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ABSTRACT

This paper proposes a method of evaluating the effect of
auditory display techniques on a complex visual search task.
The approach uses a pre-existing visual search task (conjunction
search) to create a standardized model for audio, and non-audio
assisted visual search tasks. A pre-existing auditory display
technique is evaluated to test the system. Using randomly
generated images, participants were asked to undertake a series of
visual search tasks of set complexities, with and without audio.
It was shown that using the auditory feedback improved the
participant’s visual search times considerably, with statistically
significant results. Additionally, it was shown that there was
a larger difference between audio and non-audio when the
complexity of the images was increased. The same auditory
display techniques were then applied to an example of a real
complex visual search task, the results of which imply a significant
improvement in visual search efficiency when using auditory
feedback.

1. INTRODUCTION

Tasks that require extensive searches of complex visual fields often
take time and practice, and can also cause visual fatigue. Due to
the ubiquity and power of modern computing devices, research
areas such as medical imaging are transferring their visual searches
to computers [1]. This allows for modern image processing, and
interaction techniques, to be used in tandem with the human visual
senses to explore larger-than-screen images, to let the user look for
potential areas of interest.

The current standard for guiding a user towards a specific
area of interest in an image is to use visual cues, for example –
highlighting a specific on-screen area [2], or using arrows to point
to an off-screen area [3]. However, these visual methods come
with some inherent problems. The extra visual information can
distract the attention of the user, and requires additional visual
and cognitive processing, which may result in the user missing
an important graphical feature. Also these visual cues can cover
potentially useful information on the screen – obstructing the
user’s line of sight. In some other cases it is not possible, or
technically difficult, to add visual cues, such as when using an
electronic microscope or in an operating/surgery room.
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A potential solution to the problems associated with providing
visual feedback is to use alternative modalities (such as auditory, or
tactile feedback) to extend the visual domain. When undertaking
complex visual tasks, the provision of auditory assistance has been
shown to improve performance [4] [5] [6]. Unused capacities in
other senses can take over, offering additional data to be processed
by the brain. An example of the use of sound to augment the
analysis of images is the examination of cervical smear slides
for cancerous cells [7] [8] – a task in which a clinician must
search tens of thousands of cells per slide by viewing it with
their microscope, looking for suspect (potentially cancerous) cells
as they go. Some of the approaches described in Edwards et
al’s papers proved to be relatively successful in applying auditory
feedback to assist a clinician when undertaking this extensive
search task, such as Podvoiskis’ approach 1, which showed that
subjects were able to identify and classify specific types of cell
from their auditory response alone.

Despite the previous work, no standard model of evaluating
audio-assisted visual searches has been defined. In work such
as [8] the focus was on a very specific task, and therefore it is
hard to consider the techniques for other contexts. Additionally,
approaches such as [6] focused on visual searches that were too
simple, and therefore the effect of the auditory feedback could
not be properly judged when assisting a visual search. Although
work has recently been done into standardising some specific tasks
in the field of auditory display [9], to the best of the authors’
knowledge, no paper proposes a standardised method to evaluate
audio-assisted visual searches.

The aim of this paper is to evaluate the usefulness of a single
auditory feedback method, compared to no sound, in a series of
complex visual searches. This is done with the aim of defining a
standard method of evaluating auditory display techniques, such
that the community can evaluate new approaches against the
‘benchmark system’ described in this paper.

The remainder of this paper discusses a series of experiments
undertaken to test auditory display techniques developed to assist
users in complex visual searches. Some background on the key
auditory display concepts is given, along with an overview of
the type of visual search tasks undertaken in Section 2. Next
the proposed system is discussed in more depth, along with the
experimental techniques in Section 3 and results in Section 4.

1Using a cursor to interact a visual field and attain an auditory response
based on its colour range.
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Finally, Section 5 presents the conclusions of our experiments.

2. PROPOSED AUDITORY DISPLAY METHOD FOR
COMPLEX IMAGES SEARCHES

This section describes the different elements of the proposed
auditory display. Section 2.1 gives an overview of the proposed
display system. Section 2.2 discusses the graphical data
processing, and the sound mapping and interaction design are
described in Sections 2.3 and 2.4.

2.1. System description

A block diagram of the proposed system is shown in Figure 1.
The system allows for a user to be assisted in a visual search
task by providing sonic information about the target. When the
user interacts with the image on the device (an iPad) an auditory
response is produced. The sound is based on where in the image
the touch occurred, and where the target feature is relative to this
touch. Users receive auditory feedback, guiding them towards the
target until they locate it.

Graphical pre-
processing

Auditory feedback

Human response

Solution

Figure 1: Block diagram of proposed system

2.2. Pre-processing of graphical data

When transforming graphical data into sound, researchers have
typically made one of two decisions: 1) to transform all of the
information into the auditory, creating a complex auditory output
that the user must learn to decipher, or 2) a target-based approach
where the user specifies the target information, and only this is
transformed into the auditory domain.

An example of the first approach is Peter Meijer’s system
‘The vOICe’ [10]. This system transforms visual information into
its raw auditory form by mapping the brightness of pixels to the
amplitude of oscillators. Approaches like this offer users a highly

complex auditory result, which they must learn to decode. This
approach has shown to be highly successful in aiding the visually
impaired to perceive visual information [11] [12].

On the other hand, there is the second approach, based on
targets. Approaches such as Bologna et al.’s ‘See ColOr’ project
[13] [14] [15] [16] rely on methods that filter out the unwanted
visual information (for example, specific colours), and transform
only this goal-oriented information into sound. These approaches
tend to benefit tasks where we know what the target looks like,
and therefore can do some graphical pre-processing to isolate the
required visual features and determine their positions. The main
advantage of this method is that it offers a simpler auditory field
that is easier for the user to learn.

In this paper, we assume that the coordinates of the targets
are known, but it is assumed that some image pre-processing
would be done beforehand dependant on the task at hand. The
sonification mappings were developed with the interaction modes
of modern tablet computers in mind – therefore the auditory
feedback is acquired by touch interaction. By using information
from the user’s touch position, and combining it with the locational
information of the target, it is possible to determine a 2D vector
where the initial and terminal points are determined by the
touching and target coordinates.

2.3. Sound mappings

The vector generated is used to drive the audio engine. A pulse
train was used to represent the distance from the feature, and
binaural panning was used to describe the direction. Inspired
by the work of Yoshida et al. [17], it was decided that a pulse
train could be used to represent the distance between the user’s
touch and the target feature – with the frequency of the pulses
mapped inversely to the distance between the two. This means
that the closer the touch to the target, the faster the rate of the
pulse-train, allowing for more resolution, resulting in a tighter
human-computer interaction loop as the user gets close to the
target.

This pulse train is panned binaurally. The decision to use
spatial audio was made because it allows us to easily represent
a physical direction (in the image) in Cartesian space (in sound).
This is possible because of our innate ability to perceive the
location of a spatialized source to within 11.8 degrees [18]. In
the auditory display community, binaural audio has been used
to produce complex directional auditory fields over headphones
[19] [20]. In our system the direction of the image feature was
panned relative to the user’s touch, as shown in Figure 2. The
user is assumed to be using the iPad in landscape mode, and their
direction is assumed to be directly in front of them (‘up’ on the
device). The HRTFs used were made by Bill Gardner and Keith
Martin of the MIT media lab [21]. They were found to be a good
‘best fit’ head as they were made on a KEMAR (binaural dummy
head) which was designed according to the mean anatomical size
of the population.

Some extra parameters were developed to assist the user in
locating the features – 1) an alert sound when they actually
find the target, created by modulating a sinusoid at a high rate,
and 2) a ‘boing’ sound to tell them when they had scrolled too
far off the screen – a simple oscillator with harmonics, panned
binaurally when a user extends the bounds of the screen. The
sound engine was developed in Csound and integrated into iOS
using the Csound-iOS API, developed by Steven Li and Victor
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Figure 2: Touch-to-target vector that drives the audio engine

Lazzarini [22]. This allowed for the extensive audio processing
capabilities of Csound to be used in tandem with the touch-based
iOS environment.

2.4. Interaction design

The method of navigating the extended display is as follows. For
each test the image was nine times the size of a conventional iPad
screen (32), and interaction techniques had to be developed for
the user to navigate this display. To ensure that moving around
the screen was clearly differentiated from the interaction for
sound feedback, two different methods of interaction were devised
– two-fingered swiping-gestures for navigation, and one-finger
touching for the sound feedback.

3. EXPERIMENTAL METHOD

3.1. Task definition

To assess the usefulness of using audio (by measuring the search
time), the proposed system has been evaluated using a non-applied
test. A number of users were set the task of finding a target shape
in a conjunction-based search. A conjunction search is an example
of a feature search in which the target is hidden in a visual field in
which there are features that bear similarities to it – for example
tasking someone with finding the anomalous shape (the blue
circle) in Figure 3.

Figure 3: A simplified conjunction search

Treisman and Gelade’s Feature-Integration Theory model [23]
suggests that when we perceive a stimulus, we quickly register
the features of the visual objects (such as size, colour and shape).
However, the perception of the objects themselves (for example,
a red square) takes more time – it requires a further level of
cognitive processing to perceive the object as a whole. In general,
it was found that the search for targets defined only by a difference
in features results a linear relationship between the time to find
the target, and the number of distractors [23]. This relationship
allows for the complexity of the experiment to be judged, therefore
enabling us to determine whether the auditory feedback aids us
more or less for different levels of complexity.

The user, in each test, was tasked with finding a black triangle
within a visual field of similar shapes – black squares and white
triangles (as shown in Figure 4). The test aimed to judge two
parameters – the effect of audio on the search task in general (audio
vs. visual), and the effect of increasing the complexity of the image
with audio and no audio.

Figure 4: small section of conjunction search with target (black
triangle) in view

Random images were generated in Matlab. Each shape (either
a black square or a white triangle) was generated at a random
position2, the target (a black triangle) was then generated at a
random position. The user was provided with a test script, and
an iPad (iPad 4) to conduct the test on.

3.2. Test description

To evaluate the usefulness of audio feedback in terms of the
complexity (density) of the image, two different tests were run.
On the first test, at low density, the density of the image was 0.4
objects/mm. On the second test, high density, this was doubled to
0.8 objects/mm.

Test 1a ([low density] (no sound)) was an experiment in which
the user was asked to complete the aforementioned conjunction
search with a density of one shape per 2.5mm without sound. Test
1b ([low density] (sound)) then involved the users undertaking
this task with sound, such that the effectiveness of the auditory
feedback could be determined. Then, in Test 2 [high density], to
judge the effect of increasing the number of distractors, the density
was increased to one shape per 1.25mm. The effect of sound on
this search was also judged by allowing the users to have just visual
cues (Test 2a [high density] (no sound)) and to have the additional
auditory cues (Test 2b [high density](sound)).

2The Matlab script can be found in the supporting material with this
paper. The positions are uniformly distributed within the image size.
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The participants were asked to undertake each test in a certain
order. This order was rotated between users to negate the training
effect. 10 trials of each test were undertaken by the subject,
resulting in a total of 40 tests per participant. The position of the
target is different in each of these 40 tests, as discussed in Section
3.1.

A ‘bonus’ test was then introduced – a Where’s Wally search
task (more information on Where’s Wally can be found at [24]).
The users were asked to conduct a Where’s Wally search on
an extended display screen in the same manner they undertook
the conjunction searches – by trying to find a specific target
(Wally) within distractors (things that look like Wally), with and
without auditory feedback. Two pictures were used for each
participant, one with sound and one without. The picture with
auditory feedback was alternated to account for the difference in
complexities between the two pictures. As it was expected that
some participants would not be familiar with Where’s Wally, a
small training session and an introduction to Where’s Wally was
given before the bonus tests.

During all tests, the conditions were the same for each
participant – the volume on the iPad was set to the same level
(volume level 8), and the room conditions (an acoustically treated
listening booth at Fraunhofer IIS) remained consistent across all
subjects. A high quality set of studio headphones (Beyerdynamic
DT 990 Pro) was used, and the audio feed was taken directly out
of the iPad’s 3.5mm jack. Figure 5 denotes the set-up of the test.

Figure 5: The test setup from the perspective of a webcam above
the iPad

3.3. Evaluation

The auditory display proposed in this paper has been evaluated
in terms of reaction time in the complex visual search described
in Section 3.1. When the participant began the test, a timer was
started on the device, and when they found the target the timer was
stopped. This time was logged within the device in a scoreboard
system. The times could then be noted down at a later date for
analysis. In case of problems when logging the times, and to
conduct further analysis, each test was filmed. A webcam was
suspended above the user’s hands as they interacted with the iPad,
allowing for any nuances of the search task to be captured and
stored for analysis later. A video showing the test being undertaken
is publicly available 3. It shows the user undertaking the visual

3https://dl.dropboxusercontent.com/u/30785467/
Auditory_feedback_in_complex_visual_searches.wmv

search task with and without the auditory display techniques.

The times were then used to determine the effect of the
auditory feedback on the task by looking at the means, Cohen’s
d effect size, and p-values based on an analysis of variance
(ANOVA) test [25]. 95% confidences intervals (CI) for the mean
values were calculated using bootstrapping [26]. It was expected
that providing the participants with auditory feedback would help,
as providing them with any information about the location of the
target should give them an advantage. The main concern of this
experiment was to find out if the techniques developed helped the
participants locate the targets faster, and if so by how much, in
hope that others would be able to compare these results to other
types of auditory and non-auditory feedback.

An additional aim was to determine if, as the complexity of
the visual search increased, the effect of the auditory feedback
was greater. Treisman [23] suggests that as the number of
distractors increases, there is a linear increase in the time it
takes for participants to find the target in a conjunction search.
It is of interest to see whether a similar effect occurs with or
without auditory feedback, in the context of an extended display
conjunction search. If this holds true we would expect to see a
doubling in the time as the number of distractors is doubled due to
this linear relationship, allowing us to quantify complexity in our
model.

3.4. Participant demographics

16 participants took the experiment, all of whom were interns
or researchers at Fraunhofer IIS apart from a visitor from the
University of York. A small preliminary experiment and power
analysis was done before this to ensure that this was enough
participants for significant results. The average age of the
participants was 29.9 years (standard deviation of 10.0 years).
The group included people of German, British, Indian, Spanish,
Australian, Italian, Bolivian, Venezuelan, and Chinese nationality.
With regards to gender – 14 males took the experiment, and two
females.

Some test-oriented questions were asked. It was found
that 12 participants owned touch-screen devices, one had some
experience, and three claimed to have little experience of using
them. No participants claimed to have no experience with
touch-screen devices. The majority of the participants (11 out of
16) had both music and audio processing knowledge, two had only
an audio background, and nobody claimed to have just a music
background. However, three participants had no music or audio
processing knowledge.

With regards to experience with 3D audio, seven people had
good knowledge and experience with binaural audio, eight had
listened to some before, and only one participant had not heard any
before. To ensure that the participants did not have any issues with
the visual element of the search task they were asked to self-report
their visual abilities. All participants claimed to have either
perfect, or corrected vision. Finally, the participants were asked
to describe their visual search experience. One participant had
good experience with visual searches, two had a little experience,
and the remainder had no experience with visual searches, such as
conjunction searches.
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Density Audio Mean time CI

Low no 21.57 [18.40, 26.20]
yes 10.01 [9.22, 11.25]

High no 36.28 [31.50, 44.56]
yes 12.75 [11.59, 14.28]

Table 1: Mean reaction times and their corresponding 95%
confidence intervals for each of the experiments (in seconds).

4. RESULTS

Analysed results of the tests are discussed in this section. We
compare the differences between the tests, such that conclusions
can be made about the success of the auditory feedback. The mean
reaction times and their corresponding 95% confidence intervals
for each of the experiments are outlined in Table 1 for quick
reference and access.

4.1. Global effect of the audio feedback and density

Figure 6 shows a boxplot of the reaction time with and without
audio feedback (namely, Sound/No Sound on the x-axis) and
density (High/Low x-axis) factors. Mean values are shown as
black circles on the box plot for each of the conditions. As we can
see, the mean reaction time is lower when using audio feedback
compared to the tests where no audio feedback is given. As we
would expect, complexity increases the reaction time.

In order to assess the effects of the auditory feedback and the
complexity of the visual search experiments, a 3-way ANOVA
analysis of the reaction times has been performed. The density
of the test image and the use of audio feedback are fix factors,
whereas subjects were set as a random factor for the statistical
analysis. Results of the ANOVA analysis show that the audio
feedback and density factors had a statistically significant effect on
the average reaction time (p < 0.01). In the following subsections
we will analyze each of the individual factors, audio feedback and
density, in more detail.

No Sound/Low No Sound/High Sound/Low Sound/High
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Figure 6: Boxplot describing the effect of the audio feedback and
density on the conjunction search.

Subjects effect had a p-value of 0.51 meaning that the mean
reaction time of participants do not show statically significant

differences, and that no participant performed statistically better.
This is something that we would expect since no participant was
particularly skilled a priori in visual searches.

4.2. Audio feedback analysis

In Test 1 [low density] the participants were able to locate the
target 100% of the time, with or without sound. Averaged subject
times ranged from 8.11 to 40.27 seconds in the test with no sound,
and from 5.45 to 12.23 seconds with sound. To judge the effect of
auditory assistance on the visual search, a 2-way ANOVA analysis
on the reaction time was done where the use of audio feedback
was a fix factor and the subjects a random factor. On average, the
participants managed to locate the target without sound in 21.57
seconds (CI [18.40, 26.20]). With the additional sound assistance,
the participants were able to locate the feature in 10.01 seconds
(CI [9.22, 11.25]). These results show statistically significant
differences (p < 0.01). We found an effect size of 0.66, suggesting
that the auditory feedback helps the participants improve their
visual search a considerable amount.

In Test 2 [high density] 100% of the participants were able
to locate the target. However, as one would expect from a more
complex visual searching task, the times were slower – the average
times ranged from 14.42 to 70.82 seconds in the visual-alone task,
and from 6.58 to 15.27 seconds in the visual and auditory task.
The average reaction time without sound was 36.28 seconds (CI
[31.50, 44.56]). The auditory feedback improved the time to 12.75
seconds (CI [11.59, 14.28]). A 2-way ANOVA analysis of the
reaction times for the high density tests shows that the differences
in time are significant (p < 0.01). A large effect size in the high
density test of 0.83 was found. This effect size is larger than in
the low density test, suggesting that audio feedback helps more in
more complex searches.

4.3. Density analysis

We now analyse the density factor and compare reaction times
in the case where no audio feedback is used. For this, a 2-way
ANOVA of the reaction times in the tests where no audio feedback
(Test 1a and Test 2a) is given. As before, the density is a fix factor
and subjects are a random factor. As we would expect looking
at the boxplot of Figure 6 and the mean reaction times and CIs
reported in the subsections above, results show that subjects were
significantly better in low complexity images (21.57 seconds) than
in high complexity images (36.28 seconds).

The case where sound is used shows similar results. It
is not surprising to verify that the mean reaction times are
significantly better in low complexity images (10.01 seconds) than
in high complexity images (12.75 seconds). The next section will
statistically analyse the interaction effect between audio feedback
and density.

4.4. Interaction effect

The 3-way ANOVA analysis of Section 4.1 also shows that there
is a statistically significant interaction effect between the audio
feedback and the density factors (p < 0.01). This suggests
a deviation from the linear model assumed by ANOVA. Audio
feedback does not help in the same way in the high and low density
tests. Looking at the average reaction time in Figure 6, we can
observe that the reduction in reaction time when using sound is
larger in the high density test case, from 36.28 to 12.75, than in
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the low density case, from 21.57 to 10.01. As one might expect,
the participants appeared to rely on the auditory cues more as the
visual search tasks became more complex, often relying on the
auditory cues even though the target was visible on the screen.

4.5. Applied test (Where’s Wally test)

In the applied Where’s Wally test, 14 out of 16 participants found
Wally in the visual search, and everyone found Wally in the audio
assisted visual search. There was a significant difference (p < 0.05)
in the mean times in which the participants found Wally – those
without sound found him, on average, in 70.26 seconds (standard
deviation 55.43), and those with sound found him in 25.42 seconds
(standard deviation 17.6).

5. CONCLUSIONS AND FURTHER WORK

The work shows that the additional auditory feedback can be
used to reduce search time. In Test 1 [low density] there was a
considerable difference between the participant’s times with sound
and without sound – those with sound completed the task in around
half the time. And in Test 2 [high density] this gap grew even larger
– they were able to locate the feature in around one third of the
time it took the non-audio group. Results also showed a significant
interaction effect between audio feedback and the complexity of
the image. When compared with similar work [6] (a simple visual
search without distractors using the same auditory methods) it is
evident that the participants relied on auditory cues significantly
more when the display’s complexity was increased.

It is clear that the large difference in the means between
the audio and non-audio groups sets a good baseline for others
to develop better techniques. Further work should include
developing methods that are able to improve the effectiveness of
the users’ search. With regards to reproducible research [27], the
work discussed in this paper can be extended or verified easily as
the Matlab code, Xcode example projects, and test scripts have
been provided at the following link so that anyone may replicate
these results, or improve the techniques developed.

https://db.tt/D71PglVc

Additionally, the methods discussed in this paper, or indeed
any more effective methods that are developed from the testing
procedure described in this paper should be applied to complex
visual tasks such as the cervical cancer cell application discussed
in the introduction. Perhaps the tasks themselves may mean
that the techniques developed may require some additional work.
However, the fundamental mapping techniques developed from the
conjunction search task should provide a good baseline for any
complex visual task. Moreover, as discussed in previous work
[6], the methods can be applied to those with visual impairments,
or those with their eyes engaged elsewhere, to navigate computer
interfaces.

This paper has proposed a method for evaluating complex
visual searches on extended display screens, with and without
sound. By using the pre-existing conjunction search model, it
allows us to evaluate the auditory display techniques that we
have developed in a controlled manner – where we control the
complexity of the search, in a scalable and repeatable manner.
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