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The damage model presented in this article (named “THHMD” model) is
dedicated to non-isothermal unsaturated porous media. It is formulated by
means of three independent strain state variables, which are the thermo-
dynamic conjugates of net stress, suction and thermal stress. The damage
variable is a second-order tensor. Stress/strain relationships are derived from
Helmholtz free energy, which is assumed to be the sum of damaged elastic
potentials and “crack-closure energies”. Damage is assumed to grow with
tensile strains due to net stress, with pore shrinkage due to suction and
with thermal dilatation. Specific conductivities are introduced to account
for the effects of cracking on the intensification and on the orientation of liq-
uid water and vapor flows. These conductivities depend on damage and on
internal length parameters. The mechanical aspects of the THHMD model
are validated by comparing the results of a triaxial compression test to exper-
imental measurements found in the literature. Parametric studies of damage
are performed on three different heating problems related to nuclear waste
disposals. Several types of loading and boundary conditions are investigated.
The thermal damage potential is thoroughly studied. The THHMD model
is expected to be a useful tool in the assessment of the Excavation Damaged
Zone (EDZ), especially in the vicinity of nuclear waste repositories.
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1. INTRODUCTION

Many geomaterials, like tuff, granite or clay rock, are brittle. The Exca-
vation Damaged Zone (EDZ) generated in such media has to be assessed in
order to design safe underground facilities. Porous host rocks contain vari-
ous pore fluids, which makes engineering problems very complex. Capillary
effects change the behavior of the bedrock. In addition, temperature gradi-
ents may induce phase changes, which influence transfer kinetics. The stakes
are particularly high in nuclear waste repositories, provided that radioac-
tive packages behave as heating sources [11, 57, 59, 75]. Poromechanics and
Continuum Damage Mechanics are two well-identified scientific fields. But
it is still hard to combine both theories to study cracking in porous media [2].

On the one hand, Continuum Damage Mechanics provides a theoretical
framework to develop damage and fatigue models for solids [54]. In micro-
mechanical models, stresses are assumed to be redistributed due to a decrease
of the effective material area. Stress-strain relationships are thus written
in terms of effective variables. Effective stress is the stress which develops
in the fictive undamaged counterpart of the system [21]. The proper def-
inition of effective stress requires the use of a fourth-order operator [44].
Effective stresses describe mechanical damage effects rather than cracking
evolution. Damage growth itself is often associated to the development of
tensile strains [60]. In phenomenological damage models, the brittle behavior
law is derived from the postulated expression of a thermodynamic potential
[16, 17, 44, 58, 65, 73]. Generally speaking, damage represents the effects of
micro-cracking on the macroscopic behavior of a medium. That is the reason
why damage is non-local [7]. As a consequence, softening constitutive models
often need to be regularized before being used in a numerical code. Either
a differential [6, 21, 53, 62] or an integral formulation [8, 9, 22, 49] can be
adopted. Micro-structure enriched models also avoid localization problems.
Up to now, they are more common in elasto-plasticity than in damage me-
chanics [14, 77], even if some models were developed for isotropic damage
[29]. A full representation of the thermo-hydro-mechanical behavior of the
host rock requires the coupling of all degrees of freedom. Most of the existing
models tend to separate problems, by modeling mechanical damage on the
one hand, and the elastic unsaturated behavior on the other hand. Formula-
tions based on Bishop’s effective stress take damage and capillary effects into
account, but damage remains uncoupled from fluid effects [12, 48, 70, 71].
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Only a few damage models proposed for unsaturated porous media have been
extended to non-isothermal conditions. Gawin et al. [35, 36] modeled dam-
age in unsaturated concrete subjected to temperature changes. Even if two
scalar damage variables are introduced (to distinguish the response of the
material in traction and in compression), damage is assumed to be isotropic.
Damage grows with total strains, which merge hygro-thermal and mechan-
ical strains. The model of degraded mechanical stiffness has recently been
extended to thermo-mechanical couplings induced by hygro-chemical pro-
cesses [37]. Schrefler then provided a general framework to study isotropic
damage in deformable unsaturated porous media subjected to hygro-thermal
changes [69]. Applications have recently been found in cementitious materi-
als [51, 52, 63, 38].

On the other hand, transfers in cracked porous media were extensively mod-
eled by fracture network theories. The differences between such models lie
in the number of represented continua and in the way fluid exchanges be-
tween media are taken into account. In multimodal models [25], all kinds of
voids are assumed to connect and to form a unique fracture network. In a
Representative Elementary Volume (REV), the pore pressure of the fluid is
thus assumed to be homogeneous. Only one balance equation is needed to
model fluid transfers in the pores of the intact matrix on the one hand, and
in the micro-cracks on the other hand. In multi-continua models [40, 61, 79],
several networks are assumed to drive fluid flows separately, but not always
independently. Each continuum is thus characterized by its own pressure
head. Richard’s equations are coupled. The coupling terms represent the
fluid exchanges which may occur at the boundary between two media (be-
tween the porous matrix and the cracks network, for instance). A penetration
time can be defined [67, 80], in order to indicate when suction equilibrium
occurs, and consequently, when it is possible to consider one single pressure
head variable for the whole REV. Fracture network models remain focused
on fluid flow problems, and do not represent the mechanical behavior of the
cracked porous material.

The damage model presented in this article (named “THHMD” model) is
dedicated to non-isothermal unsaturated porous media. It is designed to
represent the combined effects of mechanical, capillary and thermal crack-
ing. The Representative Elementary Volume is assumed to be constituted
of a solid skeleton and of a porous network. The pores are filled with liquid

3



water and gas. Due to pressure and temperature changes, water may evap-
orate. Gas is thus a mixture of dry air and vapor. Section 2 provides the
main assumptions founding the THHMD model. In Section 3, the modeling
approach is presented in detail, the state laws are established and the damage
evolution law is expressed. All transfer equations are given in Section 4. The
emphasis is put on the introduction of damage in water permeability and va-
por diffusivity. Balance equations for all constituents (solid skeleton, water,
air, heat) are recalled in Section 5. The numerical applications presented
Section 6 are mainly focused on the effects of thermal damage. The first one
validates the mechanical aspects of the THHMD model. The second one is a
simplified nuclear waste repository model, involving thermal and mechanical
degrees of freedom only. The third one is a heating test performed in a tank
filled with unsaturated compacted clay. The fourth one is a full-scale heating
test performed in an experimental nuclear waste repository.

2. MAIN MODELING ASSUMPTIONS

2.1. Choice of the Damage Variable

The damage model used in this study (named “THHMD model”) is based
on energetic computations. The proposed formulation does not aim at rep-
resenting the geometry of a cracks network at the current stress state. Void
nucleation and cracks coalescence induce energy dissipation. A damage vari-
able is introduced to compute the corresponding loss of elastic deformation
energy at the scale of a Representative Elementary Volume (REV). If a vol-
ume VREV of material is damaged by N non-interacting cracks (this assump-
tion is justified in the following), the variation of elastic deformation energy
may be averaged as [50]:

∆W e =
1

2VREV

N∑
i=1

ni · σ ·< b >iSi (1)

in which ni is the vector normal to the ith crack plane. < b >i is the av-
erage displacement discontinuity vector which characterizes the opening of
the ith fissure. Si is the surface of the ith crack damaging the material vol-
ume V. σkl is the macroscopic stress exerted on the cracked material at the
scale of the REV. In two dimensions, the average crack opening displacement
< b >i is collinear to the macroscopic traction vector ni · σ. In three dimen-
sions, the opening vector has a shearing component, which is collinear to
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(ni · σ · ni)ni − ni · σ. If the cracks do not interact, the variation of elastic
deformation energy originated by damage thus depends on a fourth order
tensor. However, as mentioned by Kachanov [50], the latter has a negligible
influence on the loss of energy, which may thus be approximated as:

∆We =
8(1− ν2

0)

3(1− ν0/2)E0

(σijσjl)Dmli
(2)

in which E0 and ν0 are the Young’s modulus and Poisson’s ratio of the
intact material, respectively. Dmij

is the second-order crack-density tensor.
In this study, the damage variable (noted Ωij) is defined as the spectral
decomposition of Dmij

:

Ω =
3∑
I=1

dInI ⊗ nI (3)

dI and nI are the I th eigenvalue and I th eigenvector of the crack density
tensor Dmij

, respectively. With this definition of damage, the geometric rep-
resentation of micro-cracks is homogenized at the scale of the REV. Each
micro-crack is assumed to belong to one crack family, characterized by a
crack-plane orientation. The three principal cracks’ orientations define three
crack families. At the scale of the REV, these three families are represented
by three equivalent cracks (See Figure 1). The I th equivalent crack is char-
acterized by its volumetric fraction dI and by the vector nI, normal to the
I th equivalent crack plane. The equivalent cracks are assumed to be penny-
shaped, with a radius rI and an opening eI . A linear dilatancy rule relates
rI and eI [72]:

dI =
1

VREV
eI π (rI)2, δeI = χ δrI (4)

In situ observations show that the Excavated Damaged Zone (EDZ) sur-
rounding deep galleries is constituted of non-connected fractures families.
At a smaller scale, non-connected cracks are also observed in damaged rock
samples [10]. It is thus justified to define a Representative Elementary Vol-
ume, at the scale of which material parameters are homogenized under the
assumption of cracks non-interaction. As demonstrated above, this common
assumption [41] enables the computation of energy loss by means of a second-
order damage tensor. Moreover, assuming that cracks do not connect does
not imply that they do not constitute a flow path. Cracks are larger than
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Figure 1: Equivalent Cracks in a 3D REV.

the natural pores of the matrix. As a result, each crack is connected to the
natural porous network, and fluids flow continuously through this network
made of natural pores and cracks [55, 56].

2.2. Formulation in Independent Strain State Variables

The THHMD model is dedicated to unsaturated porous media. In the
following, it is understated that the pores of the solid matrix are filled with
liquid water and a gaseous mixture of dry air and vapor. In Continuum
Damage Mechanics, almost all models developed for unsaturated media are
based on the concept of Bishop’s effective stress [12, 48, 71]. In such theo-
retical frames, some important aspects of the behaviour of unsaturated soils,
like wetting collapse, cannot be represented [28, 46]. Noting pw and pg the
pore pressures of liquid water and gas respectively, and noting δij the second-
order identity tensor, net stress is defined as σ”ij = σij−pgδij, and suction is
defined as s = pg − pw. Assuming that deformations are small and that the
solid phase is incompressible, the Inequality of Clausius-Duhem for an open,
damaged, non-isothermal, unsaturated system writes [19]:

σ”ij δεji + sδ (−nSw) − ηδT − δΨs (εpq, nSw, T,Ωpq) ≥ 0 (5)

in which εij is the linearized strain tensor, n is porosity, Sw is the degree
of saturation of liquid water, η is entropy, and Ψs is Helmholtz volumetric
free energy. The constitutive model may be expressed in terms of net stress,
suction and temperature, which are thermodynamically independent. The
THHMD model is formulated in net stress, suction and thermal stress (pT ).
Thermal stress is a scalar stress variable depending on temperature only. Net
stress, suction and thermal stress are thus thermodynamically independent,
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and are conjugate to independent strain state variables:

σ”ij ←→ εMij

s ←→ εSv

pT ←→ εTv

(6)

εMij, εSv and εTv are respectively called mechanical strains, capillary strains
and thermal strains. These latter are thermodynamically independent, so
that the incremental total strain tensor dεij may be decomposed as:

dεij =
(
dεeMij

+ dεdMij

)
+

1

3

(
dεeSv + dεdSv

)
δij +

1

3

(
dεeTv δij + dεdTv

)
δij (7)

in which e and d subscripts refer to elastic and inelastic components, respec-
tively. Thermal strains are related to temperature by a damaged thermal
expansion coefficient α∗ (Ωpq) (in oC−1), depending on damage and on a
reference thermal expansion coefficient α∗0. In an intact material, thermal
deformations are elastic, so that:

dεeTv = α∗0 dT (8)

In the same way, thermal stress is related to thermal deformations by a
thermal modulus βT (Ωpq) (in Pa), depending on damage and on a reference
modulus β0

T . In an intact material:

dεeTv =
1

β0
T

dpT (9)

In an intact porous medium, the increments of temperature and thermal
stress are thus simply related by:

dpT = β0
T α
∗
0 dT (10)

It is assumed that the constitutive relationship between temperature and the
thermal stress does not depend on the state of damage, so that the relation
stated in equation 10 even holds if damage grows. As a result:

dpT = βT (Ωpq) α
∗(Ωpq) dT (11)
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The expression of the damaged thermal modulus βT (Ωpq) as a function of
the reference modulus β0

T and in function of damage will be computed in
the following section. With the choice of independent strain state variables
described in equation 6, the Inequality of Clausius-Duhem writes [3, 5]:

σ”ij dεMji
+ s dεSv + pT dεTv − dΨs

(
εMpq , εSv, εTv,Ωpq

)
≥ 0 (12)

The corresponding conjugation relations are:

σ”ij =
∂Ψs(εMpq ,εSv ,εTv ,Ωpq)

∂εMij

s =
∂Ψs(εMpq ,εSv ,εTv ,Ωpq)

∂εSv

pT =
∂Ψs(εMpq ,εSv ,εTv ,Ωpq)

∂εTv

Ydij = −∂Ψs(εMpq ,εSv ,εTv ,Ωpq)
∂Ωij

(13)

Ydij is conjugate to damage. The product of Ydij by damage is an energy
release rate. Ydij is named “damage affinity” in the following. The THHMD
model is based on a postulate on the expression of Helmholtz free energy. The
following paragraph gives a physical justification of the expression chosen in
this formulation.

2.3. Concept of Equivalent Mechanical State

In the real mechanical state, N micro-stresses τKij (K=1,...,N) open N
micro-cracks in the REV. According to the definition of the damage variable,
the micro-cracks are represented by three equivalent penny-shaped cracks
characterized by their normal vector nI (I=1,2,3). In the same way, the
micro-stresses are gathered in three principal families, according to their
orientation. The principal stresses are perpendicular to the equivalent crack
planes. The corresponding equivalent stress field τij is thus defined as:

τij =
3∑
I=1

(
τ I nI i n

I
j

)
(14)

The opening of the I th equivalent crack grows with the I th equivalent stress
eigenvalue τ I . In other words, dI grows with τ I . Assuming that the evolution
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law is linear and that the growth coefficient is the same in all directions [74]
leads to:

τij = gΩij (15)

in which g represents the resistance to damage (in Pa). The equivalent
mechanical state is defined as the state in which the damaged material may
be considered elastic. In other words, in the equivalent state, the material has
a lower rigidity than the intact material, but strains remain reversible. Crack
openings are thus accounted for by the stress field perturbation induced by
the micro-stresses τKij . As a consequence, in the equivalent mechanical state,
a damaged material is subjected to an equivalent stress σ̃ij, defined as the
sum of the far field stress σij and of the equivalent stress τij [5, 74]:

σ̃ij = σij + τij (16)

In the equivalent mechanical state, stresses are conjugate to deformations
by a damaged elastic potential. Assuming that strains and damage are the
same in the equivalent and in the real mechanical states [74], the conjugation
relations for an isothermal solid turn to be:

Ψ∗e(σ̃pq,Ωpq) + Ψe(εpq,Ωpq) = σ̃ij εji

εij = ∂Ψ∗
e(σ̃pq ,Ωpq)

∂σ̃ij
, σ̃ij = ∂Ψe(εpq ,Ωpq)

∂εij

(17)

in which * denotes the partial Legendre transform relative to strains. Noting
that the far-field stress σij is conjugate to strains by Helmholtz free energy
Ψs(εpq,Ωpq) [54], the resulting expression of Helmholtz free energy for an
isothermal solid is:

Ψs(εpq,Ωpq) = Ψe(εpq,Ωpq)− τij εji =
1

2
εjiDeijkl (Ωpq) εlk − gΩij εji (18)

in which Deijkl (Ωpq) is the fourth-order rigidity tensor, depending on damage
and on a reference stiffness tensor D0

e ijkl characterizing the intact material.
The computation of Deijkl (Ωpq) is detailed in the following section. The
stress applied to the REV is obtained by deriving the free energy 18:

σij =
∂Ψs(εpq,Ωpq)

∂εij
= Deijkl (Ωpq) εlk − gΩij (19)

If cracks open due to a tensile load, a bare unloading to σij = 0 will not
close the cracks (εij 6= 0). To close the cracks, an additional compression
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(−gΩij) would be necessary. In other words, the term −gΩijεji in equation
18 is the energy that would be required to close remaining openings. It will
be referred to as “crack-closure energy” in the following. It represents the
existence of residual strains. Note that crack closure is not accounted for in
this model. Residual openings are thus considered irreversible.

3. STRESS/STRAIN RELATIONSHIPS

3.1. Expression of Helmholtz Free Energy

The free energy of the non-isothermal porous REV is assumed to have
the same form as for the solid (equation 18). The degraded elastic potential
and the“crack-closure energy” thus have three terms, each of which referring
to one of the independent stress state variable:

Ψs(εMpq, εSv, εTv,Ωpq) =

1
2
εMjiDeijkl (Ωpq) εMlk + 1

2
εSv βs (Ωpq) εSv + 1

2
εTv βT (Ωpq) εTv

−gM Ωij εMji − gS
3

Ωij δji εSv − gT
3

Ωij δji εTv

(20)

in which βs (Ωpq) is a capillary modulus (in Pa), depending on damage and
on a reference modulus β0

s , characterizing the intact material. βT (Ωpq) has
already been defined in equations 9-11. gM (respectively gS and gT ) repre-
sents the resistance of the material to mechanical (respectively capillary and
thermal) cracking (in Pa).

3.2. Damaged Rigidities

The concept of effective stress, commonly used in Continuum Damage
Mechanics [44, 54], is extended to the three stress state variables used in the
THHMD model. The operator of Cordebois and Sidoroff [18] is used in order

to define the damaged effective stress variables σ̂”ij, ŝ, p̂T [3]:
σ̂”ij = (δ − Ω)−1/2

ik σ”kl (δ − Ω)−1/2
lj

ŝ = s
3

(δ − Ω)−1
ij δji

p̂T = pT
3

(δ − Ω)−1
ij δji

(21)

The damaged rigidities are determined by application of the Principle of
Equivalent Elastic Energy, which states that the elastic energy of the dam-
aged REV subjected to σ”ij, s and pT is equal to the elastic energy of a
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fictitious intact REV subjected to σ̂”ij, ŝ and p̂T . If Mijkl (Ωpq) denotes the
operator of Cordebois and Sidoroff, we thus have:

Deijkl (Ωpq) = M (Ωpq)
−1
ijnm D0

emnstM (Ωpq)
T
tskl

βs (Ωpq) = 9β0
s

[(δ−Ω)−1
ij δji]

2

βT (Ωpq) =
9β0

T

[(δ−Ω)−1
ij δji]

2

(22)

Let’s recall that D0
e ijkl, β

0
s and β0

T are respectively the mechanical stiffness
tensor, the capillary modulus and the thermal modulus of the intact material.
Following the approach of Gatmiri [30, 31, 32, 33, 34], capillary and ther-
mal strains are assumed volumetric, so that the conjugate stress variables
(respectively suction and thermal stress) are also scalars. As a consequence,
capillary and thermal stress/strain relationships are expressed by means of
scalar moduli. The damaged capillary and thermal moduli are computed
from the isotropic part of the damage tensor. Even if the damage tensor
may be anisotropic, the cracking effects on βs and βT are isotropic. The
authors intend to account for damaged-induced anisotropy in the thermal
expansion properties in further developments.

3.3. State Laws

At this stage, it is easy to deduce the increments of the elastic strain
components. For a fixed damage state:

dεM
e
ij = Deijkl (Ωpq)

−1 dσ”lk
dεeSv = ds

βs(Ωpq)

dεeTv = dpT
βT (Ωpq)

(23)

The incremental state laws result from the combination of equations 13 and
20:

dσ”ij = Deijkl (Ωpq) dεMlk +
(
∂Deijkl(Ωpq)

∂Ωmn
εMnm

)
dΩlk − gM dΩij

ds = βs (Ωpq) dεSv +
(
∂βs(Ωpq)
∂Ωij

εSv
)
dΩji − gS

3
δij dΩji

dpT = βT (Ωpq) dεTv +
(
∂βT (Ωpq)
∂Ωij

εTv
)
dΩji − gT

3
δij dΩji

(24)
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The expressions of the incremental inelastic strains are obtained by combin-
ing equations 23 and 24.

dεM
d
ij = −

(
Deklhg (Ωpq)

−1 ∂Deghij(Ωpq)

∂Ωmn
εMnm

)
dΩlk + gM Deijkl (Ωpq)

−1 dΩlk

dεdSv
= −

(
εSv

βs(Ωpq)
∂βs(Ωpq)
∂Ωij

)
dΩji + gS

3βs(Ωpq)
δij dΩji

dεdTv = −
(

εTv

βT (Ωpq)
∂βT (Ωpq)
∂Ωij

)
dΩji + gT

3βT (Ωpq)
δij dΩji

(25)
In the right-hand side of expressions 25, the first term is reversible, and
represents the increase of strain rate when stiffness gets lower due to damage
growth. The second term is irreversible, and represents the remaining crack
openings mentioned in the paragraph related to the equivalent mechanical
state. Incremental irreversible strains are thus given by:

dεM
irr
ij = gM Deijkl (Ωpq)

−1 dΩlk

dεirrSv
= gS

3βs(Ωpq)
δij dΩji

dεirrTv = gT
3βT (Ωpq)

δij dΩji

(26)

3.4. Damage Evolution Law

dεM
d
ij, dε

d
Sv

and dεdTv depend on the increment of damage (equation 25),
which is computed as:

dΩij = dλd
∂fd

(
Ydpq,Ωpq

)
∂Ydij

(27)

in which dλd is the damage multiplier, and fd
(
Ydpq,Ωpq

)
is a damage evolu-

tion function, depending on damage affinity Ydij. The latter is computed by
combining equations 13 and 20:

Ydij = −1
2
εMlk

∂Deklij(Ωpq)

∂Ωmn
εMnm − 1

2
εSv

∂βs(Ωpq)
∂Ωij

εSv − 1
2
εTv

∂βT (Ωpq)
∂Ωij

εTv

+gM εMij + gS
3
εSv δij + gT

3
εTv δij

(28)
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A simple damage evolution function is chosen:

fd
(
Ydpq,Ωpq

)
=

√
1

2
Tr

(
Y +
d1 ij

Y +
d1 ji

)
− C0 − C1δij Ωji (29)

in which:
Y +
d1 ij = gM ε+Mij +

gS
3
ε−Svδij +

gT
3
ε+Tvδij (30)

This type of damage growth criterion is pretty commonly used [15, 41, 24, 42,
70]. C0 is the initial damage affinity rate which is necessary to trigger damage.
C1 controls the damage increase rate. Y +

d1 ij represents the tensile forces
applied on the REV and resulting in irreversible crack openings. Damage may
only grow when the solid skeleton is subjected to tensile strains. These latter
may be due to a tensile mechanical loading applied on the REV (gM ε+Mij),

to a pore shrinkage due to a suction increase in the REV (gS
3
ε−Svδij), or to a

thermal dilatation of the grains related to a tensile thermal strain of the REV
(gT

3
ε+Tvδij). As a result, three possible origins of damage are accounted for.

Mechanical damage is controlled by gM ε+Mij, capillary damage is controlled

by gS
3
ε−Svδij, and thermal damage is controlled by gT

3
ε+Tvδij. This means in

particular that a bare thermal loading may only produce isotropic damage.
But damage-induced anisotropy is accounted for by the mechanical term
gM ε+Mij. In other words, the Excavation Damaged Zone (EDZ) is modeled
by an anisotropic damage tensor. But the damage generated by suction and
temperature changes in a gallery is isotropic. Damage due to suction and
temperature changes may be anisotropic due to couplings only. For instance,
suction and temperature changes may generate anisotropic net stress changes,
depending on the boundary conditions. The damage multiplier is computed
by using the consistency rule. The incremental damage evolution law turns
to be:

dΩij =
Y +
d1 kl

dY +
d1 lk

C1 Tr
(
Y +
d1 pq

) Y +
d1 ij√

2Tr
(
Y +
d1mn

Y +
d1 nm

) (31)

4. TRANSFER EQUATIONS

4.1. Liquid Water Flow

4.1.1. Flow Model in Non-isothermal Unsaturated Conditions

As in the preceding works of Gatmiri [30, 31, 32, 33, 34], the liquid water
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flow is assumed to obey an extended Darcy law of the form:

Vwi = −Kwij∇j (Φw) (32)

in which Vwi is the liquid water velocity (in m.s−1), Kwij is the permeabil-
ity tensor related to liquid water (in m.s−1), and Φw is the total hydraulic
potential:

Φw = Ψw (θw, T ) + z (33)

The occurrence of the spot height z (in m) makes it possible to take gravi-
tational effects into account. Ψw (θw, T ) measures the influence of capillary
tension occurring in the pores. It depends on water content (θw) and on
temperature (T). It is assumed [32, 64] that the capillary and thermal effects
may be uncoupled as follows:

Ψw (θw, T ) =
σ(T )

σ(Tref )
ΨR (θw) (34)

ΨR (θw) is the pore water pressure (in m) at the reference temperature Tref :

ΨR (θw) =
pw − pg
γw

(35)

γw is the volumetric weight of liquid water (in N.m−3), pw is the pore pressure
of liquid water. pg is the pore pressure of the gas phase (made of air and va-
por), and σ(T ) is the superficial energy of pore water (in J.m−2). Combining
equation 32 to the expression of the gradient of the hydraulic potential Φw

(defined in equations 33 and 34), results in:

Vwi = −ΨR (θw)

σ(Tref )

dσ(T )

dT
Kwij∇j (T )− σ(T )

σ(Tref )

dΨR (θw)

dθw
Kwij∇j (θw)−Kwij∇j (z)

(36)
Introducing the definition of suction in equation 35, and combining the result
to equation 36, finally gives the thermo-hydro-mechanical expression of the
liquid water velocity:

Vwi = −DTwij∇j (T ) +DPwij∇j (s) −Kwij∇j (z) (37)

in which: 
DTwij = ΨR(θw)

σ(Tref )
dσ(T )
dT

Kwij

DPwij = 1
γw

σ(T )
σ(Tref )

Kwij

(38)
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4.1.2. Relative Permeabilities

The water permeability tensor is split as follows:

Kwij = kT (T ) kr(Sw)Kintij (n,Ωpq) (39)

The intrinsic permeability Kintij (n,Ωpq) is a second-order tensor, the co-
efficients of which are expressed in m.s−1. It models the influence of the
geometry of the porous network on the permeability of the REV to liquid
water in saturated conditions. Both relative permeabilities kT (T ) and kr(Sw)
are scalar and non-dimensional, and characterize the liquid phase, indepen-
dently of the solid matrix of the REV. It is recalled that Sw is the saturation
degree of liquid water. As in the preceding models of unsaturated porous me-
dia developed by of Gatmiri [32], temperature is assumed to influence water
viscosity µw(T ) as follows:

kT (T ) =
µw(T )

µw(Tref )
(40)

and the capillary relative permeability is written as:

kr(Sw) =

(
Sw − Sw,r
1− Sw,r

)3

(41)

Sw,r is the residual saturation degree, quantifying the remaining water menisci
in the desaturated material. The water saturation degree is controlled by a
state surface. The exponential influence of temperature on the saturation
degree, formerly proposed in the works of Gatmiri [32, 34, 47], is kept un-
changed. The hydraulic part is inspired from Van Genuchten retention curve
[76]. Finally, the expression of the state surface chosen for the saturation
degree in the THHMD model is the following (See Fig. 2): Sw =

[
(1− Sw,r) (1 + (αV G s)

nV G)
−1+ 1

nV G + Sw,r

]
exp (ds (T − T0)) if s ≥ 0

Sw = 1 if s < 0
(42)

αV G and nV G are Van Genuchten parameters. ds quantifies the influence of
temperature on the saturation degree.

15



10
0

10
5

0

500
0

0.2

0.4

0.6

0.8

1

T(°C)s(Pa)

S
w

Figure 2: State Surface of the Saturation Degree. T0 = 20 oC, ds = −3.10−4 oC−1. The
Van Genuchten parameters are typical of clays [76]: αV G = 1.52.10−3Pa−1, nV G = 1.17.

4.1.3. Intrinsic Permeability

The intrinsic permeability Kintij (n,Ωpq) is a skeleton property, and thus
depends on the pore size distribution of the matrix. In undamaged states,
it can be represented in the same way as for intact porous media. On the
contrary, if the material is damaged, the formation of a fracture network
influences the permeability of the matrix. Moreover, cracking orients the flow.
That is the reason why Kintij (n,Ωpq) is assumed to depend on total porosity
n and damage Ωij. Cracks typical sizes exceed the typical sizes of the natural
pores [55]. At the scale of the REV, the pores of the intact matrix form a
homogeneous porous network, and each crack is connected to this natural
porous network. As a result, even when damage is low, cracking implies a
permeability increase. That is the reason why the intrinsic permeability of
the damaged porous medium is written as the sum of intact and damaged
components:

Kintij (n,Ωpq) = k1ij (nrev) + k2ij

(
nfrac,Ωpq

)
(43)

• k1ij (nrev) is the permeability related to the reversibly deformed pores
of the matrix. In the elastic domain, it is equal to the permeability
which would be supported by an intact porous medium. Following the
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approach of Gatmiri [32]:

k1ij (nrev) = kw0 10αw erev δij = kw0 10αw e δij = k1ij (n) (44)

kw0 is the reference intrinsic permeability of the material when satu-
rated (in m.s−1). erev is the void ratio computed with the reversible
components of volumetric strains. αw is a non-dimensional material
parameter.

• k2ij

(
nfrac,Ωpq

)
represents the additional permeability originated by

fracturing. Cracks are assumed to be connected together by the intact
(i.e. natural) porous network [56]. It is thus possible to assume that
the flow of liquid water in the micro-cracks is equal to the flow which
would occur in the corresponding equivalent cracks (considered con-
nected). Moreover, assuming that cracks create preferential hydraulic
flow paths does not contradict the absence of mechanical interaction
between cracks (assumed in Section 2). It is important to note that
healing is not accounted for in this preliminary permeability model.

The equivalent cracks defined in Section 2 are assumed to form a tubular
network, in which the flow of liquid water is laminar. Following the approach
of Shao’s research team [72], the liquid flow generated by damage growth is
thus be expressed by Poiseuille’s cubic law for each equivalent crack. Using
the same notations as in 3 and 4, the velocity of water in the I th equivalent
crack may be written as [72]:

Vw
I
i = −kT (T ) kr(Sw)

1

12µw (Tref )

(
eI
)2 (

δij − nIi nIj
)
∇j (γw (Ψw + z))

(45)
Assuming that the equivalent cracks are penny-shaped and that the REV is
a cube of side b, the velocity of the liquid in the fracture network may be
averaged as follows:

V frac
w i =

1

b3

3∑
I=1

[
Vw

I
i π

(
lI
)2
eI
]

(46)

The introduction of 45 in 46 results in:

V frac
w i = −kT (T ) kr(Sw)

γw
12µw (Tref )

π

b3

[
3∑
I=1

(
eI
)3 (

lI
)2 (

δij − nIi nIj
)]
∇j (Ψw + z)

(47)
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The definition of the damaged intrinsic permeability imposes:

V frac
w i = −kT (T ) kr(Sw) k2ij

(
nfrac,Ωpq

)
∇j (Ψw + z) (48)

By identification, considering that the equivalent cracks are penny-shaped
and using the dilatancy law stated in equation 4:

k2ij

(
nfrac,Ωpq

)
=

π−2/3 γw
12µw (Tref )

χ4/3 b2
3∑
I=1

(
dI
)5/3 (

δij − nIi nIj
)

(49)

In formula 49, b plays the role of an internal length parameter, which is
specific to the liquid flow problem. It may be computed if the value of the
damaged intrinsic permeability is known for a given rate of damage. In the
following numerical examples, a maximal crack-related permeability kmaxwdg is
introduced in the input parameters in order to scale the global damaged
permeability for an isotropic damage state of Ωij = 0.95δij.

4.2. Vapor Flow

4.2.1. Vapor Flow in the Intact Porous Medium

The flow velocity of vapor is defined as:

V vapi =
1

ρvap
Q vapi (50)

According to the model of Philip and de Vries [64], the vapor flow Q vapi may
be expressed as:

Q vapi = −1.024D0 n(1− Sw)∇i (ρvap) (51)

D0 is the molecular diffusivity of vapor in air (in m2.s−1). Vapor density ρvap
(in kg.m−3) is assumed to depend on water content θw and on temperature,
as follows:

ρvap = h (θw, T ) ρ0
vap (T ) (52)

ρ0
vap is the density of vapor in saturated conditions, and is assumed to depend

on temperature only. h (θw, T ) is the relative humidity of the medium. It is
non-dimensional and may be expressed as [64]:

h (θw, T ) = exp

(
Ψw g

Rvap T

)
(53)
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Rvap is the mass density of the constant of perfect gases for vapor. Ψw is the
capillary potential of water (equation 34). g is the gravity acceleration (in
m.s−2) and T is temperature (in oC). Philip and de Vries [64] showed that
the variation of relative humidity with water content dominated the variation
of relative humidity with temperature, so that the latter could be neglected.
Therefore, using equations 52, 53 and 34:

∇i (ρvap) = h (θw, T )
dρ0

vap(T )

dT
∇i (T ) +h (θw, T ) ρ0

vap(T )
g

Rvap T

∂Ψw (θw, T )

∂θw
∇i (θw)

(54)
Heat exchanges between the solid matrix and the pore fluids dominate heat
transfers at the scale of the REV [30, 34]. This can be modeled by introducing
the ratio of the gradient of temperature at the micro-scale to the gradient of
temperature at the macro-scale: (∇k (T ))a /∇k (T ). Thus considering that
the volumetric fraction of material which is active in heat transfers is the
total porosity n instead of the gas porosity n(1−Sw) [26, 66], and combining
equations 50, 51 and 54, the expression of the vapor flow velocity results in:

V vapi = −1.024D0 n
ρvap

[
h (θw, T )

dρ0vap(T )

dT

(∇k(T ))a
∇k(T )

∇i (T )
]

−1.024D0 n
ρvap

[
h (θw, T ) ρ0

vap(T ) g
Rvap T

∂Ψw(θw,T )
∂θw

∇i (θw)
] (55)

The determination of (∇k (T ))a /∇k (T ) is explained in detail in the works
of Ewen and Thomas [26]. After using definition 34, the final expression of
the vapor flow velocity may be written as:

V ∗vapi =
ρvap
ρw

V vapi = −DTvap∇i (T ) + DPvap∇i (s) (56)

in which: 

DTvap = 1
ρw
Dint, vap

(∇(T ))a
∇(T )

h (θw, T )
dρ0vap(T )

dT

DPvap = 1
ρw
Dint, vap ρvap (θw, T ) g

Rvap T
1
γw

σ(T )

σ(Tref)

Dint, vap = 1.024D0 n

(57)

4.2.2. Extension of the Vapor Flow Model to Damaged Materials

As in the preceding flow model for liquid water, it is assumed that cracking
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accelerates vapor transfers in such a way that the flow formulas used for
the intact porous medium become invalid. The vapor intrinsic conductivity
Dint, vap is split into two parts:

(i) a conductivity relative to the pores of the matrix, taken in their re-
versible domain of deformation: Dint, vap1 (nrev, s, T,Ωpq);

(ii) a conductivity generated by the creation of a fractures network: Dint, vap2

(
nfrac,Ωpq

)
.

In order to extend the computation of vapor flow (equations 56 and 57) to
damaged states, the vapor intrinsic conductivity is thus changed into:

Dint, vap = Dint, vap1 (nrev, s, T,Ωpq) + Dint, vap2

(
nfrac,Ωpq

)
(58)

in which the conductivity relative to the pores Dint, vap1 (nrev, s, T,Ωpq) is
expressed in the same manner as for the intact material (equation 57), but
for the reversible domain of deformations only:

Dint, vap1 (nrev, s, T,Ωpq) = 1.024D0 n
rev (59)

It is assumed that vapor goes much faster than liquid water, and that con-
sequently, the fracture network hardly affects the orientation of vapor flow.
That is the reason why the damaged component of the vapor intrinsic conduc-
tivity is expressed as a function of the mean damaged intrinsic conductivity
of liquid water k2ij

(
nfrac,Ωpq

)
:

Dint, vap2

(
nfrac,Ωpq

)
=

b∗

3
δij k

∗
2ji

(
nfrac,Ωpq

)
(60)

in which the damaged intrinsic conductivity of liquid water is expressed with
the vapor transfer internal length b∗ (equation 49):

k∗2 ij

(
nfrac,Ω

)
=

π−2/3 γw
12µw (Tref )

χ4/3 (b∗)2
3∑
I=1

(
dI
)5/3 (

δij − nIi nIj
)

(61)

As for the liquid water flow model, the internal length parameter b∗ may be
evaluated if the damaged intrinsic conductivity of vapor is known for a given
state of damage. In the following numerical examples, a maximal crack-
related vapor diffusivity Dmax

dg is introduced in the input parameters in order
to scale the global damaged vapor conductivity for an isotropic damage state
of Ωij = 0.95δij.
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4.3. Air Flow

Air flow, like liquid water and vapor flows, is assumed to obey an extended
Darcy law. The introduction of a gradient of air pore pressure induces a
dependence of air flow to the gradient of temperature:

V ai = −Kaij∇j

(
pa
γa

+ z
)

= − 1
γa

∂pa(x,T (x))
∂T (x)

Kaij∇j (T (x)) −Kaij∇j

(
pa
γa

)
−Kaij∇j (z)

(62)

Due to its high velocity relatively to liquid water and vapor flows, air transfer
is assumed to be poorly influenced by the formation of cracks. That is the
reason why no specific fracture conductivity is introduced. The isotropic
model of air permeability used by Gatmiri [30, 31, 32, 33] is kept unchanged:

Kaij = ca
γa
µa

[e(1− Sw)]αa δij (63)

γa (in N.m−3) and µa (in N.S.m−2) are the volumetric weight and dynamic
viscosity of air respectively. ca and αa are material parameters. e is the total
void ratio, and thus depends on damage. The influence of cracking on air flow
is also taken into account through the dependence on the saturation degree,
which is related to the permeability changes induced by cracking. Damage is
thus accounted for by volumetric entities. As a consequence, air transfers are
homogenized at the scale of the degraded REV, and damage cannot orient
air flow.

4.4. Heat Flow

As in Gatmiri’s preceding models [30, 31, 32], heat transfer is assumed to
be governed by diffusion, convection and evaporation. Convection and evap-
oration are pure fluid phenomena. Only the diffusive part of heat transfer is
likely to be influenced by the degradation of the solid matrix. Heat flow is
assumed to be governed by the same equation as in the intact state:

QT i = −λT ∇i (T ) + hfg
(
ρw V

∗
vapi

+ ρvap V ai
)

+
[
ρw CPw Vwi + ρw CPvap V

∗
vapi

+ ρaCPa V ai
]

(T − T0)
(64)

(i) −λT ∇i (T ) is the diffusive transfer term, λT being Fourier’s thermal
conductivity. Assuming that the constituents of the REV are set in
parallel, λT may be computed as [27]:

λT = (1− n)λs + nSw λw + n (1− Sw)λvap (65)
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in which λs, λw and λvap are the thermal conductivities of the solid
skeleton, liquid water and vapor respectively. As for air flow, cracking
influences the diffusive transfer isotropically, through an increase of
porosity.

(ii) hfg
(
ρw V

∗
vapi

+ ρvap V ai
)

quantifies the influence of evaporation on heat
transfer. In the usual temperature and pressure conditions, the evapo-
ration latent heat is hfg = 2, 4 ∗ 106 J.kg−1.

(iii)
[
ρw CPw Vwi + ρw CPvap V

∗
vapi

+ ρaCPa V ai
]

(T − T0) describes con-
vective transport. CPw, CPvap and CPa are the specific heats of liquid
water, vapor and air respectively (in J.kg−1.oC−1)

5. BALANCE EQUATIONS

In the following, vectors and tensors are represented in bold characters
to avoid heavy indice notations.

5.1. Balance Equation of the Solid Skeleton

The balance equation for the solid skeleton writes:

∇ · σ + F = 0 (66)

in which σ is Cauchy’s total stress tensor, and F is a distant external volu-
metric force exerted on the system (used to account for gravitational effects).

5.2. Moisture Mass Conservation Equation

The mass conservation equation of moisture writes:

∂ρm
∂t

+ ∇ ·
(
ρw

(
Vw + V∗vap

))
= 0 (67)

Assuming that air and vapor form a perfect gas mixture, and that both
constituents occupy the same pore spaces:

ρm = nSwρw + n(1− Sw)ρvap (68)

The determination of the global governing equation of moisture requires the
expressions of the partial time derivatives of n, Sw, ρw and ρvap. The com-
putations are provided in the appendices.
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5.3. Air Mass Conservation Equation

The mass conservation equation of air is:

∂

∂t
(n ρa (1− Sw +HSw)) +∇·(ρa Va) +∇·(ρaH Vw)−∇·(ρw Vvap

∗) = 0

(69)
The presence of Henry’s constant H in equation 69 indicates that there is
some dissolved air in liquid water. In usual pressure and temperature condi-
tions, H = 0.02. The global governing equation for air requires the determi-
nation of ∂ρa

∂t
. Air is considered as a perfect gas of constant Ra:

∂ρa
∂t

= αP
∂pa
∂t

+ αT
∂T
∂t

αP = 1
Ra T

, αT = − pa + patm
Ra (T+273.15)2

, Ra = 9.448.102 J.K−1.kg−1
(70)

5.4. Energy Conservation Equation

The energy conservation equation writes:

∂φ

∂t
+ ∇ ·QT = 0 (71)

in which the thermal energy received by the REV, considered as an open
system, writes:

φ = CT (T − T0) + n(1− Sw)ρvap hfg (72)

The REV’s specific heat may be computed as if all the constituents were put
in parallel:

CT = (1−n)ρsCPs + nSwρw CPw +n(1−Sw)ρvapCPvap +n(1−Sw)ρaCPa
(73)

The solid phase is assumed to be incompressible (∂ρs
∂t

= 0). Equation 70, and
the computations given in the appendices (equations 81, 82, 83 and 84) may
then be used to determine the complete heat governing equation.

6. NUMERICAL STUDIES

A specific algorithm has been written in order to implement the THHMD
model in Θ-Stock Finite Element code [32], which has been used to perform
the simulations presented in this article.
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Table 1: Main Material Parameters used to Simulate the Triaxial Compression Test on
Sandstone.

E (Pa) ν e0 gM (Pa) C0 (Pa) C1 (Pa)
1.17 ∗ 1010 0.2 0.2658 −3.2 ∗ 107 2 ∗ 104 2.7 ∗ 105

6.1. Mechanical Laboratory Tests (Numerical Validation)

Mechanical experimental tests performed on granite, clay rock and sand-
stone have been simulated. The numerical results have been compared to the
experimental measurements reported in reference articles. The mechanical
aspects of the THHMD model have been validated on:

• triaxial compression tests, lateral extension tests and proportional com-
pression tests performed on dry geomaterials [1, 5],

• triaxial compression tests performed on saturated sandstone, in drained
and undrained conditions [1, 5].

In Figure 3, the results obtained on a triaxial compression test performed
on dry sandstone are compared to experimental data provided by Dragon
et al. [24]. The main material parameters required in Θ-Stock to run the
simulations are reported in Tab. 1. Numerical strain predictions match the
experimental measurements (Fig. 3.a). The axial compression generates
tensile mechanical strains in both lateral directions, so that Ωrr = Ωθθ 6= 0,
Ωzz = 0. As expected, damage grows with the deviatoric stress applied to
the sample during the compression test (Fig. 3.b).

6.2. Influence of Thermal Cracking on Damage Development (Parametric
Study)

6.2.1. Problem Description: A One-Dimensional Thermo-Mechanical Model
for Nuclear Waste Repositories

This first numerical example is a simplified study of the problem of nuclear
waste storage. It is based on former numerical works published by Carter
and Booker [13]. The radioactive package is assumed to be stored in a deep,
cylindrical, well-bore, of radius R. The initial temperature of the host rock
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Figure 3: Triaxial compression test performed on dry sandstone for a confining pressure
of 15 MPa. a. Stress/strain curves (presented with the soil mechanics sign convention).
Dots: experimental data [24]. Solid lines: Θ-Stock numerical results. b. Evolution of the
components of the damage tensor.

is 0oC. The temperature imposed by waste is assumed to increase linearly
during two years, and then to decrease exponentially, as follows:{

T̃ (t) = 25 t if t ≤ 2 years

T̃ (t) = 50 exp (0.0288 − 0.0144 t) if t ≥ 2 years
(74)

The FEM program of Carter and Booker only depends on thermal and me-
chanical degrees of freedom. The simulations may be reproduced in Θ-Stock
by assuming that the rock mass is made of a porous rock which is not sub-
jected to any fluid pore pressure. Physically, the geological barrier is thus
assumed to be almost dry. In Θ-Stock, the pore pressure degrees of freedom
are thus neutralized. The cylindrical geometry and the diffusive character
of the imposed loading make it possible to perform simulations in an axis-
symmetric configuration. The adopted mesh and boundary conditions are
shown in Fig. 4. The Young modulus and Poisson ratio of the host rock
are provided by Carter and Booker [13]. The specific weight is fixed to a
usual value: γs = 2.65 ∗ 104N.m−3. The initial void ratio of the material
is assumed to be in the range of values observed for granite [45]. In the
absence of damage data in the reference article, the damage-associated rates
C0 and C1 have been fixed to the values determined by Halm and Dragon for
granite [43]. The first simulations are run in the reversible domain, so that
gM = gS = gT = 0. A standard value is used for the rock’s specific heat.
Carter and Booker fix the value of a non-dimensional conductivity parameter

25



κ so that:

κ =
λs

ρsCPs
= 0.02m2.year−1 (75)

This imposes a very small value for the thermal conductivity λs (Tab. 2). The
incremental stress/strain relationship used by Carter and Booker is based on
a classical thermo-elastic behavior law:

dσij = Deijkl dε
e
lk −

E α

(1− 2ν)
δij dT (76)

In the THHMD model, the elastic stress/strain relationship writes:

dσ”ij = Deijkl dε
e
M lk = Deijkl dε

e
lk −

1

3
Deijkl δlk dε

e
Sv −

1

3
Deijkl δlk dε

e
Tv (77)

In an intact material:

dσ”ij = Deijkl dε
e
lk −

1

3 β0
s

Deijkl δlk ds −
α∗0
3
Deijkl δlk dT (78)

In this example, there is no pore pressure degree of freedom, so that:

dσij = Deijkl dε
e
lk −

α∗0
3
Deijkl δlk dT (79)

The combination of equations 76 and 79 provides the value of the thermal
expansion coefficient that should be used in Θ-Stock. The coefficient ob-
tained is adapted to be used in a 2D numerical computation frame (in which
one of the three components of 3D strains is zero) [1]. Note that the sign
of α∗0 is opposite to the sign of the coefficient used by Carter and Booker,
because Carter and Booker use the Continuum Mechanics Convention sign
(in which compressions are counted negatively), whereas in Θ-Stock, the Soil
Mechanics sign convention (in which compressions are assumed to be posi-
tive) is adopted. The thermo-mechanical parameters used in this simulation
are reported in Tab. 2.

6.2.2. Verification of the Results in the Reversible Domain (No Damage De-
velopment)

The reference article by Carter and Booker [13] focuses on elastic problems
only. The first step of this study consists in comparing the results obtained
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Figure 4: Mesh and Boundary Conditions for the Thermo-Mechanical Problem of Nuclear
Waste Storage [13].
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Table 2: Thermo-Mechanical Material Parameters used in the Simplified Repository Model
[13].

E (Pa) ν e0 C0 (Pa) C1 (Pa)
8 ∗ 1010 0.3 0.00351 1.1 ∗ 105 2.2 ∗ 106

CPs (J.kg−1.oC−1) λs (W.m−1.oC−1) α∗0 (oC−1)
800 1.37 ∗ 10−3 −2 ∗ 10−5
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Figure 5: Temperature evolution in the bedrock, in the vicinity of nuclear waste. Dots:
reference results from [13]. Solid lines: numerical results obtained with Θ-Stock in the
elastic domain of the THHMD model.

with Θ-Stock with the reference results provided in the article, in order to
check the ability of the program to solve coupled problems. Figures 5 and 6
show that the match is good in the steady state (after 222 years of storage).
The equilibrium state computed in stress and temperature is thus the same
with both programs, which justifies the choice of the thermal expansion co-
efficient explained in the previous paragraph. In transient stages, the trends
and orders of magnitudes of the results obtained with Θ-Stock are physically
consistent, but do not match the reference results of Carter and Booker. In
fact the kinetics are not respected: the curves obtained with Θ-Stock after
2 years of heating are closer to the curves obtained by Carter and Booker
after 22 years of storage than after 2 years of storage. It seems that the
thermo-mechanical equilibrium is reached faster with Θ-Stock.
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Figure 6: Stress evolution in the bedrock, in the vicinity of nuclear waste. a. Radial stress
variations. b. Orthoradial stress variations. Dots: reference results from [13]. Solid lines:
numerical results obtained with Θ-Stock in the elastic domain of the THHMD model.
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6.2.3. Parametric Study of Damage

In the following, it is assumed that the rock mass modeled in the thermo-
mechanical storage problem described above may be damaged (i.e. the state
variables may evolve out of the reversible domain). Due to the type of load-
ing applied in the simulation, it is expected that thermal dilatation be the
dominating source of damage (ε+Tv 6= 0). In order to enhance the potential
effects of thermal cracking in the following parametric studies, gT will be the
only resistance to cracking which will be set to a non-zero value. gT stems
from one of the pioneering aspects of the THHMD model. That is the rea-
son why there is no reference value in the literature. In order to work in a
reasonable order of magnitude, values close to the mechanical resistance to
cracking (gM) will be tested. In the following, grefM stands for the mechani-
cal resistance to cracking determined for granite by Halm and Dragon [43],
which amounts to −3.3 ∗ 108 Pa (the minus sign comes from the soil me-
chanics convention). After numerous series of simulations, the most relevant
results turned out to be obtained for 4 ∗ grefM ≤ gT ≤ 4.3 ∗ grefM .

Provided that gT is the only non-zero resistance to cracking, damage can
only increase with thermal dilatation ε+Tv (equations 29 and 30). Thermal
strains are assumed to be isotropic (equation 6), so that the damage driving
force Y +

d1 ij is isotropic: Y +
d1 ij = gT

1
3
ε+Tv δij. Potential damage is thus isotropic

(equation 31). In the simulations, isotropic damage is observed, which meets
the model requirements (this constitutes a verification of the model imple-
mentation in Θ-Stock). In Fig. 7, only radial damage is represented. gT
varies in a too slight interval to generate a huge difference in the peak value
of damage. The maximal damage is 2% higher with gT = 4.3 ∗ grefM than
with gT = 4 ∗ grefM (Fig. 7.b,d,f). As expected, damage reaches a maximum
value in the zone which is in contact with the heating source. The peak
value is obtained after two years, which corresponds to the end of the lin-
ear increase of waste temperature. When the heating power then decreases,
the close neighbourhood of the well-bore is relaxed, but heat continues to
propagate in the bedrock. That is the reason why the damaged zone con-
tinues to spread, especially during the first twenty years of relaxation (Fig.
7.a,c,e). The more damage grows, the more irreversible strains develop, as
can be observed in the vicinity of the nuclear waste package (Fig. 8). The
comparison of Fig. 8.b,d and Fig. 8.f,h indicates that irreversible thermal
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strains (εirrTv) mainly impact the global radial deformation of the rock mass
(εrr). Granite is a very rigid material. The huge value of the Young modulus
explains why the variation of thermal strains with gT is much less than the
global variations of all types of deformations with heating power. As ex-
pected, in the vicinity of the heating source, the bedrock encounters tensile
strains (negative deformations with the soil mechanics convention). In the
zone of contact with waste, tensile strains increase as long as the heating
power increases. After two years, i.e. during the relaxation period, strains
stabilize. The observation of damage evolution in space shows that strains
continue to evolve during the relaxation period, but at some distance of the
well (Fig. 7.a,c,e).

6.3. Effect of Damage on the Degree of Saturation (Parametric Study)

6.3.1. Problem: A Laboratory Heating Test on Deformable Unsaturated Com-
pacted Clay

In the following, the heating test performed by Villar et al. [78] in a tank
filled with unsaturated compacted clay is reproduced numerically. Contrary
to the preceding numerical study, the problem is fully coupled, and the sim-
ulation requires the use of all degrees of freedom (i.e. displacements, pore
pressures and temperature). The tank is 14.6cm deep and 15cm wide. It is
assumed to be long enough to enable a study in plane strain. The heating
source is placed at the center and at the top of the tank. A 100oC temper-
ature is thus applied during two hours. The initial temperature of the soil
is 20oC. The external boundaries of the tank are assumed impervious and
are continuously showered with water at 28oC. The corresponding boundary
conditions adopted in the numerical study are shown in Fig. 9. The void
ratio and the saturation degree of the compacted clay are initialized at the
values reported by Villar et al: 0.71 and 0.5 respectively. The reference arti-
cle does not provide all the required material parameters. In the following,
it is assumed that the mechanical behavior of the studied compacted clay
is similar to the one of the clay stone studied by Homand et al. [45] and
Chiarelli and Shao [15]. This assumption enables to work with a consistent
set of damage and mechanical parameters (E, ν, C0 and C1 in elasticity, and
then gM for non-elastic cases). Thermal parameters are assigned standard
values. Capillary parameters are fit in order to reproduce the retention and
permeability properties used by Jenab [47] in the simulations she did on the
same heating experiment. The choice of material parameters is explained
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Figure 7: Spatial Evolution of Radial Damage (Ωrr = Ωzz = Ωθθ) in the Axis-symmetric
Problem of Nuclear Waste Storage, After 2 Years (a,b), 22 Years (c,d) and 222 Years (e,f).
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Figure 8: Axis-symmetric Study of the Thermo-Mechanical Brittle Behavior of a Granite
Rock Mass. Time Evolution of Strains, Computed on a Finite Element next to Nuclear
Waste. gT = 4 ∗ grefM (a,b), gT = 4.1 ∗ grefM (c,d), gT = 4.2 ∗ grefM (e,f) et gT = 4.3 ∗ grefM

(g,h).
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Table 3: Material Parameters Used to Model Elastic Compacted Clay in the Experiment
of Villar et al. [78].

E (Pa) ν C0 (Pa) C1 (Pa) β0
s (Pa) β0

T (Pa)
1.22 ∗ 1010 0.16 2.3 ∗ 10−4 5.2 ∗ 10−3 5.98 ∗ 108 5.98 ∗ 1010

kw0 (m.s−1) αw Sw,r αV G (Pa−1) nV G ds (oC−1)
1.2 ∗ 10−5 0 0 5 ∗ 10−4 2.3 −10−5

χ kmaxwdg (m.s−1) Dmax
dg (m2.s−1) ca (m2) αa

0.005 10−9 10−4 3 ∗ 10−12 4
α∗
0 CPs CPw CPvap CPa

(oC−1) (W.m−1.oC−1) (W.m−1.oC−1) (W.m−1.oC−1) (W.m−1.oC−1)
−7.5 ∗ 10−4 837 4184 1900 1000

λs λw λa hfg
(W.m−1.oC−1) (W.m−1.oC−1) (W.m−1.oC−1) (J.kg−1)

1.05 0.6 0.0258 2.5 ∗ 106

in detail in [1]. The main input parameters used to solve the problem in
elasticity are reported in Tab. 3.

6.3.2. Verification of the Results in the Reversible Domain (No Damage De-
velopment)

As in the previous thermo-mechanical study of waste storage, a first simula-
tion is run in the absence of damage. This is aimed at verifying the imple-
mentation of the model and to test the algorithm programmed in Θ-Stock on
complex, coupled problems. The temperature and degree of saturation after
two hours of heating are represented in Fig. 10. The results are confronted
to punctual experimental measurements. The comparison shows that the
trends are well-reproduced: after two hours of heating, temperature is much
higher than in the initial configuration in the vicinity of the source, and de-
creases as the distance to the source increases (Fig. 10.a). This results in
evaporation near the source, with a migration of vapor away from the source.
The degree of saturation becomes lower close to the source, and gets higher
as the distance to the source increases (Fig. 10.b). In this particular numer-
ical study, the temperature distribution after two hours of heating is more
homogeneous than in the experiment, which means that what is predicted in
the simulation is closer to the steady state than what is measured in the lab-
oratory. In the experiment, condensation phenomena are observed near the
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Figure 9: Boundary Conditions Adopted to Simulate Villar’s Experiment [78].

tank walls (Sw > Sw0), whereas in the simulation, it seems that condensed
vapor has already moved back to the source.

6.3.3. Parametric Study of Damage

In the following, the influence of the thermal resistance to cracking is in-
vestigated by varying the value of gT parameter. The material parameters
are kept the same as in the previous elastic configuration (Tab. 3), except
gT , Kmax

w, dg and Dmax
vap, dg. These two latter parameters play the role of internal

lengths (equations 49 and 61). Their values have no importance in the re-
versible domain, but have a strong influence on flows in a damaged material.
In order to enhance the influence of cracking on conductivities, the former
values of Kmax

w, dg and Dmax
vap, dg (Tab. 3) have been increased in the parametric

study of damage:

Kmax
w, dg = 100 kw0 = 1.2 10−3m.s−1, Dmax

vap, dg = 1.2 10−1m2.s−1 (80)

As in the preceding thermo-mechanical study of nuclear waste storage, gT has
been varied in a range of values rather close to the available reference value
of gM for the material under investigation. In the simulation of Villar experi-
ment, it has been assumed that the mechanical properties of the geomaterial
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a. b.

Figure 10: Temperature (a) and saturation degree (b) of the compacted clay after 2 hours
heating (dots: reference results from [78]; isochrones: numerical results obtained with
Θ-Stock in the elastic domain of the THHMD model).
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were similar to the ones of clay stone. The corresponding damage param-
eters were determined by Chiarelli and Shao [15]. With the chosen values
of E, ν, C0 and C1 (Tab. 3), one may thus recommend: grefM = −1.414Pa.
The influence of the thermal resistance to cracking on the development of
damage and on the evolution of the saturation degree are shown in Fig. 11
for some values of gT . For the same reasons as mentioned in the previous
thermo-mechanical study of nuclear waste storage, damage is isotropic. That
is the reason why only one component of the damage tensor (Ωxx) has been
represented.

After two hours of heating, damage is mainly present around the heating
source, away from the temperated boundaries. As could be expected, damage
reaches higher values with higher gT coefficients. When gT parameter is low,
the generated damage remains bounded to a few percents (Fig. 11.a), and
the distribution of the degree of saturation is very similar to the one observed
in an intact medium (Fig. 10.b and 11.b). The parametric study performed
on gT shows that if the medium is more densely cracked, the distribution of
the degree of saturation is affected. As shown in Fig. 11.c,e,g, damage devel-
ops in the vicinity of the heating source, where tensile thermal strains reach
their highest point. The permeability of the medium increases with damage.
As a result, permeability becomes heterogeneous in the sample: permeability
is higher near the source than at the bottom of the tank. In summary, near
the source, the voids occupy more space (due to the presence of cracks), and
permeability is higher. Therefore, near the source, liquid moves easily and
capillary effects are reduced. If the sample had been drained, evaporation
would have resulted in a fast drying of the sample from the top of the tank.
In this example, the tank’s walls are assumed to be impervious. Suction gets
lower in the vicinity of the source than at the bottom of the tank. As a
result, the degree of saturation becomes higher near the source than at the
bottom of the tank, away from the source.

6.4. Study of the Influence of Initial Damage in a Full Scale Nuclear Waste
Disposal (Parametric Study)

6.4.1. A Full Scale Heating Test in an Experimental Repository, with Unsat-
urated Buffers

The last numerical example presented in this paper aims at simulating a
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e. f.

g. h.

Figure 11: Influence of gT on damage (Ωxx = Ωyy) and on the saturation degree, after 2
hours heating.
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full-scale heating test performed in the experimental nuclear waste reposi-
tory located at Kamaishi, in Japan. The reference data are taken from an
article confronting the results of four numerical programs to experimental
measurements [68]. Nuclear waste is modeled as a heating source stored in
an initially saturated granite rock mass (GB, “geological barrier”). The nu-
clear package is disposed in a vertical well-bore, and is separated from the
GB by a bentonite buffer (EB, “engineered barrier”). The initial saturation
degree of bentonite is 0.635. The boundaries of the heater are assumed to be
at 100 oC during 8.5 months (259 days). Then, the heating source is turned
off, which means that a zero heat flux is imposed at the heater’s boundaries.
The behaviors of the engineered and of the geological barriers are observed
during a relaxation period of 6 months (183 days). The initial temperature
of the bentonite buffer and of the granite rock mass is 12.3 oC.

The geometry and the loading type make it possible to study the problem
in an axis-symmetric configuration. According to the numerical models pre-
sented in [68], the extent of the studied zone is 20 meters by 20 meters. A
gallery provides an access to the well-bores. It is assumed that this gallery is
watered by a shallow pool, so that pw = 0 at the top of the granite bedrock.
On the outer boundaries of the model, water pore pressure is hydrostatic.
The authors assume that the air phase is static [68]. In Θ-Stock, fluid equilib-
rium is transient, so that it is only possible to approximate this static state.
That is the reason why a zero air pore presure is initially imposed on all
nodes. Then, a zero air pore pressure is imposed on the external boundaries
of the model. The mesh and boundary conditions are represented in Fig. 12.

The reference article [68] presents a benchmark realized by four institutes.
Each research team has used slightly different elastic thermo-mechanical pa-
rameters for the granite and bentonite materials under study. An average of
the four values has been used in the input parameters to run the simulations
with Θ-Stock. The damage parameters of the host massif are assumed to
be similar to the ones of Vienne granite [43]. Eastern clay stone damage
parameters [15] are affected to bentonite. Additional reference mechanical
data are taken from [45] and [72]. Some retention properties which are not
fully explained in the reference article have been taken from [39]. Standard
values are adopted for specific heats and thermal conductivities. The choice
of all the parameters is justified in detail in [1]. The main material data are
summed up in Tab. 4 and Tab. 5.

39



Figure 12: Boundary Conditions Adopted to Simulate the Heating Test Performed on
Kamaishi Experimental Site [68].

Table 4: Elastic Material Parameters of Granite in Kamaishi’s Heating Test [68].

E (Pa) ν β0
s (Pa) β0

T (Pa) C0 (Pa) C1 (Pa)
4.475 ∗ 1010 0.3 3.729 ∗ 1011 3.729 ∗ 1011 1.1 ∗ 105 2.2 ∗ 106

kw0 (m.s−1) αw Sw,r αV G (Pa−1) nV G ds
10−11 0 0 10−5 1.5 0
e0 χ kmaxwdg (m.s−1) Dmax

dg (m2.s−1) ca (m2) αa
0.00351 0.005 10−7 10−5 10−10 0
α∗
0 CPs CPw CPvap CPa

(oC−1) (J.kg−1.oC−1) (J.kg−1.oC−1) (J.kg−1.oC−1) (J.kg−1.oC−1)
−2.55 ∗ 10−6 805 4180 1900 1006

λs λw λa hfg
(W.m−1.oC−1) (W.m−1.oC−1) (W.m−1.oC−1) (J.kg−1)

3 0.6 0.0258 2.5 ∗ 106
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Table 5: Elastic Material Parameters of Bentonite in Kamaishi’s Heating Test [68].

E (Pa) ν β0
s (Pa) β0

T (Pa) C0 (Pa) C1 (Pa)
1.175 ∗ 108 0.35 3.729 ∗ 1011 3.729 ∗ 1011 2.3 ∗ 10−4 5.2 ∗ 10−3

kw0 (m.s−1) αw Sw,r αV G (Pa−1) nV G ds
2 ∗ 10−13 0 0 2 ∗ 10−7 2 0

e0 χ kmaxwdg (m.s−1) Dmax
dg (m2.s−1) ca (m2) αa

0.637 0.005 2 ∗ 10−9 2 ∗ 10−7 10−10 0
α∗
0 CPs CPw CPvap CPa

(oC−1) (J.kg−1.oC−1) (J.kg−1.oC−1) (J.kg−1.oC−1) (J.kg−1.oC−1)
−2.55 ∗ 10−5 1250 4180 1900 1006

λs λw λa hfg
(W.m−1.oC−1) (W.m−1.oC−1) (W.m−1.oC−1) (J.kg−1)

1.15 0.6 0.0258 2.5 ∗ 106

6.4.2. Verification of the Results in the Absence of Damage

The reference article [68] focuses on coupling effects and deals with elastic
models. In the real experimental site, horizontal fractures have been observed
in the granite rock mass. Some of the simulations presented in the reference
paper take these fractures into account by considering them as a geomaterial
endowed with a specific hydraulic transmissivity. Some other simulations
ignore the presence of initial damage. The first step of our work consists in
simulating Kamaishi heating test in an elastic intact geological massif. This
first study aims at verifying the results provided by Θ-Stock in a complex
problem, involving two different porous materials that may interact due to
coupled thermo-hydro-mechanical effects. The second step of our work will
consist in accounting for initial damage, as explained in the following para-
graph.

The evolution of temperature (Fig. 13) in the elastic geological and engi-
neered barriers are described in Tab. 4 and Tab. 5. The trends and orders of
magnitude are satisfactory, with maximal errors amounting to around 10%.
The main differences are observed in transient stages and may thus be at-
tributed to a problem of kinetics, as stated in the two preceding examples.
The underestimated bentonite temperature may be due to the differences
of the models for the specific heat and for the thermal conductivity of the
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barriers. The authors of the reference article [68] chose to set a dependence
of CPs and λs on the saturation degree. In Θ-Stock, heat transfer is mod-
eled a bit differently. The various constituents are assumed to be in parallel.
As a consequence, the volumetric fractions of each constituent (solid, liquid
water, vapor and gaseous air) are used to weight the sum of the constituents
specific heats (equation 73) and thermal conductivities (equation 65) in the
computation of the global medium’s thermal properties. Not only the degree
of saturation but also porosity play a role in the transfer of heat in the porous
medium. In other words, water content θw = nSw plays an important role
in the heat transfer model adopted in Θ-Stock.
The saturation degree of the engineered barrier follows a satisfactory trend.
At the frontier with the granite bedrock (Fig. 14.a), the bentonite buffer
reaches a 0.97 saturation degree in approximately two hundred days. This
quasi-saturated state is maintained during the whole relaxation period, which
corresponds to the reference results [68]. At the boundary between the heat-
ing source and the engineered barrier (Fig. 14.b), the saturation degree falls
to almost 0 in approximately one hundred days, which is in agreement with
the trends reported in [68]. Then, the reference saturation degree increases af-
ter the heating period, while Θ-Stock predicts a stabilization around Sw = 0,
even during the relaxation period. This difference may be attributed to the
way CPT and λT are modeled, as explained above.

6.4.3. Influence of the Presence of Cracks Before Waste Disposal

As mentioned before, Kamaishi’s granite host massif is fractured. To be
closer to the real conditions, the heating test is now simulated in an initially
damaged geological barrier. In the THHMD model, the horizontal fracture
present in the bedrock is accounted for by setting a non-zero value for the
vertical component of the initial damage tensor, as shown in Fig. 15. The
loading process and the material parameters given in Tab. 4 and in Tab.
5 are kept the same as in the previous numerical study. The evolution of
the saturation degree in both the engineered and the geological barriers is
shown in Fig. 16 for an initially intact rock mass, and in Fig. 17 for an
initially damaged host rock. The presence of initial damage strongly affects
fluid exchanges. In the particular case presented here, initial cracking results
in a strong desaturation of the engineered barrier at the beginning of the
heating period (Fig. 17, after 10 days). After 6 months of relaxation (i.e.
after 442 days of test), the extent of the desaturation zone is much wider in
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a. b.

Figure 13: Temperature evolution with intact elastic geological and engineered barriers.
a. In bentonite, at equal distances from the heating source and from the bedrock, at
mid-height of the heating device. b. In the bedrock, near the engineered barrier.
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a. b.

Figure 14: Saturation degree evolution with intact elastic geological and engineered bar-
riers. a. In the bentonite engineered barrier, at approximately 1 centimeter from the
geological massif, above the heating device. b. In the contact zone between the heating
source and the engineered barrier, at mid-height of the heating device.
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the initially damaged rock mass than in the initially intact host rock. The
geological barrier is desaturated up to five meters away from the heating
source (Fig. 17, after 442 days).

Figure 15: Study of the Nuclear Waste Storage Problem on Kamaishi Site. Initially
Damaged Configuration: One 10-Meter Wide Horizontal Fracture Plane.
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Figure 16: Evolution of the saturation degree in space and time for the nuclear waste
storage problem on Kamaishi site. Initially intact granite bedrock.
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Figure 17: Evolution of the saturation degree in space and time for the nuclear waste
storage problem on Kamaishi site. Initially damaged granite bedrock (with one 10-meter
wide horizontal fracture plane). 47



7. CONCLUSION

The damage model presented in this article (named “THHMD” model)
is dedicated to non-isothermal unsaturated porous media. Assuming that
the solid phase of the medium is incompressible, the model is formulated
by means of three independent state variables: mechanical strains, capillary
strains and thermal strains (respectively conjugate to net stress, suction and
thermal stress). The damage variable is a second-order tensor, representing
crack density in the three principal stress directions. Stress/strain relation-
ships are derived from Helmholtz free energy, which is assumed to be the sum
of damaged elastic potentials and “crack-closure energies”. The Principle of
Equivalent Elastic Energy is used to get the damaged mechanical stiffness
tensor, the damaged capillary modulus and the damaged thermal expansion
coefficient. Damage is assumed to grow with tensile strains generated by the
variations of net stress, suction and temperature. The model accounts for
water phase changes. Gas is thus a mixture of dry air and vapor. Specific
conductivities related to damage are introduced to account for the effects of
cracking on the intensification and on the orientation of liquid water and va-
por flows. Both damaged conductivities depend on a specific internal length
parameter. Air and heat flow equations are kept the same as in an intact
porous medium. Damage is accounted for indirectly, through porosity and
saturation degree variations.

The THHMD model has been programmed in Θ-Stock Finite Element code.
The model has been validated on bare mechanical problems. In this pa-
per, only a few results are presented. The simulation of triaxial compression
test on dry sandstone shows that the mechanical predictions of the THHMD
model match the experimental measurements found in the literature. Very
few reference studies dealing with both damage and thermal effects in un-
saturated porous media exist in the literature. That is the reason the other
numerical examples presented in this article are based on parametric stud-
ies on damage, and not on validation tests. Three examples, related to the
study of nuclear waste disposals, are presented: 1. a one-dimensional thermo-
mechanical heating test in granite, 2. a heating test performed at the lab
scale in deformable unsaturated compacted clay, and 3. a full scale heat-
ing test realized in Kamaishi’s experimental facility. For each case study,
one simulation has first been run in the absence of damage, and the results
have been compared to the ones presented in reference articles. In this first
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step, the response of the program in fully coupled problems has been ex-
amined. Some temperature discrepancies have been noted in the transient
stages of heat transfer. Overall, the results provided by the program follow
the expected trends with the appropriate orders of magnitude. In a second
step, a parametric study of damage has been performed on each example. In
example 1 (thermo-mechanical heating test), it is verified that damage and
irreversible strains grow with the parameter representing the resistance to
thermal cracking (gT ). In example 2 (heating of a deformable unsaturated
clay sample), the damage effects observed on permeability are in agreement
with the theoretical formulation of the model. In the vicinity of the heating
source, the material is more densely cracked and becomes more permeable.
Capillary effects get lower than in the colder zones. As a result, cracked sam-
ples tend to dry near the tank walls, whereas the intact sample dries close to
the heating source. In example 3 (full scale heating test in an experimental
facility), a horizontal crack plane is modeled by setting a non zero initial
damage field. The consequences on the degree of saturation of the bentonite
buffer and of the host rock are huge, which demonstrates the importance of
the assessment of the EDZ before waste disposal. The engineering problems
tackled in this article are realistic. Several types of loading and boundary
conditions have been investigated. Therefore, the effects of thermal damage
have been thoroughly studied. The works presented in this article only consti-
tute the first step of a long-term research project on damage poromechanics.
The authors are currently improving the heat and mass transfer models im-
plemented in Θ-Stock program. Experimental data remain necessary to scale
capillary and thermal damage effects in porous geomaterials.

APPENDIX 1: COMPUTATION OF THE TIME DERIVATIVES
INVOLVED IN THE MOISTURE MASS EQUATION

It is recalled that, with the soil mechanics convention, the assumption of
solid phase incompressibility results in:

∂n

∂t
= −δ :

∂ε

∂t
(81)
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The equation of the state surface of the saturation degree 42 is used in order
to express ∂Sw

∂t
:

∂Sw

∂t
= g2

∂s
∂t

+ g3
∂T
∂t

g2 = ∂Sw

∂s
=


(1− n)αn(1− Sw,r)exp (ds(T − T0)) (1 + (α s)n)

1−2n
n sn−1 if s ≥ 0

0 if s < 0

g3 = ∂Sw

∂T
= ds Sw

(82)
The time variation of the density of liquid water is written as:

∂ρw
∂t

= βP
∂pw
∂t

+ βT
∂T
∂t
,

βP = ∂ρw
∂pw

= 5.10−10m−2.s2, βT = ∂ρw
∂T

= −2.10−4 kg.m−3.oC−1
(83)

Using the formula of Philip and de Vries [64] for the vapor density 52, with

the preceding assumption ∂h(θw,T )
∂T

' 0, the time derivation of ρvap may be
computed as:

∂ρvap
∂t

= −An Sw δ : ∂ε
∂t
− An n g2

∂pw
∂t

+ An n g2
∂pa
∂t

+ (Aρ0 ρvap (θw, T ) + An n g3) ∂T
∂t

(84)

An and Aρ0 are computed by using equations 52, 53, 34 and 35:

An = ∂ρvap
∂θw

=


− ρvap
nρwRvapT

σ(T )
σ(Tref )

∂s
∂Sw

if s ≥ 0

0 if s < 0

Aρ0 = 1
ρvap

∂ρvap
∂T

= 1
ρ0vap

dρ0vap
dT

= 4975.9
(T+273.15)2

(85)

For s ≥ 0, ∂s
∂Sw

is determined by inverting the equation of the state surface
of the saturation degree 42:

∂s
∂Sw
|s≥0 = exp(−ds(T−T0))

α (1−n)(1−Sw,r)

[
Sw exp(−ds(T−T0))−Sw,r

1−Sw,r

] 2n−1
1−n

×
[[

Sw exp(−ds(T−T0))−Sw,r

1−Sw,r

] n
1−n − 1

] 1−n
n

(86)
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mécaniques du granite de la Vienne et de l’argilite de l’Est. Revue
Française de Génie Civil 2002. 6(1): 11–20.

[46] Houlsby GT. The work input to an unsaturated granular material.
Geotechnique 1997; 47(1):193–196.

[47] Jenab B. Etude numérique de la modélisation thermo-élasto-plastique
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[54] Lemâıtre J, Desmorat R. Engineering Damage Mechanics. Ductile,
creep, fatigue and brittle failure. Springer - Verlag, Berlin Heidelberg,
2005.

[55] Maleki K. Modélisation numérique du couplage entre
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