
FPGA PROTOTYPING OF CUSTOM GPGPUS

A Thesis
Presented to

The Academic Faculty

by

Nimit Nigania

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School Of Computer Science

Georgia Institute of Technology
May 2014

Copyright c© 2014 by Nimit Nigania



FPGA PROTOTYPING OF CUSTOM GPGPUS

Approved by:

Professor Hyesoon Kim, Advisor
The School Of Computer Science
Georgia Institute of Technology

Professor Sudhakar Yalamanchili
The School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Saibal Mukhopadhyay
The School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: Jan 2014



To my family

and friends.

iii



PREFACE

Prototyping new systems on hardware is a time-consuming task with limited scope

for architectural exploration. The aim of this work was to perform fast prototyping

of general-purpose graphics processing units (GPGPUs) on field programmable gate

arrays (FPGAs) using a novel tool chain. This hardware flow combined with the

higher level simulation flow using the same source code allowed us to create a whole

tool chain to study and build future architectures using new technologies. It also

gave us enough flexibility at different granularities to make architectural decisions.

We will also discuss some example systems that were built using this tool chain along

with some results.

iv



ACKNOWLEDGEMENTS

First, I would like to express my deepest gratitude to my advisor, Dr. Hyesoon Kim,

whose energy, enthusiasm, and constant support inspired me from the beginning till

the end of this project. I am indebted to her for her ideas, valuable guidance and the

encouragement throughout.

I would like to thank various faculty members of Georgia Institute of Technology

from whom I have benefited as a student. I express my sincere gratitude to Chad

Kersey and Syed Minhaj Hassan, whose support proved invaluable during the course

of the project. I would not have been able to finish the project in time if not for their

help with the building blocks and design tools. Last but not least, I would like to

thank Nagesh, Jaekyu, Jaewoong, Pranith, JooHwan, Hyojong, and Dilan, my friends

in the HPArch lab for their support and the friendly atmosphere in the lab.

Finally, I dedicate this thesis to my parents, my brother, and Neha, who make

even my smallest success meaningful.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II DESIGN OVERVIEW AND TOOL CHAIN . . . . . . . . . . . . . 4

2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 CHDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 FPGA board and Development Tools . . . . . . . . . . . . . . . . . 7

III SYSTEM DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 HARP ISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.3 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.4 Memory Controller . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Putting it together: A Multicore and multilane GP-GPU system . . 23

IV MEASUREMENT RESULTS AND ANALYSIS . . . . . . . . . . 26

4.1 Board and Test Environment . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Prototyping a big.LITTLE Heterogeneous HARP System . . . . . . 30

V FUTURE WORK AND CONCLUSION . . . . . . . . . . . . . . . 32

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



LIST OF TABLES

1 Micro-Benchmarks studied. . . . . . . . . . . . . . . . . . . . . . . . 11

2 Core configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Single core one-lane performance. . . . . . . . . . . . . . . . . . . . . 28

4 Logic utilization of a single one-lane core. . . . . . . . . . . . . . . . . 28

5 Dual core one-lane performance. . . . . . . . . . . . . . . . . . . . . . 28

6 Logic utilization of a dual one-lane core. . . . . . . . . . . . . . . . . 28

7 Eight-lane SIMD core performance. . . . . . . . . . . . . . . . . . . . 29

8 Logic utilization of a single eight-lane SIMD core. . . . . . . . . . . . 30

9 Heterogeneous HARP system performance. . . . . . . . . . . . . . . . 31

10 Logic utilization of big.LITTLE HARP systems. . . . . . . . . . . . . 31

viii



LIST OF FIGURES

1 Basic system components . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Simple counter in CHDL and Verilog. . . . . . . . . . . . . . . . . . 7

3 Basic ALU in CHDL. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Altera Stratix III Board [14]. . . . . . . . . . . . . . . . . . . . . . . 9

5 HARP core pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 MMU or Load-Store unit interface. . . . . . . . . . . . . . . . . . . . 14

7 MMU components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Cache interface signals for core and memory sides. . . . . . . . . . . 17

9 Cache design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

10 Test setup for memory controller IP and internal block diagram. . . 21

11 DDR cache side signals for read/write operation [2]. . . . . . . . . . 22

12 Possible system designs. . . . . . . . . . . . . . . . . . . . . . . . . . 23

13 Heterogeneous system with one big and six little cores. . . . . . . . . 25

ix



CHAPTER I

INTRODUCTION

1.1 Motivation

The increasing complexity of current and future systems have made the task of a

designer difficult and time consuming. There has also been an increased focus on the

time taken to market these designs. These factors have contributed to a growing need

for a higher level of design abstraction in order to increase design productivity. A

typical system design cycle involves first building performance and functional models

using C/C++/SystemC and then using hardware description language (HDL) for the

actual design phase. If we can combine these two phases of architecture exploration

and design, we can significantly decrease our design time.

To address the above issues, we are building a fast FPGA prototyping tool chain

to explore various GPGPU-based architectures. The tool chain allows us to use the

same code written in C++ to be translated to Verilog and also used for our simulation

framework (SST [13]). Field programmable gate arrays (FPGAs) have been used

to prototype hardware designs, for emulation and as accelerators. Since they are

hardware implementations of the design, they run tests and simulations very fast

before actually taping out an application specific integrated circuit (ASIC). FPGAs

are also used as standalones to implement highly parallel and configurable application-

specific designs. Having this emulation platform will allow us to run full-feature

applications, which are generally the problem when running software simulations.

For example, to run an application on the simulator (MacSim used in this study

[11]), we first need to trace the application and then run the trace on the simulator.

Since the simulator is slow, we trace only a small portion (hot loop) of the application,

1



whereas on the FPGA we can run the whole application without having to generate

traces. For an application that has, say, a billion instructions, running it on simulator

like MacSim, which runs at generally 50 kips (kilo instructions per second), takes

around five hours, whereas running it on the FPGA (2̃00 MHz) might take only a few

seconds. The biggest difference or downside when running applications on an FPGA

rather than an ASIC is the speed of the FPGA logic; for example, the Altera Stratix

III FPGA used for this work can run only until about 5̃00MHz, whereas an ASIC

can run at a much higher speed. The modern-day FPGA tools make prototyping

(implementation and debugging) a relatively easy task compared to ASIC flow, hence

this approach was taken.

The aim of this wok was to create a tool chain to prototype general-purpose graph-

ics processing units on FPGAs. This hardware flow combined with the higher-level

simulation flow using the same source code creates this whole tool chain to study fu-

ture architectures, using new technologies. Most of the research has focused on either

the simulation flow or the hardware flow. Having this flow for research would allow

us to explore hardware designs and show results on the real prototype. In this work

we demonstrate how we were able to create a full system on an FPGA and quickly try

out various options. We created different systems using our parameterizable build-

ing blocks in a plug-and-play fashion. We started by building simple cores and then

moved on to make bigger cores with single instruction multiple data (SIMD) support.

Then, we demonstrated systems with multiple cores and also heterogeneous systems

consisting of a large/big core and multiple small cores. All this helped us meet our

goal of quickly prototyping complex systems.

1.2 Organization

The thesis is organized as follows:

Chapter 2 gives an overview of the overall system that was prototyped. It also

2



discusses the various tools used and also gives an overview of CHDL, which is the

programming language library used to write most of the system design code.

Chapter 3 describes each of the system components in more detail. We mainly

cover some details of the ISA used, the design of the core, the cache, and the memory

controller. Many obvious micro-architecture details have been omitted to keep the

descriptions brief. After discussing the system components, we then discuss how we

integrated all of these components and created example designs.

Chapter 4 shows the simulation setup along with some of the results obtained. We

also show the resource consumption of the design on the FPGA board.

Chapter 5 discusses related work. It also concludes the work and discusses future

directions.

3



CHAPTER II

DESIGN OVERVIEW AND TOOL CHAIN

2.1 System Overview

The aim of this work was to design a custom GP-GPU as a starting point to explore

future designs. Since we wanted the whole system to be customized, a custom ISA

called “HARP” was used for this work. The ISA is an MIPS-based ISA with support

for several customizations, which are discussed in the next section. The key features

are predication support, configurable instruction width, number of general-purpose

and predicate registers, and vector support.

As for the design, the main components are the core, the cache, and the memory

controller, as can be seen in Figure 1. Figure 1 is a simple design we used just to

demonstrate different components. Each of these components is discussed separately

in the next section. We will also look at the different possible systems we can design in

Chapter 4. The core that implements the main pipeline and the memory management

unit was written in “CHDL” which is our custom high-level synthesis tool.The cache

was written in Verilog and the memory controller IP was generated using Altera’s

FPGA tools (Quartus II, [1]). Even though we have built a system using a particular

configuration, we can use this flow to try many different scenarios. For example, if we

want to built a system that uses a new kind of memory system (example HMC [10]),

all we would have to do is to replace the DDR2 controller we are using now with the

IP of the new memory controller and everything else will remain the same. We can

also add new instructions to the ISA and add support to the core (like support for

multiple warps similar to commercial GPUs), keeping everything in the uncore part

unchanged.

4



Harp Core 

L1 Cache 

DDR2 
Controller 

Harp Core 

L1 Cache 

Arbitrator 

L2 Cache 

Inst ROM Inst ROM 

Figure 1: Basic system components

As we can see in Figure 1, our design supports multiple cores, and each core can

support SIMD, thus creating a GPGPU or an SIMD CPU as one would like to call

it. To enable support for multiple cores, we have also designed the arbitrator, which

sends requests from the private caches of each core to the shared cache. Also similar

to the way GPGPUs are designed, our design does not support coherence among

the private caches of each of the cores. So, the programmer should be aware of this

fact and must write code accordingly. For the current work, most benchmarks are

written in HARP assembly but one of the future tasks as part of this project is to

design a CUDA/OpenCL-HARP translator, which would allow us to run more general

commercially available applications.

5



2.2 CHDL

CHDL is the custom environment used to generate HDL (hardware description lan-

guage) using C++. It has similarities to System C and other HSL (high level syn-

thesis) languages [7]. We used CHDL so that, as previously mentioned, the same

code written in C++ can be used for the FPGA flow as well as for the simulation

flow. CHDL is implemented as a source-source translator, which translates high level

C++ to Verilog HDL. It offers a set of C++ libraries to support correct translation of

code to its Verilog equivalent. Even though we write in C++, we still have to think

to some extent about what the generated Verilog code will look like. For example,

one thing to keep in mind is that assignments to wires (represented as a vector of

Boolean) are continuous and we can assign the wire only once in our code. We discuss

some examples later that give a good overview of this framework in terms of its ease

of use and the restrictions it places on the programmer.

There are several advantages to taking the CHDL approach; as we write code in

C++ it becomes easy to describe complex functions using simple code as compared

to Verilog. Also, since we already have a library of commonly used functions, we can

write code quickly; for example we have implementations of multiplexers, decoder,

encoders, state machines etc. This allows us to significantly reduce our code density.

The author in [17] shows that a 1M-gate design requires about 300k lines of RTL,

whereas using a higher level of abstraction can reduce that by 7x-10x [7].

There are some down sides to using this high-level synthesis approach though.

Since we can describe a lot of complex functionality using this approach, it might not

always generate the most optimal Verilog code. We can expect the Verilog compiler to

optimize the code and remove redundancies, but we would be able to generate better

code if we write directly in Verilog. The authors in [7] give a good overview of HSL

(high level synthesis) frameworks and discuss the quality of HDL generated. Another

downside of using this approach is that it is very hard to debug, as the signal/variable

6



names are lost in the code generated and we have to specify signals using special debug

statements if we want to preserve the name to help us in debugging. It is also hard

to fix or improve a critical path in the design to improve the performance.

Figure 2 shows a simple example of code written using CHDL compared with

its Verilog equivalent. The Verilog code generated from CHDL is about 106 lines

compared to about 10 lines in Verilog. As can be seen, this is a code for a simple

5 bit counter. The Verilog code is implied; as for the CHDL version, we represent

the counter as a vector of boolean with 5 bits. The “Reg” statement translates to

“always@(posedge clk) output <= input;” in Verilog. The assignments in CHDL are

similar to the “assign” statement in Verilog.

CHDL Verilog 

int main() { 
 
  bvec<5> c; 
  c = Reg(c + Lit<5>(1)); 
 bvec<5> out = c; 
 OUTPUT(out); 
 
} 

 

 
module counter( input clk, 
output [4:0] out) 
 
reg[4:0] c; 
assign out = c; 
always@(posedge clk) 
 c <= c + 5’b1; 
 
endmodule 

 

Figure 2: Simple counter in CHDL and Verilog.

Similarly, if we want to implement basic operations we can directly use statements

like those shown in Figure 3. This figure shows the implementation of a basic ALU

where the final output is that coming out from the multiplexer, which selects the

correct output based on the “op” signal, which acts as the selector.

2.3 FPGA board and Development Tools

The FPGA board used for our experiment is a Terasic DE3 board. It uses an Altera

FPGA for prototyping. The FPGA used is a Stratix III 3SL150 FPGA with 142,000

7



a 

b out 

  
     bvec<N> a       = Input<N>(“a”); 
     bvec<N> b       = Input<N>(“b”);  
     bvec<ops> op = Input<ops>(“op”);  
 
     bvec<N> out; 
     vec<64, bvec<N>> mux_in; 
 
      mux_in[0x05] = -a;  
      mux_in[0x06] = ~a;  
      mux_in[0x07] = a & b; 
      mux_in[0x08] = a | b; 
      mux_in[0x09] = a ^ b; 
      mux_in[0x0a] = a + b; 
      mux_in[0x0c] = a * b; 
      mux_in[0x19] = mux_in[0x0f]; 
      mux_in[0x1a] = mux_in[0x10]; 
      mux_in[0x1b] = a; 
      mux_in[0x25] = b; 
 
      out = Wreg(enable, Mux(op, mux_in)); 
      OUTPUT(out); 
 

ALU 

op 

Figure 3: Basic ALU in CHDL.

logic elements (LEs). The DE3 board also has support for DDR2 RAM, leds, 7-

segement display, and connectors to stack multiple boards. Figure 4 shows a picture

of the FPGA board used for this work.

We used Altera’s FPGA tools for development purposes. The Quartus 11.3 tool

[1] was used to synthesize the HDL and program the FPGA device via USB. We used

ModelSim for the RTL and gate-level simulation experiments. As for other tools used,

we also used open source tools like “iVerilog” [18] to compile our Verilog code and

dump wave signals to a file, which we then viewed using “gtkwave” [6]. The DDR2

was used along with Altera’s DDR2 memory controller IP. More about the DDR2

controller is discussed in Chapter 3. The Quartus tool with a built-in IP generator

called “Megacore wizard” was used to generate the memory controller IPs along with

other commonly used IPs like PLLs for managing clocks.

8



Figure 4: Altera Stratix III Board [14].

9



CHAPTER III

SYSTEM DESIGN

3.1 System Components

3.1.1 HARP ISA

The ISA used as part of this work was a custom RISC-based ISA. The ISA was devel-

oped under the name HARP which stands for Heterogeneous Architecture Research

Project. The main features of the ISA are: full predication, SIMD support, and

customizability. Many features of this ISA are customizable like the vector width,

instruction length, number of general-purpose and predicate registers etc. The main

reason to do this was to add support for new instructions for future architectures and

also to allow adapting the ISA quickly to various architectural configurations. There

are several types of instructions, depending on the number of arguments (register, im-

mediate, predicate registers etc.), but all instructions are encoded in a similar fashion.

That is, the most significant bit of each instruction indicates if it’s predicate or not,

the next field specifies the predicate register, the next field stands for the opcode, and

so on.

The HARP ISA is also supported by its tool chain called “Harptool” which acts as

an assembler, linker, and emulator. For this work the benchmarks used were written

directly in HARP Assembly, which is very similar to RISC-based assembly programs.

These benchmarks, written with the aim for testing and performance purposes, are

listed in Table 1

We varied the input size (array size for array sum, matrix size for matrixmul,

input range for sorting) and ran it on our design, which was used not only to test

the overall design, but also to get an idea of the performance. These are very naive

10



Table 1: Micro-Benchmarks studied.
Single Lane Benchmarks

Array Sum Sum 240 numbers
Sieve of Eratosthenes Finding prime numbers between 1 to 100
Bubble sort Sort Numbers 0-9 using bubble sort
Matrix multiplication Multiply two 8x8 matrices

Multi-Lane Benchmarks
Array Sum Sum 240 numbers (coalesced and un-coalesced version)
Matrix multiplication Multiply two 8x8 matrices

applications compared to some of the complex benchmarks that are available, but

these do provide good credibility for the design if not the performance as of now.

One of the main focuses of writing these applications was to stress corner cases. Part

of the future work is to design a tool that can translate CUDA or OpenCL code to

HARP Assembly, once that is in place it will allow us to do more thorough testing.

The HARP ISA in its current version alos supports only a single simple console I/O

to help debug and display the output. Any store instruction at an address 0x80000000

causes the HARP core to send the required data to the display (7-segment display or

LEDs or VGA).

3.1.2 Core

3.1.2.1 Core Pipeline

The base HARP core design used as part of this work was a design written completely

in CHLD. This section provides an overview of the base design of the core, which was

modified for use as part of this work. The HARP core is an in-order issue and out-

of-order completion pipelined processor. The pipeline stages are mainly Instruction

Fetch, Decode/Register File access/Issue, Execute and WriteBack stage. The function

of each stage is implied from its name and is shown in Figure 5.

The instruction fetch stage reads the instruction stored in the instruction ROM

and passes it to the next stage. To improve performance, there is also a GHB (global

history based) branch predictor and a BTB (branch target buffer). The PHT (pattern

11



Decode

Valid Bits

Pred. Reg.

IIDs

Pred. Reg.

File

Pred. Reg.

GP Reg.

Valid Bits

File

GP Reg.

GP Reg.

IIDs

Issue

IID

+1

PC

I−cache

Br. Pred.

Writeback

Pred. Ex.

ALU

PLU

Div

Mul

D−cache

LSU

Fetch Decode/Issue Execute Writeback

Front−End Functional Units

Figure 5: HARP core pipeline.

history table) of the GHB and BTB is indexed by XORing the PC and the branch

history. The target branch address is obtained from the BTB and the direction from

the PHT (pattern history table). Next, the decode stage decodes the instruction and

reads all the registers required for each instruction. It also checks for dependencies and

stalls the pipeline if the registers it needs are not valid, as the responsible instructions

have not updated them yet. To handle dependencies, the design assigns a unique

Instruction ID (IID) to each instruction, which is used to determine which instruction

is responsible for updating the register file to its latest value and set the valid bit.

So, each instruction updates the IID file for the register it writes to with its own

IID and also sets the valid bit to zero before proceeding to the execute stage. The

predication logic is also implemented in the decode stage. We convert the instruction

to an NOP, depending on the value of the predicate register. There is no support for

data forwarding in this design right now; it has been left for future work.

The execute stage has all the ALU units to implement the functions offered by

the ISA. Additional modules like faster ALU units, say for example fast pipelined

multiply, divide, or floating point operations, can be written separately in Verilog

12



and integrated with our current design as and when needed. This stage also has the

memory management unit (MMU) to handle memory accesses, which are discussed

later. The write-back stage writes back the updated data to the register files and

updates the state of the registers (set the valid bit) so the dependent instructions can

now progress.

Factors such as SIMD width, number of registers, ROM size, and data/address

width can be varied. We discuss more about the SIMD support in the next part and

later sections discuss more about the memory management unit. We also allow for

a version of the core without any cache support but with each lane having a small

RAM and a ROM on its own. This variation is just to explore different architecture

possibilities.

3.1.2.2 SIMD support

Writing code in CHDL allowed us to easily extend our core design for SIMD support.

The whole register file was instantiated as many times as the number of lanes, hence

converting each register to a vector register. For a given vector instruction, the same

operation was done for each word in the vector register. Once all the vector registers

are read, they are sent to the execute stage. If the instruction involved an immediate,

then the same immediate was used for all the lanes.

In the execution unit each of the ALU units was instantiated as many times as the

number of lanes and their corresponding inputs were passed on from the decode stage.

Everything else (checking for dependencies logic etc.) remained mostly the same as

in the case of a single lane (branch outcomes, predication outputs were determined

only by the first lane). As of now, the core does not support any mask operations, so

the same operation is done on all the words of the vector register. Adding support

for masking via mask registers and also support for branch divergence will be part

of the future work. The only big change in order to support SIMD instructions was

13



done in the memory management unit. To enable this, a complex load store queue,

shown in Figure 6, was designed and is discussed in the next section. Also, for SIMD

support, changes had to be made in the cache, as the L1 cache now has to send and

receive data at cache line granularity rather than word granularity; also the cache

had to support masked writes in case of un-coalesced accesses.

SM/Lane-1 SM/Lane-2 SM/Lane-8 

Request 
Queue 

1 Line 

Line Address 

Ld/ St Req 

Load Store 
Queue 
 

D
ec

o
d

er
 

L1 Cache 

Word1 Word2 .. .. .. .. .. Word8 

L1 Cache 

Figure 6: MMU or Load-Store unit interface.

3.1.2.3 Memory management unit (MMU)

The whole memory management unit and the cache were among more complex por-

tions of the design. This section discusses the memory management unit/load-store

queue/coalescing unit used in the execute stage of the core to send requests to the

cache subsystem. The MMU can be divided into four major components, as seen in

Figure 7:

• Front End

• Load Queue

• Store Queue

• Cache Interface logic

14



We now briefly discuss the functionality of each of the components for an SIMD

HARP core. This SIMD support requires the address/data granularity of a cache line

between the MMU and cache. The design in Figure 7 is an example of an 8-lane

SIMD core along with an eight word cache line, so all lanes can together request one

whole cache line every cycle. We also have a design variation without the MMU and

blocking memory requests to save on logic resources.

Front End 

SM/Lane-1 SM/Lane-2 SM/Lane-8 

Ld Queue St Queue 

Mux / Cache Interface Logic 

Cache 

Ld/St Op 

Figure 7: MMU components.

Front End: The front end receives the request from the core with addresses and

data for each lane. It then tries to pack all lane requests made to the same cache line

together and forms one request to be sent to the load/store queue. Hence, each entry

in the load/store queue corresponds to a cache-line. For an un-coalesced request, the

front end keeps creating as many new entries as unique cache lines. Along with the

cache line address, each entry also keeps information about the lanes requesting or

writing that cache line along with their corresponding word offsets in the cache line.

Load Queue: All load requests are passed on to this queue. The first request for an

instruction is called the leader and all the following requests derived from the same

instruction (in case of un-coalesced) are followers. The leader checks if data for all

15



lanes are loaded by waiting until its followers return the required data. The follower

writes the data it receives from the memory to the corresponding lane data slot in

the leader entry. Once data for all lanes are loaded (indicated by a loaded bit for

each lane), we mark the entry as done and ready to retire. The load requests can be

serviced in any order. We also enable load store forwarding (LSF) feature where, if an

incoming load request sees data for the corresponding cache line in the store queue,

then it directly gets the data from the store queue entry and is marked as done. The

current implementation is conservative in the sense, it gets data forwarded only when

the whole cache line is being written by a store queue entry. If only a partial store is

made to a cache line, we make the load entry wait until the store entry commits.

Store Queue: The store queue gets the store data along with the cache line address

from the front end. It then checks if there is a pending load entry for the same

address; if there is, then we make this request wait until the matching load request is

serviced to handle WAR (write after read) hazard. Once the store request is ready to

commit, we send the data along with the valid/mask bits for each word to the cache.

When both load and store queues want to send their requests to the cache, we give

higher preference to requests from the load queue.

Cache Interface logic: This part of the MMU takes each pending entry from the

load or store queue and sends it to the cache. There is a lot of switching logic involved

mainly to handle requests from the store queue entry. This is because we allow for

cross lane stores wherein each lane can write to any word in a cache line. We also

have a broadcast logic built in, which allows multiple lanes in the same request to

ask for any/same word in the cache line.

3.1.3 Cache

We use a two-level non-blocking, write-back, single-cycle latency cache for this design

written completely in Verilog. A CHDL implementation was not written mainly

16



because for the FPGA prototyping part we already have a base implementation of

the cache design in Verilog and for the software simulation part we already have a

cache design tightly integrated with our simulation infrastructure. We still have a

CHDL design in the works. The input and output signals to the cache can be seen

C
ac

h
e 

(L
1

+L
2

) 

addr_in 

data_in 

rw_in 

valid_in 

id_in 

valid_word_in 

data_out 

id_out 

ready_out 

stall_out 

avl_addr 

avl_wdata 

avl_read_req 

avl_write_req 

avl_be 

avl_size / burst_en 

avl_rdata 

avl_data_valid 

avl_ready 

avl_ready 

D
D

R
2

 

H
ar

p
 C

o
re

 

Figure 8: Cache interface signals for core and memory sides.

in Figure 8. The cache is parameterizable, where we can configure the cache line size

(32 bytes used for our design), address/data width, and miss status handling register

(MSHR) entries and also make data input/output granularity to be a word or cache

line (for SIMD). Since we have designed a single-cycle latency cache, we need an extra

2x clock to allow us to perform tag read and write in the same clock cycle. This clock

is fed in the top level system block and is generated via a phase locked loop (PLL).

The L1 cache is a direct mapped cache and the L2 is 4-way set associative cache.

We now discuss the main building blocks of the L1 cache; L2 is designed in a similar

way except it uses a random cache line replacement policy and extra tag/data RAM

modules for each extra way. Figure 9 shows the internal design of the cache with

each of the components briefly discussed below.

Data/Tag ram: These storage elements hold the data and tags along with dirty

and valid bits. The actual data and tags are stored in eight two-ported 32-bit (word)

RAMs (8x32 = 256 bit cache line). We need two ports ,as we need to service the

17



Po
rt

 A
 Po

rt B
 V D Tag 

FSM 

MSHR 

MSHR match? 

Input 
L2 -> L1 

add del is_comp 

read 

get 

Data 

Mux 

Output 
L1 -> L2 

Input  
Core -> L1 

= 
TAG 

HIT ? 

Index 

Output 
 L1 -> core 

Addr id data r/w V 

TAG Index Line Offset 

Tag RAM Data RAM 

Address Format 

Control 
Signals 

Figure 9: Cache design.

request coming from the core as well as lower level memory (L2 cache).

MSHR (Miss Status Handling Register): Since we implemented a non-blocking

cache, we need an MSHR. This block stores the requests that miss in the cache and

need to wait until the cache line it misses on is serviced by the lower level memory.

This stores the data, addresses, read/write, and core request-id for each read/write

operation. In the case, where a second request to the same waiting cache line occurs,

we stall the cache and store the new request in a separate data structure. This new

request is serviced only after the matching entry in the MSHR is serviced. A future

extension to improve the performance will be to allow some kind of a piggy-back

feature where, instead of stalling on the same cache line, we keep adding the requests

to the same MSHR entry and service them all at once (though this will save us only

a few cycles).

Non-blocking FSM (finite state machine): This state machine controls the

18



overall operation of the cache. Since we are handling requests from the core and

lower-level caches, the FSM keeps track of when a new request arrives from either

side. Depending on the request, it issues control signals to the MSHR or the data/tag

RAM to update their state or generates a stall signal to tell the core to stop sending

more requests.

Arbiter: The arbiter is used for the multicore versions of our system, where each

core has a private L1 cache and they share an L2 cache. The arbiter gets requests

from L1 caches of all the cores and sends only one cache line request to the L2. It

appends the core-id to the request-id coming from each core so it can return the data

to the appropriate core when it is returned from the L2. Various arbitration schemes

can be used, but for this work we used a priority encoder. The arbiter, like other

components, is completely configurable allowing it to instantiate as many L1 caches

as possible with only a small change in the Verilog code (more signals need to be

added at the input port, as Verilog does not allow using a parameterized array of an

input signal).

To get a better understanding of how these blocks interact to service simple load

and store requests, we discuss a few simple cases below.

Read/Write Hit operation: When a new request arrives in the cache, we read

the tag RAM to see if there is a match (first cycle of the 2x clock); if there is a hit,

we then send the data from the data RAM to the core in the next cycle along with

asserting the valid out bit for a load request. For a store request we update our data

and tags (second cycle of 2x clock) and don’t need to reply anything to the core.

Read/Write Miss operation: In the case of a cache line miss, the FSM allocates

a new entry in the MSHR for this request. If the L2 cache is not stalled, it sends the

request to the L2 and waits for the data. The L1 cache in the meantime can receive

new requests if there is free space left in the MSHR. Each cache miss is treated in a

similar way unless the new request is for the same line waiting in the MSHR. In this

19



case, we stall the L1 cache and wait until the matching MSHR entry is freed. Once

the data from L2 arrives, it directly updates the cache data and tag RAM. Then, the

FSM gets the MSRH entry responsible for the miss and issues it again, making it a

cache hit this time. Once issued, the MSHR entry is freed and the data along with

valid output is sent to the core.

3.1.4 Memory Controller

The memory controller supported by the DE3 FPGA board used as part of this work

is a DDR2 memory controller with an operating frequency ranging from 125 MHz

- 533 MHz. We used a 1GB DDR2 RAM for this work running at 125MHz due to

frequency limitations set by other components of the system. The DDR2 is connected

on the board via 200 pins for clock and control signals coming from the FPGA. Figure

10 shows the top view of the memory controller block; more details can be found in

[2]. The command generator receives the signals from the user side and passes it to

the timing bank pool. The timing bank pool then checks for signal timings and if

valid data is present in the data buffers. Then, it passes the request to the arbiter,

which finally passes the command forward. The rank timer maintains rank-specific

information to maintain correct functionality.

The DDR2 controller IP was generated using Altera’s MegaWizard [1], which au-

tomatically generates the IP along with some example files for simulation purposes.

Although it might seem straightforward but creating this IP with the correct param-

eters set was critical. Many times, the RTL simulation (using a system Verilog model

for a DDR2 memory) of a generated controller IP was found to be working, but it

failed on the board because one of the timing parameters was set incorrectly. Even

the timing presets present in the Altera tool for the actual DDR2 DIMM used in the

board were not correct. The correct parameters were later obtained from an example

DDR2 IP project from the FPGA board vendor (Terasic). Also, since the number

20



Random Traffic 
Generator 

Controller PHY 

Synthesized IP 

Memory Altera-Avlon 

Write Data Buffer 

Read Data Buffer 

ECC 

Arbiter 
Timing 

Bank Pool 
Command 
Generator 

Rank Timer 

A
FI

/ 
P

H
Y 

In
te

rf
ac

e
 

A
vl

o
n

 In
p

u
t 

In
te

rf
ac

e
 

AFI 

Figure 10: Test setup for memory controller IP and internal block diagram.

of pins that need to be connected to the DDR2 was significant, they all had to be

set very carefully, again using the parameter obtained from the board vendor, which

was also a confusing part as Altera by default recommended another configuration.

The incorrect pin and parameter configurations were the main reasons behind failures

seen initially. We found that many DDR2 IP parameters like the frequency and the

row open/close policy were configurable via Altera’s IP generator. Though we can

customize the IP RTL itself, we can’t reuse all of Altera’s propriety IPs. Different

scheduling policies like FRFCFS etc. can be tried and can be one research direction

going forward for different types of system architectures.

Figure 11 shows the timing diagrams for requests being sent to the memory

controller. The user side signal uses Altera’s Avlon interface [2], and this is the prefix

(‘avl’) given to these signals. Before using the controller with the rest of the system,

it had to be tested using a random traffic generator (generated along with IP). It does

a thorough test to make sure the DDR2 runs for the parameters set on the board.

21



Write 

Read 

Fr
o

m
 L

2
 c

ac
h

e 
L2

 C
ac

h
e 

Fr
o

m
 L

2
 c

ac
h

e 
L2

 C
ac

h
e 

Figure 11: DDR cache side signals for read/write operation [2].

We first tested the controller in RTL using a DDR2 memory model and then on the

FPGA board. Once DDR2 was tested, we started integrating it with the rest of the

system. Since the cache interface is slightly different from the user interface signals of

the memory controller, a memory controller wrapper block was written to interface

them. The main difference was that the cache identifies each request via a unique

ID, whereas the DDR2 just returns the data along with valid bits on a first-come

first-served basis, as can be seen in the DDR2 wave diagrams in Figure 11. This

wrapper is mainly a FIFO-based structure that stores the request along with the ID

of incoming request coming from the cache and sends the data returned from the

main memory back to the cache along with the original request id.

22



3.2 Putting it together: A Multicore and multilane GP-
GPU system

Figure 12 shows the final system that was designed and tested on the FPGA board.

We saw in previous sections in this chapter how each of the components, namely the

SIMD core, MMU, cache, and the memory controller, was designed. Now the aim

of the work was to integrate each of these components to make the overall system.

Although this might sound simple to start with, it was a fairly time-consuming task,

as it was through this process that many hidden bugs were discovered.

Harp Core 

L1 Cache 

DDR2 
Controller 

Harp Core 

L1 Cache 

Arbitrator 

L2 Cache 

Inst ROM 

DDR2 DIMM 

L1 Cache 

DDR2 
Controller 

L2 Cache 

DDR2 DIMM 

Lane1 Lane2 Lane8 

Multi-Core SIMD-Core 

MMU 

Inst ROM Inst ROM 

Figure 12: Possible system designs.

We started by testing each module before integrating them; this was done by

writing separate testbenches (in Verilog) for each of the Verilog blocks. This led us

to know if we were able to get the basic functionality out of the desired block. As

many blocks were complex and had many inputs/outputs, it was hard to test them.

Once basic building blocks were tested reasonably, we started integrating the whole

system. To check overall functionality we started by testing a single lane HARP core

23



system and made sure this was working and meeting all the timing constraints. For

a system of this magnitude, it is generally hard to test all the corner cases and even

now there might be some hidden bugs in the design. Since we tested our final system

by writing applications rather than creating stimuli or a Verilog testbench, our tests

were, to a large extent, thorough and helped us discover bugs in the very blocks which

we had tested earlier individually.

The first step was to do RTL simulation of the whole system and make sure it

was passing. Many functional bugs can be easily found and fixed at this stage. At

the RTL stage, we can also replace each large component with a dummy model to

isolate issues. Next, we synthesize and perform gate-level simulation; this is hard to

debug, as signal names are changed or synthesized away and it takes a long time to

reach the end of simulation. The best way to debug issues at this stage was to fix the

warnings that were given by Altera’s Quartus tool and this for us fixed many bugs in

the design. Many issues, including the errors due to DDR2 timing issues, were hard

to fix and took a lot of time. After this stage, we tested the system on the board by

downloading the FPGA programming binary on the board. If it does not run even

after this then the reasons we came across were mainly due to issues in the reset logic

or the clock or the DDR timing parameters. One good practice is to use PLLs to

generate cleaner clocks with less jitter. Most of the problems in my design were fixed

using the above process. If one is still not able to isolate issues, then the next step is

to use hardware debug IPs (Altera Signal Tap Analyzer), which can monitor signals

on board and display them on the screen. This method was also used to debug some

issues in the DDR2 as part of the test phase.

Once a single-lane version of the whole system was working on the board, we

then tested a multi-lane version of the core using different tests to stress most of the

commonly used blocks as shown in Figure 12. For example, we wrote test cases for

doing a lot of un-coalesced, coalesced, and broadcast memory requests to determine

24



whether or not the complex memory management unit was working properly. Once

the single core (one lane or SIMD) was tested on the board, it was easy to create

multi-core versions by instantiating more instances of the core with each core running

its own separate application. Figure 12 shows one such system; as can be seen we

have two cores, each having its own private L1 cache and sharing an L2 cache. As

mentioned previously, we don’t have support for coherence as of now. The extra

component needed to make this multicore system was the L1 cache arbitrator, which

schedules requests from different cores to the L2. For this work, a priority arbiter was

used, but other possibilities can also be explored. To test it, we tried to run different

combinations of applications on each of the cores accessing different data in the main

memory.

DDR 

SIMD Core 

L1 / L2 Cache 

Little Core 

RAM 

Little Core 

RAM 

Little Core 

RAM 

Little Core 

RAM 

Little Core 

RAM 

Little Core 

RAM 

Big Core 
Little Cores 

MMU 

Figure 13: Heterogeneous system with one big and six little cores.

After testing the above systems, we tried to create novel heterogeneous systems

from our basic building blocks, as shown in Figure 13. This was possible because

of our tool chain and parameterized building blocks. We were able to test a hetere-

geneous system consisting of a complex big SIMD core and multiple smaller cores

[3]. The bigger core has its own cache and memory subsystem (with the DDR) and

the smaller cores have their own memory without any cache, hence consuming fewer

FPGA resources. The results from the FPGA experiments for the systems above are

discussed in the next section along with details of our heteregeneous system.

25



CHAPTER IV

MEASUREMENT RESULTS AND ANALYSIS

4.1 Board and Test Environment

The FPGA board used for the studies and experiment is a Terasic DE3 board. It uses

an Altera FPGA for prototyping. The FPGA used is a Stratix III 3SL150 FPGA with

the following properties: 142,000 logic elements (LEs), 5,499K total memory Kbits,

384 18x18-bit multipliers blocks and 736 user I/Os. The DE3 board also has support

for DDR2 RAM, USB, leds, seven-segement display, and connectors to stack multiple

boards. Figure 4 shows a picture of the FPGA board used for this work. We use a

1GB DDR2 DIMM. The benchmarksn as mentioned earlier in Table 1 were all written

in HARP assembly.

To measure the performance, we calculated IPC (Instructions Per Cycle). The

number of instructions was calculated using the Harptool emulator. The number of

cycles can be easily measured on the simulator but, to measure the actual number

of cycles on the FPGA board we created hardware counters in our design. We start

counting when all components are initialized and stop when we reach the end of our

benchmark. To indicate correctness we display three signals on the board to indicate

test complete, pass, and fail for the core. The checksum logic for the pass signal is

defined for each benchmark in our test module, say, for example we check the final sum

of ‘array sum’ application with the known answer. We also have two more signals to

show DDR2 controller initilization pass/fail. The number of cycles information from

the hardware counter is displayed on the seven-segment display on the board.

26



4.2 Results

The basic parameters for the core and cache are set as shown in Table 2.

Table 2: Core configuration.
Core Configuration

FPGA Device: StratixIII (EP3SL150F1152C2)
FPGA flow tool: Quartus II 13.0.1
Core Operating Freq: 62.5 MHz
DDR2 Operating Freq: 125 MHz
Instruction Width: 32 bits
L1 / L2 cache: 16KB / 128KB
General Registers: 16 32-bit Regs
Predicate Registers: 16
SIMD Lanes: 8
Instruction ROM: 1024KB

After creating the basic building blocks of our system, we tried to run performance

and functional tests on a few example designs. Below we discuss three versions of the

HARP Core and their performance for simple micro-benchmarks.

Single One-Lane HARP Core:

First we ran the benchmarks on a simple one-lane HARP core. For the benchmarks

run, we did not see much benefit of using a complex load store queue, as the appli-

cations had a dependent instruction following a load instruction, which would stall

the pipeline until the dependent load is serviced. Hence, to make the design simple

we removed the complex load/store queue so the core now sends blocking requests to

the memory subsystem, though independent instructions can still keep flowing in the

pipeline. Table 3 shows the performance and Table 4 shows the logic utilization of

this system. The low IPC is because almost all applications have a chain of dependent

instructions.

Dual One-Lane HARP Core:

Next we instantiate two of the one-lane HARP cores above to form a multi-core

system. Table 5 shows the performance and Table 6 shows the logic utilization.

27



Table 3: Single core one-lane performance.
Benchmark Instructions Cycles IPC Description
Array Sum: 2912 9598 0.3034 Sum 240 numbers
Sieve of Eratosthenes: 1611 5504 0.2926 Prime numbers in 1 to 100
Bubble sort: 799 2593 0.3081 Sort 0-9
Matrix multiplication: 6082 19855 0.3063 Multiply 8x8 matrices

Table 4: Logic utilization of a single one-lane core.
Logic Utilization

FPGA Logic Utilization: 22%
Combinational ALUTs: 13% (14,850 / 113,600 ALUTs)
Dedicated Logic Registers: 12% (14,850 / 113,600 ALUTs)
Memory ALUTs: 3% (1,499 / 56,800 ALUTs)
Total block memory bits: 27% (1,505,792 / 5,630,976 )
Total pins: 25% (189 / 744)

Table 5: Dual core one-lane performance.
Core-1 Benchmark Core-2 Benchmark Instructions Cycles IPC
Array Sum Sieve of Eratosthenes 4523 9598 0.4712
Bubble Sort Sieve of Eratosthenes 2410 5504 0.4378
Array Sum Matrix multiplication 8994 19857 0.4529
Matrix multiplication Matrix multiplication 12164 19857 0.6125

Table 6: Logic utilization of a dual one-lane core.
Logic Utilization

FPGA Logic Utilization: 30%
Combinational ALUTs: 19% (21,945 / 113,600 ALUTs)
Dedicated Logic Registers: 17% (19,027 / 113,600 ALUTs)
Memory ALUTs: 3% (1,499 / 56,800 ALUTs)
Total block memory bits: 29% (1,647,104 / 5,630,976 )
Total pins: 25% (189 / 744)

28



We can clearly see in Table 5 the benefits on performance of using multiple cores.

Also, we can see that by using a simple design of the core and having a slightly more

complex cache design helps us to keep the logic utilization to the minimum (scalable

design). Given the above logic utilization we can easily instantiate more than eight

cores on the FPGA device. Since there is no sharing and the applications are not

memory internsive, the performance scales linearly with the number of cores for the

above applications when we replicate the application across multiple cores, as we can

see in the results for matrix multiplication.

Single SIMD eight-Lane HARP Core:

We also designed and ran an eight lane SIMD core on the FPGA board. We used

simple applications initially to test the complex coalescing unit. Once that was done

we tried to run a compute-internsive matrix multiplication code on the board. Com-

paring the performance numbers we can clearly see the advantage of using SIMD.

The effective IPC would be about 8x this reported value, as the same instruction is

executed across all the lanes. This comes at the cost of much higher logic utilization

due to the coalescing unit and the duplication of ALU blocks and register files for the

SIMD core. Table 7 shows the performance and Table 8 shows the logic utilization

of this system.

Table 7: Eight-lane SIMD core performance.
Benchmark Instructions Cycles IPC Description
Matrix Multiplication: 929 2881 0.3224 Multiply matrices of size 8x8
Coalesced Vector Sum: 399 1068 0.3735 Sum 240 numbers
Un-Coalesced Vector Sum: 399 1300 0.3069 Sum 240 numbers

Using SIMD does give us performance benefits, as can be seen in Table 7. We

also don’t see a big difference in the performance of coalesced and uncoalesced array

sum applications because we have a non-blocking cache and a load store queue. For

the above tests, a maximum of four requests are being served simultaneously but can

be easily increased by changing the parameter for MSHR entries and the FIFO size

29



Table 8: Logic utilization of a single eight-lane SIMD core.
Logic Utilization

FPGA Logic Utilization: 54%
Combinational ALUTs: 37% (42,321 / 113,600 ALUTs)
Dedicated Logic Registers: 24% (27,517 / 113,600 ALUTs)
Memory ALUTs: 3% (1,499 / 56,800 ALUTs)
Total block memory bits: 27% (1,505,792 / 5,630,976)
Total pins: 25% (189 / 744)

for the cache-DDR interface.

The aim of all the above experiments was not only to show obvious benefits re-

sulting from SIMD or multiple cores; we can always choose to build a system and

select an application to show really good performance benefit. Rather, the aim of

this chapter was to estabilish credibility and show the felxibility offered by the whole

design. Depending on the resource constraints and performance goals, we can create

a heterogeneous system where we have the choice to select the type of core (sim-

ple/complex/SIMD) and the number of cores.

4.3 Prototyping a big.LITTLE Heterogeneous HARP Sys-
tem

The above section demonstrates some of the conventional systems that can be de-

signed using our tool set. In order to highlight the flexibility offered in quickly proto-

typing new systems, we tested a heterogeneous system consisting of a big SIMD core

along with many small cores. This system has similarities to the big.LITTLE systems

proposed by ARM [3]. This system also fits the description of a possible future system

consisting of an HMC. An HMC has layers of memory stacked on top of a logic layer,

which can be an ideal place to implement tiny processors for computing close to the

memory. The vault in an HMC is one vertical division with its own logic and memory

stack. Hence, a vault can be one such tiny core. In our system, the smaller cores

simulate a vault. They all have their own memory close to them, alleviating the need

for a cache. All the small cores work independently with a big SIMD core, which is

30



running a compute-intensive application like matrix multiplication. Since there can

be many such cores, we look at the example of one big core along with two, six, and

eight little cores. Table 9 shows the performance of various heterogeneous systems

tested and Table 10 shows the logic utilization of these systems.

Table 9: Heterogeneous HARP system performance.
Core Configuration Total Instructions Cycles IPC Description
1 Big - 2 Little: 2527 2881 0.8771 Big core: matmul

Little cores: bubble sort 0-9
1 Big - 6 Little: 5723 3102 1.8444 Big core: matmul

Little cores: bubble sort 0-9
1 Big - 8 Little: 7321 3041 2.4074 Big core: matmul

Little cores: bubble sort 0-9

Table 10: Logic utilization of big.LITTLE HARP systems.
FPGA Resource 1 Big - 2 Little 1 Big - 6 Little 1 Big - 8 Little
FPGA Logic Utilization: 62% 80% 88%
Combinational ALUTs: 44% 58% 65% (73,590/113,600)
Dedicated Logic Registers: 27% 31% 33% (37,649/113,600)
Memory ALUTs: 3% 1% 1% (302/56,800)
Total block memory bits: 27% 28% 28% (1,590,474/5,630,976)

The above results showcase the benefits of having these kinds of heterogeneous

systems as one of the many possible options. We can also easily see how scalable and

flexible our tool chain is in designing these systems for future research.

31



CHAPTER V

FUTURE WORK AND CONCLUSION

5.1 Related Work

Much literature can be found that demonstrates a framework to translate C/C++

code or higher abstractions to HDLs like Verilog/VHDL for hardware design. But

not much work exists that demonstrates using the same source code for software

simulation as well as hardware prototyping for architectural exploration purposes;

a summary of prior work can be found here [7]. In [9] the author proposes a new

programming language inspired by C/C++. The work presented in [15] focuses on

creating RTL for floating point algorithms written in C. The authors in [16], do com-

pile time optimization of the application to find regions of code that can be accelerated

on FPGAs and then generate VHDL for only those regions. Something very similar

to SystemC was presented in [12], with not much flexibility to integrate it with reg-

ular C++ or Verilog models. The authors in [5] talk about how to generate variable

pipelined functional units from high-level abstractions of HDL. A hardware/software

codesign and simulation infrastructure for embedded systems was presented in [8].

A good design of an example system using these translation tools is shown in [4]

and this work is very similar to our work. But, again, the research does not focus

on architecture flexibility and exploration; instead it looks into designing a complex

system in the least amount of time using the author’s framework. Our work allows

us to use a general open source simulation framework SST [13] to do more high-level

coarse grained architecture exploration.

Most of the prior work focussed too deeply on generating optimal HDL code

32



from C/C++ code and showed results on the FPGA comparing it with original Ver-

ilog/VHDL implementations. These works were either too application focussed or

involved a major learning curve for the programmer, which has prevented broad ac-

ceptance of these HSL frameworks, as they missed out on showcasing its impact on

future systems. A good overview of current HLS frameworks can be found in [7] but

again it is a bit more inclined towards the hardware synthesis part. In this work we

took a look at the broader picture. Given that we have something that translates

C/C++ code to HDL and can also be used for our software simulation, we wondered

what kind of possible architectures could be easily explored. The work mentioned in

this thesis focused on the FPGA flow side of things, but the overall aim of the whole

project is still focused on future possible architecture exploration.

5.2 Future Work

Since this work is part of a multi-year, multi-person project, many extensions are

planned for this work. As for changes in the core part of the design, changes like

adding support to handle multiple warps, and branch divergence using mask registers

will be one important feature that will make this design truly comparable to modern-

day GPGPUs. Also a feature like data forwarding can be added if we find that making

the core more CPU like will be beneficial for certain kind of systems.

The applications written right now are all in HARP assembly, but to allow us to

run of the shelf CUDA or OpenCL applications, a software translator tool is being

worked on that can generate HARP assembly from these binaries.

The next major part of the future work is to explore future systems using new

memory technologies like the HMC (Hybrid Memory Cube) [10]. Building these

systems would require only isolated changes to the existing design. For example,

to use an FPGA board with HMC, we would only have to generate a new memory

interface IP for the HMC (as the controller is integrated in the logic layer of the

33



HMC) and use this with the rest of the system.

5.3 Conclusion

To conclude, we showcased a tool chain and possible designs to allow quick proto-

typing of GPGPU designs on real hardware. Integrating the FPGA protyping flow

with software simulation infrastructure will allow us to explore future architectures

at different levels of granulatiry. By creating a parameterized design we can change

many aspects of our design to affect performance under given design constraints. The

flexibility offered by CHDL was also shown, which allowed us to easily add more fea-

tures to our system if needed, like SIMD support. We were able to see benefits of the

SIMD version of the core using a coalescing unit over the single lane version. This

work also discussed a few different systems that were emulated on hardware with only

minor changes to the base design flow.

34



REFERENCES

[1] Altera Corp., “Altera Quartus II Design Software.” http://www.altera.

com/products/software/sfw-index.jsp. [Online; accessed 1-Aug-2013].

[2] Altera Corp., “Altera ddr and ddr2 sdram controller compiler user guide.”
http://www.altera.com/literature/ug/ug_ddr_sdram.pdf, 2009. [Online;
accessed 1-Nov-2013].

[3] ARM Holdings, “big.LITTLE Processing with ARM Cortex-A15 and Cortex-
A7.” http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf,
2011. [Online; accessed 1-Dec-2013].

[4] Barroso, L. A., Gharachorloo, K., and Ravishankar, M., “Managing
complexity in the piranha server-class processor design,” in In 2nd Workshop
on Complexity-Effective Design held in conjunction with the 27th International
Symposium on Computer Architecture, 2001.

[5] Ben-Asher, Y. and Rotem, N., “Synthesis for variable pipelined function
units,” in System-on-Chip, 2008. SOC 2008. International Symposium on, pp. 1–
4, 2008.

[6] Bybell, A., “Gtkwave 3.3 wave analyzer user’s guide.” http://gtkwave.

sourceforge.net/gtkwave.pdf, 2013. [Online; accessed 1-Dec-2013].

[7] Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., and
Zhang, Z., “High-level synthesis for fpgas: From prototyping to deployment,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 30, no. 4, pp. 473–491, 2011.

[8] Esmaeilzadeh, H., Moghimi, A., Ebrahimi, E., Lucas, C., Navabi, Z.,
and Fakhraie, S. M., “Dcim++: a c++ library for object oriented hardware
design and distributed simulation,” in Circuits and Systems, 2006. ISCAS 2006.
Proceedings. 2006 IEEE International Symposium on, pp. 4 pp.–1286, 2006.

[9] Grelck, C., “Single assignment c (sac) high productivity meets high per-
formance: High productivity meets high performance,” in Proceedings of the
4th Summer School Conference on Central European Functional Programming
School, CEFP’11, (Berlin, Heidelberg), pp. 207–278, Springer-Verlag, 2012.

[10] Hybrid Memory Cube Consortium, “Hybrid memory cube spec-
ification 1.0.” http://hybridmemorycube.org/files/SiteDownloads/HMC_

Specification%201_0.pdf, 2013. [Online; accessed 1-Dec-2013].

35



[11] Kim, H., Lee, J., Lakshminarayana, N. B., Sim, J., Lim, J., and Pho,
T., “Macsim: A cpu-gpu heterogeneous simulation framework.”

[12] Liao, S., Tjiang, S., and Gupta, R., “An efficient implementation of reac-
tivity for modeling hardware in the scenic design environment,” in Proceedings
of the 34th Annual Design Automation Conference, DAC ’97, (New York, NY,
USA), pp. 70–75, ACM, 1997.

[13] Rodrigues, A. F., Hemmert, K. S., Barrett, B. W., Kersey, C., Old-
field, R., Weston, M., Risen, R., Cook, J., Rosenfeld, P., Cooper-
Balls, E., and Jacob, B., “The structural simulation toolkit,” SIGMETRICS
Perform. Eval. Rev., vol. 38, pp. 37–42, Mar. 2011.

[14] Terasic, “De3 user manual.” http://www.terasic.com.tw/cgi-bin/page/

archive.pl?Language=English&CategoryNo=39&No=260&PartNo=4. [Online;
accessed 1-Dec-2013].

[15] Tripp, J., Peterson, K., Ahrens, C., Poznanovic, J., and Gokhale,
M., “Trident: an fpga compiler framework for floating-point algorithms,” in
Field Programmable Logic and Applications, 2005. International Conference on,
pp. 317–322, 2005.

[16] Villarreal, J., Park, A., Najjar, W., and Halstead, R., “Designing
modular hardware accelerators in c with roccc 2.0,” in Field-Programmable Cus-
tom Computing Machines (FCCM), 2010 18th IEEE Annual International Sym-
posium on, pp. 127–134, 2010.

[17] Wakabayashi, K., “C-based behavioral synthesis and verification analysis on
industrial design examples,” in Proceedings of the 2004 Asia and South Pacific
Design Automation Conference, ASP-DAC ’04, (Piscataway, NJ, USA), pp. 344–
348, IEEE Press, 2004.

[18] Williams, S. and Baxter, M., “Icarus verilog: Open-source verilog more than
a year later,” Linux J., vol. 2002, pp. 3–, July 2002.

36


