
1. INTRODUCTION 
Salt cavities used for the underground storage of oil and 
natural gas undergo weekly to seasonal thermo-
mechanical load cycles. Compressed Air Energy Storage 
(CAES) facilities are subject to shorter load cycles, of 
the order of a day. Experimental data shows that the 
resulting fatigue of salt rock (i.e., decrease of Young's 
modulus and strength) decreases as the load frequency 
increases. Fatigue is an important dimensioning factor 
for CAES design. However, due to the numerous 
variables influencing salt damage under cyclic loading 
(e.g., stress amplitude, loading frequency), and due to 
the high number of cycles necessary to assess fatigue 
effects in the laboratory, experimental characterization 
of fatigue in salt rock remains a challenge.  

In the present paper, an attempt is made to analyze the 
origin of salt fatigue from the study of deformation 
micro-mechanisms, i.e. from the mechanisms driving the 
deformation of halite crystals in the polycrystalline 
material. Plastic and viscous deformation of salt crystals 
result from several fundamental mechanisms, e.g., 
dislocation glide, dislocation climb, polygonalization, 
inter-granular slip, dissolution-precipitation. Under 

stress and temperature typical of storage conditions, 
dislocations are the predominant mechanisms 
contributing to macroscopic salt rock deformation. 
Dislocation movements can only occur on specific 
crystallographic surfaces, and in a limited number of 
directions. Restricted movements inside a 
monocrystalline grain cause incompatibilities between 
non-elastic deformations of adjacent grains, which 
results into internal stresses within the polycrystal. In 
this paper, it is proposed to model the macroscopic 
viscous behavior of the polycrystalline medium with the 
self-consistent method.  

The upscaling approach is explained in Section 2. 
Following the approach adopted in [1, 2, 3] to model salt 
rock plastic behavior, a microscopic viscous sliding 
model is formulated at the crystal scale in Section 3. 
Section 4 presents a computational method to calculate 
internal stresses in the polycrystal during cyclic loading 
and to deduce the crack initiation and fatigue of the 
polycrystal. A monotonic uniaxial compression test is 
simulated to illustrate how the model can capture the 
triggering of fatigue. Results are presented in Section 5. 
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ABSTRACT: Underground cavities in salt rock formations used for Compressed Air Energy Storage (CAES) undergo cyclic 
loads and are subject to a fatigue phenomenon that induces a decrease of rock’s strength and stiffness. A micromechanical 
analysis of this phenomenon is necessary to understand its mechanisms and elaborate relevant constitutive models. The 
polycrystalline nature of rock salt has a crucial effect on crack propagation and rock damage and, hence, on fatigue behavior. This 
behavior was investigated herein on the basis of self consistent upscaling approaches for viscous heterogeneous materials. The 
internal stresses in the polycrystal were modeled based on experimental data available for halite single crystals, and a monotonic 
compression test was simulated, which allowed tracking the triggering of fatigue damage. Results show that tensile stresses are 
developed in the polycrystal under global compressive load, the amplitude of which depends on the macroscopic load rate or 
frequency. These tensile stresses can exceed in some conditions the tensile strength of grains or of grains interfaces and cause 
cracking and damage in the polycrystal.  
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2. MULTISCALE MODELING APPROACH 
2.1. The Self-Consistent Method 
In upscaling methods, the macroscopic behaviour of a 
heterogeneous material is deduced from the relations 
between the averages stress and strain values in the 
materials constituents. The strain and strain in a 
constituent, modeled as a grain in an aggregate, are 
determined by macroscopic load on the aggregate and 
the interaction between different grains. This interaction 
is usually simplified and represented by a so-called 
inclusion-matrix model": an inclusion representing the 
grain is embedded in an infinite homogeneous matrix 
that represents the aggregate behaviour at macroscopic 
scale. Since the matrix behaviour is a priori unknown, 
this upscaling method leads to an implicit system of 
equations. The unknown matrix model has to be 
determined iteratively, so as to relate average strains and 
stresses in the grains. This procedure is called the self-
consistent upscaling scheme. In this method the 
inclusion-matrix interaction model plays a central role. 
The balance of microscopic stresses at the boundaries 
between two constituents is ensured by correcting the 
macroscopic stress (resp. strain) field by a so-called 
eigenstress (resp. eigenstrain) field. REV properties 
(such as the REV stiffness matrix) are deduced from the 
knowledge of stress (resp. strain) concentration tensors, 
which depend on the geometry of the heterogeneity 
present in the REV [4, 5]. 
 

2.2. Inclusion Matrix Model 
Salt Rock is made of halite (NaCl) monocrystals (also 
called “grains”), which have all the same FCC (Face-
Centered Cubic) structure and atomic composition. 
Monocrystals are randomly oriented. In the proposed 
model, it is assumed that all possible grain orientations 
have the same probability of occurrence, i.e. 
monocrystal orientation ( ! ) follows a uniform 
probability density function ( !! ). Considering for 
instance 200 equally-spaced points on a sphere, each of 
which characterized by a solid angle !!:  

∀! = 1,2,… ,200, !!! !! = 1
200! (1) 

The Representative Elementary Volume (REV) is 
defined as the minimum volume containing the 200 
possible grain orientations considered in the model. The 
average of a function ! is defined as: 

! ! =!< ! ! >!= ! !! ! ! !,! !"!
!

 

= 1
200 !(!,!!)

!""

!!!
 

(2) 

The self-consistent method is employed to relate the 
microscopic stress developing in a monocrystal to the 
macroscopic stress applied in the far field (at the 

boundary of the REV): the grains surrounding the 
monocrystal under study are viewed as a homogeneous 
matrix, and the monocrystal is modeled as an inclusion 
in that matrix. Figure 1 illustrates the principle of the 
inclusion-matrix model followed in this study, and 
explains the notations adopted for the local (grain-scale) 
and global (REV-scale) coordinate systems.  

 
Fig. 1. Schematic representation of salt crystals. 

Both monocrystals and the matrix are assumed to be 
viscoplastic. Weng’s viscoelastic self-consistent model 
[6] is based on the Eshelby's inclusion model, and 
assumes that the matrix-inclusion interaction can be 
captured with a purely elastic matrix behaviour model 
(i.e. macroscopic viscoplasticity only stems from grain-
scale viscoplastic deformation, and not from 
grain/matrix incompatibilities). The local stress (in the 
grain inclusion) and far field stress (in the matrix) are 
coupled to viscous strain rates by the same relationship 
as in Kroner model (which holds for elastic-plastic 
materials): 

! = ! + 2!(1 − !)(!!" − !!") (3) 

Where ! is given by: 

! = 2 4 − 5!
15(1 − !) (4) 

In which ! is the Poisson's ratio of the homogenized 
REV (a priori unknown). It is worth noting this model 
has been criticized later by [7] who pointed out that, 
because Kroner model is not self-consistent for elastic-
plastic materials, Weng’s model is not really self-
consistent for viscoplastic materials either. Indeed Weng 
model does not take into account the viscous interaction 
between the inclusion and the matrix. However, it 
constitutes a very simple approximation of the real 
interaction model and is sufficient for the purposes of 
this paper, which focuses on macroscopic fatigue 
behavior induced by cyclic loading. 
 
  



3. GRAIN-SCALE CONSTITUTIVE MODEL  
3.1. Halite Crystalline Structure and Sliding 

Mechanisms 
Halite is a cluster of perfect Face-Centered Cubic 
crystals (FCC). If all constituents of the crystal were 
atoms, intra-granular dislocations would occur on planes 
separating the two densest grain fractions, i.e. on planes 
normal to the <111> direction of the grain coordinate 
system. However, halite crystals comprise two FCC 
ionic sub-networks (sodium Na+ and chloride Cl-) (Fig. 
2). 

 
Fig. 2. Face-Centered Cubic  (FCC) crystal structure of salt. 

Due to electronic interaction forces between ions, 
preferential sliding planes (i.e. planes along which 
sliding requires the minimum energy input) are the 
{101} planes, i.e. the six planes normal to directions: 

!! = !
!

0
1
1

         !! = !
!

1
0
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         !! = !
!

−1
−1
0

 

!! = !
!

0
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        !! = !
!

−1
1
0

 

(5) 

In which the sliding directions are respectively: 

!! = −!!   !! = −!!   !! = −!! 

!! = −!!   !! = −!!   !! = −!! 
(6) 

Sliding system !!⊗!!  (resp. !!⊗!!  and 
!!⊗!!) is normal to sliding system !!⊗!! (resp. 
!!⊗!! and !!⊗!!). Moreover: 

!!⊗!! = !!⊗!! + !!⊗!! (7) 
So there are only two independent sliding mechanisms 
for each grain. Note: sliding systems noted !! = !!⊗
!! are expressed in the coordinate systems attached to 
the grain. Grains can take different orientations in the 
REV. Considering 200 possible grain orientations, there 
are 6×200 = 1,200 possible sliding mechanisms in the 
REV, among which only 400 are independent.  
 
 
3.2. Grain-Scale Viscoplastic Model  
The sliding system of the grain (i.e. mono-crystal), 

expressed in global matrix coordinates, is noted: 

!!"! =
!!!! + !!!!

2  (8) 
In which ! and ! are respectively the vector normal to 
the sliding plane and the unit sliding vector. The 
viscoplastic deformation of the grain writes:  

!!"!" = !!!!"!
!

!!!
 (9) 

In which !!  is the viscoplastic (shear) deformation of 
grains subjected to the sliding mechanism in the grain. L 
is the total number of active sliding mechanisms. For 
halite mono-crystals, with only 2 independent sliding 
mechanisms). Noting !! = !:!! , we assume that the 
irreversible shear deformation obeys a power law: 

!! = !!
!!

!
 (10) 

In which ! and !! are two material constants, which can 
be obtained from [8], considering only 4 active slip 
systems at room temperature. 
 

4. REV-SCALE DAMAGE INITIATION  

4.1. Expression of Micro-stress in One Grain 
(Monocrystal)  

A method is proposed to compute micro-stresses in a 
REV subjected to far field cyclic axial loading. We note: 
! = ! ! !,  ! = ! − !" !

! ! = ! ! !,  !!" = !
! ! ! !  (11) 

In which: 

! =
0 0 0
0 0 0
0 0 −1

    ! =
1/3 0 0
0 1/3 0
0 0 −2/3

 (12) 

According to Eq. (9), the microscopic and macroscopic 
viscoplastic strains are purely deviatoric. Taking the 
deviatoric part of Eq. (3) thus yields: 

! = ! + 2!(1 − !)(!!" − !!") (13) 

Factorizing by operator [!]: 
! = ! ! ! − 2!(1 − !)!!" (14) 

Where 
! ! = ! ! + 3! 1 − ! ! !  (15) 

In Eq. (14) above, !!"  depends on sliding systems 
expressed in global coordinates. The !!!  sliding 
mechanisms of the grain in the !!!  global coordinate 
system (!!,!) are obtained from the sliding mechanisms 
expressed in the local coordinate system of the grain 
(!!): 

!!,! = !! !! !! ! (16) 

Where ! = !! !! [!!]. Noting !! , !!  and !!  are 
three spherical coordinates of grain in the 3D space 
(dropping the index for clarity): 

!! =
!"#$ !"#$ 0
−!"#$ !"#$ 0
0 0 1

    (17) 



!! =
!"#$ 0 !"#$
0 1 0

−!"#$ 0 !"#$
 

!! =
!"#$ −!"#$ 0
!"#$ !"#$ 0
0 0 1

 

 
 

4.2. Micro-macro Viscoplastic Law 
Taking the mean of the expression in Eq. (14): 

! = ! ! ! − 2! 1 − ! < !!" > (18) 

Substituting macroscopic stress and microscopic 
viscoplastic strain by their values: 

! ! ! = ! ! ! − 2! 1 − ! < ! ! !:!!
!!

!
!!

!

!!!
> (19) 

Dividing both sides by !  and make some 
rearrangements, Eq. (19) can be simplified into: 

! ! = ! ! − !! ! 3! 1 − !
!! ! < !:!! !!!

!

!!!
>

!

 (20) 

The expression of ! as a function of time is obtained by 
solving the following non-linear differential equation: 

! ! + !!! ! = ! !  (21) 

Combining with Eq. (15), the following equation that 
relates ! !  and ! !  through A, is obtained as: 

! ! = !
3! 1 − ! !!(!) (22) 

The exact expression of ! depends on an integral of 
trigonometric functions on all the possible values of the 
solid angle in a 3D space. In the expression for A (Eq. 
(20)), this integral is discretized in the form of a sum, for 
200 uniformly distributed crystal orientations. The 
macroscopic viscoplastic law can easily be deduced from 
Eq. (22): 

!!" = 3
2
< !:!! !!!!

!!! >
!! ! !! ! ! (23) 

 

4.3. Damage Initiation 
Damage at the REV scale triggers when one mono-
crystal fails, i.e. when microstress in a grain reaches the 
compression strength or the tension strength of the mono 
crystal. Fracture at the grain scale occurs first in mono-
crystals subject to the highest microstress. Macroscopic 
damage initiates if microstress exceeds grain 
compression strength or tension strength for at least one 
mono-crystal orientation. The following developments 
aim to express microstress as a function of the 
orientation of the mono-crystal, in order to detect the 
triggering of damage at the REV scale. From Equations 

3 and 11: 

! = ! ! ! + 2!(1 − !)(32 ! ! ! − !!") (24) 

As a result, for any grain, microscopic stress is related to 
the directions of the sliding mechanisms according to the 
following equation: 

! = ! ! ! + !!! ! ! − 2!(1 − !) !!!!
!

!!!
 (25) 

In which !! = !!,! (for the current grain) is related to the 
orientation of the mono crystal according to Eq. (16). 
Assuming that the test is stress-controlled (i.e., ! !  is 
known at any time), it is possible to determine the grain 
orientations (characterized by the three angles !!, !!, 
!!) that maximize !. 

 

5. NUMERICAL ANALYSIS 

5.1. Problem Statement 
A numerical program was developed in MATLAB for 
the calculation of the polycrystalline behavior at the 
REV scale based on the model framework presented 
above. A stress-controlled uniaxial compression test was 
simulated. The average quantities were calculated on 
200 grains of different directions. The imposed 
macroscopic stress followed a sinusoidal function: 

! ! = !!!"#!(!"),    ! ! = !!!"#$(!") (26) 

Only one quarter of the period was simulated, which 
allowed studying the triggering of fatigue damage under 
monotonic loading while considering the frequency 
dependency. Three cases with the same maximum 
loading but three loading frequencies ( 1×10!!  Hz, 
2×10!!  Hz, and 3×10!!  Hz) were analyzed. Input 
parameters for the simulation are summarized in Table 1.  

Table 1. Model parameters used for the simulation of stress-
controlled uniaxial compression.   

! (MPa) ! (-) ! (-) 
25000 0.25 4 
!! (MPa) !! (MPa) ! (-) 

45 55 15 
 
 
5.2. Evolution of Macro-stress and Macro-strain 
Time evolutions of macroscopic loading are different in 
the three cases, as illustrated in Figure 3. For higher 
frequency, the peaking loading is reached within a 
shorter time (Fig. 3a). Therefore, at the same moment, 
larger macro-stress is obtained if the frequency is higher.  

The macroscopic stress-strain curve follows the expected 
trends (Fig. 3b). Since this is a viscoplastic model, all 
slip mechanisms are active. There is no slip before the 
stress reaches certain level. The stiffness increases with 



frequency because the viscous behavior has less time to 
be produced at higher frequency.  

The amplitude of macroscopic strain obtained with 
loading at higher frequency is smaller (Fig. 3c). This is 
also a consequence of less viscous behavior and less slip 
under higher frequency. However, the strain level that 
can be reached at the maximum loading is smaller than 
that observed in experiments performed on salt rock [8]. 
Indeed the model applies for perfect polycrystals with no 
cracks or impurities, which can increase strains in real 
rocks.  

 

 

 
Fig. 3. Stress and strain evolution at macroscopic level. 

5.3. Distribution of Micro-stress  
For the case of a uniaxial compression loading, due to 
the axial symmetry condition around the compression 
axis !, the local stress distribution in the polycrystal can 
be represented graphically.  

The vector !!!  can be used to represent a principal 
stress, where the unit vector ! represents the principal 
direction and !! is the magnitude of the principal stress. 
A vector in the radial plane is used to indicate the 
principal stress of the grain (Fig. 4). Due to the 
axisymmetric condition, principal direction can be 
plotted in the first quadrant (r>0, z>0). If the principal 
stress is positive (tensile stress), the point will be placed 
in the same quadrant, and if negative (compressive 
stress), the point will be located in the opposite quadrant. 
Therefore, given the vector in the stress map, the 
orientation, the amplitude, and the sign of the principal 
stress can be obtained.  

 
Fig. 4. Representation of local principal stress [1]. 

Figure 5a represents the distribution diagram for the 
major and minor stresses of each grain. Each point of the 
upper group (triangular mark) represents the major 
principal stress of one of the 200 grains constituting the 
polycrystal. For most grains, the major stress is a tensile 
stress radially distributed in the 1st quadrant with a small 
angle with the r-axis. This implies that cracks are 
parallel to the compression axis, which is usually 
observed in laboratory tests. For some grains, the 
amplitude of the major principal micro-stress exceeds 
the tensile strength of salt (about 2 MPa).  

The microscopic stress between grains decreases with 
increased frequency. This is a result of incompatibility 
(heterogeneity) of the viscous strain of grains, which 
decreases with frequency.  

Comparing the results in the local stress distribution plot 
for three different loading frequencies, it can be 
observed that for lower frequency (longer period), the 
tensile micro-stress magnitude increases, which leads to 
a higher probability of grain failure. In Figure 5b, when 
the frequency is increased, the tensile stress drops to 
below 2 MPa, which suggests that the failure of the 
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polycrystalline is most likely to occur in the lower 
frequency case.  

Research work has been undertaken needed to 
understand the variations of compressive microscopic 
stress with frequency in stress-controlled tests, and to 
minimize the numerical errors that can occur when very 
low strains need to be computed. 

 

 
Fig. 5. Orientation and intensity of micro-stress in the grains. 

 

6. CONCLUSION 
The micromechanical modeling approach adopted herein 
allows predicting the triggering of fatigue damage due to 
microstress accumulation in polycrystalline rock salt 
under cyclic loading. The model captures the 
dependency of the damage threshold to the load 
frequency and amplitude.  

Fatigue is simulated at the REV scale of polycrystalline 
salt subjected to stress-controlled uniaxial compression 
loading. Macro-stress increases with the loading 
frequency whereas maximum macro-strain decreases 
with the frequency.  

Tensile micro-stress developed in the polycrystal is 
perpendicular to the macro-compression direction. 
Tensile micro-stress amplitude increases with larger 
macro-stress and lower loading frequency. Numerical 
results verify that strength limits are less likely to be 
exceeded under high load frequencies, which is in 
agreement with laboratory observation. 

The proposed micro-macro approach opens an 
interesting way to study the rock salt fatigue, which is an 
important issue for the design and conception of 
underground storage cavities in rock salt.  
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