
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Bai, Ou, Jamshidi, Jafar, Kiraci, Ercihan, Williams, Mark A. and Galetto, Maurizio. (2017) 
Measurement strategy impact on dimensional inspection by portable camera-based 
measuring systems. Precision Engineering, 47. pp. 516-527. 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/85982  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP URL’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/77067683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/85982
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


1 
 

Measurement Strategy Impact on Dimensional Inspection by Portable 

Camera-based Measuring Systems 

 

Ou Bai1 Jafar Jamshidi2 Ercihan Kiraci2 

Mark A Williams2                  Maurizio Galetto1 

 

1 Politecnico di Torino, DIGEP (Department of Management and Production Engineering), Corso Duca 

degli Abruzzi 24, 10129 Torino, Italy 

2 Product Evaluation Technologies Group, WMG, University of Warwick, Coventry CV4 7AL, United 

Kingdom 

Abstract 

In dimensional inspection of large objects, portable measuring systems are greatly involved in a 

wealth of applications, such as automotive, motorsports and aerospace industries. Metris K-series 

Optical CMM (Coordinate Measuring Machine) system is one of the metrology solutions with 

relatively high accuracy and flexibility. This paper focuses on measurement strategy via 

repeatedly measuring a length using Metris K610 camera system. The paper proposes a link 

between measurement strategy and the system performance that can be achieved. The result of 

the statistical analysis are also given based on the uncertainty propagation of the CMM. 

Keywords:  Dimensional Measurement, Large Volume, Metrology, portable CMM, length 

inspection, uncertainty evaluation  

1. Introduction 

Dimensional inspection of large-sized objects are extensively involved in multiple stages in 

automotive industries, from design and prototyping up to in-line inspection supporting final 

assembly (Paul G Maropoulos et al. 2008, Jafar Jamshidi et al. 2010, Fiorenzo Franceschini et al. 

2014). Traditional Cartesian CMM (e.g. Gantry and Horizontal-arm CMMs) is one of the best 

metrology solutions to large volume dimensional metrology applications (GN Peggs et al. 2009), 

provided that they incorporate high accuracy and reliability of the measurement result (W. T. 

Estler et al. 2002). However, in some applications where the measurand dimensions are larger 

than defined working volume of the system. Or in cases where the measurand is difficult to move 

in the measurement frame, the objects must be measured in situ. For applications in such cases 

portable measuring systems are more appropriate. K-Series Optical CMM (KCMM) is a portable 

CMM that faces no mechanical constraints capable of fitting an entire vehicle in its measuring 

volume (about 17 m3 for K610 camera system, see Fig. 1). A tactile probe is used to locate a 

point on the surface of the measured object, then the 3D coordinates of the point are measured by 

the infrared cameras, based on triangulation principle. In order to focus the study on the 

metrological model of optical sensors, the probe is approximated by a single target in this paper. 

It is possible also to expand the measurement area by repositioning the system or the measurand 

(Edward M Mikhail et al. 2001, Heinrich Schwenke et al. 2002). The claimed (Nikon Metrology 
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NV 2016) volumetric accuracy is up to 100 µm within 6 meters depth of view, and single point 

accuracy is up to 67 µm. The indicated measurement uncertainty is expressed as the expanded 

uncertainty with a coverage factor of 2, according to the ISO 10360-2, VDI 2617 and ANSI / 

ASME B89.1.12M standards for acceptance of CMMs (International Organization for 

Standardization (ISO) 1993). It is stated (Nikon Metrology NV 2016) as well that the uncertainty 

over the whole FOV (field of view) is divided into three accuracy zones dependent on the depth 

of field (Fig. 2). 

 
(a) 

 
        (b) 

 
 

        (c) 

Fig. 1 Components of Metris K610 optical CMM: 

(a) camera array; (b) controller; (c) tactile probe 

Fig. 2 Accuracy zones of KCMM (K610 unit) 

The length inspection by KCMM is evaluated by measuring two endpoints that define the length. 

Given the 3D coordinates of two endpoints, the distance between these 2 points is calculated by 

Eq. 1. In practical use of KCMM, positioning the KCMM relative to the measurand is a non-

trivial job, in order to obtain a measuring layout with lowest uncertainty. For example, to 

measure the same distance between two points, the result measured in zone I is more accurate 

than that in zone III (Table 1). However, if the distance to be measured is longer than the 

diagonal of each zone, the distance inevitably needs to be measured in more than one accuracy 

zone. For length inspection in this scenario two measurement strategies exist (J. L. Crowley and 

Y. Demazeau 1993, A. Y. K. Ho and T. C. Pong 1996, R. Labayrade et al. 2005, A Weckenmann 

et al. 2009, Maurizio Galetto et al. 2015, Fiorenzo Franceschini et al. 2016) (Fig. 3): (I) the first 

strategy is to position one endpoint in zone I (i.e. more accurate zone) and the other one in zone 

II or III (i.e. less accurate zones).  

Table 1. Accuracy zones of K610 CMM 

Accuracy 

Zone Volumetric Accuracy Single Point Accuracy 

I 90µm + 10 µm/m 60µm + 7 µm/m 

II 90µm + 25 µm/m 60µm + 17 µm/m 

III 190µm + 25 µm/m 130µm + 17 µm/m 

By way of the triangulation magnification equation, the endpoint positioned at further distance to 

the camera focal point contributes more to the overall uncertainty of length measurement (UL), 
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compared with the closer endpoint; (II) the second strategy is to measure one endpoint in zone I, 

and move the KCMM to the opposite end of the inspected length, and then measure that endpoint 

in zone I again. This method requires an additional alignment process for the two instrument 

positions used, in order to express two measurements in a common reference system. The 

uncertainty of length measured by the second strategy is subject to the added uncertainty 

introduced in alignment between two local coordinate systems of KCMM (J. E. Muelaner et al. 

2010). The question this paper addresses is that, given the separated accuracy zones, what 

measurement strategy provides higher quality measurement results for length inspection (Fig. 3).   

 

 

Fig. 3 Illustration of two measurement strategies of length inspection (LAB) on a generic car using K610 

camera system (KCMM): in strategy (I), length between point A and point B is measured using one 

KCMM; in strategy (II), the length is measured from two positions of KCMM, provided overlapping 

area between both FOVs. 

The remainder of the paper is structured as follows: section 2 describes two methods to 

determine the uncertainty of length inspection; section 3 presents the metrology model of K610 

camera system by an experimental method; section 4 introduces the strategy of simulation and 

the experiment conducted on a Body-In-White (BIW) of a SUV car using KCMM, in PVCIT 

(Premium Vehicle Customer Interface Technologies) laboratory of WMG department, University 

of Warwick, UK. Section 5 discusses results obtained by simulation and experimental data, and 

finally, section 6 concludes this paper by summarizing the contributions and future research 

directions.  
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2. Two methods to determine the uncertainty of length measured 

Length inspection using K-Series Optical CMM is carried out by measuring 3D coordinates of 

two endpoints (point A and point B in Fig. 3). The distance between point A and point B 

represents the value of length to be measured. 

 𝐿𝐴,𝐵 = ‖𝑃𝐴, 𝑃𝐵‖ = √(𝑋𝐴 − 𝑋𝐵)2 + (𝑌𝐴 − 𝑌𝐵)2 + (𝑍𝐴 − 𝑍𝐵)2     (1) 

The uncertainty of the measured length can be derived from the uncertainty of coordinate 

measurements of both endpoints, based on these assumptions: (i) the Cartesian coordinates 

measured at a single point follow a multivariate normal distribution, 

i.e. 𝑷𝒊(𝑋𝑃𝑖
, 𝑌𝑃𝑖

, 𝑍𝑃𝑖
)~𝑁(𝝁𝑷𝒊

, ∑𝑷𝒊
) , where 𝝁𝑷𝒊

 and ∑𝑷𝒊
 are mean vector and covariance matrix, 

which can be estimated by the sample mean vector and sample covariance matrix respectively; 

(ii) Cartesian coordinates of two endpoints (i.e. 𝑷𝒊(𝑋𝑃𝑖
, 𝑌𝑃𝑖

, 𝑍𝑃𝑖
), 𝑖 = 𝐴, 𝐵) are independently 

distributed random variables; (iii) all the correction and systematic compensation have been done, 

so only the random variability of coordinates measurement is considered here. 

Two methods that propagate the uncertainties of the coordinates measurement into length 

measurement result are adopted in this paper—the Taylor Series Method (TSM) and the Monte 

Carlo Method (MCM) (Joseph M Calkins and Robert J Salerno 2000, IEC BIPM et al. 2008a, 

IEC BIPM et al. 2008b). 

2.1 Taylor Series Method (TSM) 

TSM is an analytical approach to propagate uncertainty and error, which is based on two main 

assumptions (H.W. Coleman and W.G. Steele 2009): 

 The adequacy of the formula by which the derived variable is expressed as a function of 

measured variables; 

 The distribution of derived variable is known, e.g., Gaussian or Student’s t-distribution, in 

order to obtain the value of coverage factor k. 

The distance between two endpoints is a derived variable by combining all the measured values 

of different variables on right hand side in Eq. 1, the combined standard uncertainty of length 

variable (𝑢𝐿𝐴,𝐵
) is thus derived by a first order Taylor Series Expansion formula (H.W. Coleman 

and W.G. Steele 2009): 

 𝑢𝐿𝐴,𝐵
= √(∇𝐿𝐴)𝑇Σ𝐴(∇𝐿𝐴) + (∇𝐿𝐵)𝑇Σ𝐵(∇𝐿𝐵)     (2) 

Where (∇𝐿𝑖)
𝑇 ≡ (

𝜕𝐿

𝜕𝑋𝑖
,

𝜕𝐿

𝜕𝑌𝑖
,

𝜕𝐿

𝜕𝑍𝑖
)𝑇 ,   𝑖 = 𝐴, 𝐵  is the gradient of L with respect to 

variables  (𝑋𝑖, 𝑌𝑖, 𝑍𝑖)
𝑇  , and Σ𝑖 ≡ [

𝜎𝑋𝑖

2 𝜎𝑋𝑖𝑌𝑖
𝜎𝑋𝑖𝑍𝑖

𝜎𝑌𝑖𝑋𝑖
𝜎𝑌𝑖

2 𝜎𝑌𝑖𝑍𝑖

𝜎𝑍𝑖𝑋𝑖
𝜎𝑍𝑖𝑌𝑖

𝜎𝑍𝑖

2

] , 𝑖 = 𝐴, 𝐵  is the covariance matrix 

of (𝑋𝑖, 𝑌𝑖, 𝑍𝑖)𝑇. In practice, ∇𝐿𝑖 and Σ𝑖 are evaluated by the sample mean and sample covariance 

of coordinates.  
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2.2 Monte Carlo Method (MCM) 

Rather than analytical method such as TSM, numerical methods such as Monte Carlo simulation, 

provide an alternative approach to uncertainty evaluation using sampling techniques. Such 

techniques are useful for validating the results obtained by TSM, as well as in the cases where 

the assumption made by TSM do not hold. To apply MCM, a distribution is assumed to each 

variable on the right hand side of Eq. 1, which has been stated above, and a number of iterations 

is run until a converged value for standard deviation of the derived variable 𝑠𝑀𝐶𝑀 is achieved, 

then 𝑢𝐿𝐴,𝐵
= 𝑠𝑀𝐶𝑀, meanwhile, the distribution of the derived variable is obtained as well. It 

needs to be mentioned that 𝑠𝑀𝐶𝑀 is the estimate of the combined standard uncertainty of 𝑢𝐿𝐴,𝐵
 . 

We do not need to have a perfectly converged value of 𝑠𝑀𝐶𝑀 to have a reasonable estimate of 

𝑢𝐿𝐴,𝐵
 . Once the 𝑠𝑀𝐶𝑀 values are converged to within 1–5%, then the value of 𝑠𝑀𝐶𝑀 is a good 

approximation of the combined standard uncertainty of the result. The level of convergence is a 

matter of judgment based on the cost of the sampling process and the application for 𝑢𝐿𝐴,𝐵
 . Once 

a converged value of  𝑢𝐿𝐴,𝐵
 is determined and assuming that the central limit theorem applies, the 

expanded uncertainty for the result at a 95% level of confidence is U = 2 𝑢𝐿𝐴,𝐵
(H. W. Coleman 

and W. G. Steele) . 

3. Metrology model of K610 camera system 

A KCMM system can be used for handheld and robotized 3D inspection, motion analysis and 

robot metrology. Regardless of the application, the measurement principle is the same. Three 

linear CCD (Charge-Coupled Device) cameras are placed in a linear-based layout, each of them 

measures one angle from optical center to the target point, three angles are integrated to localize 

the target point, based on triangulation principle (Fig. 4). 

 

Fig. 4 Triangulation method of point localization. 
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3.1 Technical parameters of K610 CMM 

 

Fig. 5 A generic model of 3-cameras system (in 2D). 

A generic model of the 3-cameras system (M. Galetto and L. Mastrogiacomo 2013, J. Caja et al. 

2015) is modeled in 2D as illustrated in Fig. 5. A virtual line is supposed to pass through the 

optical observation centers of the 3 cameras, with the middle camera numbered as C1, the left 

one numbered as C2 and the right one numbered as C3, respectively. A global coordinate system 

is established with the y-axis passing from camera C2 to camera C3, and the z-axis is 

perpendicular to y-axis, pointing backwards of the cameras’s FOV. The position of 3 cameras 

with respect to global coordinate system (GCS) is shown in Fig. 5, assuming the distance 

between two outer cameras is L, and the two outer cameras are placed symmetrically about the 

center camera. The local coordinate system (LCS) of each camera is shown in Fig. 6, where the 

sensor is aligned with y-axis and the target point is mapped by sensors of each camera onto the 

local y-z plane. The output of the sensor is one angle formed by the projection line that passes 

from the observation center to the target point, and the normal vector. The cameras are oriented  

towards a point 𝑃0(0,0, 𝐷0) in front of the center camera. With this layout, the X-coordinate of 

target point is determined by the center camera C1, while the Y and Z-coordinates are 

determined by the outer cameras C2 and C3 together (A. Lamallem et al. 2009).  

3.2 Localization scheme of 3D points 

The sensor readings from 3 linear CCD cameras are 3 angles (  𝜃1, 𝜃2 , 𝜃3 ) from each camera 

respectively. The Y and Z coordinates defined by 𝜃2  and 𝜃3  together, while X coordinate is 

defined only by 𝜃1alone. The relation between output (X, Y and Z coordinates) and the sensor 

readings (  𝜃1, 𝜃2 , 𝜃3  ) is shown in Eq. 3: 

GCS 
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𝑍 = −𝐿 (

1

tan(𝜙 − 𝜃2)
+

1

tan(𝜙 + 𝜃3)
)     

(3) 
 

𝑌 =
−𝑍

tan (𝜙 − 𝜃2)
−

𝐿

2
 

 
𝑋 = −𝑍 ∗ tan(𝜃1)    

where 𝜙 = atan (
𝐷

𝐿 2⁄
) is a constant angle determined by D and L. Given a generic model of the 

camera system and pressumed uncertainty value (normal distribution, standard deviation = 

1/3600 degree, i.e. 1 second) of angular sensor (Rene Wackrow et al. 2007, Jody E Muelaner et 

al. 2009), a simulation as illustrated in Fig. 7 was run by building the camera model with 

following parameters (Table 2): 

 

 

Table 2. Camera model parameters 

Parameter name: Parameter value: 

L 1000 mm 

D0 6000 mm 

FOV ± 16.70 degrees 

sigma 1 arc second 
 Fig. 6 a generic model of a linear CCD sensor 

 

The simulation comprised of a population of 100,000 points uniformly distributed in a space 

with 6 m × 6 m × 6 m in three dimensions, and approximately 10 percent of the points 

(distributed in a simulated working volume of 17 m³) are covered by 3 cameras all together, 

these 10 percent points formed a pyramidal shape shown in Fig. 7. 

 

 

 
 

Fig. 7 Pyramidal FOV of KCMM 

LCS 
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3000 repeated coordinates measurements of each point were run and the standard uncertainty of 

each X, Y and Z-coordinate was estimated based on the simulated 3D coordinates, the 

uncertainty map of X, Y and Z-coordinate is shown in Fig. 8-a, 8-b and 8-c respectively. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Standard deviation (unit in color bar: mm) of (a) x-coordinate (b) y-coordinate (c) z-coordinate, 

respectively (unit: mm), in FOV, from simulation. 

 

The generic camera model is a first approximation of the KCMM system, this model is quite 

useful to simulate the uncertainty field of a single point measurement, and the result is validated 

by the experiment data, to the extent that the uncertainty of a single point measurement in the 

measuring volume is related to the z-coordinate of that point. This model is subject to a bias from 

the true KCMM model. For commercial reasons the true values of camera parameters are not 

released by the manufacturer. A more realistic model can be defined if such parameters could be 

given by the instrument manufacturer. Even at its current state the virtual model is useful in 

planning a measuring scheme. Given the distribution of uncertainty map, an optimal layout of 

experiment can be planned in advance of digitization process (Fiorenzo Franceschini et al. 2015). 

 

4.  Proposed strategies for length inspection, simulation and physical experiment  

4.1 Length inspection by first strategy 

Length inspection using one single position for KCMM system is carried out by measuring the 

Cartesian coordinates of two endpoints of an artefact (e.g. a calibrated long bar). The length 

value is the distance between the two endpoints, and the uncertainty of measured length is 

determined by the uncertainty of measurements of Cartesian coordinates (see Eq. 2). A repeated 

simulation of Cartesian coordinates’ measurements is carried out, in the following steps: 

Step 1: A long bar (with pre-defined nominal length, e.g. 5000 mm) is randomly placed in the 

FOV, with one endpoint placed in accuracy Zone-I (see Fig. 2) while the other placed in 

accuracy Zone-II or Zone-III, according to the nominal length;  

Step 2: 300 repeated measurements are simulated for both two points, in order to demonstrate the 

uncertainty field of both. The length measurement result is determined by Eq. 1 and the 

uncertainty of that is calculated by i) TSM and ii) MCM; a graphical uncertainty field is 

illustrated in Fig. 9, (b) for point A and (c) for point B; 

Step 3: 10,000 simulations of the same bar with different positions and directions are replicated. 
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Step 4: The nominal length of bar is changed and steps 1 to 3 are repeated. The nominal length 

ranged from 5000 mm down to 2000 mm. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 9 Demonstration of simulation scheme using one KCMM (coordinate system unit: mm): 

(a) the coverage of FOV of one KCMM; (b) graphical uncertainty field of point A (300 

repeated simulations); (c) graphical uncertainty field of point B (300 repeated simulations).  

 

4.2 Length inspection using two KCMM cooperatively 

In the cases where the variability of coordinates of one endpoint dominates that of the other, it is 

reasonable to measure one endpoint in the more accurate zone of the instrument, while doing the 

same to the other endpoint. Afterwards, the measured 3D coordinates must be expressed in the 

same coordinate reference system. Therefore, overlapping area between two positions of the 

instrument must be inspected, in order to align one coordinate system to the other. The steps of 

simulation are listed as follows: 

Step 1: A long bar with pre-defined nominal length (e.g. 5000 mm) is placed at a fixed position, 

where the midpoint is located at origin of the coordinate system, and the direction of the 

bar stayed parallel to the y-axis; 

Step 2: Two KCMMs are placed optimally, to put one endpoint (namely point A) of the bar in 

the first KCMM’s FOV, while putting the other endpoint (namely point B) in the second 

KCMM’s FOV; 300 repeated coordinates measurements of each endpoint are simulated 

by corresponding KCMM, to generate an uncertainty field for each endpoint; 
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Step 3: 4 randomly selected points (the reason for selecting 4 points is explained in section 4.3) 

in the overlapping area of both KCMMs’ FOV are measured. Then the linear 

transformation from the second KCMM to the first KCMM are calculated through 

Procrustes algorithm; 

Step 4: the uncertainty of length of the bar is calculated by i) TSM and ii) MCM, based on the 

uncertainty of coordinates measurement of point A by the first KCMM and point B 

transformed to the first KCMM’s coordinate reference system; 

Step 5: change the relative positions and orientations between two KCMMs, repeat step 1 to step 

4; 

Step 6: The nominal length of bar is changed and steps 1 to 3 are repeated. The nominal length 

used range from 5,000 mm down to 2,000 mm. 

The simulation scheme using two KCMMs is illustrated in Fig. 10. 

4.3 Alignment scheme for the second strategy 

The alignment is done by measuring a number of points (at least 3 points) located in an 

overlapping area of two different positions of instrument. Then a best-fitting algorithm is run to 

match the measurements of overlapping points from the first position of instrument and those 

from the second position. The graphical illustration of the best-fitting process is shown in Fig. 11 

and 12. With the instruments in their individual coordinate systems the location of point 4 

relative to point 1 is not known. By best fitting the common (nominal) points using a least 

squares minimization algorithm instrument position 2 can be located relative to instrument 

position 1. All measured points are transformed with the instrument positions from which they 

were measured. This locates point 4 at the correct distance from point 1 and instrument position 

2 at the correct position relative to instrument position 1. This scheme is shown in Fig. 12 (b) (J. 

E. Muelaner et al. 2010). 
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(a) 

 

(b) 

 

(c) 

Fig. 10 Demonstration of simulation scheme using two KCMMs: (a) relative positions and 

orientations between two KCMMs and measured long bar; (b) graphical uncertainty field 

of point B, based on 300 repeated measurements by the second KCMM and transformed in 

the first KCMM’s coordinate system; (c) graphical uncertainty field for point A, based on 

300 repeated measurements by the first KCMM. 
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(a) 

 
(b) 

Fig. 11 (a) Example of 2-dimensional measurement of 4 points using 2 instruments; (b) Measured 

points with simulated “uncertainty fields” around them. (adapted from (J. E. Muelaner et al. 2010) , 

with permission) 

 

 

Fig. 12 Instrument position 2 located relative to instrument position 1 by best fitting the common 

points. (adapted from (J. E. Muelaner et al. 2010), with permission) 

 

A simulation with different number of overlapping points was run to demonstrate the relation 

between the standard deviation of length (combined measurement by TSM method) and the 

number of overlapping points measured. The result of this experiment is shown in Fig. 13.  The 

algorithm adopted in this paper is the Procrustes algorithm (© 1994-2016 The MathWorks, Inc.), 

which determines a linear transformation (translation, reflection, orthogonal rotation, and scaling) 

of the points in the matrix Y (coordinates matrix of 3D or 2D points, so is matrix X) to best 

conform them to the points in the matrix X.  The "goodness-of-fit" criterion is the sum of 

squared errors (John C Gower and Garmt B Dijksterhuis 2004, George AF Seber 2009).  
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Fig. 13 Standard deviation of length (combined measurement by TSM method) versus nominal length 

(with different number of points in the overlapped metrology area, from 4 points to 10 points). 

 

Fig. 13 illustrates no significant improvement (i.e. lower uncertainty in length measurement) 

when the number of overlapping points are increased from 4 to 10, in order to run best-fitting 

process between two positions of instrument.  Therefore, to reduce the measurement cost and 

computational load, 4 points in the overlapping area are used to run best-fitting algorithm.  

4.4 Case study 

The experiment was conducted in the PVCIT Laboratory, the measured artefact was the BIW of 

a sports utility vehicle (SUV), which was fixed on a stable steel fixture. The approach employed 

in this work involves the use of kinematic nests, shown in Fig. 14, to allow the repeatable 

positioning of the probe involved in KCMM system.   

 

(a) 

 

(b) 

Fig. 14 (a) Aluminum cones involved in the experiment to host (b) 

SpaceProbeTM for K610 camera CMM. 
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The layout of experimental scheme is shown in Fig. 15, in which 7 kinematic nests are divided 

into 2 groups: (i) point A and point B are taken as the endpoints of the length to be measured a; 

(ii) point 1 to point 5 are regarded as overlapping points measured to align two local coordinate 

systems of KCMM.  

 
 

 

Fig. 15 Layout of the experimental scheme of on BIW of a SUV car. 

 

 

5. Result discussion  

The results of simulation and experiment are discussed in the following sections.  

 

5.1 Simulation result 

A series of 7 length values (from 5000 mm to 2000 mm, with 500 mm decrements) have been 

used as nominal values to run length inspection simulation. In simulations by the first strategy, 

1000 different positions and directions of each measured length are simulated (see Fig. 16-a). A 

group of 300 repeated measurements is carried out at each position and direction. In simulations 

by the second strategy, 7 different relative positions and orientations of two KCMMs are adopted 

for each measured length (see Fig. 16-b). Furthermore, at each position and orientation of 

KCMMs, 100 different sets of overlapping points are used (i.e. 4 randomly selected points in the 

overlapping area, measured in order to align between the two KCMMs’ coordinate reference 

systems). The purpose here was to investigate the effectiveness of alignment resulting from 

points’ selection in the overlapping area. 

Point A 

Point 3 

Point 2 

Point 1 

Point 4 

Point B 

Point 5 
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(a) 

 

(b) 

Fig. 16 Demonstration of simulation scheme: (a) simulation using one KCMM, 1000 different directions 

of the measured bar (bar in blue color with nominal length 5000 mm) are plotted, one endpoint of the bar 

is placed at the plane z=-1500, while the other endpoint is placed randomly; (b) simulation using two 

KCMMs, four different tilt angles of KCMMs are plotted (tilt angle changes from 0° to 90°). 

Simulated results from single KCMM case are shown in Fig. 17, in which the two methods 

(‘TSM’ and ‘MCS’ methods) of uncertainty propagation are compared. This shows no 

significant difference between the two methods. This verifies the effectiveness of the proposed 

method described by Eq. 2. The combined uncertainty of length measurement (||AB||) is plotted 

in Fig. 17 for different values of nominal length. Each boxplot represents the dispersion of 

uncertainty of length among 1000 different positions and directions of the measured artifact. It is 

shown that the median value of uncertainty of length increases with the nominal length, so does 

the dispersion of uncertainty. This is because the uncertainty of endpoint at further distance from 

the KCMM’s cameras dominates that of the other endpoint. Thus the UL increases as the 

distance ||AB|| increases. Specifically, considering the sixth boxplot on the left hand side as an 

example, this represents the dispersion of UL about the artifact whose nominal length 4,500 mm, 

and the maximum and minimum uncertainty are approximately 0.28 mm and 0.19 mm, 

respectively. 

Simulated results from two positions of KCMM are shown in Fig. 18 and Fig. 19. In Fig. 18, the 

dispersion of UL by two KCMMs is plotted against the relative positions and orientations of the 

two KCMMs with the artifact. Each boxplot represents the dispersion of uncertainty among 100 

different random selection of overlapping points to do alignment between two local coordinate 

systems. It can be seen that, the median value of uncertainty decreases with the tilt angle of the 

KCMM with respect to the artifact, so does the dispersion of uncertainty. It can be explained that, 

as the tilt angles of the two KCMMs increases, more overlapping area is covered by both 

KCMMs, thus the effectiveness of alignment increases, resulting in smaller uncertainty in 

alignment (J. E. Muelaner et al. 2010). Besides, it can be concluded that there is no significant 

difference between uncertainty dispersion when the tilt angle reaches 60° and higher. 

Fig. 19, shows the dispersion of UL against different nominal lengths, given the same tilt angle 

(60°) of two KCMMs. Each boxplot represents the dispersion of uncertainty among 100 different 

random selection of overlapping points to run alignment algorithm. It is shown from Fig. 19 that, 

the median value of UL increases as the nominal length increases, this can be explained by the 

0° 

90° 

90° 
0° 
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fact that, as the nominal length increases, the overlapping area between two KCMMs is farther 

from both KCMMs, which results in a higher uncertainty in measuring those overlapping points 

from both KCMMs, and in a higher uncertainty of coordinates of the transformed endpoint as a 

result.  

 

(a) (b) 

Fig. 17 Simulated results by single KCMM. 

 

 
 

Fig. 18 Uncertainty of length (with nominal length 3000 mm) simulated using 

two positions of KCMM, against the tilt angle of KCMM relative to the 

measured length. 
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Fig. 19 Uncertainty of length simulated using two positions of KCMM 

(with 60° tilt angle), against different nominal lengths. 
 

 

(a) 

 

(b) 

Fig. 20 Comparison between two measuring strategies: (a) nominal length of 2000 mm; (b) nominal 

length of 5000 mm. 

A comparison between two measurements schemes is shown in Fig. 20, based on simulated 

results of two cases: i) nominal length 2,000 mm and ii) nominal length 5,000 mm, in both cases 

the tilt angles of two KCMMs are 60°. It can be seen from Fig. 20 that, in both cases, the UL by 

single KCMM (namely strategy-I) is less spread than that by two KCMMs (namely strategy-II); 

meanwhile it is noteworthy that, strategy-II achieves lower uncertainty than strategy-I in the 
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second case where nominal length to be measured is 5,000 mm, both in terms of median value 

and the lower limit (i.e. the best performance can be achieved) of the uncertainty.  

As a summary, strategy-I achieves better performance than strategy-II in length measurement, in 

the sense that the dispersion of uncertainty is lower in any cases. However, when the nominal 

length to be measured reaches the capability threshold of single KCMM (e.g. 5,000 mm), 

strategy-II is more appropriate, in order to achieve lower UL. It has to be mentioned that, to 

achieve the best performance from strategy-II, the overlapping points for alignment need to be 

optimally selected, e.g. a proper number of overlapping points are used and they are opportunely 

positioned between the common FOV of two KCMMs. 

5.2 Result from experiment data 

The experimental scheme for length inspection is illustrated in Fig. 21. All the 7 points are 

measured repeatedly (15 replications each point) from two positions of KCMM (namely 

KCMM1 and KCMM2), and 4 different scenarios are considered in the experiment: i) ||AB|| (i.e. 

the length between point A and point B) is measured by KCMM1 alone; ii) ||AB|| is measured by 

KCMM2 alone; iii) point A is measured by KCMM1, while point B is measured by KCMM2 

and transformed into KCMM1’s coordinate system; iv) point B is measured by KCMM2, while 

point A is measured by KCMM1 and transformed into KCMM2’s coordinate system. The 

scenarios i) and ii) represent the cases that KCMM measure the length alone, while scenarios iii) 

and iv) represent the cases that two KCMMs do measurement cooperatively. The measurement 

result is listed in Table 3. 

Table 3 Coordinates measurements by strategy-II (unit: mm). 

 case (i) case (ii) case (iii) case (iv) 

Length 

||AB|| 

best 

estimation 
1704.518 1704.481 1704.462 1704.491 

combined 

uncertainty 
0.034 0.016 0.045 0.048 

Scenarios (i) and (ii) present less uncertainty of measured length than those of scenarios (iii) and 

(iv), which agrees with the simulated result (see Fig. 20). Between the first and second scenarios, 

the second one achieves less uncertainty because the measured points are closer to KCMM2 than 

to KCMM1, as is illustrated in Fig. 21.  



19 
 

 

Fig. 21 Experimental scheme demonstration. 

6 Conclusion   

This paper focuses on the uncertainty characteristics of a class of camera-based measuring 

systems (i.e. K-series CMM from Nikon Metrology) and discusses a metrology model of KCMM 

by an experimental method. Furthermore, the paper describes two methods to propagate the 

uncertainty of length inspection (Monte-Carlo Simulation and Taylor Series Method) based on 

the uncertainty propagation of coordinates measurement. A simulation scheme is proposed to 

compare two different strategies of conducting point to point (length) inspection. The simulated 

result is justified by an experiment that was carried out on an SUV body.  

Camera-based measuring systems such as K-series CMM system measures a spatial point based 

on triangulation principles. This results in a depth-dependent uncertainty field of KCMM. As a 

consequence, two strategies of length inspection come into being, for measuring with portable 

instruments. Specifically, the first strategy is to cover the measured length in the FOV of a single 

KCMM, while the second strategy is to split the measured length in different FOVs of two 

KCMMs, and the length is measured by merging the results by two KCMMs.  
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According to simulated and experimental results, the first strategy achieves smaller UL 

compared to the second one, in a wide range of scenarios. However, the second strategy can 

achieve better performance in the best cases, by optimally selecting those points for registering 

two sets of local measurements. 

Future research could focus on the potential of the measuring strategy that involves two or more 

measuring systems cooperatively, as is discussed in this paper. Great attention and dedicated 

methods may be required to coordinate and cooperate multiple systems together, in order to 

achieve a better metrological performance.  
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