
# Growth and carcass quality of grazing Holstein bulls and Limousine x Holstein bulls and heifers slaughtered at 17 months of age



M. Vestergaard<sup>1</sup>, C. Çakmakçı<sup>1</sup>, T. Kristensen<sup>1</sup>, K.F. Jørgensen<sup>2</sup> & M. Kargo<sup>1,2</sup>



<sup>1</sup> Aarhus University, Foulum, Tjele, Denmark, <sup>2</sup> Knowledge Centre Agriculture, Cattle, Aarhus N, Denmark

## Objective

To investigate if use of crossbreeding with beef breeds in organic dairy herds can improve the production efficiency in organic beef production

We examined the performance of spring-born crossbred Limousine x Holstein bulls (CB) and heifers (CH) compared with Holstein bulls (HB) when utilizing two grazing seasons and a fixed slaughter age (17 months)

### Background

The supply of organic beef from young animals is very low

### Conclusions

- Across sexes, crossbreeding did not improve growth rate compared to HOL bulls
- Crossbreeding markedly improved conformation
- Heifers produced carcasses of acceptable fatness
- Fatness and lean/fat colour of pasture-fed bulls were not acceptable

Table 2. Body weight (BW) and daily gain (ADG) of purebred Holstein bulls (HB), LIM x HOL crossbred bulls (CB), and LIM x HOL crossbred heifers (CH) in various growth phases

- Dairy breed bulls calves from organic herds are currently sold to conventional fattening by rosé veal calf and young bull producers
- An efficient organic beef production will require high-yielding pastures cheap housing and winter feeding, robust animals, and utilization of the genetic growth potential
- Use of sexed semen (X) for the superior dairy cows will give room for use of beef breed semen to the less superior cows in the dairy herd
- An organic beef production will most likely include both bull and heifer calves
- Intact bulls will have better growth potential but most likely steers will be preferred by the farmers due to handling ease etc.

# Table 1. Feeding value of TMRs (A, B and C) and of clover-grass swards (1st and 2nd summer)

|                         | TMR A                                  | Sward,<br>1 <sup>st</sup> yr | TMR B                                  | TMR C                                | Sward<br>2 <sup>nd</sup> yr  |
|-------------------------|----------------------------------------|------------------------------|----------------------------------------|--------------------------------------|------------------------------|
| DM, %                   | 55                                     | 18                           | 66                                     | 55                                   | 22                           |
| Ingredients /sward      | Haylage<br>(74%),<br>barley,<br>canola | Ryegrass,<br>white<br>clover | Haylage<br>(67%),<br>barley,<br>canola | Grass<br>haylage<br>(90%),<br>canola | Ryegrass,<br>white<br>clover |
| NE, MJ/kg DM            | 6.4                                    | 6.1                          | 6.0-6.2                                | 6.1                                  | 6.6                          |
| Crude protein, g/kg DM  | 153                                    | 200                          | 149                                    | 113                                  | 211                          |
| Fatty acids, g/kg DM    | 28                                     |                              | 22                                     | 18                                   |                              |
| NDF, g/kg DM            | 385                                    | 394                          | 411                                    | 443                                  | 362                          |
| Starch, g/kg DM         | 81                                     |                              | 152                                    | 2                                    |                              |
| Sugar, g/kg DM          | 78                                     | 115                          | 78                                     | 129                                  | 154                          |
| Organic matter, g/kg DM | 914                                    |                              | 922                                    | 922                                  |                              |

|                                                                | HB                | CB                | CH               | <i>P</i> -value |
|----------------------------------------------------------------|-------------------|-------------------|------------------|-----------------|
| Number of animals, n                                           | 15                | 15                | 15               |                 |
| BW at turn-out 1 <sup>st</sup> summer, kg                      | 141               | 145               | 136              | 0.32            |
| BW after 1 <sup>st</sup> summer, kg                            | 201 <sup>ab</sup> | 208ª              | 190 <sup>b</sup> | 0.04            |
| ADG, 1 <sup>st</sup> summer (71 d), g/d                        | 852ª              | <b>893</b> a      | 763 <sup>b</sup> | 0.02            |
| BW late Dec 2012, kg                                           | <b>312</b> ª      | <b>329</b> ª      | 290 <sup>b</sup> | 0.001           |
| ADG, 1 <sup>st</sup> part, 2 <sup>nd</sup> winter (84 d), g/d  | 1323ª             | 1437 <sup>b</sup> | 1193°            | 0.001           |
| BW at turn-out 2 <sup>nd</sup> summer, kg                      | <b>445</b> ª      | 463ª              | 415 <sup>b</sup> | 0.002           |
| ADG, 2 <sup>nd</sup> part, 2 <sup>nd</sup> winter (147 d), g/d | 905               | 912               | 849              | 0.17            |
| BW at slaughter, kg                                            | <b>534</b> ª      | 575 <sup>b</sup>  | 480 <sup>c</sup> | 0.001           |
| ADG, 2 <sup>nd</sup> summer (106 d), g/d                       | <b>850</b> ª      | 1160 <sup>b</sup> | 681°             | 0.001           |
| ADG, birth to slaughter, g/d                                   | <b>948</b> ª      | 1018 <sup>b</sup> | 841 <sup>c</sup> | 0.001           |
|                                                                |                   |                   |                  |                 |

#### Table 3. Carcass quality characteristics

|                              | HB            | CB                | CH               | P-value |
|------------------------------|---------------|-------------------|------------------|---------|
| Carcass weight, kg           | 272ª          | 316 <sup>b</sup>  | 249 <sup>c</sup> | 0.001   |
| Dressing percentage          | <b>52.1</b> ª | 55.1 <sup>b</sup> | 52.7ª            | 0.001   |
| EUROP carcass conformation   | 3.0ª          | 7.0 <sup>b</sup>  | 5.3 <sup>c</sup> | 0.001   |
| EUROP fatness                | 1.0ª          | 1.2ª              | 2.9 <sup>b</sup> | 0.001   |
| Carcass lean/fat colour      | 4.0ª          | <b>3.9</b> ª      | 3.3 <sup>b</sup> | 0.001   |
| pH in filet 24 h p.m. (n=30) | 5.88          | 5.61              | 5.55             | 0.27    |







#### **Materials and Methods**



- 15 HOL bulls (HB), 15 LIM x HOL bulls (CB) and 15 LIM x HOL heifers (CH)
   Crossbred calves were half-sibs, as one Limousine (LIM) bull was used
- The 45 calves were purchased at 20 d of age (56 kg BW)
- Calves were kept indoor in groups of 5 animals until weaning at 3 mo, and were gradually introduced to a grass-silage based ration (TMR A) from 3 to 4 mo. (1<sup>st</sup> winter)
- Calves were then raised on a mixed ryegrass-white clover pasture (800 m<sup>2</sup>/calf/d) + 2.2 kg DM/calf/d of the TMR A from 4 to 7 mo. (1<sup>st</sup> summer)
- From late October till mid-May, animals were housed in deep litter stalls and kept in the same groups of 5 animals (2<sup>nd</sup> winter)
- Animals had free access to a grass-haylage ration (TMR B from Oct to Dec and TMR C from Dec to May) during the 2<sup>nd</sup> winter
- Animals were grazing from mid-May until late-August (2<sup>nd</sup> summer) in a rotational paddock system (18 paddocks) in the same groups of 5 animals (9 groups) and generally moved to a new paddock every week
- HB and CB had 0.35 ha and CH animals 0.26 ha of pasture available
- During periods of low grass yield, animals were supplemented with TMR C amounting to 1.1 kg DM/animal/d
- Animals were slaughtered directly from the pasture at 16.9 mo of age
- Carcass weight, carcass conformation and fatness (EUROP scale) and carcass lean/fat colour was recorded and pH<sub>24 h</sub> measured in filet

- ADG from birth to turn-out 1<sup>st</sup> summer was 828 g/d and not different between treatment groups
- During 1<sup>st</sup> summer, HB and CB had higher ADG than CH (P<0.02)
- ADG during 231 days of 2<sup>nd</sup> winter was 1012, 1052 and 930 g/d for HB CB and CH, respectively (P<0.002)</li>
- During the first 11 wk of 2<sup>nd</sup> summer, ADG of HB, CB and CH were 1081, 1357 and 847 g/d (SE 50 g/d, P<0.001)</li>
- LW at slaughter was 534, 575 and 480 kg and ADG from birth to slaughter was 948, 1018 and 841 g/d for HB, CB, and CH, respectively (P<0.001)</li>
- Carcass wt, EUROP conformation, and fatness was 272, 315 and 249 kg, 3.0, 7.0 and 5.3, and 1.0, 1.2 and 2.9 for DB, CB and CH, respectively (P<0.001)</li>
- Crossbreeding markedly improved conformation but fatness (too low) and lean/fat colour (too dark) of pasture-fed bulls were not acceptable

\*Mogens Vestergaard, Aarhus University, Faculty of Science and Technology, Department of Animal Science, PO Box 50, DK-8830 Tjele, Denmark Phone: +45 8715 7843, <u>http://anis.au.dk</u>, e-mail: mogens.vestergaard@agrsci.dk