

FERTBIO 2012

A responsabilidade socioambiental da pesquisa agrícola 17 a 21 de Setembro - Centro de Convenções - Maceió/Alagoas

Formas de fósforo no tecido de plantas anuais de inverno cultivadas em Latossolo Vermelho sob diferentes sistemas de manejo de solo

<u>Carlos Alberto Casali</u>⁽¹⁾; João Kaminski⁽²⁾; Danilo Rheinheimer dos Santos⁽²⁾; Ademir Calegari⁽³⁾; Rogério Piccin⁽⁴⁾; Fábio Henrique Gebert⁽⁴⁾; Roque Junior S. Bellinaso⁽⁴⁾; Luiz Felipe R. Rossato⁽⁵⁾

(1) Eng. Agr., Me Ciência do Solo, Professor do Instituto Federal Farroupilha – Júlio de Castilhos, CEP: 98130-000, Júlio de Castilhos, RS, betocasali@jc.iffarroupilha.edu.br; (2) Eng. Agr., Dr. Ciência do Solo, Professor do PPGCS, UFSM. Santa Maria, RS, João.kaminski@gmail.com, danilonesaf@gmail.com; (3) Eng. Agr., Dr. Pesquisador do Instituto Agronômico do Paraná, Londrina, PR, calegari@iapar.br; (4) Bolsista de iniciação científica PIBIC/CNPq, acadêmico de Agronomia, LQFS/Universidade Federal de Santa Maria, Av. Roraima, nº1000, Bairro Camobi, 97105-900, rogeriopiccin@hotmail.com; fhgebert@hotmail.com; roquejunior bellinaso@hotmail.com; elcigubiani@hotmail.com. (5) Acadêmico do Curso de Técnico em Agropecuária do IFFarroupilha, Campus Júlio de Castilhos, luizfelipegunner1994@hotmail.com.

RESUMO - As plantas de cobertura propiciam a proteção e a reciclagem de nutrientes do solo, como o fósforo (P). Contudo, o teor e as formas de acúmulo de P podem variar entre espécies e sistemas de manejo de solo. O objetivo do trabalho foi avaliar as formas de acúmulo de P no tecido vegetal de plantas anuais de inverno, manejadas sob Sistema Plantio Direto (SPD) e Cultivo Convencional (SCC). O experimento foi instalado em 1986 no Instituto Agronômico do Paraná, em Pato Branco-PR, sobre um Latossolo aluminoférrico. Ele se baseia no uso de seis plantas anuais de inverno (trigo, aveia branca, centeio, ervilhaca, nabo forrageiro e tremoço azul) que foram manejadas sob SPD e SCC. Em maio de 2011 as espécies foram semeadas, sem o uso de fertilizantes, e em setembro de 2011efetuouse a coleta da parte aérea das plantas. No Laboratório de Química e Fertilidade do Solo da UFSM realizou-se o fracionamento de P do tecido vegetal, além da determinação dos teores de carbono total, nitrogênio total e P disponível do solo. A partir dos dados obtidos, conclui-se que as formas de acúmulo de P no tecido das plantas anuais de inverno variam em função da espécie e da disponibilidade de P no ambiente; para todas as plantas anuais de inverno o P inorgânico solúvel é a principal forma de acúmulo de P no tecido vegetal, principalmente quando são cultivadas em solos com disponibilidade de P, como sob SPD; Em ambientes com baixa disponibilidade de P, plantas anuais de inverno tendem a diminuir as formas solúveis de P e, ao mesmo tempo, acumular formas orgânicas estáveis, principalmente na forma de Prna e Plip.

Palavras-chave: Plantas de cobertura, Fracionamento de P, rotação de culturas.

INTRODUÇÃO – Em sistemas conservacionistas de cultivo, como o SPD, tem se buscado plantas de cobertura que propiciam a cobertura do solo por um maior período de tempo, assim como a melhoria de atributos físicos e

químicos do mesmo, a fim de aumentar a sustentabilidade dos sistemas agrícolas (Caires et al., 2006).

As plantas apresentam habilidades diferenciadas em aproveitar o P do solo, representada, principalmente, por alterações em nível de rizosfera. Destaca-se o aumento na relação raiz/parte aérea, aumento na superfície radicular, aumento da exsudação radicular de fosfatases e a alteração do grau de associação micorrízica (Lajtha e Harrison, 1995). Contudo, tais habilidades irão depender da espécie vegetal, das características do solo e do ambiente em que a planta está inserida.

Assim, as plantas conseguirão absorver diferentes quantidades de P, que pode resultar em resíduos vegetais com maior concentração do nutriente e, se associado a compostos orgânicos de alta labilidade, pode favorecer a atividade microbiana do solo e, consequentemente, a mineralização das suas formas orgânicas, como retratado por Giacomini et al. (2003) para espécies leguminosas. Nziguheba et al. (1998) verificaram que a adição de resíduos de planta com maior concentração de P reduziu a adsorção de P pelo solo, e aumentou a sua quantidade total, com efeitos até quatro meses após a sua aplicação.

Além da quantidade de P absorvida, a forma como o nutriente é armazenado no tecido de plantas de cobertura também pode interferir na sua velocidade de liberação dos resíduos, como observado por Casali et al. (2011). O conhecimento das frações fosfatadas em plantas de adubo verde permite prever a quantidade de P prontamente liberado no solo Marsola (2008). Esse processo pode ser imediato ou em longo prazo, dependendo da quantidade de P orgânico e inorgânico presente no material vegetal.

Adicionalmente, diferenças na incorporação de P nas frações bioquímicas do tecido das plantas podem fornecer critérios de seleção de plantas mais eficientes na utilização de P, mais do que medições baseadas apenas na biomassa e no conteúdo de P total (Chisholm e Blair, 1988). O objetivo do trabalho foi avaliar as formas de acúmulo de P no tecido vegetal de plantas anuais de

inverno, manejadas sob Sistema Plantio Direto (SPD) e Sistema de Cultivo Convencional (SCC).

MATERIAL E MÉTODOS - O experimento foi instalado em 1986, no Instituto Agronômico do Paraná (IAPAR), em Pato Branco-PR, sob um clima subtropical úmido (Cfb-Köeppen), sem estação seca definida. O solo é um Latossolo Vermelho aluminoférrico (EMBRAPA, 2006). Antes da instalação, realizou-se o preparo do solo e a aplicação de calcário para elevar o pH até 6,0.

Os tratamentos consistem em seis diferentes culturas anuais de inverno: tremoço azul (Lupinus angustifolius L.), ervilhaca comum (Vicia sativa L.), aveia preta (Avena strigosa S.), nabo forrageiro, centeio (Secale cereale L.) e trigo (Triticum aestivum L.). As plantas foram manejadas sob SPD e SCC, em um delineamento experimental de blocos ao acaso, com parcelas subdivididas e três repetições, totalizando 36 parcelas. As culturas de verão soja e milho foram semeadas alternadamente e sempre receberam adubação mineral, totalizando durante os 25 anos 1300 Kg P₂O₅ ha⁻¹, 745 Kg K₂O ha⁻¹ e 425 Kg N ha⁻¹ ¹. O P e o K eram aplicados no plantio e o N, apenas no milho, era 1/3 da dose no plantio e 2/3 em cobertura. No transcorrer desses anos, em todas as parcelas, aplicou-se superficialmente calcário dolomítico em cinco momentos, totalizando 9,5 Mg ha⁻¹.

Em maio de 2011, realizou-se a semeadura das plantas anuais de inverno, com espaçamento entre linhas de 17 cm e sem adição de fertilizantes. No decorrer do seu desenvolvimento, as plantas não receberam nenhum tipo de controle de doenças, insetos e plantas daninhas. Em setembro de 2011, quando o tremoço, o centeio e o nabo forrageiro estavam no final do estádio de florescimento, a aveia no estádio de emborrachamento, a ervilhaca no inicio do estádio de florescimento e o trigo no estádio de enchimento dos grãos, foi realizada a coleta do material verde da parte aérea das plantas, por meio de um quadro de 0,64 m², em dois pontos de cada parcela.

As amostras foram secas em estufa a 65°C até peso constante e quantificada a produção de material seco da parte aérea (MSPA). No laboratório de Química e da UFSM, realizou-se o Fertilidade do Solo fracionamento do P do MSPA, conforme método de Miyachi e Tamiya (1961), adaptado de Schimidt e Thannhauser (1945) que desenvolveram o fracionamento de P em tecido animal. Adicionalmente, utilizaram-se informações relevantes do fracionamento utilizado por Hogue et al. (1970), com adaptações feitas por Pereira et al. (2008). Além disso, foram realizados acréscimos na metodologia, a fim de tornar o método exequível com as estruturas laboratoriais disponíveis. As frações de P obtidas foram: P solúvel total em ácido (Psolt), P solúvel inorgânico em ácido (Psoli), P solúvel orgânico em ácido (Psolo) (por diferença entre Psolt e Psoli), P lipídico (Plip), P associado ao RNA (Prna) e P residual (Pres) e a soma das frações (Psoma).

Em todo o fracionamento usou-se centrífuga com controle de temperatura (-4°C) e 5.000 g. Pesou-se 0,2 g de MSPA e adicionou-se 10 ml HClO₄ 0,2 mol L⁻¹, sendo agitada manualmente e centrifugada por 5 e 10 minutos, respectivamente, e o sobrenadante filtrado em filtro quantitativo. Em seguida, o tecido vegetal recebeu 5 ml

de $HClO_4$ 0,2 mol L^{-1} , repetindo-se o processo de centrifugação, e os sobrenadantes foram unidos. Determinou-se o Psolt por meio de digestão de 2 ml do sobrenadante com 2 ml H_2SO_4 e 1 H_2O_2 em bloco digestor. Da análise direta do sobrenadante obteve-se o Psoli. Por diferença entre Psolt e Psoli, obteve-se a fração de Psolo.

Após, o tecido vegetal recebeu 6 ml de etanol-éterclorofórmio (2:2:1), ficando em banho-maria por 1 hora a 50°C, sendo centrifugado por 10 minutos e o sobrenadante reservado. Em seguida, adicionou-se 4 ml de éter frio (4°C), repetindo a centrifugação e unindo os sobrenadantes. Depois de evaporar o éter dos sobrenadantes e repor o volume com água destilada, 2 ml foi digerido com 0,5 ml H₂SO₄ e 0,2 ml de H₂O₂ em autoclave (1 atm por 2 horas), obtendo-se a fração Plip.

Em seguida, o tecido vegetal recebeu 6 ml de KOH 0,5 mol L^{-1} , repousando por 17 horas a 37°C. Após, adicionou-se 1 ml de HCl 3,0 mol L^{-1} e 1 ml de HClO₄ 70%, sendo a mistura centrifugada por 10 minutos. No tecido vegetal foi adicionado 5 ml de HClO₄ 0,5 mol L^{-1} , sendo centrifugado. Os sobrenadantes foram unidos e 2 ml foram digeridos conforme procedimento do Psolt, obtendo-se o Prna.

O tecido vegetal que sobrou no tubo foi digerido conforme metodologia do Psolt, obtendo-se o Pres, que engloba as frações de P associado ao DNA e à fosfoproteínas. O P total do MSPA foi determinado conforme Tedesco et al. (1995). A quantificação de P total e das etapas do fracionamento foi realizada conforme Murphy e Riley (1962).

Determinaram-se os teores de carbono total (Ctotal) e nitrogênio total (Ntotal) do solo por via seca com um auto-analisador elementar (Flash EA 1112), e o teor de P disponível por meio de resina de troca aniônica (RTA) (placas AR 103 QDP 434).

Os dados obtidos estudo foram normalizados, por meio da aplicação de Log (n-0.5), antes de realizar a análise da variância e o teste de médias. Após, por meio do programa SISVAR, realizou-se a análise da variância e, quando os efeitos dos tratamentos foram significativos a 5% de probabilidade de erro, compararam-se as médias por meio do teste de SCOTT-KNOTT.

RESULTADOS E DISCUSSÃO – Em ambos os sistemas de manejo de solo a ervilhaca comum apresentou a maior concentração de P no tecido, enquanto o trigo e o centeio apresentam os menores valores (Tabela 2). Giacomini et al. (2003) verificaram que plantas leguminosas apresentaram uma maior capacidade de acumular P no tecido vegetal, comparativamente à poáceas. Contudo, no presente estudo isso se confirmou apenas com as plantas sob SPD, que é um ambiente com maior disponibilidade de P (Tabela 1).

Os valores de Psoma foram, em média, 14% e 21% maiores que o Ptotal para as plantas sob SPD e SCC, respectivamente (Tabela 2). Contudo, para todas as plantas o comportamento das frações de Psoma e Ptotal foi semelhante, o que indica que o método de fracionamento utilizado, mesmo com tendência de superestimar os valores de Ptotal, é fiel às variações dos teores de P entre as plantas e os sistemas de manejo.

A concentração de Psoli do tecido das plantas anuais de inverno variou de 341 a 3341 mg kg-1 (Tabela 2). Em ambos os sistemas de manejo de solo a ervilhaca comum e o trigo acumularam a maior e a menor quantidade de Psoli, respectivamente. O Psoli é constituído, principalmente, por ortofosfato presente no vacúolo e no citoplasma das células (Marschner, 1995). Essa fração inorgânica de P é prontamente disponibilizada no solo para as plantas que serão cultivadas em sequência, devido à sua alta solubilidade na solução do solo, enquanto a fração orgânica necessita ser mineralizada para posterior absorção (Tate, 1984). Giacomini et al. (2003) verificaram que a ervilhaca comum apresentou o maior teor de P solúvel em água, o que acarretou em elevada taxa de saída do P dos resíduos da cultura.

Com exceção da aveia, todas as outras plantas apresentaram maior concentração de Psoli quando manejadas sob SPD, comparativamente ao SCC (Tabela 2), isso se deve a maior disponibilidade de P para as plantas no solo sob SPD (tabela 1), pois conforme Hoghe et al. (1970), a variação do conteúdo de P inorgânico (Pi) no tecido vegetal pode expressar a situação nutricional da planta, já que seu aumento se daria apenas quando os requerimentos de crescimento tenham sido atingidos.

O Plip do tecido das plantas oscilou entre 97 a 388 mg kg⁻¹, enquanto o Prna variou de 250 a 820 mg kg⁻¹ (Tabela 2), não sendo observada diferenças nos teores de Plip e de Prna entre as plantas cultivadas sob SPD em relação às sob SCC. Isso indica que são formas de P com menor sensibilidade às alterações na disponibilidade de P do solo (tabela 1). Chapin et al. (1982) verificaram que em duas espécies de poáceas as formas orgânicas de P do tecido, dentre elas o Plip, não variaram em função do aumento no teor de P disponível do solo, sugerindo que essas formas de P mais recalcitrantes não seriam bons indicadores do status de P da planta. Independente do sistema de manejo de solo, a ervilhaca comum e o trigo acumularam o maior e o menor teor de Plip e Prna, respectivamente (Tabela 2).

O Pres variou de 27 a 145 mg kg⁻¹ (Tabela 2). Em ambos os sistemas de manejo de solo, a ervilhaca comum e o trigo apresentaram o maior e o menor teor de Pres, respectivamente. Corroborando com os teores de Plip e Prna, os teores de Pres também não variaram entre SCC e SPD para três plantas (aveia, ervilhaca e tremoço) (Tabela 2). Nessa fração de P são encontradas fosfoproteínas e P DNA, consideradas formas de P altamente recalcitrantes (Miyachi & Tamiya, 1961).

De uma forma geral, os teores de Plip, Prna e Pres não variaram entre as plantas cultivadas sob SCC e SPD, indicando que são formas de P menos sensíveis às variações na disponibilidade de P no ambiente. Miyachi & Tamiya (1961) verificaram que durante a incubação de algas em um meio sem P, polifosfatos foram transferidos para outras substâncias, como DNA/RNA fosfoproteínas, lipídios e ATP. Da mesma forma, Furtini Neto et al. (1998) avaliando as formas de P em mudas de eucalipto, verificaram que a participação relativa do P orgânico em relação ao Psolt aumenta com o período de omissão de P às plantas, aliado à redução da participação relativa de Psoli, indicando que essas espécies mobilizam sua reserva de Psoli para manter seu crescimento.

Nesse sentido, em função da disponibilidade de P ser menor no solo sob SCC (tabela 1), as plantas cultivadas nesse ambiente apresentaram uma transferência de P de formas mais lábeis para formas mais recalcitrantes, diminuindo os teores solúveis de P, mas sem diminuir os teores de formas de P estáveis.

CONCLUSÕES – As formas de acúmulo de P no tecido das plantas anuais de inverno variam em função da espécie e da disponibilidade de P no ambiente.

Para todas as plantas anuais de inverno o P inorgânico solúvel é a principal forma de acúmulo de P no tecido vegetal, principalmente quando são cultivadas em solos com maior disponibilidade de P, como o sob SPD.

Em ambientes com baixa disponibilidade de P, plantas anuais de inverno tendem a diminuir as formas solúveis de P e, ao mesmo tempo, acumular formas orgânicas estáveis, principalmente na forma de Prna e Plip.

AGRADECIMENTOS – Ao IAPAR, na pessoa do pesquisador Ademir Calegari e José Nilton Sanguanini, pela disponibilização da área experimental e apoio na execução do trabalho, e ao CNPq pela concessão da bolsa de Iniciação Científica.

REFERÊNCIAS

CAIRES, E.F.; GARBUIO, F.J.; ALLEONI, F. & CAMBRI, M.A. Calagem superficial e cobertura de aveia-preta antecedendo os cultivos de milho e soja em sistema de plantio direto. **R. Bras. Ci. Solo**, 30:87-98, 2006.

CASALI, C.A.; KAMINSKI, J.; ARBUGERI, F.E.; PICCIN, R.; DONEDA, A. Mineralização das formas de fósforo do tecido de plantas de cobertura. **Informações agronômicas**, 135:21-24. 2011.

CHAPIN, F.S.; FOLLETT, J.M.; O'CONNOR, K.F. Growth, Phosphate Absorption, and Phosphorus Chemical Fractions in Two *Chionochloa* Species. **Journal of Ecology,** 70:305-321, 1982.

CHISHOLM, R.H. & BLAIR, G.J. Phosphorus efficiency in pasture species. II. Differences in the utilization of P between major chemical fractions. **Aust. J. Agric. Res.**, 39:817-826, 1988.

EMBRAPA. Centro Nacional de Pesquisa em Solos. **Sistema Brasileiro de Classificação de Solos** (SiBCS). 2.ed. 2006. 306p.

FURTINI NETO, A. E.; BARROS, N. F.; NOVAIS, R. F.; OLIVEIRA, M. F. G. Frações fosfatadas em mudas de *Eucalyptus*. **R. Bras.Ci. Solo.** 22:267-274, 1998.

GIACOMINI, S.G.; AITA, C.; HÜBNER, A.P.; LUNKES, A.; GUIDINI, E.; AMARAL, E.B. Liberação de fósforo e potássio durante a decomposição de resíduos culturais em plantio direto. **Pesq. agropec. Bras.**, 38:1097-1104, 2003.

HOGUE, E.; WILCOX, G.E. & CANTLIFFE, D.J. Effect of soil phosphorus levels on phosphate fractions in tomato leaves. **J. Am. Soc. Hort. Sci.**, 95:174-176, 1970.

LAJTHA, K.; HARRISON, A. F. Strategies of phosphorus acquisition and conservation by plants species and communities. In: TIESSEN, H. eds. **Phosphorus in the global environment**:

transfers, cycles and management. Chichester: J. Wiley, 1995. p.139-146.

MARSCHNER, H. **Mineral nutrition of higher plants**. New York, Academic Press, 1995. 889p.

MARSOLA, T. Mineralização de fósforo do adubo verde e sua absorção por plantas de arroz. 2008. 112 f. **Tese (Doutorado)** – Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 2008.

MIYACHI, S.; TAMIYA, T. Distribution and turnover of phosphate compounds in growing chlorella cells. **Plant & Cell Physiol**, 2:405-414, 1961.

MURPHY, J.; RILEY, J.P. A modified single solution method for the determination of phosphate in natural waters. **Anal. chim. Acta.**, 27:31-36, 1962.

NZIGUHEBA, G.; PALM, C.A.; BURESH, R.J. & SMITHSON, P.C. Soil phosphorus fractions and adsorption as

affected by organic and inorganic sources. **Plant Soil**, 198:159-168, 1998.

PEREIRA, J. M.; CAMBRAIA, J.; FONSECA JÚNIOR, É. M.; RIBEIRO, C. Efeito do alumínio sobre a absorção, o acúmulo e o fracionamento do fósforo em sorgo. **Bragantia: revista de ciencias agronómicas**, 67:961-967, 2008.

SCHMIDT, G.; THANNHAUSER, S. J. A method for the determination of desoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues. **J. Biol. Chem.**, 161, 83-89. 1945.

TATE, K. R. The biological transformation of P in soil. **Plant and Soil,** 76:245-256, 1984.

TEDESCO, M.J.; GIANELLO, C.; BISSANI, C.A.;BOHNEN, H. & VOLKWEISS, S.J. **Análises de solo, plantas e outros materiais,** 2.ed. Porto Alegre, Universidade Federal do Rio Grande do Sul, 1995. 174p. (Boletim Técnico, 5).

Tabela 1 – Teor de P resina, N total e C total de um Latossolo Vermelho cultivado com diferentes plantas anuais de inverno e manejado sob sistema plantio direto e sistema de cultivo convencional. Pato Branco-PR, setembro de 2011.

Parâmetro	Sist. de manejo	Planta anual de inverno													Mata	
		Aveia		Centeio		Ervilhaca		Nabo		Tremoço		Trigo		Pousio		- Iviata
P resina	SCC	7.1	nsB	12.9	B	17.4	B	10.8	B	12.3	B	11.1	B	7.6	B	16.0
(mg kg ⁻¹)	SPD	42.5	A	38.1	A	37.7	A	44.0	A	38.6	A	38.4	A	48.1	A	
N total	SCC	0.2	nsB	0.2	B	0.7										
(%)	SPD	0.4	A	0.3	A	0.3	A	0.3	A	0.4	A	0.3	A	0.3	A	
C total	SCC	2.7	bB	2.6	bB	2.8	bB	2.7	bB	2.7	bB	3.1	aB	2.5	bB	7.7
(%)	SPD	4.5	aA	4.5	aA	3.8	bA	4.2	aA	4.2	aA	4.6	aA	3.7	bA	
C:N	SCC SPD	13.4 12.3	A B	13.4 11.8	A B	12.9 11.8	A B	13.2 12.2	A B	13.3 11.8	A B	14.1 12.5	A B	13.7 12.6	A B	11.1

¹Médias seguidas pela mesma letra, minúsculas na linha e maiúsculas na coluna, não diferem estatisticamente entre si pelo teste de Scott-Knott à 5% de probabilidade de erro. ^{ns}Não significativo a 5% de probabilidade de erro.

Tabela 2 – Concentração das diferentes formas de P no tecido da parte aérea das plantas anuais de inverno, cultivadas em Latossolo Vermelho sob SCC e SPD. Pato Branco-PR, setembro de 2011.

Forma P no	Sistema de	Cultura anual de inverno												
tecido	manejo	Aveia		Centeio		Ervilhaca		Nabo		Trem	oço	Trigo		
		mg kg ⁻¹												
Solúvel Inorg.	SCC	1945	bA	879	cB	2606	aВ	1148	cB	976	cB	341	dB	
(Psoli)	SPD	2209	bA	1463	cA	3344	aA	2146	bA	1763	cA	1095	dA	
Solúvel Total	SCC	2184	bA	1034	dB	2826	aВ	1404	cВ	1083	dB	1061	dB	
(Psolt)	SPD	2425	bA	1619	dA	3799	aA	2532	bA	2064	cA	1427	dA	
Lipídio	SCC	388	aA	154	cA	339	aA	193	bA	203	bA	113	dA	
(Plip)	SPD	262	aA	125	cA	301	aA	211	bA	152	bA	97	dA	
RNA	SCC	509	bA	255	cA	741	aA	299	cA	572	bA	321	cA	
(Prna)	SPD	479	bA	275	dA	820	aA	390	cA	494	bA	250	dA	
Resíduo (Pres)	SCC	84	bA	27	dB	124	aA	50	cВ	74	bA	25	dB	
Kesiduo (1 les)	SPD	104	bA	49	dA	145	aA	85	cA	82	cA	45	dA	
Soma das frações	SCC	3164	bA	1471	dB	4029	aВ	1946	cВ	1932	cВ	1520	dA	
(Psoma)	SPD	3270	bA	2069	cA	5064	aA	3218	bA	2792	bA	1818	cA	
Total	SCC	2491	bA	1401	dB	3149	aВ	1591	cВ	1648	cB	1294	dB	
(Ptotal)	SPD	2594	bA	1846	cA	4394	aA	2709	bA	2378	bA	1616	cA	

¹Médias seguidas pela mesma letra, minúsculas na linha e maiúsculas na coluna, não diferem estatisticamente entre si pelo teste de Scott-Knott à 5% de probabilidade de erro.