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Abstract  

Phenomenological neural models, such as the leaky integrate-and-fire model, normally have a 

fixed refractory time-course that is independent of the stimulus.  The recovery of threshold 

following an action potential is typically based on physiological experiments that use a two-

pulse paradigm in which the first pulse is suprathreshold and causes excitation and the second 

pulse is used to determine the threshold at various intervals following the first.  In such 

experiments, the nerve is completely unstimulated between the two pulses.  This contrasts the 

receptor stimuli in normal physiological systems and the electrical stimuli used by cochlear 

implants and other neural prostheses.  A numerical study of the Frankenhaeuser-Huxley 

conductance-based model of nerve fibre was therefore undertaken to investigate the effect of 

stimulation on refractoriness.  We found that the application of a depolarizing stimulus during 

the later part of what is classically regarded as the absolute refractory period could effectively 

prolong the absolute refractory period, while leaving the refractory time-constants and other 

refractory parameters largely unaffected.  Indeed, long depolarizing pulses, which would 

have been suprathreshold if presented to a resting nerve fibre, appeared to block excitation 

indefinitely.  Stimulation during what is classically regarded as the absolute refractory period 

can therefore greatly affect the temporal response of a nerve.  We conclude that the classical 

definition of absolute refractory period should be refined to include only the initial period 

following an action potential when an ongoing stimulus would not affect threshold; this 

period was found to be about half as long as the classical absolute refractory period.  We 

further conclude that the stimulus-dependent nature of the relative refractory period must be 

considered when developing a phenomenological nerve model for complex stimuli.  



 

 
4 

Keywords: Frankenhaeuser-Huxley, nerve model, refractory period, cochlear implant. 

1. Introduction 

All nerve fibres, whether sensory or motor, exhibit certain common features, including a 

threshold “all-or-nothing” response and refractoriness, the phenomenon where the threshold 

following an action potential (nerve spike) is temporarily higher than the resting threshold. 

The refractory period is conventionally divided into two parts: the “absolutely refractory 

period” (Gotch, 1910; Gotch and Burch, 1899), during which the fibre is unable to generate 

another spike regardless of the stimulus, followed immediately by the “relative refractory 

period”, during which sufficiently large depolarization of the nerve fibre can evoke an action 

potential (Adrian and Lucas, 1912; Adrian, 1914; Gotch, 1910).  During the absolute 

refractory period a nerve fibre’s threshold is deemed infinite and during the relative 

refractory period the threshold relaxes towards its resting value.  Such refractoriness greatly 

affects the temporal response of a nerve fibre to a stimulus. 

In many neural models that are intended to be predictive and used, for example, to investigate 

the response of a nerve fibre to electrical stimulation by a cochlear implant (e.g. Bruce et al., 

1999; White, 1985; Xu and Collins, 2004) or for more fundamental physiological studies of 

neural coding (e.g. Borst et al., 2004; Bugmann, 1997; Chapeau-Blondeau et al., 1996), the 

refractory time-course follows a fixed time-course independent of the stimulus.  We have 

previously (Morse and Evans, 2003), however, recorded the single fibre response of the 

sciatic nerve of the toad Xenopus laevis to a very wide range of stimulus levels and 

frequencies (levels up to 24 dB above threshold, frequencies from 50 Hz to 2 kHz).  An 

inspection of the discharge rate-level functions for a single fibre over a range of stimulus 
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frequencies suggested that the data could not be modelled by a fixed refractory time course 

(Morse et al., 2014): for example, the maximum discharge rate in response to a 100-Hz signal 

was 100 spikes / s for all fibres, whilst the maximum discharge rate in response to a 2-kHz 

stimulus could be as high as 2000 spikes / s; this result shows that the absolute refractory 

period in response to the 2 kHz stimulus must be less than 0.5 ms, but if such a value is used 

in a leaky integrate-and-fire model with a fixed refractory time-course then with a high 

stimulus level it can lead to multiple discharges in response to each excitatory phase of a 100-

Hz stimulus.  This contrasts the physiological data, in which each excitatory phase of a low-

frequency stimulus typically leads to one discharge.  The prediction for the low-frequency 

rate-level functions could be improved by using a larger refractory period, but this led to a 

gross underestimation of the discharges evoked in response to high-frequency stimulation.  A 

contrast between physiological data and results from a simple computational model was also 

found by Litvak et al. (2003); their computational model using physiologically-obtained 

refractory time-constants for cat cochlear nerve greatly over-predicted the maximum number 

of action potentials in response to a 5-kHz pulse train.  As described below, we considered 

that predictive phenomenological models might be improved if the refractory time-course 

was stimulus dependent. 

Many previous physiological studies have examined the refractoriness of particular nerves 

using a two-pulse paradigm, where the first pulse is suprathreshold and the threshold 

amplitude of the second pulse is measured for various intervals following the first pulse (e.g. 

Amberson, 1930; Erlanger et al., 1927; Forbes et al., 1923; Miller et al., 2001); the first pulse 

can be considered a conditioning pulse and the second a probe pulse.  In this paradigm, the 

nerve is unstimulated between the discharges evoked by the conditioning and probe pulses.  
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This markedly contrasts our experiments with sinusoidal stimulation (Morse and Evans, 

2003) and cochlear-implant experiments investigating the response to high-rate conditioners 

(e.g. Litvak et al., 2003), for which the stimulation is continuous; such continuous stimulation 

could affect recovery from refractoriness in a stimulus-dependent manner. 

The purpose of this study was to determine whether stimulation during the refractory period 

affects threshold recovery following an action potential.  In this study, we have extended the 

standard two-pulse paradigm to a three-pulse paradigm where the intermediate pulse occurs 

while the nerve is refractory.  A three-pulse paradigm has previously been used by 

Rosenblueth et al. (1949) in a study of the refractory properties of cat nerve.  In this study, 

however, interpretation of the results was hindered by the measurement of compound action 

potentials, the ensemble response of many fibres, rather than single-fibre responses.  

Moreover, the properties of the intermediate pulse were not varied systematically.  We have 

undertaken a computational study of refractoriness using the Frankenhaeuser-Huxley model, 

which is a model of ion-channel permeability based on physiological data from the sciatic 

nerve of Xenopus laevis (Frankenhaeuser and Huxley, 1964); the model therefore directly 

corresponds to the nerve we have used in our physiological studies (Morse and Evans, 2003).  

Use of the computational model enabled an investigation into the effect of short-duration 

probe and conditioner pulses without the stimulus artefact problems that are associated with 

high-level stimulation of a physiological preparation (Miller et al., 2000).  Here, we 

systematically varied the amplitude and duration of the intermediate pulse and show that the 

characteristics of the intermediate pulse do affect threshold recovery. 

2. The Frankenhaeuser-Huxley nerve model 
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The Frankenhaeuser-Huxley (FH) model (1964) models the response of a sciatic nerve fibre 

of the toad Xenopus laevis at a single node of Ranvier.  The model contains five differential 

equations and thirty-six parameters, and describes the course of a fibre’s membrane potential 

following or during electrical stimulation.  For reference, the model is briefly described in 

Appendix A using the nomenclature of the original paper.  A key component of the model is 

the simulation of the activation and inactivation states of the sodium channels (represented by 

m and h, respectively), the activation state of the potassium channel (represented by n) and 

the activation state of a nonspecific ion channel (represented by p).  The modern 

understanding is that these activation and inactivation variables represent the gating kinetics 

of the various ion channels.  They are each determined by a one-dimensional ordinary 

differential equation that is both time- and voltage-dependent.  Calculation of these variables 

enables the various ionic currents and the capacitative current to be calculated, and this 

enables the membrane voltage to be determined. 

Numerical integration was done using the Heun method with a fixed time-step of 5 s. We 

used parameter values, constants and initial conditions as reported by Frankenhaeuser and 

Huxley for their model at 20 C (Frankenhaeuser and Huxley, 1964); because the simulations 

were at 20 C, the standard temperature for the model, no correction for temperature was 

required (Frankenhaeuser and Moore, 1963; Rattay, 1990).  The first 1 ms of each simulation 

was taken to be transient and after this time the model variables were all in a steady-state 

without stimulation.  The conditioning pulse was presented only after this transient period 

had elapsed.  

Because the FH model simulates the toad sciatic nerve at only a single node of Ranvier, some 

criterion was required to determine whether a spike was large enough to successfully 
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propagate along the nerve.  In accord with data recorded from the vagus and saphenous nerve 

of cat (Paintal, 1966), and consistent with models by Frijns and ten Kate (1994), we deemed 

that a spike would propagate if its amplitude was 40 mV above the resting potential, which is 

about 34 % of the amplitude of the spike invoked by the conditioning pulse.  For large stimuli 

in the refractory period, the contribution to the membrane voltage from the capacitive current, 

which is non-regenerative, can still cause this threshold to be exceeded.  To prevent false 

spike detection, we multiplied the membrane voltage by a blanking signal that was zero from 

25 μs before each conditioning and probe pulse to 150 μs after, and unity otherwise (Fig. 1).  

Fluctuations in membrane voltage that were outside the blanking periods and above 40 mV 

were considered to be real spikes that would propagate along the whole length of the nerve.  

Qualitatively identical results to those reported below were obtained using an alternative 

criterion of 60 %. 

3. Numerical experiments  

3.1.  Two-pulse paradigm: baseline results  

To obtain baseline results, we first replicated the two-pulse paradigm used in physiological 

studies. The conditioning pulse had a duration of 10 s and an amplitude 1 dB2 above the 

resting threshold of 60.61 A / m2, which was found using the PEST algorithm (Taylor and 

Creelman, 1967; Wald level 0.5, target probability 0.5).  The amplitude of the conditioner 

was sufficient to ensure excitation in response to every presentation and the short pulse 

duration of 10 μs was chosen to approximate a near-instantaneous application of current.  A 

common way to determine the recovery function is to vary the time between the conditioner 

                                                 
2 Absolute level = reference level x 10 (dB level / 20) 
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and probe pulse and find the probe threshold for each interval pulse (e.g. Amberson, 1930; 

Erlanger et al., 1927; Forbes et al., 1923; Miller et al., 2001).  However, because of the very 

rapid change in threshold immediately following the absolute refractory period, the changes 

in probe interval must be small if the spacing is constant.  The simulations would therefore be 

time consuming.  Alternatively, the spacing of the probe intervals could be small close to the 

absolute refractory period and spaced further apart at longer intervals.  This is more efficient 

but requires knowledge of the duration of the absolute refractory period in advance.  

Throughout this study we have therefore determined threshold recovery by finding the 

minimum conditioner-probe interval that leads to excitation for various fixed probe 

amplitudes from threshold (0 dB) to 18 dB above the resting threshold for a 10-μs pulse.  

This method is insensitive to changes in the absolute refractory period and enables efficient 

measurement of threshold recovery. 

The threshold recovery of the model following the conditioning pulse is shown in Fig. 2 and 

follows that expected from physiological experiments.  For short intervals, less than about 1.3 

ms, the threshold was effectively infinite and the model would conventionally be considered 

to be in an absolute refractory state.  During the following 10 ms, the model was relatively 

refractory and the threshold gradually returned to its resting value (for clarity, Fig  2 shows 

only the 5 ms of the simulation).  To characterize threshold recovery, the threshold during the 

relative refractory period has typically been fitted by an exponential function (e.g. Bruce et 

al., 1999), although other functions, e.g. hyperbolic (Buller et al., 1953), have been used (see 

Holden, 1976 for review).  We have used a two time-constant exponential function (Morse 

and Evans, 2003) and the threshold during the relative refractory period, )(t , was given by: 
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where t is the time since the conditioning pulse was applied, ]1,0[k  is the relative 

weighting between the two time-constants, abs is the duration of the absolute refractory 

period, and 1 and 2, represent the slow long-term and fast initial threshold recovery, 

respectively. We performed a comparison of Equation (1) with the equivalent single time-

constant form, obtained by setting k to 1 in Equation (1), that is: 
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Because both equations tend to infinity for small t, fits to simulation data using a least-

squares approach to the recovery functions in their standard form, as in Equations 1 and 2, 

were not well behaved because very small random errors in the measured intervals could lead 

to very large squared-differences between the measurements and the fits; the fitted 

parameters, particularly the short time constant, τ1, were therefore overly sensitive to random 

error.  We therefore reparameterized the recovery functions and fitted the free parameters to 1 

/ θ(t).   

Fig. 2 shows the best fits to the single and double exponential models for threshold recovery.  

The two time-constant model (Equation 1) gave an excellent fit to the simulated threshold 

recovery (abs = 1.23 ms, 1 = 1.65 ms, 2, = 0.25 ms, k = 0.46). The single time-constant 

function led to a reasonable fit of the simulated data for longer conditioner-probe intervals 

but did not give a good fit to shorter conditioner-probe intervals closer to the absolute 

refractory period.  Because the two-time- constant recovery function gave a 
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substantially better fit, it was used to fit the threshold recovery data for the following study 

using a three-pulse paradigm. 

3.2. Three-pulse paradigm  

Following the baseline study, we investigated the effect of a depolarizing stimulus during the 

refractory period on refractory properties.  This was done by introducing another pulse, 

between the suprathreshold conditioning pulse and the probe pulse used to determine 

threshold; the conditioning and probe pulses were 10 s (identical to those in Section 3.1). 

The onset of the intermediate pulse immediately followed the conditioning pulse to represent 

continuous stimulation (see Fig. 3 for an example stimulus).  For ease of reference, the 

amplitudes of the intermediate pulse are also given in dB relative to the resting threshold for a 

10-μs pulse, and they ranged from 30 dB below threshold to 6 dB below threshold in 12-dB 

steps.  The smallest duration of the intermediate pulse was 250 s and we increased the 

duration in increments of 250 s.  If the end of the intermediate pulse exceeded the absolute 

refractory period then it would temporally summate with the probe pulse.  As described 

below, however, the intermediate stimulus could effectively prolong the absolute refractory 

period and this effect was dependent on the amplitude of the intermediate pulse.  The 

maximum duration of the intermediate pulse was therefore equal to the effective absolute 

refractory period for the particular amplitude of the intermediate pulse.  For each duration 

and amplitude of the intermediate pulse, the threshold recovery function was determined and 

characterized using the methods in Section 3.1.  

Threshold recovery functions for the three-pulse paradigm with an intermediate pulse 

duration of 1000 μs at various amplitudes are shown in Fig. 4.  For each amplitude of the 
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intermediate pulse, the fitted curve was in excellent agreement with the simulated thresholds 

from the Frankenhaeuser-Huxley model.  The most noticeable effect of the intermediate pulse 

was to prolong the absolute refractory period.  Fig. 5 shows the fitted parameters for the 

double exponential recovery function (Equation 1) for the full range of intermediate pulse 

amplitudes and durations.  The fitted curves were similar to those shown in Fig. 2 and Fig. 4 

and remained in excellent agreement with the simulated values.  For the range of intermediate 

pulse amplitudes studied, the effect of the intermediate pulse duration on the two time-

constants of the recovery function (τ1 and τ2) and the weighting factor, k, was insubstantial 

(Figs. 5a to 5c).  As introduced above, the main effect of the intermediate pulse was on the 

fitted value of the absolute refractory period (Fig. 5d).  There was no effect on the 

measurement of abs for intermediate pulses with a duration less than about 750 s after the 

conditioning pulse.  Once the intermediate pulse exceeded 750 s, however, the measured 

absolute refractory period was extended by its presence.  This effect was observed even when 

the intermediate pulse would have been subthreshold if presented to the resting nerve, e.g., 

for a 1000-μs pulse the threshold was 3.56 A / m2 and a stimulus level of 1.92 A / m2 (-30 dB 

relative to the 10-μs threshold) prolonged the absolute refractory period.  As the amplitude of 

the intermediate pulse increased, the prolongation of the absolute refractory period became 

more pronounced and for pulses -6 dB relative to the 10-μs threshold the measured absolute 

refractory period appeared to extended indefinitely.  In other words, the presentation of a 

depolarizing stimulus shortly after an action potential can suppress all future spikes 

regardless of the amplitude of subsequent stimulation; this suppression could occur even 

when the intermediate pulse could evoke a nerve spike when presented in isolation to the 

resting fibre.  The effect of a depolarizing stimulus during the refractory period can therefore 
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be substantial. 

The effect of the intermediate pulse on threshold recovery results directly from its temporal 

effect on the activation and inactivation variables of the Frankenhaeuser-Huxley model.  As 

shown in Fig. 6 for various amplitudes of a 2000-s intermediate pulse following a 10-s 

conditioning pulse that was 1 dB above threshold, the intermediate pulse generally had a 

small effect on the phase spaces for the activation and inactivation variables:  the only 

notable exception was that the maximum value of the potassium activation variable, n, 

increased for the largest amplitude of the intermediate pulse.  In all cases there was still a 

characteristic trajectory back to the stable fixed point associated with the resting potential.  

The most pronounced effect of the intermediate pulse was to prolong the trajectory back to 

the stable point, that is to delay the return of the gating variables to their resting values.  This 

is most clearly shown by the plots of the individual time courses of the activation and 

inactivation variables in Fig. 7.  For the potassium activation variable, n, and the non-specific 

activation variable, p, an increase in the amplitude of the intermediate pulse led to a slightly 

faster rise time of each variable, a greater maximum level, and a markedly longer time to 

return to the resting value.  The intermediate pulse had a negligible effect on the initial time 

course of the sodium inactivation variable, h, and, except for large values of the intermediate 

pulse, it had only a small effect on the minimum value of h; an increase, however, in the 

intermediate pulse amplitude also led to a markedly longer time for h to return to its resting 

value.  Similarly, the intermediate pulse had a negligible effect on the rise time and most 

extreme value for the sodium activation variable, m; again, however, high levels of the 

intermediate pulse slowed the return of this gating variable to its resting value.   
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It follows directly from the results in the previous section that continued stimulation during 

the absolute refractory period following excitation by a sinusoidal stimulus would be 

expected to affect threshold recovery.  This is demonstrated in Fig. 8 for a 100-Hz sinewave.  

Fig. 8a shows one period of a 100-Hz sinewave that was 12 dB above the resting threshold 

(3.52 A / m2) preceded by a 1-ms gap.  The cathodic (excitatory) phase of this stimulation, 

which is shown in Fig. 8a as positive values of the current density, led to a single action 

potential that exceeded the criterion threshold level of 40 mV (Fig. 8c).  In contrast, if there 

was a sufficient gap in the stimulation during the absolute refractory period, for example 

between 2 and 3.5 ms as shown in Fig. 8b, then two action potentials could be evoked by the 

cathodic stimulation (Fig. 8d).  Furthermore, the complementary stimulus, that is a stimulus 

that mirrors the stimulus gap (Fig. 8e), could cause excitation (Fig. 8f).  In other words, a 

segment of a sinewave that in isolation causes excitation can lead to suppression of an action 

potential if it falls within the absolute refractory period. 

4. Discussions and conclusions 

We have shown that stimulation during the duration of the absolute refractory period, as 

measured using a two-pulse paradigm, can extend the duration of the measured absolute 

refractory period in the FH model. This supports the finding by Rosenblueth et al. (1949) that 

a short depolarizing pulse applied shortly before the probe pulse can block excitation in 

response to the probe.  

Our findings are consequential for the terminology used for refractoriness and the 

classification of the refractory period into absolute and relative components. As pointed out 

by Forbes et al. (1923) and Rosenblueth et al. (1949), the classical classification of the 
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refractory period into absolute and relative components is not satisfactory because a stimulus 

applied during the interval in which another action potential cannot propagate, nominally the 

absolute refractory period, can cause excitation after the period has elapsed; the second action 

potential can result from the local response to the second stimulus, but can only be initiated 

after the “functional” absolute period has elapsed.  Nonetheless, the terminology is 

widespread.  Our finding that the measured absolute refractory period can be extended by a 

depolarizing stimulus appears to make the terminology worse.  We therefore take the absolute 

refractory period to be the period during which an on-going stimulus would not affect the 

refractory parameters and is thus truly “absolute”. In our simulations this was about 0.7 ms 

and about half the duration of the absolute refractory period measured with a classical two-

pulse paradigm. We take the following period to be relatively refractory even though the 

nerve may have an infinite threshold during this period.  We therefore consider the 

intermediate pulse in our study to affect only the relative refractoriness of the nerve.  

We chose to study the effect of an intermediate pulse with the Frankenhaeuser-Huxley model 

because it is based on the same animal (the toad Xenopus laevis) we have used in 

physiological studies.  The dynamics of this model, however, are broadly similar to those in 

the more well-known Hodgkin-Huxley model of the unmyelinated squid axon (Hodgkin and 

Huxley, 1952); the same effect of an intermediate pulse might therefore be expected with this 

model.  There have been attempt to reduce the dimensionality of the Hodgkin-Huxley 

equations, most notably in the Fitz-Hugh Nagumo model (Fitzhugh, 1961; Nagumo et al., 

1962) but also in studies by Abbott and Kepler (1990) and others.  These models inherently 

model the dynamics of the activation and inactivation variables and may demonstrate a 

similar effect of an intermediate pulse on refractoriness.  These models, however, are 
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intended to be analytically tractable rather than predictive.  As introduced above, it is often 

necessary or desirable to use phenomenological models, such as the leaky integrate-and-fire 

model, to predict the response to electrical stimulation (see, e.g., Abbott and Kepler, 1990; 

Tuckwell, 1988).  Due to their abstraction, however, most phenomenological models do not 

contain an implicit refractory period.  Nonetheless, phenomenological models often need to 

model refractoriness and this is commonly done by fixing the threshold at infinity during an 

absolute refractory period of fixed duration and then allowing it to relax towards its resting 

value during the relative refractory period.  The absolute refractory period is considered to be 

stimulus-independent and so during this period all stimulation is ignored.  During the 

following refractory period, threshold recovery is modelled by one of the many functions 

introduced in Section 3.  These refractory functions, however, have been derived from 

physiological experiments using only a two-pulse paradigm and therefore accurately describe 

nerve behaviour only in the absence of further stimulation.  We have shown that even for 

stimulation as simple as two pulses in rapid succession, such models of refractoriness may 

fail to capture a fibre’s recovery correctly.  If the stimulation under consideration is more 

complex than widely-spaced pairs of pulses (e.g., the stimuli in Fig. 8) then the stimulus-

dependent nature of the relative refractory period must be considered to obtain an accurate 

phenomenological model.  
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Appendix A.  The Frankenhaeuser-Huxley nerve model 

The relative membrane potential, V , for the Frankenhaeuser-Huxley nerve model 

(Frankenhaeuser and Huxley, 1964) is given by: 

m

C

d

d

C

I

t

V
          (A.1) 

where Ic is the capacity current and Cm is the membrane capacitance. Ic is given by the difference 

between the stimulating current, Iin, and four ion channel currents:  
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Here, INa is the current due to sodium ion channels, IK is the current due to potassium channels, Ip 

represents a non-specific current and IL the leak current. These currents are given by: 
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with V = E -Er. [Na]i and [Na]o are the sodium concentrations inside and outside the nerve, 

respectively, and [K]i and [K]o are the inside and outside potassium concentrations. E is the absolute 

membrane potential, Er is the membrane resting potential, F is Faraday’s constant, R is the gas 

constant, and T is the absolute temperature.  NaP and KP  are the sodium and potassium permeability 

constants, respectively, pP  is the non-specific permeability constant and gL is the leak conductance.  

The gating variables h, m, n and p are variables for the state of various ion channels: m and h are the 

variables for sodium channel activation and inactivation, respectively, n is the variable for potassium 

channel activation and p is the variable for non-specific channel activation. They are determined by 

the following one-dimensional ordinary differential equations:  

  hh
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where the  and  terms (with various subscripts) are functions of the relative membrane potential, V . 
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Figure legends 

Fig. 1.  Simulated membrane voltage for the Frankenhaeuser-Huxley model in response to two 10-μs 

cathodic pulses, the first 1 dB above the resting threshold and the second 18 dB above the resting 

threshold; the absolute resting threshold was 60.61 A / m2.  In both plots the first pulse occurred 1 ms 

after the start of the simulation but in a) the second pulse was after the absolute refractory period (3 

ms after the first pulse) and in b) the second pulse was within the absolute refractory period (1.25 ms 

after the first pulse).  The solid line shows the membrane voltage and the dashed line shows the timing 

of a blanking signal that was zero from 25 μs before each stimulus pulse to 150 μs afterwards; the 

blanking signal had a value of unity outside these periods but for illustration is arbitrarily shown here 

with an amplitude of 100 mV.  The non-regenerative response to the second pulse in b) was less than 

40 mV after the blanking period. 

Fig. 2.  Threshold recovery of the Frankenhaeuser-Huxley model following an action potential, 

measured using a two-pulse paradigm.  The simulated thresholds to the second (probe) pulse, relative 

to the resting threshold, for each interpulse interval are shown by the crosses.  The solid line shows 

the least-squares fit of a two time-constant refractory function (Equation 1) and the dashed line shows 

the fit of a single time-constant refractory function (Equation 2). 

Fig. 3.  Example of the three-pulse paradigm used to study the effect of stimulation during the 

refractory period.  The first pulse was a conditioning pulse 1 dB above the resting threshold and with 

a 10-s duration.  The second pulse was an intermediate pulse, in this example -18 dB below the 

resting threshold for a 10-s pulse and 1 ms long, applied immediately following a conditioning 

pulse.  The third pulse was a probe pulse (10-s duration), which in this example was 6 dB above the 

resting threshold with an onset 3 ms after the conditioning pulse.  Cathodic (excitatory stimulation) is 

shown by positive values of the current density. 
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Fig. 4.  Threshold recovery of the Frankenhaeuser-Huxley (FH) model following an action potential, 

measured using a three-pulse paradigm for various amplitudes of a 1000-μs intermediate pulse.  The 

simulated thresholds to the 10-μs probe pulse (the third pulse) against conditioner-probe interval are 

shown by the symbols for three levels of the intermediate pulse (solid circles: intermediate pulse -30 

dB; open circles: intermediate pulse -18 dB; solid triangles: -6 dB).  The stimulus levels in dB are 

relative to the resting threshold of a 10-μs pulse.  The dashed lines shows the least-squares fit of a two 

time-constant refractory function (Equation 1) for each set of recovery data. 

Fig. 5.  Effect of the amplitude and duration of the intermediate pulse on the refractory parameters.  

The effects are shown for: (a) the longer refractory time-constant, 1; (b) the shorter refractory time-

constant, 2; (c) the refractory weighting parameter, k.; (d) the absolute refractory period, abs.  The 

key for the different amplitudes of the intermediate pulse relative to the resting threshold of a 10-μs 

pulse are given in panel (a). 

Fig. 6.  Effect of the amplitude of a 2000-s intermediate pulse on the phase space of the activation 

and inactivation parameters of the Frankenhaeuser-Huxley model following a 10-s conditioning 

pulse 1 dB above threshold.  The key for the different amplitudes of the intermediate pulse relative to 

the resting threshold of a 10-μs pulse are given in panel (a).  (a) Phase space for the sodium activation 

variable, m, against the sodium inactivation variable, h.  (b)  Phase space for the sodium activation 

variable, m, against the potassium activation variable, n.   

Fig. 7.  Effect of the amplitude of a 2000-s intermediate pulse on the time course of the activation 

and inactivation parameters of the Frankenhaeuser-Huxley model following a 10-s conditioning 

pulse 1 dB above threshold.  The key for the different amplitudes of the intermediate pulse relative to 

the resting threshold of a 10-μs pulse are given in panel (a).  (a) Sodium activation variable, m.  (b)  

Sodium inactivation variable, h.  (c)  Potassium activation variable, n.  (d)  Non-specific activation 
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variable, p. 

Fig. 8.  Effect of sinusoidal stimulation during the absolute refractory period on the threshold of the 

Frankenhaeuser-Huxley model.  (a) One period of a 100-Hz sinewave that was preceded and followed 

by a 1-ms gap.  The amplitude of the sinewave was 12 dB relative to the threshold for a continuous 

100-Hz sinewave (3.52 A / m2).  (b) Stimulus as in (a) except for a gap between 2.0 and 3.5 ms.  (c) 

Sinewave segment that complemented the gap in the stimulus in (c), i.e. (b) and (c) sum to give the 

stimulus in (a).  (d), (e), and (f) show the simulated membrane voltages in response to the stimuli 

shown in (a), (b), and (c), respectively.  The dashed lines in (d), (e), and (f) show the 40-mV threshold 

used for spike discrimination (see main text). 
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Figure 1 (2 columns) 
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Figure 3 
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Figure 4 (1 column) 
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Figure 5 (2 columns) 
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Figure 6 (2 columns) 
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Figure 7 (2 columns) 
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Figure 8 (2 columns) 
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