissinger et al. 2003, De Block et al. 2008) often 

show faster development rates than their permanent water counterparts. Hexarthra sp. 

rotifers in extremely ephemeral desert rock pools that may fill and dry within days show 

faster development rates than most rotifer species (Schröder et al. 2007). Potentially the 

long (9 week) hydroperiod relative to the rotifer lifespan (~1–3 weeks) for our study did 

not impose strong enough selection to cause evolution of faster, shorter life histories. 

Alternatively, other traits associated with dormancy (desiccation resistance) may be more 

responsive to hydroperiod conditions (Gilbert and Diéguez 2010, Schröder and Walsh 

2010, Campillo et al. 2011). However, time in culture (seasons) and reproductive 

physiology did lead to rapid evolution of life history traits. We observed a 26% increase 

in lifespan and a 56% increase in fecundity by asexual female rotifers over the 385 d (~84 

generations) in laboratory culture. These findings have implications for understanding 

physiological influences on life history evolution, existence or absence of trade-offs in 

longevity versus fecundity, and theories for the evolution of senescence. 

Physiological status as an asexual or sexual female substantially influenced the 

evolvability of Brachionus plicatilis s.s. lifespan and fecundity. Contribution of sexual 

versus asexual reproduction itself to evolvability appeared inconsequential, because of 

the absence of a difference between ephemeral cultures (which underwent 5 bouts of sex 
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between growth seasons) and permanent cultures (which underwent uninterrupted 

asexual propagation; sexually produced embryos were removed from the cultures). Yet 

reproductive physiological status of the females did contribute to evolvability. Initially, 

mean lifespans for asexual and sexual females were similar, but only asexual females 

showed a significant increase in mean lifespan and decrease in the rate of aging. 

Similarly, only asexual females showed significant increases in fecundity. Except for a 

slight decrease in generation time (Figure 4.5), sexual females did not show significant 

evolution for any of the life history parameters measured.  

Studies in other taxa have shown that reproductive physiological status can affect 

aging, congruent with our findings. Differences in longevity or mortality risks between 

males and females exist for several organisms, ranging from invertebrates such as 

rotifers, seed beetles, and spiders to vertebrates such as birds and mammals (Clutton-

Brock and Isvaran 2007, Bonduriansky et al. 2008, Ricklefs 2008, Bilde et al. 2009, 

Stoltz et al. 2010, Wallace and Snell 2010). Specific mechanisms by which reproductive 

physiology affects longevity can vary, and the relation of reproductive physiology to 

lifespan can be complex or indirect. However, recent studies are beginning to provide 

insight into sexual dimorphism; absence of an apolipoprotein D homolog in the fruit fly 

Drosophila reduces lifespan in males only (Ruiz et al. 2011). Gender also impacts the 

hormesis response (life extension from mild stress like heat), with male fruit flies often 

experiencing larger increases in lifespan (Sarup and Loeschcke 2011). In Australian 

redback spiders (Latrodectus hasselti), mated females live longer than unmated females 

(Stoltz et al. 2010). Beyond aging, differences between males and females exist in the 

extent to which parental haplotypes and rearing environment affects mass of reproductive 
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organs in crickets (Teleogryllus oceanicus) (Nystrand et al. 2011). Endocrine pathways 

and differential gene expression may mediate influences of reproductive status and 

gender on lifespan. For example, the sex hormone testosterone leads to expression of 

sexual traits in males but also has immunosuppressive effects and can increase sensitivity 

to oxidative stress (Alonso-Alvarez et al. 2007). Oxidative stress in turn may increase 

mortality and aging-associated damage or disease (Alonso-Alvarez et al. 2007, Muller et 

al. 2007, Monaghan et al. 2008). Sex steroids are known to influence oxidative stress 

resistance, or aging directly, in mice, Drosophila, and the nematode Caenorhabditis 

elegans (Baba et al. 2005, Russell and Kahn 2007, Gáliková et al. 2011). 

Our study extends these reports of how longevity varies depending on 

reproductive status, to reveal the potential for differences in evolution of life history. This 

finding is similar to that from a study in beetles (Callosobruchus maculatus) showing 

differential lifespan evolution in males and females (Fox et al. 2011). It is known that 

asexual and sexual female rotifers differ in traits such as thermal tolerance (Snell 1986, 

Wallace and Snell 2010), but mechanisms underlying this trait differentiation are poorly 

understood. We hypothesize that endocrine signaling pathways differentiate asexual and 

sexual females, and that such pathways—potentially themselves involving or regulated 

by epigenetic mechanisms—underlie the differential evolvability reported here. Rotifers 

are known to respond to steroid hormones and possess associated receptors (Smith et al. 

2011, Snell 2011). Future studies looking at hormonal and physiological differences 

between asexual and sexual females would be particularly useful to provide candidate 

pathways for exploration. The ability to generate animals of the same genotype but with 

different reproductive physiology (Figure 4.1) recommends rotifers as a particularly 
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useful model for studying mechanisms beyond traditional Mendelian inheritance that 

affect life history evolution. Genetic interactions and redundancy also may affect the 

outcome of mutations and genetic penetrance (Burga et al. 2011), and hence provide 

another potential mechanism for the differential asexual and sexual evolvability. Ongoing 

next-generation sequencing approaches in our laboratory are being used to investigate 

gene expression associated with the evolution of rotifer aging, and may help elucidate 

molecular controls of this evolution. 

Epigenetic factors may in part explain the distinction between female types, either 

by regulating activity of endocrine signaling pathways as suggested above, or by more 

directly influencing expression of genes important to reproduction and lifespan. Reasons 

for the differential evolution of asexual and sexual females likely do not reflect genotypic 

differences. A single asexual female can give birth to both asexual and sexual daughters 

(Wallace et al. 2006, Fussmann et al. 2007a), resulting in identical genotypes (Figure 

4.1). What remains to distinguish asexual and sexual females’ reproductive phenotypes, 

and in turn their different evolvability, may be epigenetic factors. Lifespan appears to be 

at least partially heritable, perhaps due to transgenerational epigenetic inheritance 

(Youngson and Whitelaw 2008, Johnson and Tricker 2010). Females in both of the final 

two growth seasons lived longer than females in season 1, although culture (chemostat 

and bioassay) conditions were not changed between seasons. This suggests the increased 

longevity represents an evolutionary change, as opposed to phenotypic plasticity in 

response to varying conditions. It may be that epigenetic factors modulate expression of 

genes that determine sexual status of females, that these factors also (directly or 

indirectly) affect certain life history traits, and that only the factors present in asexual 
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females evolved. Alternatively, both female types may have undergone evolution in 

genes controlling life history traits, but different epigenetic and/or endocrine regulation of 

gene expression only allowed phenotypic manifestation of longer lifespan and higher 

fecundity in asexual females. 

Besides presenting implications and hypotheses for physiological and molecular 

mechanisms influencing evolvability, our results have import for understanding theories 

of the evolution of aging. The chemostat cultures were devoid of many of the extrinsic 

mortality factors that would occur in natural environments, such as abiotic (e.g., salinity 

and temperature fluctuations) or biotic stressors (e.g., predation, starvation) (Snell 1986, 

Miracle and Serra 1989, Schneider and Frost 1996, Wallace et al. 2006, Wallace and 

Snell 2010, Kuefler et al. 2012). It has been hypothesized that removal of extrinsic, 

environmental mortality factors may lead to evolution of longer lifespan (Williams 1957, 

Williams et al. 2006, Monaghan et al. 2008). This suggestion, sometimes referred to as 

Williams’ hypothesis (Williams et al. 2006), may explain the increased lifespan that we 

observed in our rotifer cultures. Not only did total lifespan increase, but also the 

reproductive lifespan and post-reproductive lifespan increased, with an earlier onset of 

reproduction and increase in fecundity of asexual females. These shifts may suggest an 

overall increase in fitness. Prior studies reveal the potential for an increase in several 

fitness components in novel environments, potentially through effects on genetic 

correlations (Service and Rose 1985, Ackermann et al. 2007). This idea is consistent with 

research suggesting that endocrine signaling (e.g., insulin pathways) influences both 

lifespan and health, and can be altered to delay both mortality and somatic signs of aging 

(Ricklefs 2008, Selman et al. 2008, Bartke 2011).  
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The concomitant increase in reproduction and lifespan and their positive 

correlation do not demonstrate the typically negative relationship proposed by the 

antagonistic pleiotropy and disposable soma theories of aging (Hughes and Reynolds 

2005, Monaghan et al. 2008). The antagonistic pleiotropy hypothesis focuses on trade-

offs in genes affecting longevity and fecundity, while the disposable soma is based on 

trade-offs in resource allocation to somatic maintenance versus reproduction (Monaghan 

et al. 2008, Kirkwood and Melov 2011). To date evidence of trade-offs in reproduction 

and lifespan is mixed (Anderson et al. 2011, Flatt 2011). Some studies show a trade-off 

(Doblhammer and Oeppen 2003, Flatt 2011), whereas in social insects and naked mole 

rats breeders may live longer than non-reproductive individuals (Dammann et al. 2011), 

and animals in captivity were found to show no trade-off in longevity and reproduction 

(Ricklefs and Cadena 2007). Absence of a trade-off as in our study may by default lend 

support to an alternative theory of senescence—Medawar’s mutation accumulation 

hypothesis. Medawar’s theory suggests that due to non-senescent (e.g., environmental) 

factors, few individuals live long enough for selection to be sufficiently strong in late age 

classes to prevent mutation accumulation, which ultimately leads to mortality (Monaghan 

et al. 2008). Alternatively, in nature resources (e.g., algal food) could be limiting and lead 

to trade-offs, in concordance with the disposable soma idea of varying allocation levels to 

reproduction and somatic maintenance (Ricklefs and Cadena 2007). If the disposable 

soma theory applies to our system, one may expect limiting food or other resources in 

chemostats (or wild populations) to result in the expected trade-off of lifespan and 

fecundity. Indeed, calorically restricted B. plicatilis live longer but have fewer progeny 

(Kaneko et al. 2011). Yet effects of caloric restriction can vary among species in the B. 



 79 

plicatilis complex, and also may depend on methods of inducing caloric restriction (Mark 

Welch, pers. comm.). Additional research is needed to clarify the role of trade-offs in 

evolutionary trajectories, particularly as physiological trade-offs may occur in the 

absence of an evolutionary genetic trade-off (Flatt 2011). 

The increased lifespan and fecundity of asexual females may represent clonal 

selection from genetic variation present in the founding population, yet this seems 

unlikely. In this scenario, one of the initial 15 clonal lineages (genotypes) used to 

inoculate the chemostats could have replaced the others. For instance, a fecund lineage 

also may have happened to possess a long lifespan, such that the population came to have 

a longer lifespan (and slower rate of aging) if this lineage came to dominate populations 

due to its high fecundity. A decrease in variance would be expected if a trait’s evolution 

represented clonal replacement. Clonal selection appears possible for fecundity given that 

variance in fecundity decreased, but variance for lifespan did not decrease. Moreover, the 

maximum asexual female lifespan in the 6th growth season was 24% greater than the 

maximum seen in the initial season (17 d initially, versus 20 d and 21 d in seasons 5 and 

6, respectively). These results further suggest that lifespan evolution was not due to 

clonal replacement, because no observed female in the 1st season lived as long as those 

observed in the last seasons. Finally, strength of the correlation between fecundity and 

lifespan decreased over time for asexual females, which appears incongruent with the 

hypothesis that clonal selection for increased fecundity (or lifespan) led to increased 

lifespan (or fecundity).  

Conclusions 

In summary, herein we have shown rapid evolution of slower aging rates in a 
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benign culture environment. Evolution of longer lifespan, slower aging, and higher 

fecundity in asexual but not sexual females suggests reproductive physiology is related to 

evolvability of aging. For humans, this may suggest the importance of considering the 

potential of gender to influence response to treatments aimed at life extension. Also, the 

observed increase in rotifers’ post-reproductive lifespan is intriguing and worthy of 

further study, because post-reproductive individuals should be immune to selection 

pressures given that they do not contribute to future generations (Kirkwood and Melov 

2011). This may represent an indirect effect, such as decreased extrinsic mortality factors 

and non-limiting resources (continuous algal food inflow) allowing for longer post-

reproductive life. The benign chemostat environment could ameliorate resource trade-offs 

allowing for high investment in both somatic maintenance and fecundity. Fully 

elucidating the influences on evolvability of life history traits will require careful 

consideration of both extrinsic and intrinsic factors, and ways in which the environmental 

context may affect observed trends. Tests of mechanisms and the role of epigenetic and 

endocrine pathways will be particularly informative to ascertain how life history 

evolution proceeds. 
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CHAPTER 5 

MOLECULAR EVOLUTION OF THE MEMBRANE ASSOCIATED 

PROGESTERONE RECEPTOR IN THE BRACHIONUS PLICATILIS 

(ROTIFERA, MONOGONONTA) SPECIES COMPLEX 

(This chapter has been published in the journal Hydrobiologia. The original 
publication is available at www.springer.com, or http://dx.doi.org/10.1007/s10750-

010-0484-4.) 
 

Abstract 

Many studies have investigated physiological roles of the membrane associated 

progesterone receptor (MAPR), but little is known of its evolution. Marked variations in 

response to exogenous progesterone have been reported for four brachionid rotifer 

species, suggesting differences in progesterone signaling and reception. Here we report 

sequence variation for the MAPR gene in the Brachionus plicatilis species complex. 

Phylogenetic analysis of this receptor is compared with relatedness based on cytochrome 

c oxidase subunit 1 sequences. Nonsynonymous to synonymous site substitution rate 

ratios, amino acid divergence, and variations in predicted phosphorylation sites are 

examined to assess evolution of the MAPR among brachionid clades.  

Introduction 

Considering the roles of hormones in moderating life history traits (Ketterson and 

Nolan 1999), studies of sex steroid hormones and their receptors may be key to 

understanding life cycle transitions. In Brachionus manjavacas, exogenous progesterone 

can increase mixis rates (Snell and DesRosiers 2008). Searches of a brachionid 
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transcriptome yielded an expressed sequence tag (EST) contig identified as a potential 

membrane associated progesterone receptor (MAPR) (Snell and DesRosiers 2008). The 

MAPR gene family is proposed to have originated from an ancestral cytochrome b5 (Cyt 

b5), and contains Neudesin and the vertebrate-specific paralogs progesterone receptor 

membrane component (PGRMC) 1 and 2 (Cahill 2007). Functions of MAPR proteins 

vary across phyla and range from inhibition of apoptosis in ovarian granulosa cells to 

cholesterol synthesis and axon guidance (Cahill 2007, Rohe et al. 2009). While 

progesterone binding cannot be assumed by homology, it is notable that the Brachionus 

putative MAPR is the only known candidate receptor for progesterone. Chemical signals 

mediate brachionid rotifer mate recognition and mixis induction (Snell et al. 2006, Snell 

et al. 2009), but little is known of their evolution. 

Through phylogenetic and substitution rate analyses and structural protein 

modeling we provide further evidence that this EST is a rotifer homolog of membrane 

associated progesterone receptors, and report on molecular evolution of the rotifer 

MAPR. Sex-related genes are associated with higher tendencies for positive selection 

(Civetta and Singh 1998). Thus, given the ability of progesterone to affect rotifer 

reproduction, the receptor may undergo positive selection. The fact that some rotifers in 

the B. plicatilis species complex increase diapausing embryo production in response to 

exogenous progesterone, while others remain unaffected at the same concentrations 

(Snell and DesRosiers 2008), reveals the potential for variations in receptor sequence. 

This could cause differential responses to the ligand. We conduct a phylogenetic analysis 

to assess evolution of the MAPR in the B. plicatilis complex, and test for positive, 

purifying, or neutral selection using ratios of nonsynonymous to synonymous site 



 83 

substitution rates (dN/dS). Ratios of dN/dS > 1 suggest positive selection, ratios < 1 

indicate purifying selection, and ratios = 1 imply neutral evolution. We also examine 

amino acid variation in the predicted protein structure. 

Methods 

Cultures 

We studied five taxa of the larger L morphotype: B. plicatilis sensu strictu of 

Poza Sur, Spain; B. plicatilis s.s. of Tokyo, Japan; B. manjavacas of the Azov Sea, 

Russia; B. plicatilis “Austria” of Tianjin, China (hereafter “Austria”); and B. plicatilis 

“Nevada” of Little Fish Lake, Nevada, USA (hereafter “Nevada”). We examined three 

taxa of the smaller SS morphotype: B. rotundiformis of Poza Sur, Spain; B. rotundiformis 

of the Adriatic Sea, Italy; and B. rotundiformis of Hawaii (obtained from the 

Oceanographic Institute of Hawaii; exact collection site unknown). Taxonomy and 

morphotype classification follows prior descriptions (Gómez et al. 2002, Snell and 

Stelzer 2005, Fontaneto et al. 2007). Diapausing embryos were hatched at 25ºC in 15 ppt 

artificial seawater (ASW, Instant Ocean). For each taxon, we used a single hatchling to 

initiate a clonal lineage, kept at 22ºC in 15 ppt ASW and fed Tetraselmis suecica. 

Embryos and hatchlings were kept near 2000 lux fluorescent lights. 

DNA Isolation, Amplification, Cloning, and Sequencing 

Roughly 100–500 clonemates from ≥ 2 replicate cultures were filtered with 68 

µm Nitex mesh, then rinsed into a Petri plate with 15 ppt ASW. Rotifers were ground 

with a pestle in a microcentrifuge tube with 180 µL of ATL buffer of the DNeasy Blood 

and Tissue kit (Qiagen). DNA was extracted immediately using the DNeasy kit. PCR 
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amplification and sequencing were performed for both the nuclear MAPR and 

mitochondrial cytochrome c oxidase subunit 1 (cox1) genes. Sequences of cox1 for four 

taxa and MAPR homologs across eukaryotes were extracted from GenBank (accessions in 

Figures 5.1A, 5.2); all other sequences were obtained in this study and deposited in 

GenBank (HM024707–HM024718). PCR conditions are available upon request. The 

LCO1490 and HCO2198 primers were used to amplify cox1 (Folmer et al. 1994), 

modified by eliminating the first 6 bases at the 5’ end of LCO1490. Following prior 

identification of a progesterone receptor partial transcript from searches in an EST library 

(Snell and DesRosiers 2008), 5’-RACE or rapid amplification of complementary DNA 

ends (Frohman et al. 1988) was performed on a cDNA library to obtain the complete 

coding sequence for the current study. MAPR primers were designed from complete 

coding sequences from 5’-RACE of B. manjavacas (Russia) and B. plicatilis s.s. (NH1L, 

Japan). These were MAPR.F1 (5’-ATGCCAGAAGCGTTTGCTATGG-3’), beginning at 

position 1 of the coding sequence and MAPR.R1 (5’-

TAACTTCGGCTGACTCTTCTTCGT-3’), ending 11 bases upstream of the stop codon.  

Amplicons were PCR purified after visualizing samples via gel electrophoresis or 

extracted with a MinElute Gel Extraction kit (Qiagen). Products of ≥ 2 separate thermal 

cycling reactions were combined, ligated into pCRII-TOPO vector, and transformed into 

chemically competent TOP10 cells with the TopoTA Cloning Kit (Invitrogen). Colonies 

were subcloned, and plasmids purified using the QIAprep Spin Miniprep Kit (Qiagen). 

From each cloning reaction, ≥ 8 plasmids were sequenced in forward and reverse with 

M13 primers on an ABI 3730xl Genetic Analyzer with an ABI Big Dye Terminator v3.1 

Cycle Sequencing Kit (Applied Biosystems).  
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Assembly and Analysis  

Initial editing and assembly used unix shell scripts from the Josephine Bay Paul 

Center of the Marine Biological Laboratory, combining phred, cross_match, and phrap 

(Ewing and Green 1998). Chromatograms were reviewed in consed (Gordon et al. 1998). 

Reads were aligned in Clustal X 2.0 (Larkin et al. 2007), and consensus sequences from 

replicate plasmids from the same cloning reaction were made in BioEdit (Hall 1999). We 

compared mRNA reads from 5’-RACE with DNA sequences to identify intronic v. 

coding regions. 

The translated B. manjavacas MAPR sequence was submitted to TMHMM server 

v. 2.0 (Krogh et al. 2001) and Pfam (Finn et al. 2008) to identity transmembrane helix 

and functional domains. Protein sequences of MAPR homologs from species representing 

plants, fungi, and an array of metazoans were aligned with the amino acid translation of 

B. manjavacas MAPR using the Espresso module of T-Coffee (Notredame et al. 2000). 

Because the amino and carboxy termini were poorly conserved, phylogenies were 

constructed from both the full-length alignment and the high-quality region of the 

alignment corresponding to positions 53–161 of the B. manjavacas peptide using 

maximum likelihood (ML) and Bayesian methods with the WAG model of amino acid 

change with a gamma shape correction, as chosen by ProtTest (Abascal et al. 2005). For 

ML, four independent runs of Garli 0.96b8 (Zwickl 2006) were used to find the best tree 

and 1000 bootstrap replicates were examined to determine support for each node. For 

Bayesian inference, two independent runs of MrBayes v3.1 (Huelsenbeck and Ronquist 

2001) using 4 chains and 2 million generations each converged on the same tree and 

parameter values; the first 1 million generations were discarded as burn-in to generate 
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posterior probability support for each node. 

Regions between PCR primers (163 codons plus the intron for MAPR, 201 codons 

for cox1) were used for phylogenetic analysis among brachionids. Gene trees of cox1 and 

MAPR were generated using MrBayes 3.1 (Huelsenbeck and Ronquist 2001), with 

nucleotide frequencies and parameters for the GTR + gamma model estimated 

independently for codon first + second positions and codon third positions (+ intron 

positions for MAPR). Two independent runs of four chains were run for 2 million 

generations and sampled every 100 generations; comparison of parameter estimates 

indicated convergence (Gelman and Rubin 1992). The first 1 million generations were 

discarded as burn-in and consensus trees examined with FigTree v1.2.2 (Rambaut 2009). 

Consensus trees and sequence alignments (without the MAPR intron) were input in 

codeml in PAML 4.0 (Yang 2007) to estimate dN and dS. Likelihood ratio tests supported 

use of codon tables to estimate codon frequency for both genes (CodonFreq=3 in the 

codeml control file); transition/transversion and dN/dS ratios were estimated from the 

data. Tests for selection were M0 (default codeml parameters) v. M3 (Nsites=3, ncat=3); 

M1a (Nsites=1) v. M2a (Nsites=2); and M7 (Nsites=7, ncat=10) v. M8 (Nsites=8, 

ncat=10) (Zhang et al. 2005); results were evaluated by likelihood ratio tests (Yang and 

Nielsen 2002). Competing tree topologies were evaluated via the Kishino Hasegawa test 

(Kishino and Hasegawa 1989) in codeml.  

The 3-dimensional structure for MAPR was predicted by submitting the B. 

manjavacas translated coding sequence to SWISS-MODEL for automated comparative 

modeling (Schwede et al. 2003). Structures were visualized in Cn3D (Wang et al. 2000) 

after conversion to the appropriate format in VAST (Gibrat et al. 1996). Amino acid (aa) 
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substitutions were classified as conservative, moderately conservative, moderately 

radical, or radical (Li et al. 1984). MAPR sequences were scanned for PROSITE motifs 

with ScanProsite (de Castro et al. 2006).  

Results 

The rotifer MAPR amplified region, which began with the presumptive start 

codon and ended 11 bases before the stop codon, consisted of 535 bp of coding sequence 

(178 aa), split by an intron of 53–54 bp that began after coding position 458. One 

transmembrane helix was predicted and the only domain with a significant E-value found 

by Pfam was a cytochrome b5-like heme/steroid binding domain (Figure 5.1A), a domain 

found in MAPRs of other eukaryotes (Mifsud and Bateman 2002). A search of the NCBI 

nr database using blastp revealed that the most similar sequences contained this domain 

and were annotated as membrane associated steroid or progesterone receptors. In 

phylogenetic analyses of a diverse set of MAPR homologs, although support for nodes 

was generally poor different methods returned the same best tree topology with the B. 

manjavacas MAPR grouped deeply within the clade of metazoan MAPRs (Figure 5.1B), 

distinct from conserved paralogs cytochrome b5 and Neudesin (Cahill 2007). 
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Figure 5.1. (Top, A) MAPR transmembrane and heme/steroid binding regions; numbers 
are amino acids. (Bottom, B) Phylogeny of MAPR proteins and paralogs; the tree is 
drawn with branch lengths determined by Garli (scale bar shows changes per amino acid 
position); the same topology was found with MrBayes and a very similar topology was 
found with RaxML (not shown). Solid circles above and below nodes show that greater 
than 70% of bootstrap datasets supported the node by Garli and greater than 95% of 
sampled trees after burn-in supported the node with MrBayes (posterior probability), 
respectively. 
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The gene tree of Brachionus MAPR sequences (Figure 5.2) was consistent with 

established phylogenetic relationships among Brachionus spp. based on cox1 and ITS 

(Gómez et al. 2002, Suatoni et al. 2006). In contrast, the Bayesian consensus tree for cox1 

had no significant support for relative positions of “Austria,” “Nevada,” B. manjavacas, 

and B. plicatilis s.s., and arranged the B. plicatilis clade as (“Austria”(B. plicatilis 

s.s.(“Nevada”, B. manjavacas))), an inaccurate arrangement based on the clades’ 

placement in prior studies (Gómez et al. 2002, Suatoni et al. 2006). All codeml analyses 

using cox1 were performed on the topology of both the cox1 Bayesian consensus tree and 

the MAPR tree; resulting likelihoods were compared with the Kishino Hasegawa test. In 

no case was one topology significantly better than the other. Thus, further analysis and 

trees reported in this study (Figure 5.2) only use the topology from the MAPR consensus 

tree. Tests for positive selection showed no significant difference in dN/dS between 

branches or across sites, with strong purifying selection for both genes. Allowing 

variation of dN/dS across branches did not result in a significantly better model than 

keeping the ratio constant (for the latter model, dN/dS = 0.06 for MAPR and 0.0003 for 

cox1), but yielded values of dN up to 76x higher and dS up to 79x lower for MAPR v. cox1 

(Table 5.1). 
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Table 5.1. Values of dN, dS, and dN/dS for MAPR and cox1 tree branches, with labels as in 
Figure 5.2. 
 

dN dS dN/dS dN dS dN/dS dN/dN dS/dS

(a) 0.0000 0.0000 -- 0.0000 0.0276 0.0001 -- 0.00
(b) 0.0000 0.1666 0.00 0.0000 0.0173 0.0001 -- 9.63
(c) 0.0023 3.4325 0.0007 0.0024 0.0714 0.0332 0.96 48.07
(d) 0.0002 2.4332 0.0001 0.0072 0.0307 0.2361 0.03 79.26
(e) 0.0000 0.0000 -- 0.0024 0.0211 0.1154 0.00 0.00
(f) 0.0023 1.9178 0.0012 0.0024 0.0905 0.0266 0.96 21.19
(g) 0.0000 0.0000 -- 0.0027 0.0030 0.8853 0.00 0.00
(h) 0.0005 5.4011 0.0001 0.0151 0.2354 0.0639 0.03 22.94
(i) 0.0006 5.9428 0.0001 0.0455 1.2175 0.0374 0.01 4.88
(j) 0.0002 2.3357 0.0001 0.0074 0.0576 0.1287 0.03 40.55
(k) 0.0000 0.0145 0.0001 0.0000 0.0000 -- -- --
(l) 0.0000 0.0000 -- 0.0000 0.0000 -- -- --
(m) 0.0022 1.7975 0.0012 0.0046 0.0000 -- 0.48 --

Branch
coxI MAPR coxI : MAPR

 

 

Structural modeling used the Arabidopsis thaliana MAPR homolog, PDB entry 

1J03, as a template (E-value of 8.7e-30, 42% sequence identity). The model predicted a 

structure from amino acid 61 to 162 of MAPR (Figure 5.3). Rohe et al. (2009) reviewed 

four sites required for heme binding in the homolog PGRMC1 surrounding a putative 

ligand-binding cleft, which we found were identical to those in rotifers at analogous sites 

(Figure 5.3). 
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Figure 5.3. Modeled B. manjavacas MAPR from amino acid 61 to 162, with putative 
ligand-binding cleft to the right. Image A: amino acid differences among rotifers. Image 
B: five residues conserved among rotifers where the human analog is important to 
function; all but P156 match human analogs.  
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Scanning for PROSITE motifs yielded ≥ 10 predicted phosphorylation sites per 

taxon: protein kinase C phosphorylation sites, cAMP- and cGMP-dependent protein 

kinase phosphorylation sites, and casein kinase II phosphorylation sites. With a mere 25 

sites of amino acid variation among the eight taxa, motifs varied. A phosphorylation site 

was predicted at 51–54 aa for the L morphotypes, while those in the three B. 

rotundiformis were slightly downstream (one at 59–62 aa, one at 59–61 aa). Only B. 

manjavacas had a phosphorylation site predicted at 64–67 aa, and only B. rotundiformis 

of Spain and of Italy had phosphorylation sites at 93–96 aa.  

Discussion 

We report the first in-depth analysis of molecular evolution of a MAPR gene in 

any eukaryotic lineage. Purifying selection on MAPR suggests it has an important role 

conserved among rotifers. Yet, small amino acid differences may enable some functional 

divergence, perhaps underlying variation in life history traits regulated by a progesterone 

signaling pathway.  

Comparing MAPR and cox1 genes enhances insight of their evolution. The ability 

of MAPR to produce a gene topology consistent with the cox1 gene trees in Gómez et al. 

(2002) and Suatoni et al. (2006) shows its utility as a phylogenetic marker and supports 

their findings. In the MAPR tree genetic distance (branch length, i.e., substitutions per 

codon) is much shorter among members of the SS morphotype and among members of 

the L morphotype than between these two groups, but the difference is less pronounced 

on the cox1 tree. Use of more samples (rotifer lineages) may improve resolution for the 

cox1 gene tree; however, the fact that the MAPR gene provided better resolution for 

relatedness of the L morphotype clades may be due to the higher relative number of 
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nonsynonymous substitutions for MAPR relative to cox1. Since these nonsynonymous 

substitutions represent amino acid changes, and thus are more likely targets for the action 

of selection, they may represent important differences fixed among the clades.  

The branch-site test performed here suggests both genes are under purifying 

selection (dN/dS < 1). Thus, variation in the degree to which exogenous progesterone 

impacts rotifer reproduction (Snell and DesRosiers 2008) does not appear to reflect 

positive selection pressure on the MAPR gene among sites or branches. Positive selection 

may occur on other genes in a progesterone signaling pathway, or other, as yet 

unidentified, receptors may play a role in signaling. Still, the higher dN of the MAPR v. 

cox1, despite its lower dS, suggests MAPR is under less intense purifying selection. The 

lower dS is expected, considering the typical trend for mitochondrial DNA to show higher 

rates of mutation than nuclear DNA (Haag-Liautard et al. 2008). The higher dN could 

underlie weak positive selection on MAPR not detected by the branch-site test, or relaxed 

selection pressure relative to cox1, but further study is needed (e.g., with more clades). It 

has been suggested that some pine tree expressed sequence tags with a dN/dS of 0.20–0.52 

are under positive selection (Palmé et al. 2008). As Palmé et al. note, a dN/dS above 1 is a 

conservative test for positive selection, and thus absence of a ratio above 1 in our study 

does not eliminate the potential for a weak level of positive selection below the limits of 

detection.  

Amino acid substitutions that accrued over time may have altered MAPR function 

even with purifying selection. The large number of predicted phosphorylation sites 

supports a role in signal transduction, as reviewed by Cahill (2007). Variation in 

predicted sites among rotifers could allow for differential signal transduction, though 
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more research is required to confirm the sites’ function. Four residues critical for heme 

binding in PGRMC1 are conserved in rotifers. It has been proposed structural elements 

required for binding heme also function in interactions with a binding partner that 

mediates progesterone signaling (Rohe et al. 2009), though study is needed to clarify 

roles of specific amino acids in a progesterone pathway. In rotifers, most substitutions in 

the heme/steroid binding domain are distal to the ligand-binding cleft and are 

conservative or moderately conservative. Still, such changes could affect interactions 

with other molecules (e.g., binding partners). In one human patient a mutation from 

histidine to arginine at 165 aa was found to prevent binding of cytochrome P450 7A1, 

and linked to premature ovarian failure (Mansouri et al. 2008). In all eight rotifers a 

proline exists at the site; binding of P450 7A1 in humans may be derived trait. In 

conclusion, evolution of the MAPR may represent an overall sequence conservation, 

marked by small but significant changes allowing functional divergence.  
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CHAPTER 6 

DISCUSSION 

 

Brachionid Stress Tolerance  

 At extremes, stress imposes a risk of mortality or impairs fitness, leading to 

natural selection favoring organisms with mechanisms to permit survival and 

reproduction under stress. Thus stress can play an important role in evolutionary 

trajectories. It even has been suggested that stress is positively correlated with diversity at 

molecular and organismal levels (Nevo 2001). Here, this evolutionary driver has been 

explored with a particular focus on the stress response of brachionid rotifers. I show that 

evolutionarily conserved cellular responses (hsp gene expression), combined with rapid 

evolution of traits such as sex propensity and dormancy, confer the ability for tolerance 

and adaptations to environmental stress levels. Results shed light on the potential for 

reproductive physiology to influence life history evolvability. Also, I report that the 

membrane associated progesterone receptor, which binds a hormone (progesterone) 

implicated in brachionid dormancy, is under purifying selection. Considering the threat of 

climate change and other anthropogenic disturbances to exacerbate stress levels, 

knowledge of tolerance mechanisms and adaptive capacity may aid efforts at identifying 

vulnerable taxa and targeting conservation efforts. 

Although rotifers are the study system I employ here, the underlying principles 

may provide avenues for enhancing general understanding of the stress response of 

organisms. Rotifers are found across the globe in numerous environments from wet moss 

to ephemeral desert rock pools (Wallace et al. 2006, Wallace and Smith 2009, Wallace 
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and Snell 2010). It has been suggested that aquatic microinvertebrates may possess the 

ability for rapid local adaptation (De Meester et al. 2002), perhaps explaining the 

Phylum’s distribution across such diverse ecosystems. Experimental evolution studies 

provide a way to directly test adaptive responses to manipulated environmental stressors. 

Many experimental evolution studies to date have focused on bacteria, which some 

researchers propose are the most useful group for such studies (Buckling et al. 2009). 

However, assays of basal metazoans such as rotifers may reveal new concepts specific to 

multicellular organisms, including the potential role of endocrine hormonal systems in 

evolvability. Increasing understanding of rotifers and other relatively under-studied 

spiralian or lophotrochozoan taxa may improve fundamental knowledge of evolutionary 

trends, and help fill gaps in comparisons of the other Bilaterian superclades (Ecdysozoa, 

Deuterostomia).  

Cellular and Life History Stress Responses 

 Stress responses occur at multiple levels, including cellular tolerance 

mechanisms. Here results demonstrate that hsp40, hsp60, and hsp70 genes each are 

required for thermotolerance in Brachionus manjavacas, with hsp40 induction occurring 

within 1 h of heat shock (chapter two). Typical roles of HSPs in the stress response 

include targeting degraded proteins for proteolysis, and binding unfolded proteins to 

facilitate refolding and/or prevent deleterious molecular interactions (Parsell and 

Lindquist 1993, Feder and Hofmann 1999, Buckley et al. 2001, Richter et al. 2010). 

Nonetheless, exact mechanisms by which the rotifer hsp genes studied here and their 

encoded proteins facilitate survival awaits further study. Experiments suppressing 

multiple hsps to test for synergistic effects and studies across species also would be of 
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interest. In situ research, perhaps using micro- or mesocosms of transfected rotifers in 

lakes or ponds, could allow observation of the role of hsps in more natural conditions 

where heat and other stressors (e.g., ultraviolet radiation) may be present simultaneously. 

Although rotifers are known to inhabit regions with water temperatures reaching 40°C 

(the bioassay temperature) due to power plant thermal effluents (Oden 1979), future 

assays should include tests at lower temperatures. 

Extending the analysis beyond rotifers, it has been noted that heat shock 

responses are absent in some stenothermal organisms, whereas taxa in highly variable 

environments already may be expressing heat shock proteins at or near their maximal 

capacity (Tomanek 2010). Species experiencing moderate fluctuations in thermal regimes 

are suggested to display the greatest capacity for inducing a heat shock response to 

temperature ranges outside those currently experienced, perhaps implying greater ability 

to cope with stressors such as climate change and global warming (Tomanek 2010). It 

would be interesting to overlay a more in-depth study of hsp induction in a variety of 

lophotrochozoans with environmental tolerance and habitat preferences. Additional stress 

proteins worth investigation include late embryogenesis abundant and vitellogenin 

proteins. These thermostable proteins are found in brachionid diapausing embryos and 

may contribute to the greater ability of embryos versus adult females to survive stressors 

such as some toxins (pentachlorophenols), desiccation, and heat (Robles-Vargas and 

Snell 2010, Jones et al. 2012).    

 Besides physiological cellular responses, adaptations to promote stress survival 

exist at the level of life history traits. In temporary waters where the timeframe suitable 

for aquatic life may be short or unpredictable, many taxa show rapid progression through 
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the life cycle (Valdesalici and Cellerino 2003, Wissinger et al. 2003, Suhling et al. 2005, 

Schröder et al. 2007). Although lifespan did not evolve with respect to hydroperiod in my 

chemostat cultures, increased time in the chemostat irrespective of hydroperiod led to 

increased lifespan and fecundity for asexual females (chapters three and four). My 

experimental evolution study did not specifically select for greater longevity and it is 

hard to isolate the exact causal mechanism. Yet as discussed in chapter four this likely is 

a response to conditions in the benign laboratory environment. Removal of extrinsic 

stressors found in nature (e.g., temperature and salinity shifts) may have reduced 

selection maintaining tolerance mechanisms, allowing higher investment of resources in 

somatic maintenance and thereby increasing longevity and fecundity. Such inverse 

relationships between reproduction and stress tolerance are documented in research on 

HSPs. Heat shock proteins can facilitate stress survival, but their expression is associated 

with reduced fecundity (Sørensen et al. 2003). My results are consistent with the 

association of decreased extrinsic mortality factors in captive populations and increased 

lifespan (Williams 1957, Williams et al. 2006), and suggest a link between stress 

exposure and evolution of longevity.  

Spatiotemporal migration can provide a mechanism for escaping stressful 

environments, via spatial dispersal to a more suitable area, or dormancy as a form of 

temporal dispersal (diapause or quiescence until conditions improve) (Venable and 

Brown 1988, Cáceres 1997). Here I noted an increase in production of diapausing 

embryos in rotifer cultures mimicking temporary waters (chapter three). My work builds 

upon prior reports of negative correlations of hydroperiod and diapausing embryo 

production (Campillo et al. 2011), or associations of dormancy with surviving varied 
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stressors such as cold temperatures in seasonal habitats (Simon et al. 2002, Ragland et al. 

2010). Together with my experimental documentation of evolution of diapausing embryo 

production, this body of literature strongly suggests dormancy is an adaptive stress 

response. 

Another feature of life history that may confer stress adaptation is sexual 

reproduction. This is supported by my finding of evolution of higher propensity for sex 

induction, and frequency of sex, in rotifer cultures mimicking ephemeral versus 

permanent hydroperiods (chapter three). Sex and meiotic recombination often are 

employed by organisms under unfavorable conditions such as climatic stress, potentially 

due in part to the fact that dormant embryos tend to be the outcome of sex, at least in 

species capable of producing these stress-resistant structures (Lokker et al. 1997, Simon 

et al. 2002, Brock et al. 2003, Grishkan et al. 2003, Agrawal 2006, Serra and Snell 2009). 

While the evolutionary origin of sex is another matter not addressed here, the link 

between sex and adaptations such as dormancy is thought to contribute to the 

evolutionary maintenance of sex (de Visser and Elena 2007). Independent of this 

association, sex may promote stress tolerance through the benefits of genetic mixing. 

Meiotic recombination and segregation may augment genetic variation and/or facilitate 

natural selection by disrupting linkage disequilibrium, thereby promoting adaptation to 

new and stressful conditions (Hurst and Peck 1996, Burt 2000, Otto and Lenormand 

2002, Otto 2003, de Visser and Elena 2007). It has been hypothesized that low-fitness 

variants have higher levels of sex or recombination, potentially spurring adaptation 

(Hadany and Otto 2009, Zhong and Priest 2011). This is supported by work in 

Drosophila, where heat shock results in the expected negative relation between fecundity 
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and recombination rates (Zhong and Priest 2011). Some authors suggest sex may have 

evolved to counteract DNA damage from oxidative stress (Nedelcu and Michod 2003, 

Gross and Bhattacharya 2010); however, this idea remains contentious and sex is not 

necessary for DNA repair (de Visser and Elena 2007).  

 Strategies for stress tolerance obviously are numerous, and multiple responses 

may occur simultaneously. Covering all potential adaptations is beyond the scope of this 

study, and becomes exceedingly complex when considering the potential for phenotypic 

plasticity or robustness to influence stress tolerance (Ghalambor et al. 2007). Other 

factors for future consideration include comparing responses to short-term, high-intensity 

(acute) stressors versus long-term, low-intensity (chronic) stressors, the role of 

acclimation, and hormesis—the ability for low levels of stress to be beneficial, while high 

levels are harmful (Costantini et al. 2010).   

Rapid Evolution, Evolvability, and Genetics of the Stress Response 

Evolution is a key component of the stress response, sometimes seen via local 

adaptation in situ to ambient stress levels. Alternatively, selection or neutral processes 

may have caused evolution of traits and tolerance ranges independent of or prior to stress 

exposure. This dissertation discusses contributions of both conserved responses (e.g., 

HSP induction) and rapidly evolved adaptations such as levels of sex and dormancy.  

Relative contributions of extant adaptations to stress tolerance, versus 

modification or creation of new traits via rapid evolution, is a matter of importance for 

conservation efforts and ecological dynamics. Knowing the requirement for pre-existing 

adaptations and ability to evolve in situ may help predict the vulnerability of species to 

climate change and other anthropogenic-mediated stresses, or the likelihood that 
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introduced species will thrive and become invasive exotics. Invasive exotics may possess 

greater tolerance for environmental stressors, as suggested for the invasive freshwater 

snail Melanoides tuberculatus (Weir and Salice 2012). Alternatively, invasive species 

may undergo rapid evolution of stress responses facilitating adaptation upon arrival (Lee 

2002). Rapid evolution also creates the potential for eco-evolutionary dynamics 

(Schoener 2011), with the quick pace of evolution permitting feedbacks into the species’ 

ecology. For instance, I demonstrate the potential for hydroperiod to influence evolution 

of dormancy and the density-dependent process of sex induction (chapter three). In turn 

the cost of sex resulted in a feedback to population growth, leading to smaller populations 

in cultures with higher sex propensities.  

 Rapid evolution in eukaryotes itself may occur through various mechanisms. In 

chapter three, the fact that mean final sex-induction densities in permanent cultures 

greatly exceeded those for any of the initial founding lineages implies the evolutionary 

change was not merely from a shift in dominance of pre-existing genotypes. I propose 

that the evolution in response to hydroperiod involved de novo mutations or re-

arrangements of the genetic material (e.g., via recombination). This is distinct from prior 

studies of eukaryotes that typically focus on clonal lineage selection and shifts in 

genotype frequencies (Duffy and Sivars-Becker 2007, Fussmann et al. 2007b, Turcotte et 

al. 2011).  

 Although the evolution of lifespan and fecundity described in chapter four was 

not affected by the manipulated variable of hydroperiod, insight can be gleaned into 

mechanisms or influences on life history evolution. Remarkably, asexual and sexual 

females initially had similar longevity, but only asexual brachionids increased in lifespan 
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and fecundity across seasons. In many species males and females differ in their lifespan, 

and a recent report of seed beetles even suggests gender may affect evolution of longevity 

(Fox et al. 2011). Because a single asexual female rotifer can produce both sexual and 

asexual progeny via ameiotic parthenogenesis (Wallace et al. 2006), it appears that 

factors beyond genomic sequences likely differentiate these females—not only in their 

reproductive physiology, but also their life history evolvability. Repeating the chemostat 

experiment but performing paired life history assays with asexual and sexual females 

from the same mother could help verify that genomic variation between the females did 

not contribute to their different evolvability.  

 Next-generation sequencing technologies offer unprecedented power for 

identifying genes underpinning organisms’ phenotypic differences (Wheat 2010), and for 

delving deeper into the molecular mechanisms of stress responses and evolvability. As a 

follow-up to the work presented in chapters three and four, Snell and I have worked with 

colleagues at the Marine Biological Laboratory (Mark Welch, Hecox-Lea) to apply next-

generation technology to samples from my chemostat cultures. I have performed 

differential gene expression on samples of the chemostat populations at the end of the 

first and final seasons. Specifically I employed 3’-tag digital gene expression (3’-DGE), a 

tag-based analog of RNA-Seq targeting protein-coding mRNA (Asmann et al. 2009, 

Wang et al. 2009). From running samples on the Illumina HiSeq platform, ca. 25,060 tags 

(e.g., transcripts of distinct genes, or encoding different protein isoforms) were 

distinguished. By comparing transcript abundance between ephemeral and permanent 

cultures from the initial and final seasons, we can isolate tags putatively associated with 

the observed adaptive responses (e.g., sex frequency and diapause) to hydroperiod. 
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Similarly, by comparing sequences across all six cultures in the initial and final seasons, 

we can identify genes showing differential expression that may underlie the rotifers’ 

increased fecundity and longevity. The bioinformatics analysis and annotation of these 

data are ongoing, and will be supplemented by future RNAi studies by Snell to confirm 

gene function.  

Gene expression differences are not the only potential contributor to phenotypic 

differentiation, warranting additional research beyond 3’-DGE. A host of other 

mechanisms that may contribute to functional differentiation include post-translational 

modifications, epigenetics, packaging of the genetic material into eu- or heterochromatin, 

and sequence differences that impact protein function or translation (Orphanides and 

Reinberg 2002, Kudla et al. 2009). Hence not detecting differential expression of a 

particular gene does not demonstrate its lack of function in divergence among chemostat 

cultures over time. Yet tags that do show significant differential expression can serve as 

candidate genes for future assays of functional genetics, and the molecular controls of life 

history and stress tolerance. 

 Despite difficulty predicting specific genes associated with brachionid rapid 

evolution because rotifer genomic and transcriptomic research is still in its early stages 

(Suga et al. 2007, Denekamp et al. 2011, Lee et al. 2011), it is possible to predict some of 

the types of genes that likely evolved and/or showed differential gene expression among 

cultures and seasons. I anticipate that genes encoding stress response proteins and 

members of the minimal stress proteome (Kültz 2005) are up-regulated in ephemeral 

cultures, including some hsp genes. The hsp70 studied here is expressed in Brachionus 

plicatilis diapausing embryos (Denekamp et al. 2009, Denekamp et al. 2011), and may 
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have been up-regulated in ephemeral cultures due to their higher diapausing embryo 

production in later seasons. In general, I expect that the rapid evolution of sex, dormancy, 

lifespan, and fecundity resulted from mutations (sensu lato) or re-arrangements in 

categories of genes typically associated with positive selection and fast evolution, such as 

receptors (Civetta and Singh 1998, Swanson and Vacquier 2002). Reproductive proteins 

often are associated with rapid sequence evolution (Swanson and Vacquier 2002). Thus 

specific genes associated with rotifer sex induction may have mutated, such as the 

receptor for the sex (mixis) induction protein (Snell et al. 2006, Kubanek and Snell 

2008), or perhaps the protein ligand itself. Complete sex loss in Brachionus calyciflorus 

is associated with Mendelian inheritance of the op locus in the recessive state (Stelzer et 

al. 2010, Scheuerl et al. 2011). However sex frequency evolution appears to be a 

quantitative trait, and seems distinct from the more qualitative regulation of ability for 

sex by the op locus.  

The evolution of multiple traits in response to hydroperiod (e.g., sex frequency 

and propensity, diapausing embryo production) and time in the chemostat (increased 

lifespan and fecundity), suggests the evolution may not just reflect changes in the specific 

genes controlling these traits. Rather I anticipate the rapid evolution in chemostats at least 

partially is due to changes in genes involved in regulatory processes that could affect 

multiple traits simultaneously—perhaps facilitating modular evolution of associated 

traits. Hormonal signaling genes may be involved in a signaling cascade with effects on 

transcriptional regulation. In chapter four it is hypothesized that hormones play a salient 

role in evolvability, especially of longevity and fecundity. Previously, it has been 

suggested that variation in endocrine pathways may form part of the foundation for life 
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history evolvability (Amdam et al. 2007). Hormonal signaling cascades and endocrine 

modules can exert multiple effects on suites of correlated traits, influencing processes as 

diverse as reproduction, osmosregulation, and development (Ketterson and Nolan 1999). 

Stress can decrease levels of the sex steroid hormone progesterone, thereby impairing 

reproduction (Wingfield and Sapolsky 2003). The ability of hormones to integrate 

responses to the environment, including the role of steroid hormones in stress-related and 

sexual behaviors (Dufty et al. 2002, Denver et al. 2009), presents an intriguing possibility 

for evolution of hormonal systems to impact evolution of the stress response and life 

history.  

Differential expression of hormonal signaling genes found via my 3’-DGE study 

of chemostat cultures in the initial and final season (independent of hydroperiod) would 

be consistent with my hypothesis that hormones play a role in life history evolvability. 

Several studies have focused on the ability of dietary restriction or mutations to 

components of insulin signaling pathways to increase lifespan, but often this is associated 

with a delay or decline in reproduction (Kenyon 2010, Flatt 2011). Such lifespan-

fecundity tradeoffs were not observed in chapter four; rather the traits were positively 

correlated and both increased in asexual females. This may suggest operation of a novel 

or less commonly known pathway in rotifers, or modification of pre-existing pathways. 

For instance, recently two genes (hpa-1 and hpa-2) were identified in Caenorhabditis 

elegans that increase lifespan via effects on the EGF pathway rather than insulin 

signaling, without a noticeable reduction in reproduction or impairment of development 

(Iwasa et al. 2010). Brachionid rotifers exposed to vertebrate hormones exhibit a range of 

responses with effects on dormancy and reproduction, and in C. elegans and Drosophila 
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both the peptide-hormone pathway of insulin signaling as well as sex steroid pathways 

affect life history regulation (Snell and DesRosiers 2008, Gáliková et al. 2011, Snell 

2011). Yet to date rotifer hormones have not been characterized (Snell 2011), 

complicating the ability to predict specific pathways that may possess high evolvability 

or be linked to stress tolerance.  

One hormonal system of particular interest is the progesterone signaling system, 

motivating my assays of molecular evolution of the membrane associated progesterone 

receptor in chapter five. Increased diapausing embryo production in brachionids exposed 

to exogenous progesterone (Snell and DesRosiers 2008), and decreased sexuality of 

rotifers in which interference RNA had been used to suppress the MAPR (Stout et al. 

2010), suggests the importance of a progesterone signaling pathway to rotifer sex and 

dormancy. Differences in amino acids at some positions in the receptor and existence of 

phosphorylation sites across brachionid species may underlie functional differentiation of 

distinct alleles. Site-directed mutagenesis, and perhaps analyses using RNAi across 

species or populations with different allelic variants, could be used to test the impacts of 

specific amino acid substitutions. Purifying selection promoting sequence conservation of 

the receptor makes it unlikely that the MAPR underwent rapid evolution in the 

experimental evolution study here. Nonetheless, this does not preclude the potential for 

the progesterone ligand or other components of a progesterone signaling pathway to be 

involved in regulation of rotifer evolvability and life history. Ongoing transcriptomic (3’-

DGE) comparisons of the chemostat cultures are anticipated to provide insight into the 

roles of progesterone and other signaling systems in rotifer evolution, physiology, and 

stress tolerance.  
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