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• A new abstract model of assembly and execution for arbitrary analytics, centred around a semantically rich type system.
• Goal-based planning of hybrid analytic applications using this abstract model, requiring little programming ability from the user.
• Automatic code generation across scalable compute architectures, integrating heterogeneous on- and off-line runtime environments.
• Validation of the planning approach through its application to four case studies in telecommunications and image analysis, including an exploration of
the performance and scalability of the planning engine for each of these case studies.
• A demonstration of comparable performance with equivalent hand-written alternatives in both on- and off-line runtime environments.
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a b s t r a c t

Crafting scalable analytics in order to extract actionable business intelligence is a challenging endeavour,
requiring multiple layers of expertise and experience. Often, this expertise is irreconcilably split between
an organisation’s engineers and subjectmatter domain experts. Previous approaches to this problemhave
relied on technically adept users with tool-specific training.
Such an approach has a number of challenges: Expertise— There are few data-analytic subject domain

experts with in-depth technical knowledge of compute architectures; Performance — Analysts do not
generally make full use of the performance and scalability capabilities of the underlying architectures;
Heterogeneity — calculating the most performant and scalable mix of real-time (on-line) and batch (off-
line) analytics in a problem domain is difficult; Tools — Supporting frameworks will often direct several
tasks, including, composition, planning, code generation, validation, performance tuning and analysis, but
do not typically provide end-to-end solutions embedding all of these activities.
In this paper, we present a novel semi-automated approach to the composition, planning, code

generation and performance tuning of scalable hybrid analytics, using a semantically rich type system
which requires little programming expertise from the user. This approach is the first of its kind to permit
domain expertswith little or no technical expertise to assemble complex and scalable analytics, for hybrid
on- and off-line analytic environments,with no additional requirement for low-level engineering support.
This paper describes (i) an abstract model of analytic assembly and execution, (ii) goal-based planning

and (iii) code generation for hybrid on- and off-line analytics. An implementation, through a systemwhich
we call Mendeleev, is used to (iv) demonstrate the applicability of this technique through a series of
case studies, where a single interface is used to create analytics that can be run simultaneously over on-
and off-line environments. Finally, we (v) analyse the performance of the planner, and (vi) show that the
performance ofMendeleev’s generated code is comparable with that of hand-written analytics.

© 2016 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Large organisations rely on the craft of systems engineers
and domain scientists to create specialist analytics which provide
actionable business intelligence. In many cases their knowledge
is complementary; the engineer has knowledge of concurrency,
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Fig. 1. A sample analytic, reading profile pictures from Flickr and using facial recognition to populate an Accumulo table.

parallel architectures and engineering scalable systems, and the
domain expert understands detailed semantics of their data and
appropriate queries on that data.
Identifying individuals with both sets of knowledge is challeng-

ing, particularly in a growing market, so typically organisations
are left with two options: 1. They make use of traditional devel-
opment models, in which engineers elucidate requirements from
stakeholders, develop a solution to meet those requirements, and
then seek approval from the stakeholders; or 2. Engineers em-
power domain experts by offering high-level abstract interfaces to
their execution environments, thus concealing the difficulty (and
often the potential for high performance and scalability) of devel-
oping a hand-tuned analytic.
Consider the Flickr1 analytic depicted in Fig. 1. Each component

of the analysis is represented by a box, with arrows indicating
the flow of data from one component to another. There are many
runtime environments in which the components of this analytic
could be deployed, depending on the wider system context. If user
data is being crawled, for example, a streaming (on-line) analytic
engine such as Apache Storm [2] or IBM InfoSphere Streams [27]
might be employed for subset A, while person data in subset B
might reside in an HDFS (Hadoop Distributed File System) [32]
data store. Each of these runtime environments specify their own
programming model, optimisation constraints and engineering
best practices. This complexity is increased when constructing a
hybrid analytic which makes use of data from multiple runtimes:
should subset C of this Flickr analytic be executed in an on- or off-
line runtime environment, andwhich configurationwould bemost
performant and scalable?
The divide between engineering expertise and domain knowl-

edge has led researchers to consider approaches which make best
use of available skills, without the drawbacks inherent in tradi-
tional models of cooperation. This paper presents a new approach
to this problem, in providing a framework in which domain ex-
perts can compose and deploy efficient and scalable hybrid analyt-
ics without prior engineering knowledge.
The research described in this paper directly targets the

challenges of delivering on-demand results to novel analytics, in
the face of ever increasing complexity and heterogeneity of both
large networked data sources and the systems used to analyse
these data at scale. As the range of software models and hardware
platforms increases apace, new models for creating fast data
analytics must target not only the engineers with experience of
these systems, but specialists with domain knowledge to craft the
right analytics, fast enough to deliver results on time. Traditional
languages are not sufficient for this: automated composition
presents the best opportunity to enable non-technical domain
specialists to interact with the analytic platforms crafted by expert
engineers.
Specific contributions of this research are:

1. A new abstract model of assembly and execution for arbitrary
analytics, centred around a semantically rich type system
(Section 4);

1 http://www.flickr.com/, a photo sharing website.

2. Goal-based planning of on- and off-line hybrid analytic
applications using this abstract model of assembly (1), which
requires little programming ability or prior knowledge of
available analytic components by the user (Section 5);

3. Automatic code generation for the planned analytic across
scalable compute architectures, integrating heterogeneous on-
and off-line runtime environments (Section 6);

4. Validation of the type-based planning approach through its
application to five case studies taken from the domains of
telecommunications, image analysis, and financial technology
(Section 7);

5. An exploration of the performance and scalability of the plan-
ning engine for each of the case studies in telecommunications
and image analysis (Section 8.1);

6. An exploration of the performance and scalability of the result-
ing analytics in both on- and off-line runtime environments,
demonstrating comparable performancewith equivalent hand-
written alternatives (Section 8.2).

The remainder of this paper is structured as follows: Section 2
describes related work; Section 3 outlines the high-level approach
adopted in this research and the implications of design choices;
Sections 4 and 5 detail our approach to modelling analytics and
planning their execution respectively; Section 6 describes the
process of efficient code generation; Section 7 illustrates the
application of this approach through four case studies; Finally,
Sections 8 and 9 provide a performance evaluation of this
framework and conclude the paper.

2. Related work

A variety of approaches to analytic planning exist and have
been reported in related literature. Research in this area is often
in the context of web-based mashups, however some of the
requirements behind such systems are relevant to the research
found here. Yu et al. [40] provide a rich overview of a number
of different approaches, including Yahoo! Pipes [26], one of the
first in a number of recent dataflow-based visual programming
paradigms for mashups and analytics. Such solutions require
sufficient technical knowledge from their users so that they can
navigate, select and compose components of a processing pipeline.
Knowledge of a supporting programming language is not required,
which removes the challenge of learning programming syntax, but
this does not obviate the need for a detailed understanding of the
available components, their semantics and their use.
Pipes has inspired a number of extensions and improvements,

such as Damia [1], PopFly [19] and Marmite [38]. The work of
Daniel et al. [10] aims to simplify the use of tools like Pipes by
providing recommendations to a non-expert on how to compose
their workflows. Others, such as Google’s (discontinued) Mashup
Editor [12] take a more technical approach, requiring an in-depth
knowledge of XML, JavaScript, and related technologies, but in so
doing permit a greater degree of flexibility. Finding domain experts
with sufficient expertise in these areas remains challenging.
Some vendors offer alternative solutions for authoring analytics

that do not employ complete programming languages. SQL
provides one such vehicle for this; Apache Spark SQL [41,39] and

http://www.flickr.com/
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Cloudera Impala [16] both offer an SQL-style interface onto NoSQL
data stores. The work of Jain et al. [15] aims to standardise the
use of SQL for streaming analysis, but its techniques have not been
applied to both on- and off-line analytics. Furthermore, other than
through the introduction of User Defined Functions, there exist
entire classes of analytics that cannot be represented in SQL [18].
Approaches which assemble general-purpose code into complex
analytics do not suffer these limitations.
Whitehouse et al. [36] propose a semantic approach to

composing queries over streams of sensor data, employing a
declarative mechanism to drive a backward-chaining reasoner
and solving for possible plans at execution time. Sirin et al. [33]
introduce the use of OWL-S [20] for query component descriptions
in the SHOP2 [21] planner (a hierarchical task network planner).
OWL-S extends the purely syntactic composition of services
afforded by WSDL by adding a semantic model of the inputs and
outputs to a web service. Another common approach, taken by
Pistore et al. in BPEL4WS [25], uses transition systems as a basis
for planning. A recurring theme in these approaches is that of
composing queries by satisfying the preconditions for executing
composable components. The runtime composition approach is
flexible, but has implications for performance at scale.
There has been considerable work in the area of web service

composition for bioinformatics; BioMOBY [37] specifies a software
interface to which services must adhere, then permits a user to
perform discovery of a single service based on their available
inputs and desired outputs; it does not manage the planning and
composition of an entireworkflow. Taverna [23] offers a traditional
‘‘search’’ interface (making use of full-text and tag-based search)
to locate web services which a user can manually compose in
the Taverna interface. This form of manual search and assembly
requires considerable user expertise, and an understanding of the
art of the possible, which a general-purpose analytic planner does
not.
Research in Software Engineering has examined analogous

problems to this. Stolee et al. [34] examined the use of semantic
models of source code as an indexing strategy to help identify
blocks of code that will pass a set of test cases, presenting the
user with a collection of existing candidate solutions to their
problem. Such semantic searches have additionally been trialled
in web service composition [3,9]. However, the complexity of the
semantic model and inherent uncertainty in retrieval accuracy,
make assembly of multiple blocks of code somewhat risky—there
is a considerable probability that the retrieved code samples are
not compatible.
These web-services-based systems typically involve consider-

able user training (whether in the composition interface or in the
formal specification of their query language), and at their core
aim to answer single questions through service-oriented protocols
such asWSDL and SOAP. Often, large-scale data analyticworkflows
aim instead to analyse significant amounts of data in parallel—an
executionmodelwhich is closer to that found in high-performance
computing simulations than in web mashups. In addition to the
complexity of WSDL and SOAP definitions, the services offered
must often be written specifically for use with such a system: their
implementation depends directly on, e.g., a SOAP implementation.
There are many existing libraries of components in the data ana-
lytics space which cannot be reasonably re-written to enable inte-
gration with a composition system: instead, it is desirable for such
a system to interface with the existing APIs of the target runtime
directly.
One noteworthy solution to this problem is that taken by

IBM’s research prototype, MARIO [29], which builds on SPPL,
the Streaming Processing Planning Language [30,31]. IBM charac-
terises MARIO as offering wishful search, which a user drives by
entering a set of goal tags. The MARIO planning engine then aims

Fig. 2. Steps in composing an analytic.

to construct a sequence of analytical components that will satisfy
those goals. These tags correspond to those applied to flows of
components within engineer-defined code templates. In practice,
due to the tight coupling between the engineer-created tagsonomy
and the actions available to the end user (components are often
manually tagged as compatible), it is rare for MARIO to create a
novel or unforeseen solution to a problem.
The research presented in this paper builds on the wishful-

search concept behind MARIO. At the same time, it allows the
discovery and composition of novel complex analytics, while
using a higher-level granular model of analytic behaviour, utilising
existing techniques from AI planning. This model is in many ways
similar to those proposed in OWL-S, but the way in which the
model is applied differs considerably. It is the first approach to
target execution of automatically generated hybrid analytics in
heterogeneous compute environments. It is the only automated
planning engine of its type to offer domain scientists such
wide-ranging application for on- and off-line analytic planning,
composition and efficient and scalable code-generation, without
also requiring significant engineering support.

3. High-Level overview

To compose an analytic from a user’s goals, our approach
employs the components outlined in Fig. 2. An abstract Analytic
Model (detailed in Section 4) is used to create a knowledge-
base of processing elements (PEs). This knowledge-base encodes
information about the types available in the planning system, the
PEs which produce and consume these data types, and a collection
of pre- and post-conditions attached to these PEs. It is important to
note that the creation of this knowledge-base is beyond the scope
of this research: it is assumed that engineers in organisations with
a need for an analytic planning system are willing to undertake the
manual annotation of the PEs they make available to their users.
This knowledge-base provides a semantically precise descrip-

tion of the information encoded in the data both required and pro-
duced by the available PEs. It is the contention of this research that
this metadata is sufficient to facilitate the automated composition
anddeployment of complex analytics acrossmultiple runtimeplat-
forms in a heterogeneous data-intensive compute environment.
In order to do this, the system collects goals from the user as

a second input to the planning process. There are three types of
goals that the usermay offer to constrain the planning process (see
Section 5):

• The output types that the analytic must produce;
• The datasource with which the analytic must begin;
• Post-conditions, including those concernedwith the state of the
runtime environment in which the analytic executed.

For example, to create the sample analytic described in Fig. 1, the
user might specify:
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• Types: person_id, person_name, postal_address,
email_address
• Source: FlickrUserData
• PE Used: AccumuloSink

These constraints are provided to a planning process (Section 5),
which uses a bidirectional search strategy to traverse the graph
of possible PE connections. It aims to satisfy the given constraints
using a minimal number of PEs, producing a set of possible
analytics which can be presented to the user. A user-friendly
rendering of the analytic can be provided along with textual
descriptions of the PEs in the analytic to help the user select
which version to deploy. Any unbound configuration options are
then supplied by the user to the assembly process (e.g., which
Accumulo table to write to, or tunable parameters for the facial
recognition), which makes the abstract plan concrete and resolves
any ambiguities. Finally, code generation (Section 6) is invoked on
the concrete plan to create an executable analytic.

3.1. Methodology

The approach described in this paper is applicable to a
number of runtime models and analytic frameworks. We have
implemented and tested it using real analytics in a system we call
Mendeleev, named after the scientist responsible for composing
and organising the periodic table as we know it today. We use a
library of real PEs and customer problems to test the scalability of
the code generation, and a synthetically generated representative
PE library to test the scalability of the planning approach. This,
coupled with a qualitative investigation of the use of the planner
to generate solutions to these customer problems, forms the basis
of the rigorous evaluation in Sections 7 and 8.

3.2. Impact of design choices

Oneof the key assumptionsmade in this research is aworkflow-
style execution model. This model pervades the literature on
fast Big Data analytics [2,27,41,11,14,6,24,13]: while it places
a limitation on the range of frameworks that can be used
(particularly outside of the real of scalable data analysis), it enables
high performance execution across themost commondata analytic
platforms.
The use of an RDF model to encode the PE knowledge base

slightly increases the set of skills required by engineers to annotate
their PEs. However, as discussed in Section 5, the strong semantics
behind an RDF ontology enable the use of both system- and
engineer-defined inference rules (along with special predicates, as
in Section 5.2) to enrich the knowledge base, ultimately reducing
the effort required to describe all aspects of the PEs.
Finally, in order to make best use of the applicability of the

message-passing model, no further assumptions are made during
the planning process as to the suite of runtime frameworks which
are available or in use. These frameworks are encoded in twoplaces
only: the customer-specific model of library PEs, and in a set of
pluggable code generation modules. This prevents the planning
process from using runtime-specific knowledge (which must be
encoded in inference rules or special predicates), but makes it
simple to add further runtime frameworks to the Mendeleev
implementation.

4. Modelling analytics

As our first contribution, we introduce a novel abstraction by
which the planning and the concrete implementation of an ana-
lytic can be logically separated. This abstraction is based on our

previous model [7], extending it for use in hybrid analytic plan-
ning. There are two components to this model: a semantically rich
type system, and a set of analytic components which reference
these types. This research models an analytic as a set of parallel-
composed communicating sequential processes [28], called Pro-
cessing Elements (PEs). These pass tuples of data (consisting of a
set of named, strongly typed elements) from one PE to the next.
When a PE receives a tuple, it causes a computation to occur, and
zero ormore tuples are emitted on its output based on the results of
that computation. Nothing in the model is specific to the planning
process—it is an abstract representation of the concrete implemen-
tation of a collection of composable components.
The model is encoded in an RDF [17] graph describing the

available types and PEs.2 Types may exhibit polymorphic inheri-
tance, as in a typical second-order type system. This inheritance
is indicated using the mlv:parent relationship, and may form
an inheritance graph provided each type cycle declares only one
mlv:nativeCode per runtime; that is, the name of the type in
the target language that is represented by this concept (for exam-
ple, a Java class or SPL primitive type). For example, a buffer of bytes
might represent more than one type of information (e.g., a PDF file
or an image), even though the data underlying it is the same type,
as in Listing 1.

Listing 1: RDF graph for a simple type hierarchy
# The "raw" ByteBuffer parent type
type : byteBuffer rdf : type mlv : type ;
mlv : nativeCode [ rdfs : l abe l " java . nio . ByteBuffer " ;

mlv : runtime mlv: cruc ib le ] ;
mlv : nativeCode [ rdfs : l abe l " l i s t <uint8 >" ; mlv : runtime

mlv: streams ] .
# An image encoded in a ByteBuffer
type : image rdf : type mlv : type ;
mlv : parent type : byteBuffer .
# A PDF f i l e encoded in a ByteBuffer
type : pdfF i le rdf : type mlv : type ;
mlv : parent type : byteBuffer .

In addition to this basic polymorphism, a type may contain an
unbound variablewith an optional type constraint (akin to a generic
type in Java [5], or a template in C++ [35]). This is used in PEswhich
transform an input type to an outputwithout precise knowledge of
the information encoded in the data. For example (see Listing 2), a
PE for fetching data over HTTP might take an input of type:URL
parameterised with <?T mlv:parent type:byteBuffer>,
and output data with the same type as the variable ?T, an as-yet
unbound subtype of type:byteBuffer. A priori, ?T is known
to be a type:byteBuffer; during planning it may be bound
to a more specific type (e.g., type:image in the Flickr analytic
described above).

Listing 2: Modelling unbound type variables in RDF
# Declaration of a generic type
type :URL rdf : type mlv : genericType ;
mlv : nativeCode [ rdfs : l abe l " java . net . URL" ; mlv : runtime

mlv: crucible , mlv : accumulo ] ;
mlv : nativeCode [ rdfs : l abe l " r s t r ing " ; mlv : runtime

mlv: streams ] .
# PE input declarat ion for url <?T>
# (bnode _ : urlType represents var iab le )
_ : sampleInput rdf : type [

2 RDF types are given in this paper using W3C CURIE [4] syntax. The following
RDF namespaces are used:

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
mlv http://go.warwick.ac.uk/crucible/mendeleev/ns#
type http://go.warwick.ac.uk/crucible/mendeleev/types#
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Fig. 3. Graph visualisation of the RDF description of a portion of the example model. _:urlType bnode represented by .

mlv: parent type :URL ;
mlv : genericParameter _ : urlType
] .
# Variable for the type parameter to URL
_ : urlType rdf : type type : byteBuffer .
# PE output parameter using the var iab le
_ : sampleParameter rdf : type _ : urlType .

A visualisation of the RDF graph resulting from this type hierarchy
(along with a subset of the PE model described in Listing 3) can be
seen in Fig. 3. The unbound variable _:urlType is highlighted as
a filled black circle in this figure.
As suggested by the types used above, the engineers who

describe their PEs are encouraged to do so using the most
specific types possible. For example, the more precise semantics
of type:image are to be preferred to type:byteBuffer, even
though both result in the same mlv:nativeCode.

4.1. PE formalism

We consider a PE χn to have a set of declared input types µn,
and a set of declared output types νn. For a data source, µn = ∅

(it produces data without any inputs being present), while for a
sink νn = ∅ (it receives inputs of data, but produces no output).
Tuple data generally accumulates as it passes through each PE,
treating it as an enrichment process on the data it receives. No
specific knowledge about the processing performed is encoded in
the model. More formally, a PE χn has an accumulated output type
(denoted as τn) based on the type of the tuple received on its input,
τn−1. Thus, to determine τn for a given PE, the entire enrichment
chain must be known:

τn = ν0 ∪ ν1 ∪ · · · ∪ νn−1 ∪ νn. (1)

Or, inductively:

τn = τn−1 ∪ νn. (2)

This model can be extended to include PEs (e.g., complex aggrega-
tions) that clear the accumulated data in a tuple declaration before
emitting their outputs; this extension is considered in greater de-
tail as part of the planning process in Section 5.2.
One important extension to thismodel is in support of operators

which require inputs onmore than one port, such as join operators
(discussed in further detail in Section 5). These receive two ormore
discrete sets of input types, and by default emit the union of their
accumulated inputs. Thus, for an operator χn with inputs χi and χj,
τn is given as follows:

τn = τi ∪ τj. (3)

PE connectivity utilises a formof subsumption compatiblewith the
type model described above. A type u can be said to be subsumed
by a type v (u ▹ v) if one of the following cases hold true:

u ▹ v ⇐


u mlv : parent v
u mlv : parent t, t ▹ v

(4)

u⟨t⟩ ▹ v⟨s⟩ ⇐ u ▹ v ∧ t ▹ s. (5)

A PE χx is considered fully compatible with χy, and is thus able to
emit tuples to PE χy, if the following holds true:

∀t ∈ µy, ∃u ∈ τx | u ▹ t. (6)

In the RDFmodel, each PE definition includes the native type name
associated with the PE, as well as the set of (typed) configuration
parameters, and input and output ports. Additionally, the model
may include user-friendly labels and descriptions for each of
these definitions. Unlike other planning engines (particularly HTN
style planners such as MARIO), which require the engineer to
additionally implement prototype code templates, this RDF model
is the only integration that is required between a PE and the
Mendeleev system. For example, a more complete version of the
HTTP fetching PE described above is shown in Listing 3.

Listing 3: Modelling an SPL (IBM’s Streams Processing Language)
HTTP Fetch PE in RDF
pe : fe tch_ur l rdf : type mlv : spl_pe ;
mlv : nativeCode " l i b .web: : FetchURL" ;
mlv : input [
mlv : parameter [ # ur l i s a URL<?T>
rdfs : labe l " ur l " ;
rdf : type [
mlv : parent type :URL ;
mlv : genericParameter _ : fetch_type
]
]
] ; # End input declarat ion
mlv: output [
rdfs : l abe l "HttpOut " ;
mlv : parameter [ # httpHeaders i s a header_ l i s t
rdfs : labe l " httpHeaders " ;
rdf : type type : header_ l i s t
] ;
mlv : parameter [ # body i s a ?T
rdfs : labe l "body" ;
rdf : type _ : fetch_type
]
] . # End output declarat ion
# byteBuffer i s the parent type of ?T
_ : fetch_type rdf : type type : byteBuffer .
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Fig. 4. Using the PE Model abstraction to separate planning and concrete PE
implementations.

4.2. PE model abstraction

This model abstracts the concrete implementation of an
analytic away from runtime framework-specific details. This is
vital to enable hybrid planning, as all runtime frameworks may
be treated equally: as seen in Section 5, PEs from any framework
may be assembled in a workflow. The PEs represented by this
abstraction are latermade concrete by the code generation process
(Section 6), which translates from the execution model assumed
in the PE model to runtime primitives, invoking the user-defined
components the model describes, as shown in Fig. 4.

5. Goal-based planning

Our second contribution is a goal-based planner based around
the semantically rich type system described above. The goal of this
planner is to explore the graph of possible connections between
PEs using heuristics to direct the search, accumulating types in the
τ set until the user-supplied constraints have all been satisfied, or
the planner determines that no solution exists.

5.1. Type closure

Given the RDF model of the PE knowledge-base, a suite of
forward inference rules are pre-computed before any planning
may occur. These rules are applied using a forward chaining
reasoner (the FuXi [22] RETE-UL algorithm), and compute three
key types of closure. First, RDFS reasoning is applied to the types
in the knowledge base (primarily to compute the closure over
second-order types). Next, unbound type variables are compared,
to compute potential subsumption. Finally, candidate PE matches
are inferred based on rules derived from the full compatibility rules
described in Section 4, Eq. (6). A PE χx is considered partially

compatible with χy, and is thus a candidate for sending tuples to
PE χy, if one of the following holds true:

∃t ∈ µy, u ∈ νx | u ▹ t (7)
∃t ∈ µy, u⟨v⟩ ∈ µx, v ∈ νx | v ▹ t (8)
∃s⟨t⟩ ∈ µy, u⟨v⟩ ∈ νx | u ▹ s, v ▹ t. (9)

For example, consider pe:fetch_url described above; it re-
quires a URL parameterised with any type:byteBuffer. Con-
sider also pe:exif, which requires a type:image on its input
(where type:image▹ type:byteBuffer), and outputs a num-
ber of Exif3-related fields:

µfetch_url = {type : url⟨?T ▹ type : byteBuffer⟩} (10)
νfetch_url = {?T } (11)

µexif = {type : image} (12)
νexif = {type : camera, type : lat,

type : lon, type : fstop, . . .}. (13)

Through Eq. (8) above, the ?T output by pe:fetch_url can
potentially be used to satisfy the input to pe:exif. In this case,
pe:fetch_url is considered partially compatiblewithpe:exif,
and is marked as a candidate connection when ?T is bound to
type:image.

5.2. Conditions

Once the type closure is computed, a further suite of rules
annotates each PE in the knowledge-base with a set of pre- and
post-conditions, derived from the input and output specification.
A pre-condition is automatically applied specifying the runtime
environment for each PE: this is derived from the rdf:type
specified for the PE. These inferred conditions can be manually
augmented in the RDF PE model with two further types of condi-
tion.
The first of these condition types are used to alter the

behaviour of the inference or the search process. For example, a
mlv:clearPreConditions statement is used when modelling
PEs which do not automatically pass on the data received on their
inputs. Such PEs may include aggregation operations (grouping
etc.), windowing operators, or others which do not have 1–1
cardinality and either filter or group records. Another special
condition, mlv:clearRuntime is implemented to remove post-
conditions from the τ set which specify the current runtime
environment. For example, Listing 4models a PE which aggregates
input data into a Gaussian Mixture Model using an Expectation
Maximisation algorithm.

Listing 4: RDF Model for a Gaussian Mixture Model implemented
on Apache Spark
pe :gmm2d a mlv: spark_pe ;
rdfs : l abe l "Apply␣EM␣to␣generate␣a␣2D␣Mixture␣of␣

Gaussians␣modelling␣the␣input " ;
mlv : nativeCode "mendeleev . pe .GMM2D" ;
mlv : input [
mlv : parameter [ rdfs : l abe l "x" ; rdf : type type : double ]

;
mlv : parameter [ rdfs : l abe l "y" ; rdf : type type : double ]
] ; # Clear ex is t ing pre − conditions
mlv : postCondition [ mlv : clearPreCondit ions pe :gmm2d ] ;
mlv : output [ # Emit a co l l ec t ion of weighted 2D

Gaussians
rdfs : l abe l "Gaussians " ;
mlv : parameter [ rdfs : l abe l "weight " ; rdf : type type :

gmm_weight ] ;

3 Exchangeable image file format; image file metadata.
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mlv: parameter [ rdfs : l abe l "x" ; rdf : type type :
gaussian_x ] ;

mlv : parameter [ rdfs : l abe l "y" ; rdf : type type :
gaussian_y ] ;

mlv : parameter [ rdfs : l abe l " theta " ; rdf : type type :
gaussian_rotat ion ] ;

mlv : parameter [ rdfs : l abe l "A" ; rdf : type type :
gaussian_magnitude ]

] .

The second type of manual condition is one which has no
special meaning to the planner, but makes an assertion about
the state of the analytic. For example, these are employed (in
conjunction with the mlv:clearRuntime condition above) to
manage the transition between runtimes. Listing 5 gives an
example of how synthetic runtimes are used (in this case,
mlv:accumulo_to_streams) to constrain the planner, so that
an Export node from one runtime is followed immediately by an
Import node for the next. These provide the necessary hooks for
the code generators (discussed in Section 6) to create suitable code
for managing the inter-runtime transport of data.

Listing 5: RDF Model for an Import and Export transport from the
Accumulo Iterator paradigm into IBM InfoSphere Streams
pe : accumulo_to_streams_export a mlv: accumulo_pe ;
rdfs : labe l " Export␣Accumulo−>Streams" ;
mlv : nativeCode "mendeleev . pe . StreamsExportIterator " ;
mlv : input [ rdfs : l abe l "Data " ] ;
# Clear ex is t ing runtime ; reset to the synthet ic mlv :

accumulo_to_streams runtime
mlv: postCondition [ mlv : clearRuntime pe :

accumulo_to_streams_export ] ;
mlv : postCondition [ mlv : runtime mlv: accumulo_to_streams

] .

pe : accumulo_to_streams_import a mlv: spl_import_pe ;
rdfs : labe l " Import␣Accumulo−>Streams" ;
mlv : nativeCode "mendeleev . pe : : AccumuloImport" ;
mlv : output [ rdfs : l abe l "Data " ] ;
# Require the synthet ic mlv : accumulo_to_streams runtime
mlv: preCondition [ mlv : runtime

mlv: accumulo_to_streams ] ;
# Replace the synthet ic mlv : accumulo_to_streams runtime

with mlv : streams
mlv: postCondition [ mlv : clearRuntime pe :

accumulo_to_streams_import ] ;
mlv : postCondition [ mlv : runtime mlv: streams ] .

In practice, this inference closure is calculated offline and the
resultant graph is stored for interactive use. These manually
specified conditions may also be used to describe particular
transformations performed on the data (e.g., rotation of an image)
which are not otherwise captured by the semantics of the output
tuple. As with the runtime conditions, these post-conditions may
be used internally in the planning process to satisfy the pre-
conditions of other PEs, or they may be explicitly requested by the
user (aswith the ‘‘PEUsed’’ post-condition introduced in Section 3).

5.3. Search & assembly

The search through the graph of partially compatible PEs is
outlined in Algorithm 1. This algorithm finds a set of pathways
through the graph of candidate PE connectionswhichwill generate
the required set of post-conditions, while fulfilling the pre-
condition requirements of each PE. In order to minimise the
search-space explosion, the search is performed bi-directionally,
with an empirically selected heuristic expanding the search space
backwards for every three levels of forward search. Similarly, if a
source or a sink constraint is specified, it is used to optimise the
search process. The algorithm has six stages:

Algorithm 1 Bidirectional Planning, searching for a given set of
target conditions (φ), source PE (σ ), accumulated conditions (τ ),
and backwards search set (β)
1: procedure solve(φ, σ , τ , β)
◃ Every 3 levels of forward search, advance backwards

2: if search_level % 3 == 0 then
3: β ← β ∪ providers_of (φ)
4: end if
5: if σ not given then
6: results← ∅
7: for all source s inmodel do
8: results← solve(φ, s, τ , β)
9: end for
10: return results
11: end if
12: results← ∅
◃ Check σ for secondary inputs

13: for all input i in inputs(σ ) do
14: if i not satisfied by τ then
15: results← results ∪ solve(preConditions(i), σ ,∅,∅)
16: end if
17: end for
◃Update τ with postConditions of σ , and check for completion

18: τ ← τ ∪ postConditions(σ )
19: if τ satisfies φ then
20: return [σ ]
21: end if
◃ Depth-first search of PEs in β

22: forward← consumers_of (τ )
23: candidates← dfs_search(forward ∩ β, φ, σ , τ )
24: for all candidate in candidates do
25: results← results ∪ [σ , candidate]
26: end for
◃ Depth-first search of remaining candidates

27: if results == ∅ then
28: results← dfs_search(forward− β, φ, σ , τ )
29: end if
30: return results
31: end procedure

Algorithm 2 Type Pruning
1: procedure prune_types(pe, φ)
◃ Remove types from τpe that are not in the φ set

2: τpe ← τpe ∩ φ
◃ Add types to the φ set that are required by this PE

3: φ← φ ∪ µpe
◃ Recurse to all publishers of data to this PE

4: for all σ in publishers(pe) do
5: prune_types(σ , φ)
6: end for
7: end procedure

L2-4: Every 3 levels of forward search, expand the set of
backward search candidates by one more step;

L5-11: If the call to solvedoes not provide a boundon the source,
launch a solver to generate results for all sources in the
model;

L13-17: If the current PE has more than one input, launch a new
solve to satisfy the pre-conditions of each input;

L18-21: Update the sets of accumulated conditions (τ ), and test to
see if all required post-conditions are satisfied; if so, this
branch of the search terminates;

L22-26: Attempt to search the next level (recursively), using only
the set of backwards candidates;
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L27-29: If the above step did not yield any new paths, repeat the
search with PEs not in the set of backwards candidates.

A simple heuristic ranking may be applied to this set of candidate
pathways e.g., based on the number of PEs in the path (if two
paths accumulate the same post-conditions, it can be considered
that their results are similar, and thus the shorter, ‘‘simpler’’ path
should be preferred). It is not sufficient to automatically select and
assemble one of the available paths arbitrarily.
Although users of the Mendeleev system are considered non-

technical in the sense of not being expert software engineers, they
are still experts in their field. As such, they can be expected to
understand the semantics of the operations in the knowledge-
base, and to comprehend the meaning of an assembly of these
operations, even if they do not know the full set of available
operators or rules for their composition a priori. As a result, a
visual inspection of the available plans (presented graphically in
theMendeleev UI) is generally sufficient for the user to select the
plan which best represents their intent.
Once the user selects an execution plan from the generated

options, it must be assembled into a concrete plan. This process
involves binding keys from each tuple to the required output
types. For example, if a tuple of Flickr user data contained
twotype:url<type:image>parameters, a profile background
and a user avatar, and it was passed to the aforementioned
pe:fetch_url, the assembly process must bind one of these
parameters on its input. In practice, no reliable heuristic is available
for this, and user configuration is required. For a domain expert
this should not present a difficulty, as they can be expected to
understand the nature of the fields in their data.
This planning and assembly process generates an acyclic graph

of PEs as its output, with a single goal-state node and one or
more source nodes. It can also be considered a tree, rooted on
the goal node. The goal node will have a τ of the union of all PE
post-conditions up to that point in the analytic—however, many
of the types specified in the post-conditions may not be needed
in order to correctly complete the computation. During assembly,
a second pass is therefore taken backwards across the topology
(in a breadth-first traversal from the goal node) using the type
pruning algorithm outlined in Algorithm 2 to prevent the topology
from passing unnecessary data forwards. This helps to control
the otherwise unlimited expansion of tuple width, improving
the space, time and message passing complexity of the resultant
analytic.
For example, in the sample analytic shown in Fig. 1, a number

of fields are emitted by the FlickrUser-Data crawl, such
as realName, location, mbox_sha1sum, profileUrl, and
buddyIconUrl. The only field type from this setwhich is required
later in the analytic is a type:URL, so the type pruning algorithm
in Algorithm 2 discards all fields other than the field the user has
selected to satisfy this constraint (in this case, buddyIconUrl)
from the output. Similarly, HTTP status information output by the
FetchURL PE are discarded, along with any outputs from the
PersonDetails database which are not requested by the user.
This process significantly reduces the amount of data passed by
Mendeleev-generated PEs, thereby improving the performance of
the resulting analytic.

6. Code generation

Once the concrete execution plan is assembled, it is passed
to a pluggable code generator; the third contribution of the
research documented in this paper.Mendeleev’s planner produces
a concrete plan, which the code generator must turn into native
code for execution on the correct mix of on- and off-line runtimes.
To achieve this, itmay either generate native code for each runtime
directly, or use an intermediate representation to manage the
differences in runtime models. Mendeleev offers the user both
capabilities.

Fig. 5. Top:Mendeleevmessage passing model for a process f. Bottom:Wrapper-
based model of field copying semantics.

6.1. DSL code generation

Mendeleev has been designed to generate code using the
Crucible [8] domain specific language (DSL) as an intermediate
representation. Crucible offers a DSL and a suite of runtime
environments, adhering to a common runtimemodel, that provide
consistent execution semantics for an analytic across on- and off-
line runtimes. A performance evaluation of Crucible [8] showed
consistent scalability and applicability of Crucible topologies in
a standalone environment, in batch mode on Apache Spark, and
in streaming mode on IBM’s InfoSphere Streams. Crucible’s DSL
is source-to-source compiled through a series of code generation
modules to optimised native code for each runtime environment
on which it can be executed.
There is one key difference between the Mendeleev and

Crucible execution models: whereasMendeleev assumes that all
keys in the input tuple are passed through on the output, Crucible
does not perform this pass-through automatically. It is possible to
implement these semantics in Crucible, however. Fig. 5 illustrates
how thismight be achieved in the basic Crucible executionmodel.
Mendeleev’s conceptual model (top) shows a PE f(a, b) which
generates the tuple <e, f> as its results, passing through the
full input tuple along with those results. At the bottom of Fig. 5, an
implementation of the Mendeleev tuple field copying semantics
in the basic Crucible model shows how each functional PE is
wrapped in one which stores the input tuple fields, and appends
them to the output of each tuple from that functional PE.
While this theoretical approach produces correct results, the

extra message passing it involves would slow topologies down
considerably. Instead, Mendeleev generates a synthetic parent
PE in Java for each PE in the Crucible topology, overriding a
small portion of the base Crucible runtime on a per-PE basis
with generated code. This parent is responsible for intercepting
received and emitted tuples, recording the inputs in local state, and
appending the relevant outputs of that PE’s pruned accumulated
type on tuple output. To use the example of pe:fetch_url in
the Flickr analytic above, this synthetic parent might record the
type:profile_image URL on its input, and append it to the
output tuple. At this time it will also prune out unused tuple fields
from the output as per Algorithm 2.

6.2. Native code generation

When an analytic does not require the flexibility or features
of the Crucible DSL (or PEs are only available in their native
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Table 1
Mendeleev Import/Export implementations.

Source runtime Export behaviour Import behaviour Destination runtime

Accumulo No-Op Scanner; SPL type conversion Streams
Accumulo JSON Serialisation Scanner; JSON parse Meteor.js
Streams Convert SPL types to Java; Kryo Serialise; write to Accumulo table No-Op Accumulo
Streams JSON Serialisation; TCP socket server TCP socket client; JSON parse Meteor.js
Meteor.js TCP socket client TCP socket server; JSON parse; SPL type conversion Streams
Crucible TCP socket server TCP socket client; SPL type conversion Streams
Crucible Kryo Serialise; write to Accumulo table No-Op Accumulo

form, not a Crucible library), direct native code generation may
be a more performant option. This code generation option relies
on the accuracy of both the input and output specifications, and
the manually entered pre- and post-conditions of PEs to generate
the correct code. Four native code generators are currently
implemented in Mendeleev: two for Accumulo, one for IBM
InfoSphere Streams SPL, and one for the Meteor.js reactive web
presentation framework.
Accumulo makes use of separate code generators: one for

the base Accumulo table (consisting of heterogeneous rows of
Key–Value pairs), and one for an Iterator stack which may be
applied on top of this. These generators simply create a pair of
Java classes which configure an Accumulo connection, set up the
requisite Iterator stack, and return a Scanner of rows to the calling
site. This Iterator stack will be executed on the server-side as the
Scanner is consumed on whichever client uses the data (be it an
Accumulo writer, or another runtime).

Mendeleev includes a set of inter-runtime transports, in order
to facilitate the motion of data from one analytic to another. The
modelling of these, discussed in Section 5.2, offers the ability for
each transport pairing to have a distinct implementation designed
for optimal performance (such as sinking JSON to Meteor.js,
but writing Key–Value Mutations to an Accumulo table). The
implemented transports, and their Export/Importmechanisms, are
outlined in Table 1.

6.3. Integrating complex analytics

Some users of a system such as Mendeleev require complex
carefully engineered analytics (e.g., to build up state about a
set of identifiers, or for performance-tuned machine learning
algorithms). In the interests of efficient system utilisation, it is
often desirable to run these types of analytic as a central job to
which other analytics may subscribe. Several patterns can be used
to expose this behaviour transparently to a user in Mendeleev
(illustrated in Fig. 6).
First, it is possible to simply write all results from the ‘‘Complex

Analytic Job’’ to a persistent store, as a results cache (shown
below the complex job in Fig. 6). This approach results in treating
the output as an offline data source for each new Mendeleev
analytic. It is also possible to achieve a streaming equivalent by
simply exporting results on a TCP Socket Server. This approach
has a relatively low implementation overhead, but depending
on the use cases for the complex analytic may result in more
complex Mendeleev plans (e.g., due to a frequent need to join
this data with other sources). An alternative for analytics which
use the complex job as a source of enrichment is that of an
RPC-style model (shown to the right of the job in Fig. 6). This
is suitable for large stateful analytics, although it requires the
maintenance of an RPC query server and associated infrastructure
for distributed configuration. This infrastructure is outside the
scope ofMendeleev; systems such as Apache ZooKeeper have been
found to fulfil this requirement in practice.
As well as complex analytic jobs, some organisations will have

complex sources of data (e.g., a large relational databasewithmany

views). The complexity of extracting data from such a system
need not be reflected by equivalent complexity in Mendeleev;
each potential view can be considered a different source PE in
the knowledge base, with its own tuple type information entered
accordingly. Note thatMendeleevhas no restriction on thenumber
of times a single target PE type may appear in a knowledge
base (e.g., with different configuration parameters to turn on or
off features of that PE). This is a useful design pattern; one can
engineer a single general-purpose accessor PE which is configured
in the knowledge base to represent many different data sources.
As the PE knowledge base is RDF-based, it is additionally possible
to extend the set of inference rules to include generators for
permutations and combinations of different PE parameters, rather
than entering them by hand.

7. Case studies

To better understand the process of composing analytics in
Mendeleev, we present a series of case studies and an evaluation
of this technique; this represents the fourth contribution of
this research paper. These analytics have been generated with
Mendeleev, using a small library of general-purpose PEs. Fig. 7
illustrates the generated analytics for each case study below;
each figure shows the PEs in an analytic (as boxes), the tuple
subscriptions between those PEs (arrows indicate the direction
of flow), and the runtime for each subset of PEs (shaded outer
boxes). Note that, for brevity, explicit Import/Export nodes have
been omitted from these representations.

7.1. Case study: Flickr FFT workflow

The user wishes to compute and store the Fourier transform of
images from Flickr, and store those results in HDFS for use later
in their workflow. Engineers have exposed a crawl operator which
emits Flickr photo metadata to the Mendeleev system. The user
selects the following bounds from the user interface:

1. PE Used: HDFS
2. Types: image, fft2d.4

With each refinement of a bound, the Mendeleev UI plans a new
set of plausible analytics to answer that query. It is interesting
to note here, that the query does not explicitly require data from
Flickr; any data sources in the knowledge base which can be used
to return an imagemay be offered to complete this query. In this
instance, Mendeleev produces a single result: the analytic shown
in Fig. 7(a).

7.2. Case study: Flickr facial recognition

A different analyst has an interest in annotating Flickr images
with the email addresses of the people in them using a facial
recognition system, sending their results to an Accumulo table

4 The output of a Fourier transform on 2-D input data.
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Fig. 6. Deployment scenarios for complex analytics.

(a) Flickr Photo FFTs.

(b) Profile picture face detection.

(c) CDR call locations.

(d) Customer endpoint clustering.

(e) VWAP-earnings ratio calculation.

Fig. 7. Planned analytics for Flickr image, telecommunications data, and financial data analysis.
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(as described in the original example in Fig. 1). They configure
Mendeleev to search as follows:
1. PE Used: AccumuloTable
2. Types: person, emailaddress.

The user is presented with a number of analytics, but on closer
inspection none of these use Flickr as a datasource. They refine
their query interactively to bind the source to ‘‘Flickr’’. This returns
a small number of candidate analytics and the user selects the
version which crawls Flickr for new results using the Streams
runtime (shown in Fig. 7(b)), writing results to an Accumulo table.
This data is used to lookupPersonDetails fromanAccumulo table in
a compaction-time Accumulo Iterator. During the assembly stage,
there are two image URLs to choose between; the Flickr photo and
the user’s profile picture. They configure the FetchURL PE to use
the latter and complete their assembly.

7.3. Case study: Telecommunications call events

An analyst for a mobile telecommunications company wishes
to display a live map of call events for a video wall in their
Network Operations Centre. They configure the following query,
which results in the analytic in Fig. 7(c):
1. PE Used: GoogleMaps
2. Types: msisdn,5 tower_latitude, tower_longitude.

7.4. Case study: Telecommunications IP endpoints

A further analyst, with an interest in IP traffic and routing,
wishes to determine hotspots with which their customers
communicate, for both network layout purposes and to check the
telecommunications company has the right peering agreements in
place. They configure a query:
1. PE Used: BoundingBoxFilter, GoogleMaps
2. Types: ipaddress, cluster_latitude,

cluster_longitude.

Their resulting analytic is shown in Fig. 7(d). However, their
analytic is not fully assembled until the GeoIP PE has its
ipaddress parameter bound to the source or destination IP.
As the analyst is interested in determining the locations their
connections terminate, they select the destination IP, and complete
the analytic assembly. Note here that plans were additionally
generated for deployment against streaming IP Netflow data, as
well as this historical database of events. This is an ideal use case
for a Crucible-based solution: the generated code can then simply
be deployed to either their streaming or their offline platform, and
the Crucible framework will select the relevant instance of the
datasource.

7.5. Case study: Financial P/E analysis

An analyst at a financial institutionwishes to express a common
financial analytic: computing the volume-weighted average price
(VWAP) for a live stock ticker, and comparing it to earnings
information (available from the SEC). They configure the following
query:
1. Types: ratio<vwap, company_earnings>
2. PE Used: LiveGraphView.

Their resulting analytic is shown in Fig. 7(e). As part of the assembly
process, they configure the stock tickers they are interested in:
these values are compiled directly into the resulting SPL and
JavaScript.

5 A unique telecoms subscriber identifier.

Fig. 8. Benchmark results for the Mendeleev planner when applied to the case
studies.

8. Performance evaluation

In order to better understand the performance characteristics of
theMendeleev implementation, and thus demonstrate its viability
for real-world use, two key aspects of performance are examined:
(i) the time taken for the planning and assembly process and
(ii) the runtime performance of its resulting output.

8.1. Planner performance

Our fifth contribution examines the performance of the
planning process using the first four case studies discussed above.
Each case study has been benchmarked as a bounded query (with
a fixed source) and as an unbounded query (no source specified,
forcing the planner to attempt to infer possible sources). The
performance of the planner against a test knowledge-base of 20
PEs can be seen in Fig. 8. This test knowledge-base describes the
real PEs used in the case studies described in Section 7. On average,
each PE is described with 11 RDF statements, and there are 75
types described in the model. To highlight the accessibility of this
approach, these planner experiments are performed on a typical
workstation class machine — containing a 4-core Intel Core i7 CPU
with 8 GB of RAM.
The backwards search optimisations used in the planning

algorithm prevent many of the unbounded queries from taking
significantly longer than their bounded equivalents. The two
notable exceptions to this are in the FFT query (which does not
list any grounded types in its goal to inform the choice of source),
and the Face Detection query, which fails to generate a correct
solution altogether in its unbounded form (but fails quickly). The
bounded FaceDetection query is the longest-running assembly and
generation process, due to the complexity of the resulting analytic;
both in terms of the number of tuple fields to be processed in the
pruning analysis, and the number of PEs in the resulting analytic.
In order to better understand how the bidirectional search

in the planning phase scales as the knowledge-base expands, a
further set of planner benchmarks are presented for knowledge
bases of varying size over both the bounded (b) and unbounded
(u) query variants above. These knowledge-bases are synthetically
generated, using around 100 different types from each of the
domains used in the case studies above. The PEs in this expanded
knowledge base are all ‘‘reachable’’ in the graph search, and as such
could be expected to have an impact on planning time. Table 2
outlines the frequency with which unique combinations of input
types and output types are repeated in the generated knowledge-
base’s PEs.
The results in Fig. 9 show that in scaling the size of the

knowledge-base from 20 to 50 PEs there is a noticeable perfor-
mance impact. However, due to the bidirectional optimisation in
the search, beyond this scale there is little negative impact on the
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Fig. 9. Scaling of theMendeleev planner with knowledge-base size for both (b)ounded and (u)nbounded case studies.

Table 2
Distribution of PE input and output types in the 500 PE stress test knowledge-base.

Input Output
Repetition count Percentage of KB Repetition count Percentage of KB

1 79.4% 1 83.6%
2 5.6% 2 2.4%
3 1.8% 3 1.8%
5 1.0% 4 1.6%
61 12.2% 53 10.6%

Table 3
Number of plans considered and returned in the 500 PE stress test knowledge-base.

Query Plans Plans Planning
considered returned time (s)

FFT (b) 53 9 0.017
FFT (u) 126 14 0.072
Face (b) 16 4 0.051
Face (u) 1 1 0.013
CDR (b) 40 31 0.019
CDR (u) 40 31 0.025
IP (b) 8 3 0.012
IP (u) 9 3 0.022

search time. At no point does the planning take longer than 0.08 s
in the case studies tested, regardless of knowledge base size. More
complete information about the number of plans considered in the
search, and the number found and returned, can be seen in Table 3.

8.2. Runtime performance

It is valuable to compare the performance of Mendeleev’s
generated code to hand-written analytics in both the Crucible
DSL and in native code. For this, hand-written native and Crucible
code for each runtime is compared to Mendeleev, using a shared
library of basic Java operations to implement two variants of
the ‘‘IP Communications Endpoints’’ case study described above
(Fig. 7(d)). In the first set of experiments, Crucible is used as the
target for comparison, comparing the performance ofMendeleev-
generated Crucible code to both hand-written Crucible and
native implementations. For these experiments, the full un-filtered
dataset is explored. The second set of experiments compare the
performance of the native code generation to hand-written native
code for the bounding-box filtered analytic as described in Fig. 7(d).
These analytics were all executed against 194 offline packet

capture files, corresponding to 100Gb of raw capture data (5.8 GB

of packet headers). Results were collected on a test cluster
consisting of three Hadoop Data Nodes/Accumulo Tablet Servers,
one NameNode/Accumulo Master, and two Streams nodes. Each
node hosts two 3.0 GHz Intel Xeon 5160 CPUs, 8 GB RAM and
2× 1GbE interfaces.

8.2.1. Unfiltered Crucible analysis
Five equivalent variants of the unfiltered analytic were created:

(i) Mendeleev-generated Crucible; (ii) hand-written Crucible;
(iii) a multi-threaded Java analytic; (iv) a Spark topology written
in Java; and (v) an SPL topology, with associated Java primitive
operators. The upper half of Table 4 shows the performance and
scalability (makespan time for a given input size and latency per
tuple) of the analytic on each runtime type in turn; Standalone,
Apache Spark (HDFS mode) and on IBM InfoSphere Streams. These
data are additionally presented in Fig. 10.
These benchmark results show that Mendeleev’s auto-

generated code consistently outperforms the hand-written Cru-
cible topology by as much as 1.4×, without any engineering
expertise from the user. Due to the additional compile-time knowl-
edge that Mendeleev infers about the required values in the in-
put and output tuples, it is able to prune values out of the tuples it
passes resulting inmore efficient message passing than in the base
Crucible runtime’s implementation.
An equivalent analytic, hand-written and hand-tuned for each

runtime, outperforms Mendeleev by a maximum of 1.3× in
these experiments. Furthermore, the latency on a per-tuple basis
remains low, with a variance of between 10−3 and 10−5. The
relative speedup ofMendeleev to Crucible and amanuallywritten
topology on each runtime environment is detailed in Table 5.

8.2.2. Filtered native analysis
This final set of experiments examines the performance of

the Mendeleev-generated native code, across all three supported
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Fig. 10. Benchmarking results for each runtime mode and code type. NB: Charts (d) and (e) have no Crucible implementation.

Table 4
Benchmarking results (makespan wall time and per-tuple latency) for each runtime mode and code type.

Code type Records processed (millions)
5 10 20 30 40 50
Time Latency Time Latency Time Latency Time Latency Time Latency Time Latency

Standalone runtime Auto-generated DSL 296.73 0.13 591.69 0.11 1179.93 0.13 1770.09 0.11 2359.72 0.10 2948.60 0.12
Hand-written DSL 333.53 0.16 664.23 0.16 1324.30 0.17 1983.13 0.16 2644.04 0.16 3305.23 0.16
Hand-written Java 227.52 0.40 453.88 0.38 906.48 0.40 1360.02 0.39 1813.83 0.40 2265.44 0.38

Spark runtime Auto-generated DSL 131.69 0.14 208.44 0.14 326.59 0.16 444.34 0.14 561.01 0.14 677.45 0.13
Hand-written DSL 177.22 1.52 268.73 0.24 442.72 0.29 608.24 0.29 768.83 0.24 939.39 0.40
Hand-written Spark 117.75 1.24 186.86 1.56 286.40 1.58 384.19 1.38 482.51 1.93 579.88 1.54

Streams runtime Auto-generated DSL 1274.68 1.03 2509.74 1.09 4977.64 1.06 7443.37 1.08 9906.07 1.04 12369.67 1.00
Hand-written DSL 1401.68 1.20 2762.88 1.18 5476.11 1.20 8181.20 1.15 10886.18 1.15 13595.48 1.14
Hand-written SPL 1041.24 1.00 2063.17 0.98 4103.68 0.97 6143.75 1.00 8173.90 1.01 10195.93 1.01

Streams only Auto-generated 3382.75 0.25 5007.45 0.12 7385.10 0.98 9616.30 0.19 11018.85 0.18 12338.60 0.25
Hand-written 2691.5 0.13 3776.9 0.10 5887.65 0.12 7995.05 0.17 9677.60 0.15 11369.15 0.20

Streams+ Iterators Auto-generated 957.75 0.12 1788.00 0.08 3404.00 0.10 5395.80 0.28 7046.48 0.59 8761.28 0.13
Hand-written 774.45 0.10 1455.70 0.07 2846.55 0.09 4569.50 0.27 6014.65 0.34 7814.35 0.11

Table 5
Relative speedup of Mendeleev to Crucible and hand-written code over
Mendeleev.

Environment Mendeleev vs Crucible Manual vsMendeleev

Standalone 1.12× 1.30×
Spark 1.39× 1.15×
Streams 1.10× 1.22×

Table 6
Relative speedup of hand-implemented native runtimes overMendeleev.

Environment Native vsMendeleev

Streams Only 1.12×
Streams+ Iterators 1.09×

runtimes simultaneously. Four variants of the filtered analytic
are used: (i) Mendeleev-generated SPL, pulling all data out of
Accumulo and processing it entirely in InfoSphere Streams; (ii) An
equivalent Streams-only hand-written analytic; (iii) Mendeleev-
generated SPL with Accumulo Iterators to perform the GeoIP and
BoundingBoxFilter steps; and (iv) An equivalent hand-written

Streams with Accumulo Iterators implementation. The first two
variants perform the entire work of the analytic in Streams, while
the latter two implementations push the GeoIP and bounding
box filtering work into the Accumulo Iterator, and perform the
clustering calculations in Streams.
The performance gap between the auto-generated and hand-

written code is smaller here than when Crucible is used; on
average,Mendeleev’s code is only 1.1× slower than the equivalent
hand-written implementation. The full results for both makespan
and per-tuple latency are shown in the latter half of Table 4 and
Fig. 10. These results are summarised in the relative speedup of
Mendeleev to these hand-written implementations in Table 6.
In addition to assessing the performance of Mendeleev, these

results also highlight the value of a hybrid approach to analytic
execution: the hybrid Streams-Iterator approach is at least 1.5×
faster than a pure streaming solution. This performance increase is
not as a result of Accumulo Iterators being inherently faster than
Streams, but rather through the reduction in data passed over the
network, and the extra parallelism enabled by Accumulo’s Iterator
execution model.
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9. Conclusions & further work

In this paper we document: (i) A new abstract model for
the assembly and execution of hybrid analytics, based on a
semantically rich type system; (ii) A novel approach to goal-
based planning using this model, which requires little engineering
expertise from the user; (iii) A mechanism for performant,
scalable code generation for these analytics, integrating data across
heterogeneous on- and off-line platforms; (iv) An implementation
through a systemwhichwe callMendeleev and (v) demonstration
of the applicability of this technique through a series of case
studies, where a single interface is used to create analytics that
can be run simultaneously over on- and off-line environments;
(vi) Performance benchmarking that shows that Mendeleev-
generated analytics offer runtime performance comparable with
hand-written code.
Crafting scalable analytics in order to extract actionable

business intelligence is challenging. It requires both domain-
level and technical expertise, experience of tuning and scaling,
and supporting tools for analytic composition, planning, code-
generation and effective deployment. Few frameworks exist that
provide end-to-end solutions that address these challenges.
The research presented in this paper builds on the wishful-

search concept behind MARIO, yet at the same time allows the
discovery and composition of novel analytics. We believe it is the
first approach to target the execution of automatically generated
hybrid analytics in heterogeneous compute environments. The
performance penalty over hand-written and tuned analytics has
been shown to be a maximum of 1.3× in our experiments, which
we believe is an acceptable cost for an automated framework of
this type.
There are a number of avenues to be explored in future work.

One promising area of research is in the automated learning of
analytic design patterns. As aMendeleev instance is deployed over
an extended period of time, analysis of usage patterns may permit
the system to recommend to the user analysis for a given data
source, or to alter rankings based on those analytics users typically
deploy for a given query.
It would additionally be valuable to investigate an analytic

design approach with a shorter gap between generating and
validating an analytic, by demonstrating an example set of results
a user can expect to receive from candidate analytics before the
assembly is completed. This would necessitate some engineering
around the automated compilation and deployment of analytics
in an interactive timeframe, but could significantly aid a user’s
understanding of available plans.
Finally, there are currently a limited set of pre- and post-

conditions used to influence the planning process. We propose
modelling more advanced primitives (e.g., reductions or filters)
using these conditions, and exploring their impact on both the
usability and the expressivity of Mendeleev. In a related vein,
while it will likely never be possible to fully remove human
intervention from the process of generating these annotations, one
interesting avenue for further research would be the application
of machine learning classification techniques to the automated
extraction of the PE knowledge base. One of the key challenges
with this would be the automated creation of a coherent ontology
representing the domain in which the PEs function.
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