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Abstract
The Barrett–Cavalcanti–Lal–Maroney (BCLM) argument stands as themost effectivemeans of
demonstrating the reality of the quantum state. Its advantages include being derived fromvery few
assumptions, and a robustness to experimental error. Finding the best way to implement the argument
experimentally is an open problem, however, and involves cleverly choosing sets of states and
measurements. I show that techniques from convex optimisation theory can be leveraged to
numerically search for these sets, which then form a recipe for experiments that allow for the strongest
statements about the ontology of thewavefunction to bemade. The optimisation approach presented
is versatile, efficient and can take account of thefinite errors present in any real experiment. I find
significantly improved low-cardinality sets which are guaranteed partially optimal for a BCLM test in
lowHilbert space dimension. I further show thatmixed states can bemore optimal than pure states.

1. Introduction

The ontological status of the quantum state has long been a central question in foundational physics. If it is ontic,
and therefore a true part of physical reality, then themany counterintuitive features of quantum theory (QT)
remain opaque. The idea that it is epistemic—that is, reducible in essence to a state of knowledge—is an attractive
proposition that promises to dissolve some of these issues [1]. For instance, the instantaneous and discontinuous
‘collapse’ of thewavefunction is arguablymuchmore naturally thought of as a Bayesian update of knowledge
than as a process governed by dynamical physical laws. There are a plethora of other canonically ‘quantum’

phenomena that have an appealing explanationwhen adopting an epistemic interpretation—see for example
[2]. In recent years, there has been aflurry of progress towards understanding the feasibility of the so called ‘ψ-
epistemic’ programme [3], culminating in experimental tests [4]. Here I improve on the design of such
experiments, so that tighter restrictions on possibleψ-epistemic theoriesmay be determined in the laboratory.

In the ontological-models framework, where these notions aremade precise, the preparation of a quantum
state fñ∣ is associatedwith the (generally random) selection of an ontic state l Î L, with the appropriately
normalised distribution of probability for the various states beingwritten m lf ( ).Λ is the space of ontic states,

and I denote the subset Lf as the support of mf—members of which are said to be ‘compatible’with the

preparation. A projectivemeasurement operator y yñá∣ ∣, on the other hand, is associatedwith a set of
conditional probabilities x y l( ∣ ) known as a response function. In the full framework, there are also stochastic
maps onΛwhich represent, e.g. unitary transformations, but it will not be necessary to consider these here.

In order to constitute amodel ofQT, the following conditionmust bemet

ò m l x y l l y f= á ñf ( ) ( ∣ ) ∣ ∣ ∣ ( )d . 12

The ontic stateλ, therefore, stands for a variable sufficient to screen off the preparationμ from themeasurement
ξ. As long as (1) is satisfied, tracing over the ontic states leaves the ‘correct’ conditional probabilities à la the Born
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rule.Many such ontologicalmodels are possible, and theymay be classified according to certain properties of the
μ and ξ. Although couched in the older terminology of ‘hidden-variables’, one of themost important such
classifications is Bell’s definition of locality [5], fromwhich he derived an experimentally testable inequality able
to separate certain predictions ofQT fromall possible local ontological-models [6]. Bell was therefore perhaps
thefirst to show that a no-go theorem can provide positive insight intowhat an ontologicalmodel can be.
Importantly, Bell’s inequality wasmade robust to experimental error [7], and has nowbeen subject to very strict
tests [8–10]. SinceQT couldwell be false, theoretical proofs which rely on quantumpredictions do not establish
(for example) the non-locality of nature itself. Experimental tests are therefore highly important: since they can
indeed establish such features in a theory independentmanner.

More recent work divides the ontologicalmodels into thosewhere thewavefunction is ontic

Ç y fL L = Æ " ¹y f (distinct preparations do not overlap), from thosewhich are not-ontic, or epistemic

Çy f$ ¹ L L ¹ Æy f: (there is at least one pair of distinct preparations that overlap). Pusey, Barrett and
Rudolph (PBR)proved a theorem that theoretically ruled out the subset of epistemicmodels where the
preparation of two independent systems can be assumed to be represented by the product m m´1 2 [11]. There
are two reasonswhy the epistemic view cannot be immediately dispensedwith, however. First, even in the
idealised case, onemay always instead drop the assumption of preparation independence (PI). Indeed,
constructive examples ofψ-epistemic theories exist [12–14]whichmust therefore dodge PBR’s no-go theorem
in this way. Second, the finite precision of any real experiment, including a recent one performed in an ion trap
[15], mean that only a strict subclass of epistemicmodels subscribing to PI are ever experimentally falsified—the
‘wriggle room’ offered by laboratory imperfectionsmakes it possible to retain bothPI and an epistemic view of
nature. Subsequent theoretical studies have argued for the reality of the quantum state by imposing further
assumptions on the set of ontologicalmodels [16–18]—for a comprehensive review, see [3].

Maroney introduced a classification of ontologicalmodels which generalises the ontic/epistemic dichotomy
[19], so that one can begin to constrain the extent towhich amodelmay be epistemic. Crucially,Maroney’s
theoremdoes not rely on PI, and thus its implications cannot be escaped by discarding it.Maroney’s idea, later
made noise tolerant by Barrett et al (BCLM) [20], springs from a very particularmotivation forψ-epistemicism:
namely, the impossibility of discriminating non-orthogonal quantum states. InQT, this feature depends on the
quantity

w y f y fñ ñ - - á ñ(∣ ∣ ) ≔ ∣ ∣ ∣ ( ), 1 1 ; 2Q
2

ameasure of the overlap of the quantum states inHilbert space. It is related to themaximumprobability with
which the two states can be distinguished in a single shot experiment [21]. An analogous quantity

òw m l m l m l m l l- -y f y f( ( ) ( )) ≔ ∣ ( ) ( )∣ ( ), 1
1

2
d 3C

applies to the underlying ontologicalmodel: itmeasures the extent towhich two preparations ‘overlap’ in the
ontic statespace. A partiallyψ-epistemicmodel is defined by the relation:

y f
w m l m l

w y f
y f

ñ ñ
á ñ ¹y f( ) ≔

( ( ) ( ))
(∣ ∣ )

∣ ( )k ,
,

,
, 0. 4

C

Q

The proportionality constant y f( )k , will be themain subject of our study. If y f =( )k , 0, there is no overlap
of distributions in the ontic statespace, irrespective of the ‘closeness’ of the quantum states they represent: the
model isψ-ontic. On the other hand, since it is required that w m l m l w y fñ ñy f( ( ) ( )) (∣ ∣ ), ,C Q [15], amodel
with y f =( )k , 1, is said to be ‘maximallyψ-epistemic’.

The remainder of this paper is structured as follows: in section 2, I provide an operational interpretation for
intermediate values of y f( )k , ; in sections 3 and 4 I recapitulate the BCLMargument and describe the search for
optimal experimental implementations as a nonlinear optimisation problem. I present an algorithm for this
purpose in section 4.1, alongwith several numerical results in section 5. There I showhow the algorithm can
tailor the design of an experiment by accepting the typical error rate as input (in section 5.1). Conclusions are
drawn at the end of the paper, and the appendices contain details of (a) an algorithmic subroutine, (b) amixed-
state result that performsmore optimally than any known set of pure states of the same size, and (c) algorithm
runtime statistics.
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2.Degrees of epistemicness

The task of discriminating fñ∣ from yñ∣ in a single shot has aminimumprobability ofmaking an error (i.e.
guessing thewrong state) given by = w

P ;Q
error

2
Q relating to the case where onemakes use of the bestmeasurement

available under the constraints set byQT [22]1. A hypothetical omniscientmeasurement is described by a
continuous set ofDirac delta functions x l l d l l¢ = ¢ -( ∣ ) ( ): it strongly violates the aforementioned
constraints and reveals complete and perfect information aboutλ. Such ameasurement, which is the ‘best’ that
is logically possible, has an error probability

w
y f

w
y f= = =¥ ( ) ( ) ( )P k k P

2
,

2
, . 5C Q

Q
error error

y f( )k , therefore represents the improvement in state-discrimination error-probability enjoyed by an
omniscient observer, comparedwith the observer whom is constrained by quantummechanics. y f =( )k , 1
implies that there is no improvement at all, since there is nothing ‘extra’in reality to distinguish the
preparations. y f <( )k , 1, on the other hand, implies an improvement due to the increased reality of the
quantum states. This situation necessitates a certain property of the response functions in the ontologicalmodel
termed ‘deficiency’ byHarrigan andRudolph [23]. Deficiencymeans ameasurement of y yñá∣ ∣will respond to
ontic statesλwhich are not compatible with my. If y f =( )k , 0, an ontologicalmodel ofQTmust bemaximally
deficient—that is to say, the inequality

ò òm l x y l l m l x y l l y f= á ñf f
L L Ly

( ) ( ∣ ) ( ) ( ∣ ) ∣ ∣ ∣ ( )
⧹

d d 62

will be saturated. A fuller discussion of deficiency is given in [24].

3. Bounds on y f( )k ,

BCLMshowed how y f( )k , can be boundedwithout relying on PI [20]. InHilbert space dimension d, consider
a reference state ñ∣c alongwith a set of n states y= ñ ={∣ } i i

n
1. Consider further a set of projective operators

= ñá = ¼ = ¼ - ={∣ ∣ } ijk ijk i n j i k; 1 , 1 1, 1, 2, 3 , such that associated to each pair of states
y yñ ñ{∣ ∣ },i j in  , there is a triple of orthogonal projectors ñá ñá ñá{∣ ∣ ∣ ∣ ∣ ∣}ij ij ij ij ij ij1 1 , 2 2 , 3 3 in that define a

three-outcomemeasurement.Wewillfind it useful to define y yá ñ + á ñ + á ñ≔ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ij ij ij c1 2 3ij i j
2 2 2, which

is ameasure of the antidistinguishability of the triple of states y yñ ñ ñ∣ ∣ ∣c, ,i j . This concept is at the heart ofmany
ψ-ontology theorems: when = 0ij the triple is said to be perfectly antidistinguishable, and then the
measurement ñá ={∣ ∣}ijk ijk k 1,2,3 will conclusively exclude (in a single shot) the possibility that one of the triple of
states was prepared [25]. Caves, Fuchs and Schack have derived the necessary and sufficient conditions for
perfect antidistinguishability (which they call PP-incompatibility) of a triple of states, which depend only on the
three inner products between pairs in the triple [26].

Next, define y≔ ( )k k cmin ,j j0 . Then, if QTpredictions are correct, the relation

å
å w y

+

ñ ñ
>

(∣ ∣ )
( )


k

c

1

,
7

i j ij

i Q i
0

follows from (4) and from the Bonferonni inequality, as BCLM show [20]. The remainder of this paper is
concernedwith finding small  and such that if QT is approximately correct, theywould lead to the lowest
upper bound on k0. An upper bound k x0 implies that there exists at least one state in  which has a degree of
epistemicness with respect to c no greater than x. Onemay optionallymake additional assumptions to
extrapolate this to a stronger claim: for example, Lipschitz continuity [3]would require that
y f y f"( ) k x, , . In the course of our search, wewill limit ourselves tofinite values for d theHilbert space

dimension and n the number of states, considered here as experimental resources to be spent frugally.

3.1. Existing families of states
Before presentingmy results below, it is prudent to survey currently available solutions the problemwhichwill
serve as benchmarks for our algorithmic approach. BCLM supplied for every d 4 and also power prime, a set
of =n d2 states, satisfying = " i j0 ,ij which leads to the bound <k d20 [20].When d 4 is not power
prime, their results lead to the bound < -( )k d4 10 . Relaxing the need for exact antidistinguishability
enabled them tofind k 0.950 for = =d n3, 9. Next, Leifer showed an exponential decay in d (for d 3) by
using a set of = -n 2d 1Hadamard states [27]: this achieves the bound <k d4 2d

0 [28]. Branciard provided a
non-constructive proof that - -( ) ( )k n8 d d

0
3 2 , which displays a decay in n for any d 4, as well as a number

1
When referring tominimum error distinction probability, we assume throughout that there is no prior information available to the state

discriminator.
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of constructive solutions [28].Where these previous results provide bounds on k0 for low n and d, the approach I
present belowwas able tomatch or better the bound. The best bound achieved experimentally at the time of
writing is ⪅k 69%0 [4]. Achieving k 50%0 would seem like the nextmajormilestone, where the classical
overlap is doing less than half of the necessary work in explaining the indistinguishability of non-orthogonal
quantum states.

4.Optimisation

Wewish to solve

å
w y

y y

+

å ñ ñ
á ñ = = ¼
á ñ = = ¼ = ¼ =
á ñ = á ñ = á ñ = = ¼ = ¼

´

>

(∣ ∣ )
∣
∣
∣ ∣ ∣ ( )



  c

i n

ijk ijk i n j i k

ij ij ij ij ij ij i n j i

minimize
1

,

subject to 1 1,

1 1, , 1, , 1, 2, 3

1 2 1 3 2 3 0 1, , 1, , . 8

i j ij

i Q i

i i

Here all optimisation variables are considered as unnormalised vectors in d, with the necessary normalisation
and orthogonality conditions shown explicitly above as constraints. An analytic, global solution to this problem
seems intractable: but howdifficult is the numerical optimisation problem at hand? Anaive answer is found by
counting the number of real parameters necessary to describe a solution to the problem.One can do better than
simply taking the real and imaginary components of each vector, since some of the constraints imply these
parameters are not independent. For example, the hyper-spherical parameterisation of pure states requires only
-d 1polar angles and d− 1 phase angles [29] (making 2d− 2 in all), with normalisation constraints

automatically satisfied. A projectivemeasurement is defined by a d×d unitarymatrix: in close analogy to the
argument above concerning states, a unitarymatrixmay be parameterised by -d 12 angles [29], and describes
an orthonormalmeasurement basis by construction. Thus, evenwith a smart parameterisation onemust solve a

- + - -( ) ( )( )d n d n n2 2 1 22 2 dimensional optimisation problem.
Various heuristics can informour search. For example, tomake each y ñ∣ i as close as possible to ñ∣c , while at

the same timemaking each state far from all of the others so that they can be (approximately) anti-distinguished.
The objective function is nonlinear, non-convex and is pockedwith local optima: gradient descentwill therefore
most likely get ‘stuck’ in a feasible regionwith sub-par performance. Brute forcemethodswould be intractable:
note that, on a coarse grid dividing each angle into only g discrete values, onemust evaluate the objective
function g36 times in the problem instance of = =d n 3. Global approaches include simulated annealing,
particle swarm and associated techniques. But amore powerful approach can be implemented by capitalising on
a specific structure of the problem.

4.1. Exploiting convexity
Onemay ‘lift’ the problem from a search over the set of n statevectors  to the set of n densitymatrices

r= { } i i and from the set of -( )n n3 22 projective operators to the set of the same number of positive
operators = { } Eijk ijk. Let us take amoment to interpret what thismightmean. A positive operator valued
measure (or POVM) is a set of positive operators that sum to the identity operator. It constitutes themost
general description of a quantummeasurement. Likewise, amixed state (being anHermitian, trace-one
operator) is themost general description of a quantum state. If we interpret amixed state as a propermixture of
other states, then the corresponding preparation in the ontologicalmodel is the random selection of one of a
number of preparations, each itself a random selection ofλ. See figure 1.

The following generalisations of the quantumoverlap and the Born rule

w y w r r r rñ ñ  = - -y(∣ ∣ ) ( ) ∣∣ ∣∣ ( )*c , , 1
1

2
, 9Q i Q c c ii

y rá ñ ∣ ∣ ∣ ( ) ( )ijk Etrace 10c ijk c
2

share an important property: they conserve theirmeanings as twice theminimumerror discrimination probability
[21], and prepare-measure probability (respectively). ∣∣ ∣∣*• is the nuclear norm (or sumof singular values).
Derivative notions such as antidistinguishability ij therefore also inherit theirmeaning correspondingly.With
the generalisations in place, we can therefore write the optimisation problem as

4
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å
å

r r r

r r

r
r

+ + + + + +

- -

+ + =

=

´

>
( )

∣∣ ∣∣

( ) ( )

*

  

 






E E E

E E E

E

minimize
1 trace

1

subject to

0

0

trace 1. 11

i j ij i ij j ij c ij ij ij

j c j

ij ij ij

ijk

i

i

1 2 3 1 2 3

1

2

1 2 3

Here M 0 denotes thatM is a positive semidefinitematrix. ijk are small error parameters to be discussed
shortly—the readermay temporarily assume these to be zero. Recall that a function ( )f x is convex iff

l l l l+ - + -( ( ) ) ( ) ( ) ( )f f fx x x x1 11 2 1 2 , and that a set  is convex iff
l lÎ  + - Î( ) x x x x, 11 2 1 2 for l Î [ ]0, 1 . Call a problem convex if it involvesminimising a convex

function over a convex set. Such problems exhibitmany convenient features: if a local optimumexists, it is also a
global optimum. Efficient algorithms exist to solve convex problems. Although (11) is not a convex problem,
notice that the objective function is linear (hence convex) in the set ofmeasurements when the states are fixed.
Furthemore, when themeasurements are fixed, the objective is convex–concave fractional in the states: then the
global optimumcan be found by solving a series of parametric (convex) subproblems [30]. Note further that
 , are convex sets. Thus, we proceed in amanner inspired by ‘biconvex’ problems [31] (which have a very
similar structure). The approach put forward here is to beginwith a feasible point in , and then proceed to
alternately optimise over  and then  again, and so on (keeping the other set fixed) until the optimal values of
the two subproblems converge. This is known as alternate convex search [31], andwhile it does not guarantee
global optimality, it does tend to provide good results which are guaranteed partially optimal: that is to say, no
change in  or in  alone could provide a better solution. In order to solve the fractional subproblemof the
formmin a/b (whenfixing themeasurements and searching for states), onemay useDinkelbach’s technique
[32], which involves solving a series of parameterised problemsmin q-a bk : see appendix A.

5.Numerical results

There existmany software packages for solving the convex problems that arise duringmy algorithm. Because the
algorithmwill not always settle on the same solution if seededwith different starting points, I ran the algorithm
several times, using the CVX package [33] for each subproblem: the best numerical results for = 0ijk ,
= ¼d 3, , 8 and = ¼n 3, , 20 are shown infigure 2(a). The algorithmwas seededwith randompure states.

CorrespondingMATLAB files with the states andmeasurements are available in the supplementarymaterial, as is
the code needed tofind partially optimal solutions for any n d, . The results show that an experiment showing
k 50%0 is possible with current technology such as linear optics [4] or ion traps [15]. The performance of the

algorithm is discussed in appendix C.
Some comments about the choice of reference state are in order. Because our objective function is invariant

under a simultaneous unitary transformation of all states andmeasurements, the reference statemay be chosen
arbitrarily up to the choice of eigenvalues, which determine (for example) the purity r( )trace c

2 . Because of the
linearity of the subsearch over  , the algorithmwill return projective (i.e. extremal)POVMs: our generalisation
to positivematrices can thus always be thought of as a purelymathematical trick, since themeasurements will

Figure 1. In the ontologicalmodels framework, preparationsmay be thought of as ‘black boxes’ that simply produce aλ according to
the distribution m ly ( ). (a)Amixed state r y y= å ñá∣ ∣pi i i i can be thought of as the net preparationwhen several pure preparations
are wired together with a probabilistic switch. The resulting probability density over ontic states is the convex combination of the
component distributions: m l m l= år y( ) ( )pi i i

. (b) Inmuch the sameway, each component preparation labelled by a pure state yi

can be thought of itself as a compound preparation, where a probabilistic switch selects from a number of deterministic preparations
ofλ, so that the net preparation is described by m ly ( ). For the purposes of illustration, hereλ is represented as a discrete space,
although it is often thought of as a continuous space, as in equation (1).

5
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always correspond to a projectivemeasurement (and it is very important that themeasurement has only 3
outcomes [34]). Importantly, no such property guarantees that the search over  will return pure states. The
results so far correspond to a pure reference state, which caused the solution states ri to also all be pure.
However, one can in fact include the reference state into the search space r r { { } } ,c i i , thereby leaving the
purity as a free parameter to be optimised over.While this should only lead to better results (in principle), in
practice it canmean the algorithm ismore likely to get stuck in local optima.However, in the appendix I present
mixed states andmeasurements which lead to a = =n d 3 bound of »k 1.2018 1.5003 0.80110 , amarked
improvement over known boundswith only pure states.

5.1. Noise
Inspecting figure 2(a), it seems that increasing n is an easyway to improve an experiment—but as long as the
errors ¹ 0ijk (which captures the realistic situationwhere theQTpredictions are not precisely reflected in the
experiment) theywill accumulate and spoil the trend. Let = å + + ->¯ [ ] ( )    n n2 3 3i j ij ij ij1 2 3

2 be the

average error. Note that the objective function in (11) ismonotonically increasing in ̄ . Note also thatmy
algorithm can adjust the tradeoff between the numerator and denominator to achieve states which are in general
less optimal for the noise-free case, butmore robust to error than the noise-free optima. For numerical results
relating to =̄ 0.15%, see figure 2(b).

Let a bound on k0 be given by the ratioA/B, whereA is the (noiseless)numerator of (11), andB the
denominator. Then, themaximum tolerable error is = - -¯ ( ) ( ) B A n n2 3 3MAX

2 . Surprisingly, themixed
state bound I found by including the reference state in the search is extremely robust to noise, tolerating

>̄ 0.033MAX , while the previous best = =n d 3 (pure state) solution [28] could tolerate =̄ 0.0006MAX . This
constitutes, a>50-fold improvement in robustness for the same experimental resources, contradicting the
widely held feeling that extremely high precision experiments are necessary to show the reality of the quantum
state.

Figure 2. (a)Upper bounds on k0 achievable by preparing +n 1quantum states each of dimension d, generated using an alternating
searchwhich solves convex subproblems. Increasing d from 3 to 4 and to 5 provide significant gains, but thereafter only diminishing

returns. Open circles follow + -( )( ) ̄n n n1 1 31

2
, which is a lower bound to the optimum experiment (independent of d). (b)

Allowing observed statistics to deviate on average by 0.15% from idealQT predictions defines a newoptimisation problem, withmore
modest bounds still achievable. Note how an optimum n emerges. Black asterisks indicate previously best-known a) theoretical and b)
experimental bounds fromRingbauer et al in d=4 (with ~̄ 0.0015) [4].
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5.2. Lower bounds
A loose lower bound on the global optimumof (11) (i.e. the best possible BCLMexperiment) can be obtained
through convex relaxation. Replace the bilinear terms in the numeratorwith zero: then the problem is convex
(by virtue of the objective function then being the reciprocal of a positive, concave function) and actually
solvable analytically by putting r r= " ii c . The BCLMargument therefore cannot hope tofind a bound on k0

any lower than + -( )( ) ̄n n n1 1 31

2
. Tighter convex relaxations would be very useful if found.

6. Conclusions and directions

The technique forfinding BCLMexperiments presented here is very flexible. Besides the results showcased
above—the improved zero-error bounds and improved finite-error bounds for low n and d—there are
additional applications of themethod. An experimentalist, armedwith an estimate of the typical precision
available in her laboratory setup, can usemy algorithmwith this quantity as input—and therefore extract the
optimum n and appropriate sets  , .

It is atfirst quite surprising that non-extremal states can be a better choice in arguing for the reality of the
quantum state. It is counter intuitive because (i) formany quantum information processing applications,mixed
states will perform strictly worse than pure states, and (ii) sincemixing states together introduces ‘artificial’
ignorance into the problemonewould then expect the states to becomemore epistemic. But sincewe are
interested in the ratio of quantum to classical overlaps, we are not interested in the absolutemeasure of
epistemicness, but rather the upper limit on how close the epistemicness of the ontologicalmodel can come to
explaining the overlap at the quantum, or operational level. Intuitively, increasing themixedness of states can
make them less distinguishable: increasing their overlap wQ and therefore decreasing our objective function
(11). Fundamentally, amixed state ρ in quantummechanics will still have to correspond to some distribution mr
in an ontologicalmodel (see figure 1). Such preparations also exhibit the property that (except in special cases)
one cannot distinguish themwith a single shotmeasurement. The epistemic interpretation is therefore just as
compelling formixed states as for pure states. One difference is that evenwithin quantummechanics there is an
‘ignorance’ interpretation of amixed state as a (non-unique) convex combination of pure states. But since our
goal is to show that there is an everwidening explanatory gap that the epistemic interpretation fails to breach,
this is by nomeans a get out clause to the argument. Needless to say that the often-cited belief that ‘there are no
pure states in the laboratory’ should cause ρ-epistemicism to be taken just as seriously, nay,more seriously than
ψ-epistemicism.

Each of themathematical elements of an ontologicalmodel (ie. the preparations, transformations and
measurements) should, in principle, carry labels that allow for contextuality [35, 36]. This is becausemultiple,
physically distinct preparations (transformations, ormeasurements)may be identified inQT, but one is
generally not warranted in identifying their representation in the ontologicalmodel. Doing so amounts to
making an additional (and spurious [35, 36]) assumption of non-contextuality. It is therefore paramount in any
experimental test relating to ontologicalmodels (such as those proposed by PBR andBCLM) that the very same
physical procedure be used at any point where a definite preparation ormeasurement is repeatedly called for.
The temptation to use distinct procedures whichwould be equivalent inQT is perhaps greater for objects with
multiple convex decompositions, such asmixed states: but it should be resisted all the same, because it would
introduce a contextuality loophole.

Further, it is simple to apply additional constraints whichwill not spoil the properties of (11). For example;
the expression r r-∣∣ ∣∣*c j can be upper bounded, or r r( )trace c j can be bounded from above (and/or below if

choosing rc to befixed, and not part of ). These constraintsmight help provide further theoretical insight into
the nature of ontologicalmodels forQT. Similar constraintsmight help experimentalists search for those certain
states andmeasurements that are easy to prepare with highfidelity. It is also possible to seed the algorithm a
more structured and informed initial feasible point fromwhich to search from—rather than the random feasible
points I chose.My algorithmwill return a solution at least as good as its input, and can therefore be used to
‘polish’ any solution found by othermeans.

It is possible in future that deterministic global optimisation techniques [37] can be applied to this problem,
and provide a certificate of global optimality (rather than just partial optimality) for  and  . Such a certificate
would be a akin to a ‘Tsirelson’s bound’ [38]—andwould provide somemuch-desired certainty in the search for
optimal BCLMexperiments.
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AppendixA.Dinkelbach’s technique

Dinkelbach’s technique is an iterativemethod of solving a convex–concave fractional problem: here I follow
Jeflea’s description [32]—the interested reader should consult this reference formore details. Consider the
problem

Î
( )
( )

( )a x

b x
x Xminimize : , A.1

where a(x) and b(x) are (respectively) convex and positive, concave functions andX is a compact convex set.
Dinkelbach developed the following algorithmwhich he proved to converge on the globally optimal solution to
this problem [39]:

(i) Initialise Îx X1 . Let k=1.

(ii) Let q = ( ) ( )a x b xk k k . Find the solution +xk 1 to the convex problem q-{ ( ) ( )}a x b xminX k .

(iii) If q- =+ +( ) ( )a x b x 0k k k1 1 , stop and xk is optimal. Otherwise = +k k 1and go to previous step.

The subproblemofmy alternating search approach that involves fixing themeasurements and searching for
states is of the form (A.1): itmay therefore be solvedwithDinkelbach’smethod.

Appendix B.Mixed states solution

With pure states in the = =n d 3 case,my algorithmnever returned a bound better than ¼k 0.9964o after
many trials. One therefore has the suspicion that this is in fact the global optimumof the problemwhen the
reference state is set to a pure state. Inserting the reference state into the search space removes unnecessary
constraints, for example that itmust have a certain purity. The algorithm found:

r

r

r

r

=
- - -

- + - -
+ - +

=
- - -

+ +
- + -

=
- + +

- - - +
- - -

=
- - -

- -
- + +

=
- - - - -

+ - - - -
- - - - -

=
- - - - -
- + - - -

- - - -

=
- + - + -
- - - - -

- - + - -
( )

⎛

⎝
⎜⎜

⎞
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⎛

⎝
⎜⎜
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⎜⎜
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⎜⎜
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⎞
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⎟⎟

⎛
⎝
⎜⎜

⎞
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⎟⎟

⎛

⎝
⎜⎜

⎞
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i i
i i
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i i
i i
i i

i i
i i
i i

i i
i i
i i

U
i i i
i i i
i i i

U
i i i
i i i
i i i

U
i i i
i i i
i i i

0.36238 0.05820 0.19604 0.04384 0.07843
0.05820 0.19604 0.19657 0.09383 0.09519
0.04384 0.07843 0.09383 0.09519 0.44104

0.46135 0.05756 0.01170 0.08267 0.03289
0.05756 0.01170 0.43220 0.17263 0.06280
0.08267 0.03289 0.17263 0.06280 0.10645

0.31986 0.04357 0.08822 0.07957 0.21626
0.04357 0.08822 0.42252 0.07043 0.09595
0.07957 0.21626 0.07043 0.09595 0.25762

0.16537 0.09443 0.20002 0.04010 0.04801
0.09443 0.20002 0.34712 0.06583 0.02614
0.04010 0.04801 0.06583 0.02614 0.48752

0.21308 0.34918 0.73262 0.03220 0.28060 0.46494
0.41066 0.24840 0.04936 0.42176 0.50882 0.57485
0.72704 0.27156 0.23588 0.47568 0.34016 0.00688

0.09331 0.10812 0.82454 0.21487 0.20553 0.45970
0.23642 0.21660 0.25851 0.45038 0.59552 0.52237
0.17509 0.91986 0.03121 0.05766 0.34483 0.00239

0.45263 0.11154 0.69730 0.14663 0.45256 0.26488
0.27154 0.06431 0.21650 0.52185 0.19325 0.75206
0.02490 0.83917 0.20971 0.35931 0.30627 0.16823

B.1

c

1

2

3

12

13

23
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which gives »k 1.2018 1.5003 0.80110 . Note that here ameasurement is represented by a unitarymatrix
Uij, where each column is a pure state ñ∣ijk corresponding to the projector ñá =∣ ∣ijk ijk Eijk.

AppendixC. Performance of the algorithm

To gain an idea of the runtime of the algorithm, and the topology of the optimisation landscape, observe
figureC1. For the purposes ofmaking this figure, the algorithmwas run in d=3, a total of 1000 times for each
value of =n 3, 4, 5, 6, 7 on a 3.6 GHz Intel Core i7-4790 running openSUSE linux,MatlabR2016a and CVX.
The results suggest that themean runtime scales linearly with n, although generally the algorithmwillfind one of
many distinct local optima depending on the initial random seed.
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