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Abstract  1 

To evaluate coding strategies for cochlear implants a model of the human cochlear nerve is 2 

required.  Nerve models based on voltage-clamp experiments, such as the Frankenhaeuser-3 

Huxley model of myelinated nerve, can have over forty parameters and are not amenable for 4 

fitting to physiological data from a different animal or type of nerve.  Phenomenological 5 

nerve models, such as leaky integrate-and-fire (LIF) models, have fewer parameters but have 6 

not been validated with a wide range of stimuli.  In the absence of substantial cochlear nerve 7 

data, we have used data from a toad sciatic nerve for validation (50 Hz to 2 kHz with levels 8 

up to 20 dB above threshold).  We show that the standard LIF model with fixed refractory 9 

properties and a single set of parameters cannot adequately predict the toad rate-level 10 

functions.  Given the deficiency of this standard model, we have abstracted the dynamics of 11 

the sodium inactivation variable in the Frankenhaeuser-Huxley model to develop a 12 

phenomenological LIF model with a dynamic threshold.  This nine-parameter model predicts 13 

the physiological rate-level functions much more accurately than the standard LIF model.  14 

Because of the low number of parameters, we expect to be able to optimize the model 15 

parameters so that the model is more appropriate for cochlear implant simulations. 16 

Keywords: Leaky-integrate and fire, Frankenhaeuser-Huxley, nerve model, refractory period, 17 

cochlear implant. 18 

1. Introduction 19 

Although cochlear implantation has become a standard option for many children born deaf 20 

and for those who have become deaf later in life, there is still much uncertainty about how 21 

sound should be coded by a cochlear implant.  To enable the evaluation of coding strategies a 22 
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computational model of the human cochlear nerve is required.  Initially this could be a 1 

generic model, but the physiological properties of the cochlear nerve are known to depend on 2 

the condition of the cochlea (Shepherd and Javel, 1997) and will therefore depend on the 3 

etiology and duration of deafness.  A useful model for the evaluation of coding strategies 4 

should therefore contain few parameters to enable rapid and robust fitting to patient data.   5 

Several models of nerve fibres have been developed based on voltage-clamp experiments on 6 

nerves from a particular animal species, e.g. squid (Hodgkin and Huxley, 1952), toad 7 

(Frankenhaeuser and Huxley, 1964), rat (Schwarz and Eikhof, 1987), rabbit (Chiu et al., 8 

1979), and human (Schwarz et al., 1995).  These model the conductance or permeability of 9 

various ion channels, particularly sodium and potassium, in response to an electrical stimulus, 10 

and enable the membrane voltage to be calculated.  This type of model is particularly useful 11 

for investigating the influence of specific ion channels on emergent nerve properties such as 12 

action potential duration, refractoriness, facilitation, accommodation and adaptation (e.g. 13 

Negm and Bruce, 2014; Rattay et al., 2013).  Because of differences in ion channel 14 

expression, however, the systems of equations and parameters for the squid, amphibian and 15 

mammalian nerve models differ; the predicted responses to electrical stimulation therefore 16 

also differ.  To date, there is no ion-channel model of the cochlear nerve based solely on 17 

cochlear-nerve recordings, although whole-cell patch clamping has enabled some ion-18 

channels in the cochlear nerve to be identified and characterized (e.g. Santos-Sacchi, 1993; 19 

Mo and Davis, 1997; Hossain et al 2005).  Moreover, there are many morphological 20 

differences between the human cochlear nerve and the cochlear nerves used in animal studies 21 

(Ota and Kimura, 1980), and these would be expected to lead substantial physiological 22 

differences (Rattay et al., 2001; Rattay et al. 2013).  Nonetheless, classical ion-channel 23 

models and modified ion-channel models that incorporate classical ion-channel model have 24 
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enabled a greater understanding of how the human cochlear nerve might respond to cochlear 1 

implant stimulation (e.g. Motz and Rattay, 1986; Westen et al., 2011; Imennov et al., 2013).  2 

Ion-channel models, however, are not intended to be predictive models in the sense that they 3 

are not intended to predict the response of a particular fibre, or group of fibres.  Fibres from 4 

the sciatic nerve of the toad, for example, exhibit a wide range of responses to a single 5 

stimulus (Morse and Evans, 2003) and this cannot be captured by the Frankenhaeuser-Huxley 6 

model with the single set of standard parameters.  Moreover, with over forty parameters, an 7 

enormous amount of data would be required to adequately constrain the optimization of new 8 

parameter values.  While ion-channel models remain useful, there is also a need for less 9 

complex models for predictive modelling. 10 

We therefore considered using a phenomenological nerve model in which the relationships 11 

between the variables relate to observed phenomena from physiological experiments, such as 12 

the recovery from a suprathreshold pulse and the relationship between the width of a pulsatile 13 

stimulus and its threshold.  Because phenomenological models generally have few parameters 14 

the parameters can be constrained by a moderate amount of data.  A further advantage is that 15 

because they contain fewer equations, the computation time for phenomenological nerve 16 

models is substantially less than that for ion-channel models.   17 

The most common phenomenological nerve model is the leaky integrate-and-fire (LIF) 18 

model, which models the membrane properties by a differential equation with a single time-19 

constant (Lapicque, 1907).  An improvement is to model the absolute refractory period 20 

following an action potential and the subsequent relative refractory period during which the 21 

threshold is elevated but gradually returns to its resting value (e.g., White, 1985); classically, 22 

the absolute refractory period is taken to be the period during which a second action potential 23 

cannot be evoked irrespective of stimulus amplitude (effectively infinite threshold), but we 24 
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discuss later that this definition may need to be refined.  The recovery functions are typically 1 

exponential, but different forms, such as hyperbolic, have been used (Holden, 1976).  2 

Although the basic LIF model does not account for the probabilistic nature of the neural 3 

response this can be modelled by the addition of Gaussian noise to the threshold (Verveen 4 

and Derksen, 1968).   5 

A few cochlear implant studies have used phenomenological models (e.g., Bruce et al., 6 

1999a; Bruce et al., 1999b; Morse and Meyer, 2000; White, 1985; Wilson et al., 1994) and 7 

have attempted to model the phenomena described above to varying degrees.  None of these 8 

models, however, have been extensively tested against cochlear nerve data.  In part, this is 9 

because the technical difficulty of microelectrode recording in vivo has precluded the 10 

recording of responses from a single fibre to a wide variety of frequencies and amplitudes; 11 

the difficulty arises because the cochlea contains conductive fluids and the direct current 12 

between the stimulating electrodes and the recording electrode leads to a stimulus artefact 13 

that masks the neural response.  If such recordings were available, it would enable much 14 

more rigorous evaluation of the cochlear nerve models. 15 

To date, the most rigorous evaluation has been performed on the model by Bruce, et al.  16 

(Bruce et al., 1999a; Bruce et al., 1999b).  The Bruce model is a stochastic model in which 17 

the input stimulus is compared with a stochastic threshold.  Each spike is followed by an 18 

absolute refractory period and subsequent fixed (stimulus-independent) relative refractory 19 

period during which the threshold returns exponentially to its resting value.  The model was 20 

used to predict the response to a train of biphasic pulses (100 s per phase) presented at rates 21 

from 100 to 800 pulses per second.  The Bruce model is able to accurately predict the 22 

response of single cochlear nerve fibres to these stimuli, which demonstrates the importance 23 
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of including both a stochastic threshold and refractory effects in models of the cochlear 1 

nerve.   2 

The Bruce model, however, does not model leaky charge-integration by the nerve membrane 3 

and therefore does not include a membrane time constant.  The stimuli used for validation 4 

were slowly varying compared with the time scales of the nerve being modelled, and so the 5 

inclusion of a membrane time-constant would not have greatly affected the predicted 6 

response to these particular stimuli.  Without leaky charge-integration, the model would not 7 

be expected to predict the increased threshold to high-frequency sinusoids, or the effect of 8 

pulse width on the threshold to pulsatile stimulation, that have been observed in cochlear 9 

nerve experiments (Dynes and Delgutte, 1992; Kiang and Moxon, 1972).  We have therefore 10 

extended the Bruce model and use a leaky integrate-and-fire neuron with a stochastic 11 

threshold.  The initial model was similar to the unvalidated models by Wilson, et al. (Wilson 12 

et al., 1994), and Morse and Meyer (Morse and Meyer, 2000).  13 

Although extensive cochlear nerve data from a single fibre is not available, we have 14 

previously recorded single-fibre data from the sciatic nerve of the toad Xenopus laevis in 15 

response to a wide range of stimulus frequencies and levels (Morse and Evans, 2003): 16 

frequencies were from 50 Hz to 2 kHz at levels from threshold to 20 dB above threshold.  17 

Given this data, we are adopting a three-stage approach.  First, we assume that the cochlear 18 

nerve and sciatic nerve are ordinary nerves and that they share similar dynamics.  This 19 

assumption is supported by our previous study, in which we measured the properties of the 20 

sciatic nerve such its excitation (strength-duration) time constant, refractory time constants, 21 

and relative spread – a measure of the internal noise level (Morse and Evans, 2003).  The 22 

differences between the sciatic nerve and cochlear nerve appear to be in terms of the speed of 23 

the response and not in the intrinsic nature of the response.  Based on the assumption of 24 
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shared dynamics, we here develop a phenomenological model that predicts the response of 1 

the sciatic nerve to sinusoidal stimulation.  Our focus is on the application of the model to 2 

predict responses to cochlear implant stimulation and the second stage of our approach will 3 

therefore be to show that the same model (i.e. the same dynamics), but with different 4 

parameters, can adequately model the more limited cochlear nerve data.  The model 5 

developed here, however, is not restricted to cochlear implants and may find application for 6 

more general studies where the predicted firing rate of a nerve fibre is required, particularly 7 

in response to high-frequency stimuli.  The final stage will be to optimize the model 8 

parameters based on the compound response of the cochlear nerve to electrical stimulation by 9 

a cochlear implant (Abbas et al., 1999; Brown et al., 1996). 10 

We first show that the standard leaky-integrate and fire model with a fixed (stimulus-11 

independent) recovery from threshold cannot adequately predict the sciatic nerve data. 12 

2. Leaky-integrate and fire model with fixed threshold recovery 13 

2.1. Initial model 14 

Our initial model was a stochastic leaky integrate-and-fire model with stimulus-independent 15 

refractory properties.  The membrane time-constant, which characterizes how quickly the 16 

nerve responds to stimulation, appears in a stochastic differential equation that is solved 17 

numerically to give the membrane potential, V(t), such that:  18 

,)(2)()()( tDtstVtV         (1) 19 

where  is the membrane time-constant, s(t) is the input stimulus, D is the noise intensity and  20 

 is a Gaussian white noise source, with )()()( tttt    and 0)( t ; )(  is the 21 
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Dirac delta function.  Here, the stochastic term is applied to the membrane potential, rather 1 

than the threshold as in the Bruce model, but the result is the same.  The stochastic term, 2 

however, in the Bruce model approximates a 1/f noise spectrum; although this more closely 3 

matches the noise spectrum in real nerves (Verveen and Derksen, 1968), the colour of the 4 

noise would not be expected to substantially affect the results.  We have used white noise to 5 

reduce the number of parameters. 6 

Equation (1) was integrated using the two-step Heun algorithm (Kloeden et al., 1994) with a 7 

fixed step time of 5 s.  At each time-step the value of V(t) was compared with a fixed 8 

threshold, .  When V(t) exceeded , an action potential (“spike”) was deemed to have been 9 

evoked at time t and V(t) was reset to 0.  The spike was followed by a fixed (classical) 10 

absolute refractory period (ARP), during which no integration was performed, thus holding 11 

V(t) at 0.  This was followed by a fixed relative-refractory period, during which the 12 

recovering threshold was defined by a two time-constant exponential recovery function 13 

(Morse and Evans, 2003): 14 
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where t is the time since the conditioning pulse was applied, ]1,0[k  is the relative 16 

weighting between the two time-constants, abs is the duration of the absolute refractory 17 

period, and 1 and 2, represent the slow long-term and fast initial threshold recovery, 18 

respectively.  This function with two time-constants was found to be a better model of 19 

threshold recovery in the sciatic nerve than a single time-constant exponential form, 20 

equivalent to k = 1 in Equation 2 (Morse and Evans, 2003). 21 
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2.2. Physiological data from the toad Xenopus laevis 1 

The validation data for this model, and the models below, were recorded from the sciatic 2 

nerve of the toad Xenopus laevis.  The experiments are described in detail in (Morse and 3 

Evans, 2003), but, briefly, consisted of presenting sinusoidal stimuli to a dissected nerve 4 

bundle containing several hundred nerve fibres.  A microelectrode was used to measure the 5 

electrical response of individual nerve fibres and the signal was analysed to extract the times 6 

at which nerve spikes occurred.  Reliable recordings could be made from a nerve for up to 7 

five hours and typically fibres were held for ten to twenty minutes; some fibres were held for 8 

over an hour.  The stimuli were presented at amplitudes from just below threshold to between 9 

5 and 20 dB above threshold.  This range was chosen to ensure that responses to highly 10 

suprathreshold stimuli were recorded.  The range varied between fibres because it was 11 

dependent on the stimulus threshold and was limited by the compliance of the current source 12 

used for stimulation. 13 

Sinusoidal stimuli were presented to the fibres at frequencies of 50 Hz, 100 Hz, 200 Hz, 500 14 

Hz, 1 kHz and 2 kHz. For frequencies less than or equal to 500 Hz, the synthesised stimuli 15 

were generated with a sampling period of 50 µs and the microelectrode recordings were 16 

sampled at 100 µs; for frequencies greater than 500 Hz, the sampling period of both the 17 

stimulus and the microelectrode recording was 20 µs. The presentation of different 18 

frequencies to a fibre was done in a random order, but all trials with a particular frequency 19 

were performed consecutively.  For each frequency, five 300-ms presentations at each level 20 

were repeated such that the stimulus levels were completely randomized.  For some fibres, 21 

the microelectrode recording was lost before all frequencies were presented to the fibre.  We 22 

have accepted missing frequencies.  We have, however, excluded data for a frequency if it 23 

was not possible to record the full set of repeats and levels.  For the initial study to investigate 24 
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the fit of a standard LIF model with stimulus-independent refractoriness, only recordings 1 

from one sciatic nerve fibre (X79LF6) were used.  For this fibre, we have data in steps of 2 2 

dB. In later parts of the investigation, where we demonstrate the adequacy of the final model, 3 

we validated the model with recordings from 6 of the 36 fibres from which sinewave 4 

measurements were made; this subset included all fibres for which at least three frequencies 5 

had been presented.  For all data apart from the first fibre, data were recorded in steps of 1 6 

dB. 7 

At each combination of frequency and level, we calculated the discharge rate (spike rate) of 8 

the responses.  The first 50 ms of each response, however, was taken to be transient and was 9 

excluded from the analyses. 10 

2.3. Parameter optimization 11 

The six parameters of the initial model (, abs, 1, 2, k, and D) were fitted to the sciatic nerve 12 

data for fibre X79LF6 using simulated annealing (Kirkpatrick et al., 1983); all results are 13 

presented relative to the resting threshold and so, without loss of generality, we fixed rest to 14 

be 1.  For the initial optimization, we optimized the model parameters separately for each 15 

frequency used in the sciatic nerve experiments, i.e. we first optimized the parameters to the 16 

sciatic nerve data for 50-Hz stimulation and then repeated the optimization for 100-Hz 17 

stimulation and so on.  For a particular frequency, the objective function (“goodness”) for a 18 

set of parameters was based on the similarity of the model rate-level function to that the 19 

corresponding rate-level function for the sciatic nerve.  For a given set of model parameters, 20 

the model rate-level functions for sinusoidal stimulation were generated for levels from -4 dB 21 

below threshold to 30 dB above threshold in steps of 2 dB (to match the physiological data).  22 

In common with the physiological data, the discharge rate at each combination of frequency 23 
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and level was calculated for the response to 5 presentations of a 300-ms sinusoidal stimulus 1 

and the first 50 ms of each response was taken to be transient. 2 

For a particular frequency, the goodness for each level of a rate-level function was taken to 3 

be the absolute difference between the discharge rate for the model and the corresponding 4 

discharge rate for the sciatic nerve data divided by standard deviation for the sciatic nerve 5 

data for the five presentations, i.e. it was a z-score.  The goodness for a particular frequency 6 

was the sum of the z-scores for the levels where there was both sciatic nerve and model data.  7 

To compensate for possible errors in the measured thresholds for the sciatic nerve, we 8 

calculated the goodness for the model rate-level functions with shifts of up to ±2 dB in the 9 

corresponding sciatic nerve rate-level function; we took the overall goodness for a particular 10 

frequency to be the minimum of these.   11 

2.4. Results 12 

Fig. 1 shows the optimal fits of the model rate-level functions to the rate level functions for a 13 

single sciatic nerve fibre.  With the parameters optimized separately at each frequency the fits 14 

are excellent.  Except at 50 Hz, the model correctly predicted the maximum discharge rate for 15 

the nerve fibre and the model rate-level functions had the same plateaus and transitions as the 16 

level was increased.  Even at 50 Hz the correspondence between the model and the sciatic 17 

nerve data was very close, although for the best parameters found the model did not predict 18 

the decrease in discharge rate at the highest level.   19 

On this basis it might be thought that the standard leaky integrate-and-fire model with a fixed 20 

recovery from threshold is a good model of the sciatic nerve.  An inspection, however, of the 21 

optimal model parameters at each frequency showed that the optimal value of the absolute 22 

refractory period changed systematically with frequency (Fig. 2).  For frequencies less than 23 
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500 Hz, the optimal absolute refractory period was about 4 ms.  For frequencies at 500 Hz 1 

and above the optimal absolute refractory period was less than 1 ms.  When the optimal 2 

parameters for one frequency were used to generate rate-level functions at other frequencies 3 

there was a poor correspondence between the model and sciatic nerve rate-level functions at 4 

all frequencies other than the optimized frequency.  An example is shown in Fig. 3, which 5 

shows the sciatic rate-level functions and those predicted by the model with parameters 6 

optimized for 50-Hz stimulation; for this frequency the optimal absolute refractory period 7 

was 4.4 ms.  Even for 100-Hz stimulation there was a marked discrepancy between the 8 

predicted and actual rate-level functions, with the model having a more gradual change in 9 

discharge rate with level.  At higher frequencies, the large absolute refractory period resulted 10 

in a substantial underestimation of the discharge rate; for example at 2000 Hz the maximum 11 

discharge rate from the sciatic nerve fibre was 2000 spikes / s whilst the maximum rate from 12 

the model was 220 spikes / s.  Similarly, the optimal fits for high-frequency stimulation led to 13 

poor predictions of the rate-level functions for low-frequency stimulation.  With the small 14 

absolute-refractory period required to predict high discharge rates at high frequencies there 15 

were multiple discharges in the model response to each period of a low-frequency stimulus; 16 

the model therefore predicted substantially too many discharges.  17 

2.5. Discussion 18 

These results highlight the importance of fitting nerve models to extensive physiological data.  19 

With model parameters fitted to data at a single frequency, or a narrow range of frequencies, 20 

it might incorrectly be concluded that the LIF model with a fixed recovery function is a good 21 

nerve model.  The results, however, suggest that the refractory properties of a nerve fibre may 22 

be dependent on the nature of the stimulation during the refractory period.   23 
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Further evidence that refractoriness is stimulus dependent comes from our companion study 1 

using the Frankenhaeuser-Huxley model of nerve fibre.  The Frankenhaeuser-Huxley (FH) 2 

model (Frankenhaeuser and Huxley, 1964) is based on physiological measurements from the 3 

sciatic nerve of Xenopus laevis, which corresponds to the preparation we used in our 4 

physiological study (Section 2.2).  Standard models of threshold recovery following an action 5 

potential have been based on physiological experiments using a two-pulse paradigm in which 6 

the first “conditioning” pulse causes excitation and the second pulse is used to determine the 7 

threshold at various intervals following the first (e.g. Amberson, 1930; Erlanger et al., 1927; 8 

Forbes et al., 1923; Miller et al., 2001).  In our study, we used a three-pulse paradigm in 9 

which an intermediate depolarizing pulse was presented immediately following a 10-µs 10 

suprathreshold conditioning pulse, and was therefore in the refractory period.  We showed 11 

that applying a depolarizing stimulus during the later part of what is classically regarded as 12 

the absolute refractory period could effectively prolong the absolute refractory period, while 13 

leaving the refractory time-constants and other refractory parameters largely unaffected.  We 14 

further showed with sinusoidal signals that stimulation during the classical absolute 15 

refractory period could suppress excitation.  In particular, a segment of a sinewave that in 16 

isolation caused excitation could suppress an action potential if it fell within the absolute 17 

refractory period.  We concluded that the classical definition of absolute refractory period 18 

should be refined to include only the initial period following an action potential when on-19 

going stimulation does not affect the threshold; this period was found to be about half as long 20 

as the classical absolute refractory period. 21 

For studies with a LIF model that involve only sinusoidal stimulation, it might be adequate to 22 

retain the standard recovery function but make the absolute refractory period frequency-23 

dependent using a function based on the results shown in Fig. 2.  With more arbitrary 24 
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stimulation, however, like those used in cochlear implants, such compensation is not possible 1 

and a different way of introducing stimulus-dependent refractoriness is required.  As 2 

described in the following section, we considered that a greater understanding of threshold 3 

recovery in the FH model and how it relates to the activation and inactivation of the various 4 

ion channels might enable the LIF model to be extended so that it demonstrates stimulus-5 

dependent refractoriness.   6 

3. Recovery from threshold in the Frankenhaeuser-Huxley model 7 

The Frankenhaeuser-Huxley model simulates the activation and inactivation states of the 8 

sodium channels (represented by m and h, respectively), the activation state of the potassium 9 

channel (represented by n) and activation state of a non-specific ion channel (represented by 10 

p).  We considered that if threshold is closely related to any of the activation or inactivation 11 

variables then stimulus-dependent refractoriness could be introduced into the LIF model by 12 

approximating the voltage dependence of one of the gating variables.  We investigated the 13 

relationship between threshold and the gating variables using the same three-pulse paradigm 14 

that we used in our companion study. 15 

3.1. Methods 16 

The methods for the FH simulation and a description of the three-pulse paradigm are given in 17 

Morse et al. (2015).  In brief, the conditioner pulse had a duration of 10 s and an amplitude 18 

1 dB above the resting threshold of 60.61 A / m2.  The short pulse duration was chosen to 19 

approximate a near-instantaneous application of current and the level of the conditioner was 20 

such that it led to excitation in response to every presentation.  As for the standard two-pulse 21 

paradigm used to measure the recovery function, we determined the threshold of a probe 22 

pulse that occurred at an interval after the conditioner pulse; the probe pulse also had a 23 
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duration of 10 µs.  With the three-pulse paradigm, however, there was an additional 1 

depolarizing pulse immediately following the conditioner pulse.  In this study, we measured 2 

the threshold of the probe pulse for conditioner-probe intervals of 2 ms, 5 ms, 10 ms and 20 3 

ms for a simulated temperature of 20 C; for the longest interval, we expected the threshold 4 

to have returned to its resting value in the absence of an intermediate pulse.  For each 5 

conditioner-probe interval, the probe threshold was recorded for a range of durations and 6 

amplitudes of the intermediate pulse.  Because the duration of the probe pulse was short 7 

compared with the time-scales of the model, we could approximate the instantaneous nerve 8 

threshold to be the threshold amplitude of the probe pulse.  For the threshold level of the 9 

probe pulse we also recorded the value of the four activation and inactivation variables (m, h, 10 

n, and p) at the instant of the probe pulse.  The duration of the intermediate pulse was from 11 

500 µs to 500 µs less than the conditioner-probe interval in steps of 250 µs.  The amplitude of 12 

the intermediate pulse was -30 dB, -24 dB, -12 dB or -6 dB relative to the resting threshold 13 

for a 10-μs pulse.  From the previous study, the ranges in intermediate pulse amplitude and 14 

duration were known to produce a range of effect on threshold from negligible to substantial.  15 

Some combinations of intermediate pulse amplitude and duration led to additional action 16 

potentials following the conditioning pulse even in the absence of a suprathreshold probe 17 

pulse. 18 

3.2. Results and discussion 19 

The relationship between the threshold amplitude of a probe pulse and the gating variables of 20 

the FH model at the instant of the probe for the three pulse paradigm are shown in Fig. 4.  21 

The plots for each gating variable against threshold were greatly overlapping for the 22 

combinations of conditioner-pulse interval, intermediate pulse amplitude, and intermediate 23 

pulse duration; this overlap occurred both when the nerve was approximately it its resting 24 
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state and when the nerve was deep within the refractory period and the threshold was about 1 

four times its resting value.  The functions relating each gating variable to threshold are 2 

therefore largely independent of the stimulus preceding the probe pulse over the range of 3 

intermediate pulse investigated.  Given that the functions relating threshold and the gating 4 

variables were largely independent of the stimulus preceding the probe pulse then given the 5 

value of any gating variable we can calculate the instantaneous membrane potential that will 6 

result in an action potential.  This threshold potential, however, is dependent on the past 7 

history of the stimulus because the gating variables are dependent on the membrane potential 8 

(Frankenhaeuser and Huxley, 1964), which is stimulus-dependent.  Given these findings, we 9 

have replaced the fixed refractory properties of the initial LIF model by a dynamic threshold 10 

that approximates the dynamics of one of the gating variables.   11 

4. Development of a LIF model with stimulus-dependent 12 

refractoriness 13 

We chose to approximate the sodium inactivation variable, h, as this had the largest variation 14 

with threshold and we considered that this would lessen the sensitivity of the model.   15 

We approximated the curve shown in Fig. 4b by the function 16 

,)( oP

M

h
h 


        (3) 17 

where M, o, and P are constants.  All results are presented relative to the resting threshold 18 

and so, without loss of generality, we have fixed o at 1. 19 
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Using this function we can find the threshold at any given time, t, by calculating h(t) using 1 

the equation from the FH model.  This is an ordinary differential equation with 6 rate 2 

parameters that relates h and the membrane potential, V, by 3 

, hhhh
         (4) 4 
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In the FH model h and h are given by 9 
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The relationships between the membrane voltage, V, and the steady-state value of the sodium 13 

inactivation variable, h∞, and the time constant of the sodium inactivation variable, h are 14 
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shown in Fig. 5 for the values of the constant A, B, and C (with the various subscripts) as 1 

given by Frankenhaeuer and Huxley.  For our dynamic threshold model we approximated h∞ 2 

in Equation 4 with the Boltzmann sigmoidal curve 3 

.exp1
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h        (9) 4 

where µ∞ is the offset of the sigmoidal curve and ∞ defines its width.  We fixed h as a 5 

constant.  A Gaussian function or similar could have been used to approximate h, but, as 6 

shown below, we obtained good results for sinusoidal stimulation using constant h and so 7 

retained this further simplification.   8 

Our final model is obtained by combining the standard stochastic leaky integrate-and-fire 9 

model from Equation (1) with the dynamic threshold from Equation (3), where h is given by 10 

Equation 4 and h∞ is approximated as described above.  When V exceeds the threshold, a 11 

spike is deemed to have been evoked and V and h are reset to 0 and held at that value during 12 

the absolute refractory period.  Here we use the term “absolute refractory period” and the 13 

associated model parameter, ABS, in accord with the refined terminology we give in Morse et 14 

al. (2015), i.e. it is the period immediately following an action potential during which an 15 

ongoing stimulus does not affect the threshold.  Immediately after this period the threshold 16 

again becomes dynamic.  The dynamic threshold is initially large following the absolute 17 

refractory period, but in the absence of further stimulation it will return to its resting value.   18 

Our modified LIF model with dynamic threshold has nine parameters: , the membrane time 19 

constant; ABS, the absolute refractory period; h, the recovery time-constant for h; D, the 20 

internal noise intensity; o, the base value of the threshold; M, the threshold multiplier; µ∞, 21 
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the offset for h∞; ∞, the standard deviation of h∞; and P, the power of h in the threshold 1 

equation (Equation 3). 2 

4.1. Parameter optimization for FH model 3 

To demonstrate that the LIF model with a dynamic threshold approximates the dynamics of 4 

the FH model we optimized the parameters of the LIF model to fit rate-level functions 5 

calculated with the FH model.  The rate-functions for the FH model were generated for 6 

sinusoidal stimulation at frequencies of 50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz and 2 kHz 7 

with levels from -4 dB below threshold to 20 dB above threshold in steps of 1 dB.  Because 8 

the FH model is deterministic we fixed the noise intensity, D, to be 0.  The remaining eight 9 

parameters of the modified LIF model were fitted to the FH data using similar methods to 10 

those used to fit the initial LIF model to the sciatic nerve data.  The modified LIF model 11 

parameters, however, were optimized to get the best fit over all frequencies rather than for a 12 

single frequency.  For a given set of model parameters, the LIF rate-level functions were 13 

generated at the same frequencies as for the FH model but with a maximum level of 30 dB 14 

above threshold; the maximum level for the FH model (20 dB) was lower to ensure that the 15 

the regenerative component of the membrane voltage could be clearly distinguished from the 16 

capacitive component.  At each frequency, the goodness for each level of a rate-level function 17 

was taken to be the least-squares difference between the rate-level functions normalized by 18 

the maximum discharge rate for the FH model at that frequency.  The normalization was used 19 

so that the different frequencies contributed equally to the overall goodness (a z-score was not 20 

used because the FH model is deterministic and no variability is therefore expected).  The 21 

goodness for a particular frequency was the sum of the goodness values over the levels where 22 

there was both sciatic nerve and model data.  The overall goodness for a set of parameters 23 

was the sum of the goodness values for each frequency. 24 
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To study the dynamic threshold properties of the modified LIF, we used the optimized 1 

parameters from above in a simulation with the same three-pulse paradigm that was used for 2 

the FH model (Morse et al., 2015).  A 10-µs conditioning pulse 1 dB above threshold was 3 

immediately followed by a depolarizing 1000-µs intermediate pulse: in the control condition, 4 

the intermediate pulse had zero amplitude and in the two experimental conditions the 5 

amplitude was -24 dB or -18 dB relative to the conditioner threshold.  For each amplitude of 6 

the intermediate pulse, the threshold recovery function was determined by finding the 7 

minimum conditioner-probe interval that led to excitation for probe amplitudes from 0 to 10 8 

dB above the resting threshold.  9 

4.2. Results 10 

The optimal fitted parameters of the LIF model with a dynamic threshold are given in Table 11 

I.  A comparison of the rate-level functions for the modified LIF model with these parameters 12 

and those calculated with the FH model are shown in Fig. 6.  The overall agreement between 13 

the rate-level functions is very good at each frequency tested.  The modified LIF model 14 

captured the discharge rate at the maximum stimulus level, and finer detail such as the 15 

gradual change in discharge rate with stimulus level interspersed with plateaus where the 16 

discharge rate was constant over a range of levels.  It is notable that the modified LIF model 17 

captured the non-monontonic change in discharge rate with level for 50-Hz stimulation, 18 

where for medium stimulus levels (7-10 dB above threshold) the FH model produced two 19 

spikes per period. 20 

The threshold recovery functions for the modified LIF model with the same optimized 21 

parameters are shown in Fig. 7.  For the threshold recovery without an intermediate pulse the 22 

least-squares best fit of the double exponential function (Equation 2) gave abs = 1.20 ms, 1 = 23 
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1.43 ms, 2, = 2.7 µs, and k = 0.47.  The addition of a depolarizing intermediate pulse, 1 

however, delayed recovery.  With a 1000-µs intermediate 18 dB below the threshold of the 2 

10-µs conditioner, recovery was delayed by about 2 ms. 3 

4.3. Discussion 4 

The threshold for the modified LIF model was based on the dynamics of a gating variable in 5 

the FH model with the intention of making the threshold dependent on the stimulus.  The 6 

results show that this intention has been met.  In contrast to a LIF model with a fixed 7 

recovery function, one set of parameters was sufficient to capture the rate-level dynamics of 8 

the FH model over a wide range of stimulus amplitudes and frequencies.  Moreover, the 9 

recovery functions in Fig. 7 directly show that the threshold for the modified LIF model is 10 

stimulus dependent.   11 

For the new model, threshold in the relative refractory period is an emergent property that is 12 

affected by a number of variables rather than just being a function of the time since the 13 

previous action potential.  Nonetheless, in the absence of stimulation during the relative 14 

refractory period, the recovery function was well described by the fixed recovery model 15 

given by Equation 2 (Fig. 7).  With stimulation less than 1.20 ms following the conditioner, 16 

the threshold was effectively infinite.  This closely corresponds to the classically defined 17 

absolute refractory period of 1.23 ms for the FH model; we emphasize again that this period 18 

differs from the shorter absolute refractory period in the model, ABS, as this is the time 19 

during which ongoing stimulation does not affect the threshold.  The longer threshold 20 

recovery time-constant of 1.43 ms for the modified LIF model was also similar to the 21 

corresponding time-constant for the FH model, which was 1.65 ms.  The shorter threshold 22 

recovery time-constants, however, were quite different between the models (27 µs for the 23 
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modified LIF model and 248 µs for the FH model).  More accurate prediction of the initial 1 

threshold recovery would require a more complex model, but we nonetheless consider our 2 

extension to the LIF model to be useful.  This is shown by the close approximation of the LIF 3 

model rate-level functions to those from the FH model.  The usefulness of the model to 4 

predict real physiological data is demonstrated in the following section. 5 

5. Fit of the leaky integrate-and-fire model with stimulus-6 

dependent refractoriness to the sciatic nerve data 7 

We fit the modified LIF model to the sciatic nerve rate-level data using similar methods to 8 

those given in Section 2 for the standard LIF model.  In common with the optimization for 9 

the FH data, however, the modified LIF model parameters were optimized to get the best fit 10 

over all frequencies rather than for a single frequency.  In initial fits, we allowed P to vary, 11 

but the values were typically about 1.3 (as for the FH model above) and we therefore fixed 12 

this parameter at 1.3 for the final fits. 13 

Using the optimal parameters based on these rate-level fits, we compared the temporal 14 

responses of the modified LIF model with the sciatic nerve data.  Period histograms (PHs) 15 

and inter-spike interval histograms (ISIHs) for the modified LIF model and sciatic nerve were 16 

constructed from the responses to the five presentations at each level and frequency using 17 

standard methods (Gerstein and Kiang, 1960).  As for the rate-level functions, the first 50 ms 18 

of each 300-ms response was taken to be transient and discarded from the analyses.  The bin 19 

width for the PHs and ISIHs was 100 µs for frequencies less than 1 kHz and 20 µs for 20 

frequencies above. 21 
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5.1. Results 1 

The optimal parameters for each fibre are given in Table 1.  Although we included the noise 2 

intensity, D, as a parameter it was not well-constrained by the sciatic nerve data; changes in 3 

D by a factor of 100 made negligible difference the predicted rate-level functions.  We have 4 

nonetheless included the optimized values for D in Table I for completeness.   5 

A comparison of the rate-level functions predicted by the modified LIF model and those 6 

observed physiologically from the sciatic nerve is shown in Fig. 8.  The overall agreement 7 

between the model results and the physiological data is very good for all the fibres.  With a 8 

single set of parameters for each fibre, the modified LIF model captured the change in 9 

discharge rate with stimulus level across a wide range of levels and frequencies.  This is 10 

particularly notable because there was a lot of variability in the physiological data: fibre 11 

X79LF6, for example, had a discharge rate of 2000 spikes / s for a 2-kHz stimulus 20 dB 12 

above threshold whilst for fibre X82RF3 the equivalent discharge rate was less than 400 13 

spikes / s.  Likewise, at high stimulus levels fibres X79LF6 and X82RF3 could fire twice per 14 

period in response to 50-Hz stimulation whilst the other fibres produced at most one spike per 15 

period.   16 

Although all the model parameters were fitted only to the sciatic nerve rate-level functions, 17 

the modified LIF model largely predicted the temporal characteristics of the sciatic nerve 18 

(Fig. 9).  As shown for the optimized fit for fibre X80LF3, the period histograms for the 19 

modified LIF model and the sciatic nerve fibre were similar (Fig. 9a).  The tighter phase-20 

locking in response to higher stimulus levels is evident in both the model and the sciatic 21 

nerve fibre by the narrower peaks in the PHs.  Furthermore, at higher stimulus levels, there 22 

was a distinct decrease in the latency between the start of the stimulus period and the time of 23 
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evoked spikes for both the model and the real fibre.  The distribution, however, of spike times 1 

in the PHs for the model were narrower than those for the nerve fibre.  The decrease in 2 

latency with stimulus level was also less for the model than for the real nerve.  3 

There was also a close correspondence between the ISIHs for the model and those for the 4 

sciatic nerve fibres.  At all stimulus levels and stimulus frequencies, the positions of the 5 

peaks in the ISIHs for the model and real nerve are almost identical.  The amplitudes of the 6 

peaks, however, were smaller for the modified LIF model than for the fibres.  This resulted 7 

from the slightly wider distribution of each peak for the modified LIF model, which was also 8 

evident in the PHs.  The ISIHs for the X80LF3 show that the inter-spike intervals were at 9 

multiples of the stimulus period.  This indicates that a spike was not evoked by every period 10 

of the stimulus, but when it was it tended to be phase-locked to the stimulus.  The pattern of 11 

inter-spike intervals was similar for the model, but it is notable that there were fewer long 12 

inter-spike intervals for the model at low stimulus levels. 13 

5.2. Discussion and conclusions 14 

We have shown that the LIF model with a dynamic threshold and a single set of parameters 15 

can predict the rate-level functions of real nerve fibres over a wide range of stimulus 16 

amplitudes and frequencies.  The correspondence between the physiological data and this 17 

model was much closer than could be found with a LIF model with fixed refractory 18 

properties and a fixed threshold (Section 2).  We could not find parameters for the modified 19 

LIF model that predicted the non-monotonic response of fibre X79LF6 in response to high 20 

amplitude 50-Hz stimulation.  The parameters that we did obtain, however, provide an 21 

excellent fit at other frequencies and stimulus levels, and parameters for fibre X82RF3 were 22 

able to predict the double firing for that fibre at 50 Hz.  We note that the model was able to 23 
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predict the non-monotonic response to 50-Hz stimulation for the FH model.  It may be that 1 

some set of parameters would be able to predict the non-monotonic rate-level function for 2 

X91LF6 at 50 Hz and also give a good fit at other frequencies.  Our long-term aim, however, 3 

is to optimize the model for cochlear nerve data rather than for a single sciatic nerve fibre and 4 

we did not therefore exhaustively search for parameters for this fibre. 5 

As noted earlier, it was not possible to record responses to all the stimulus frequencies from 6 

all the sciatic nerve fibres.  Moreover, because of variations in thresholds and the compliance 7 

limitations for the current source, the maximum stimulus levels varied across fibres.  8 

Nonetheless, the extrapolations for the model appear to be physiologically plausible, given 9 

that for combinations of frequency and level where it was not possible to record physiological 10 

data, the pattern of predicted discharge rates were consistent with those from fibres where 11 

data were obtained.  For example, the predicted rate-level functions for X79RF1 at 1000 Hz 12 

and 2000 Hz are similar to the actual rate-level functions for fibre X80LF3. 13 

The tighter phase locking for the model may partially have resulted from the noise intensity, 14 

D, being too low.  As stated above, the optimization to the rate-level functions did not 15 

constrain the noise intensity and it could have been substantially larger; this would have 16 

broadened the PHs without grossly affecting the rate-level functions.  The level of noise 17 

could be constrained by knowledge of the “relative spread”, which is a measure of internal 18 

noise level based on the change in firing efficiency with level for pulsatile stimuli (Verveen, 19 

1960).  We have measured relative spread for sciatic nerve fibres in general, but not 20 

specifically for the fibres for which we have the rate-level functions.  An additional 21 

variability in the sciatic nerve response would have been expected from jitter, which is the 22 

variance in the conduction time.  Such variability has been observed in the electrically 23 

stimulated cochlear nerve (Anderson, 1973; Miller et al., 1999).  To model the jitter we could 24 
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introduce a random shift in spike times, but we have limited the model at this stage to being a 1 

model solely of excitation.  It would be useful, however, to have a phenomenological 2 

conduction model that included jitter and also modelled the large changes in latency with 3 

level that were observed with the sciatic nerve but not predicted by the modified LIF model.  4 

This effect might be modelled by consideration of the known changes in conduction velocity 5 

during the relative refractory period (Forbes et al., 1923).  6 

The current model fulfils our objectives for an excitation model.  The model has about 25 % 7 

fewer parameters than standard ion-channel models and yet is able to predict the response to 8 

sinusoidal stimuli over a wide range of stimulus amplitudes and frequencies.  Although the 9 

fits were based on physiological responses to sinusoids, the wide range of stimuli should 10 

mean the model is equally appropriate for pulsatile stimuli or more complex stimuli such as 11 

speech.  Equally importantly, the low number of parameters and differential equations mean 12 

that the model is computationally fast and can be constrained by a moderate amount of 13 

physiological data.  We therefore expect to be able to adapt the model parameters to those 14 

more appropriate for cochlear implant simulations. 15 
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Table legends 1 

Table I.  Fitted parameters for the leaky integrate-and-fire model with a dynamic threshold.  2 

The parameters are: , the membrane time constant; abs, the absolute refractory period; h, the 3 

recovery time-constant for h; D, the internal noise intensity; o, the base value of the 4 

threshold; M, the threshold multiplier; µ∞, the offset for h∞; ∞, the standard deviation of h∞; 5 

and P, the power of h in the threshold equation (Equation 3).  Parameters are given for fits to 6 

the Frankenhaeuser-Huxley model and six sciatic nerve fibres. 7 

Figure legends 8 

Fig. 1.  Optimum rate-level functions (plots of discharge rate against stimulus level) for a 9 

leaky integrate-and-fire model with a stimulus-independent recovery function in response to 10 

sinusoidal stimulation from 50 Hz to 2 kHz.  The model parameters were optimized 11 

separately for each frequency (solid lines) to get the best fit to rate-level functions from 12 

sciatic nerve fibre X79LF6; the means for the sciatic nerve (5 presentations) are shown by the 13 

solid dots and the error bars show the standard deviation.  The stimulus levels are in dB 14 

relative to the threshold for the particular frequency.  15 

Fig. 2.  Optimum values of the absolute refractory period for a stimulus-independent recovery 16 

function (Equation 2) in response to sinusoidal stimulation from 50 Hz to 2 kHz.   17 

Fig. 3.  Rate-level functions (solid lines) for a leaky integrate-and-fire model with a stimulus-18 

independent recovery function in response to sinusoidal stimulation from 50 Hz to 2 kHz.  19 

The model parameters were optimized to get the best fit to the sciatic nerve rate-level from 20 

fibre X79LF6 at 50 Hz.  The means for the sciatic nerve (5 presentations) are shown by the 21 
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solid dots and the error bars show the standard deviation.  The stimulus levels are in dB 1 

relative to the threshold for the particular frequency. 2 

Fig. 4. Relationship between the relative threshold of a probe pulse and the activation and 3 

inactivation variables of the Frankenhaeuser-Huxley model at the instant of the probe for a 4 

three-pulse paradigm.  The thresholds are relative to the resting threshold of the 10-µs probe.  5 

Simulations were done with conditioner-probe intervals of 2 ms, 5 ms, 10 ms, and 20 ms.  6 

For each conditioner-probe interval, overlapping curves are shown for intermediate pulse 7 

durations of 500 µs up to 500 µs less than the conditioner-probe interval in steps of 250 µs 8 

and for amplitudes of -30 dB, -24 dB, -12 dB and -6 dB relative to the resting threshold for a 9 

10-µs pulse.  (a) Sodium activation variable, m.  (b) Sodium inactivation variable, h.  (c) 10 

Potassium activation variable, n.  (d) Non-specific ion channel activation variable, p. 11 

Fig. 5.  The relationships between the membrane potential, V, and (a) the steady-state value, 12 

h∞, of the sodium inactivation variable, and (b) the time constant of the sodium inactivation 13 

variable, h, in the FH model. 14 

15 
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Fig. 6: Comparison between rate-level functions predicted from the modified LIF model and 1 

those calculated using the Frankenhaeuser-Huxley model.  The parameters for the modified 2 

LIF model were optimized to get the best fit over all frequencies and are given in Table 1. 3 

The mean discharge rate (spikes/s) for the FH model at each stimulus level is shown by the 4 

solid dots and those for the modified LIF model are shown by the solid lines; the FH model is 5 

deterministic so no error bars are shown.  The stimulus levels in each plot are in dB relative 6 

to threshold for the particular parameter set and stimulus frequency. 7 

Fig. 7.  Threshold recovery of the modified LIF model following an action potential, 8 

measured using a three-pulse paradigm for various amplitudes of a 1000-μs intermediate 9 

pulse.  The threshold to the 10-μs probe pulse (the third pulse) against conditioner-probe 10 

interval (relative to the resting threshold) is shown for three levels of the intermediate pulse 11 

(solid circles: no intermediate pulse; open circles: -24 dB; solid triangles: -18 dB).  The 12 

stimulus levels in dB are relative to the resting threshold of a 10-μs pulse.  The solid lines 13 

shows the least-squares fit of a two time-constant refractory function (Equation 2). 14 

Fig. 8.  Optimum rate-level functions for the modified LIF model in response to sinusoidal 15 

stimulation from 50 Hz to 2 kHz (solid lines).  The model parameters were optimized 16 

separately for each sciatic fibre, but for a given fibre the same parameters were used for all 17 

frequencies.  The mean discharge rates for the sciatic nerve fibre are shown by the solid dots 18 

and the error bars show the standard deviation (5 presentations at each level); physiological 19 

data were not collected at all frequencies for all fibres.  The stimulus levels are in dB relative 20 

to the threshold for the particular frequency.  21 

Fig. 9.  Comparison between the temporal response of the modified LIF model and sciatic 22 

nerve fibre X80LF3 showing (a) period histograms (PHs) and (b) inter-spike interval 23 



33 

histograms.  Temporal response are shown for three frequencies (100 Hz, 500 Hz, and 1 kHz) 1 

and for stimulus levels from 1 to 9 dB above threshold.  Results from X80LF3 are shown at 2 

the bottom of each plot and results from the modified LIF model are shown vertically offset.  3 

Because the conduction time of the fibre is unknown, the absolute phase between the 4 

stimulus and the response is unknown for the physiological experiments.  An arbitrary 5 

horizontal offset has been added to the model PHs to aid comparison.  The offset differs 6 

across frequency but for each frequency is constant across level.  7 

8 
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Table 1 1 

Parameter 
FH 

model 

Fibre 

X79LF6 

Fibre 

X79RF1 

Fibre 

X80LF3 

Fibre 

X80LF5 

Fibre 

X80RF1 

Fibre 

X82RF3 

 (s) 1.39x10-3 2.19x10-3 2.34x10-3 5.64x10-3 1.83x10-3 3.28x10-3 4.28x10-3 

D 0 2.35x10-5 3.59x10-6 2.18x10-5 1.52x10-5 1.64x10-5 5.00x10-5 

abs (s) 7.80x10-5 1.65x10-4 3.06x10-5 2.44x10-4 1.50x10-3 3.15x10-3 1.48x10-3 

M 2.644x101 1.94x10-1 8.45x10-2 3.57x10-1 3.48x10-2 1.31x10-1 4.21x10-2 

µ∞ 6.44x10-1 8.05x10-1 8.41x10-1 4.79x10-1 1.36x10-2 2.26x10-1 1.30x100 

∞ 1.26x102 1.94x10-2 5.84x10-1 1.16x100 1.03x10-1 2.29x10-1 1.43x100 

h (s) 1.36x10-3 3.41x10-3 2.23x10-2 1.61x10-3 1.52x10-3 4.38x10-3 1.54x10-2 

P 1.29 1.30 1.30 1.30 1.30 1.30 1.30 

 2 

3 
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Figure 1 (2 columns) 1 
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Figure 1

LIF model best fit to FH rate level function
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Figure 2 (1 column) 1 
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Figure 3 (2 columns) 1 
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Figure 3

LIF model with parameters  for best fit at 50 Hz

 2 

 3 

4 



38 

Figure 4 (2 columns) 1 
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Figure 4
Gating variables v threshold: a) m, b) h, c) n, d) p
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Figure 5 (s columns) 1 
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Figure 5
h infinity and h tau versus relative membrane voltage
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Figure 6 (2 columns) 3 
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Figure 6

LIF model best fit to FH rate level function
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Figure 7 (1 column) 1 
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Figure 8 (2 columns) 1 
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Figure 9 (2 columns) 1 
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