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Abstract 

Complex systems scientists cannot by themselves perform experiments on complex socio-technical 

systems. The best they can do is to perform experiments alongside policy makers who are constantly 

engaged in experiments as the design and manage the systems the systems for which they are 

responsible. In this context the nature of prediction in the implementation of real systems is much more 

complicated than it is in traditional science. The goals identified by policymakers change through time, 

and this is usually managed through the design and management processes. The combination of policy 

and design is the opportunity – the only opportunity – for complex systems scientists to engage and to 

be allowed to be involved in in-vivo experiments in large socio-technical systems. In turn this opens up 

new methodological approaches and questions for the science of complex systems. 

 

1. Introduction 

The science of complex systems differs from traditional science in many respects. One of the 

most important is that complex systems scientists cannot perform active experiments on many 

of the systems they study. For example, a scientist cannot decide to build a bridge to test 

predictions of traffic flows, a scientist cannot implement a stay-at-home policy to investigate 

the consequent impact on an epidemic, a scientist cannot implement a radical energy policy to 

investigate its impact on climate change, and a scientist cannot declare war or take measures 

to keep the peace. Initiating change assumes purpose and a view on how future systems ought 

to be (Simon, 1969). In democracies deciding what ought to be is the prerogative of 

policymakers, not scientists. 

Large complex socio-technical systems have strong political dimensions, and changing them 

often involves huge resources and complicated planning procedures with delivery through 

many agents. Most policies are experiments with unpredictable outcomes, but they are 

generally not treated as scientific experiments and not instrumented. Put simply, only policy 

makers have the mandate and the money to conduct experiments on large complex socio-

technical systems.  

The best that experimental scientists can do is to align themselves with policy makers, 

ensuring that the scientific basis of policy is sound and persuading the policy makers to 

tolerate the collection of data for scientific purposes. This is necessary but not sufficient for 

scientific experiments, since the whole nature of scientific prediction has to be rethought for 

complex systems. 

 

2.Performing experiments on complex socio-technical systems 
 

 

 

 

 

 

 
Figure 1.   Experiments: predicting that given interventions will result in future system states 

Complex systems scientists are seeking new methods of understanding how systems might 

evolve from current states to future states. Experiment generally involves putting a system in 

a particular state, making an intervention and observing the consequences. These may or may 

not support hypotheses on the consequences of the intervention. Since only policy makers can 

legitimately and practically make interventions, the best that complex systems scientists can 

do is make precise the desired future state(s) of the system (what policy says it ought to be), 

Intervention kick 
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make precise which system states might evolve, and suggest interventions that may best 

achieve the desired state(s): “tell us what the target is and we’ll tell you how to hit it”. 

This is illustrated in Figure 1. Somehow the system must be represented. For complex 

systems such as a cancer or a city this representation cannot just be a few words or symbols. 

The representation will be complicated and generally have many levels with many 

relationships and numbers characterizing particular states. Characterizing the system as it is 

now and how it ought to be in the future involves complicated data structures holding a lot of 

data and computing state transitions and trajectories from these data at many scales. 

The idea of a policy-oriented prediction is that if one makes an intervention one ‘kicks’ the 

system off its current trajectory onto another trajectory that will hit the target. Let s0 be the 

state of system at now, time zero, and st be the state of the system at time t. Suppose the 

system is governed by transition dynamics with f: s0 → st. Let kNULL be the null kick meaning 

that one does nothing to the system. Then let us write f: (s0, kNULL) → st,NULL to mean the 

transition dynamics of the system when no intervention is made. Let us write f: (s0, ki) → s0,i,t 

to mean the state of the system at time t when intervention ki is applied to the system in state 

s0 at time t0. 

The cooperation between scientists and policy makers assumes that the former know 

something about the dynamics of the system that the latter find useful. It is assumed that 

scientists can bring to bear better ways of representing that states of systems, st, their 

transition dynamics, f, and that this enables predictions to be made on the consequences of 

any particular policy kick, ki. It also assumes that scientists are practical, proposing data 

structures that enable data collection or, more often, use of data that already exists. Also the 

transition dynamics must be computable. Policy makers are not interested in abstract 

predictions from scientists that do not give precise statements of what might be. 

Paraphrasing the argument so far, scientists cannot do in-vivo experiments on most complex 

socio-technical systems. Generally they have neither the mandate nor the money to make 

interventions in large complex systems. Therefore the best they can do is sit alongside policy 

makers who do have the mandate and the money to make interventions. The best that a 

scientist can do is persuade policy makers that they know how to predict the outcome of any 

particular policy intervention, and possibly suggest particular interventions that the policy 

makers might find helpful. 

 

3. Prediction and control in complex systems. 

As an example of prediction, consider an ancient warship. The captain’s policy is that an 

enemy ship ought to be hit by a cannon ball. Assuming the scientist will take the commission, 

their job is to suggest a way of setting up the cannon in a way that can be predicted to hit the 

target ship when fired. 

For complex socio-technical systems the reality is much more complicated that this since no-

one can control all their aspects. In Figure 2 it is supposed that the original policy kick sends 

the system on a trajectory towards the goal, but legislation knocks it off course. For example, 

the policy of one Government department can be knocked off course by policy changes made 

by another department, e.g. planning regulations may become more severe, or fiscal rules may 

change. Figure 2 shows intervention kicks to put the system back on course towards the goal, 

but being knocked off trajectory by an external financial force, such as the severe global 

financial crisis emanating from the USA in 2007 and 2008. Again interventions attempt to put 

the systems back on track, and but other extreme events knock it off trajectory from the goal.  

 

 

 

 

 

 

 

 
Figure 2. Policy is subject to many forces from many internal and external sources 
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Traditional science assumes that the laboratory can be separated from its environment. Let S 

be the system under investigation and U the universal system. Then let the environment, E, be 

defined to be E = U – S. Thus anything not in the system is by definition in the environment. 

Traditional science progressed by being able to isolate S in the laboratory with E having 

negligible effect. For example, Galileo did not have to worry about bank rate or the weather 

when studying motion down an inclined plane. Often E does not have much effect on 

complex systems when they are behaving normally. The problem with complex systems is 

that they are subject to extreme event when they do not behave normally, and the occurrence 

of extreme events is itself normal. Understanding the nature of extreme events and the 

interaction and coevolution between systems and environment is part of the challenge in 

complex systems science. 

To continue our earlier example, the cannon may be on a ship in the middle of a storm, with 

huge waves tossing it about. Or the regulations may change so that cannon must be fired in a 

different way. Or the cost of powder may change meaning that less can be used. Or a wheel 

may have fallen off the gun carriage. Predicting how the target might be hit becomes much 

more difficult as the system and its environment change. 

Figure 2 is much closer to feedback control than open-ended prediction. The former is 

essential in real systems while the latter is almost unattainable in complex social technical 

systems. Thus whole concept of prediction has to change relative to traditional science. 

 

4. Prediction fans and prediction horizons 

Figure 2 is a simplification, since the outcome of any particular intervention kick may not be 

unique. In other words, an intervention may have a number of outcomes as illustrated in 

Figure 3. Thus the possible future states of systems fan out towards a prediction horizon 

beyond which predictions are meaningless. For example, what will the bank rate be ten years 

from today? Or how many cars will there be in a hundred years time?  As the clock ticks the 

horizon moves forward, allowing some predictions to become meaningful and even useful. 

 

 

 

 

 

 

 

 

 

 

 
 

(a) future trajectories fans out from the present                   (b) The horizon moves forward with time 

Figure 3. Predictions in complex socio-technical systems fan out and have horizons 

To continue the example of the cannon and target, the analogy now is that the target ship is 

over the horizon and part of the prediction becomes knowing when, if ever, it will become 

visible and what to do until it comes in range 

. 

5. Prediction and policy in multilevel systems 

The story gets even more complicated. Most complex systems have many levels, from micro-

level to macro-level. When one speaks of an intervention, it may matter at what level the 

intervention occurs. For example, national novernments can make interventions by changing 

laws or making funds available for their objectives. They cannot intervene at the level of the 

individual person, as some agencies can at a much more disaggregate level. Generally 

national governments do not build particular schools, this is done by intermediate level 

administrations. Whatever the level of an intervention, it is possible that its consequences will 

be felt at higher and lowest levels of aggregation. 
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t1 

prediction horizon 
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Figure 4: Predicting the consequences of a kick to a multilevel system, k:St → St+t 

 

To continue the analogy of the cannon, it might be that to fire the cannon requires the 

permission of the admiral and the captains of all the other ships, and that this permission 

depends on the detailed states of all the other ships and the configuration of the fleet, etc. 

Alongside all this are considerations of the cost of gunpowder and the lurching of the ship in 

the gale, and the possible position of the target beyond the horizon. No longer is the 

prediction the application of the theory of mechanics and the solution of a few equations 

calculated for a small data set. Now the prediction involves the interactions of many 

heterogeneous subsystems with transition dynamics dependent on large heterogeneous data 

sets that may be difficult to collect and very demanding to compute. 

Thus every dot in Figure 3 represents the state of a multilevel system, and every arrow 

represents the transformation from one multilevel system state to another, as illustrated in 

Figure 4. Thus we have to image Figures 1 and 2 with branching, and each of the nodes in 

those diagrams representing complicated multilevel system representations.  

Policy makers ‘kick’ their systems by making interventions at all levels and manage the 

consequences as best they can (Figure 4). What can complex systems scientists say about 

this? What does it mean to make a scientific prediction in these circumstances? Does it 

include the consequences at all levels? 

The idea of the scientist using predictive methods to advise the policy maker how to achieve 

their goals is getting very complicated. But there is one final twist:  

 

6. The goalposts move! 

In the case of the cannon, it is as if the target ship changes, or the target becomes assisting 

rather than destroying the ship, because a more beneficial target emerges from the process of 

trying to hit the original target. 

Consider policy makers identifying and trying to solve problems. There is the normative 

aspect that the system ought to be better, and there is the practical aspect of what could make 

it better. Such situations invariably have many competing dimensions. Ideally they would all 

be optimized, but usually the constraints compete with each other for any given solution. 

They have to be satisficed, meaning an acceptable compromise must be found. Sometimes the 

problem of creating the system that ought to be is over-constrained and there is no solution. 

For progress to be made, one or more constraint must be relaxed. Changing the constraints 

leads to a different problem. To be useful, any prediction made by a complex systems 

scientist must address the problem as it exists now, not as it was previously. 

 

7. Design and management 

By now we have entered the world of design which is well known to policy makers. It will be 

argued that the design and management of real systems is the in-vivo laboratory of complex 

systems science. 

Figure 5 shows a simple diagram of the way people solve practical problems. On the left is 

the process of establishing what is required, which comes from those who make policy. On 

the right is the generate-evaluate cycle that characterises the design process. In this cycle 

designers generate new systems and evaluate them against the requirements. If the new 

system satisfies all the requirements it is a ‘solution’ to the design problem, and the process 

passes to implementation. If the proposed system does not satisfy the requirements then 

alternative systems are generated themselves to be tested against requirements. 
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Figure 5. The simplified requirements-generate-evaluate model of the design process 

The design cycle is a spiral process in time, since the design rarely returns to a previous state. 

The reason is that the designer learns about the problem during each iteration around the 

cycle. Each time a potential solution is generated the designer is making hypotheses as to 

what the parts of the system might and how they might fit together. Each time the potential 

solution is evaluated these hypotheses are reviewed and possibly tested. Each time a potential 

solution is rejected the designer learns something new about the system. 

Anyone who has been involved in a large complicated project will recognise the process of 

‘working up’ the definition of the project, and will be familiar with the interplay between 

constraints and possible ways forward. Policy makers know this from experience. Many 

scientists experience a similar process in their own projects. In this paper we are not just 

saying that the messy business of managing projects is necessary to administer science, we 

are saying that engaging in messy design and management projects is science, as far as 

complex socio-technical systems are concerned. Design and management are intimately tied 

up with the emerging new scientific method, with data collection, with prediction, and any 

possibility of testing predictions using new statistical methods. 

The argument is that complex systems scientists cannot do experiments on large socio-

technical systems but must align themselves with policy makers (who do experiments all the 

time). Policy makers execute their experiments through the design process which is a 

systematic way of allowing a coevolution between what ought to be and what can be.  

This process involves many predictions at many levels, and the process of making predictions 

evolves with the requirements and proposed solutions. 

 

8. Prediction and testing predictions in-vivo 

Arising from the previous discussion, many kinds of predictions that can be made about 

complex systems. Let the experimental multilevel system be written as (B, M, H), where B is 

the relational backcloth of the system and M is the class of mappings representing the traffic 

of system activity over the backcloth. We write B = BN   BN+1  BN+2 …  BN+L where BN+j 

is the relational backcloth of the system at level N+j, which can be represented by networks 

and hypernetworks. The mappings on the backcloth can be written M = MN   MN+1 …  

MN+L where MN+i = {mN+i, j | mN+i,j : BN+i → Z} where Z is a number system such as the real or 

rational numbers
1
. H is a class of mappings that aggregate the mappings MN+i over the 

backcloth, hij: MN+i → MN+j. 

 

Then the many kinds of predictions include: 

 

Simple Type-I predictions: changes in mappings 

Type-I-1, Fixed Level.  k: (MN+i (BN+i ), t ) → (MN+i (BN+i), t + t) 

Type-I-2, Inter-Level.   k: ( hij MN+i (BN+i),  t ) → (MN+j (BN+j, t + t) 

                                                 
1
 It can be shown that any system can be written this way, where the levels are relationally defined by 

parts and wholes (Type- aggregation) and classification (Type- aggregation) (Johnson, 2008). 
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Simple Type-II predictions: changes in relational backcloth 

Type II-1, Fixed Level. k: (BN+i, t) → (BN+i, t + t) 

Type II-2, Inter-Level k: (BN+i, t) → (BN+j, t + t) 

 

These predictions correspond to a single arrow in Figure 1. They include time series 

predictions as the some of the simplest examples of Type I-1 predictions, where the future 

value of a mapping on a fixed backcloth is determined by its previous values. Type I-2 

mappings include the aggregation of numbers over the levels of a fixed backcloth, such as the 

cost of building a system from components bottom-up, or the top-down distribution of 

resource. The employment of a new person is an example of a Type II-1 change. The impact 

that new person might have on the team is an example of a Type II-2 change. 

Simple Stochastic Predictions 

Both Type-I and Type-II predictions can be stochastic. This corresponds to putting transition 

probabilities on the arrows in Figure 3. For complex systems the fans may spread out very 

rapidly, meaning that the transition probabilities rapidly become small so that they may carry 

no useful information. But they may do. 

Compound Predictions: multi-kick control 

As Figure 2 suggests, the reality of keeping a system on a trajectory that will hit a given goal 

requires constant monitoring of the systems state, and constantly making new predictions on 

which to base new kicks to keep the system on trajectory to the target. In engineering systems 

feedback control is achieved by a few sensors and, usually, a few fixed equations that are used 

to compute changes to the control action (e.g. applying more or less power to the actuators). 

In such systems one does not predict that any particular control action will ensure that the 

system hits the target, but one can predict that the multi-kick control regime will ensure that 

the system will hit the target. 

For complex socio-technical systems this means the empirical scientist must propose a control 

regime which combines Type-I and Type-II predictions across multilevel systems. To my 

knowledge no complex systems experiment has ever been conducted in these terms. 

The reason for this is probably because complex systems are not designed and implemented in 

this way. The evolution of the control system occurs during the design process, which is not 

widely seen as part of the scientific method, even though this view is well known in design 

theory (e.g. Herbert Simon, Ross Ashby). 

 

9. Design Predictions 

As we have seen, design is the ultimate test of prediction since it requires an understanding of 

the system dynamics of the specification-design process. On the UK Embracing Complexity 

in Design project (Johnson, et al, 2007) it emerged that 

    •   designing complex systems requires a scientific understanding of their dynamics 

    •   design processes can be complex, e.g. manufacturing processes, supply chains 

    •   the environment of design can be complex , e.g. regulation, fashion, economy 

    •   design is a complex collaborative cognitive process 

Complex systems scientists can contribute to the design and implementation of complex 

systems by providing system models allowing simple predictions to be made. To implement 

systems requires an understanding of the processes involved, since these play an important 

role in the selection of the target(s) at any time.  

 There are no quantitative models of complex systems prediction that take into account the 

environment within which systems are design, but many descriptive models of the design 

process. 

Design as a complex collaborative process involves iterating around the coevolutionary cycles 

of Figure 5. Usually the ‘client’ occupies the left part of the diagram, deciding what they want 

and don’t want, and what they like or don’t like. Here the client is shown as policy makers – 
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the people that have the mandate to decide what ought to be and the money to commission 

its design and implementation. 

Design is characterised by juggling constraints and making compromises, from the sketch 

stage all the way through to the blueprint and implementation. Even when new systems are 

being constructed constraints may change as new problems are discovered. The design 

process implicitly involves designing the management of the systems when it has been built. 

From conception to delivery and day-to-day performance, the design process involves 

predictions of many kinds at many levels. This is the opportunity – the only opportunity – for 

complex systems scientists to engage and to be allowed to be involved in in-vivo experiments. 

 

10. The new statistics 

As presented here, prediction in policy and design is much more complicated than in 

conventional experiments, which are generally contrived to be as simple as possible. What 

can it mean to test a prediction in this context? Certainly conventional statistical techniques 

can be applied to local predictions, but how can the ‘correctness’ of the design process be 

tested in a rigorous statistical way? Of the many complications, what does it mean to make a 

prediction of a multilevel systems? In physics we are content that the gas laws give highly 

reliable predictions at the macrolevel, while the states of individuals are unknowable at the 

microlevel. In complex socio-technical systems the behaviour of individuals at the microlevel 

can have massive effects at meso and macro levels. This suggests that isolated single-level 

predictions will not do for complex systems, and that statistical tests will themselves have to 

be multilevel. 

Conventional statistical methods were not developed for the kind of large complex multilevel 

systems discussed in this paper. For example, in the UK the major North-South M1 Motorway 

has been redeveloped considerably over the last few years, increasing the number of lanes in 

each direction to four, redesigning many intersections, and replacing a number of bridges. 

Such a project involves hundreds if not thousands of interacting predictions. What methods 

could be developed for testing any or all of those predictions? The discussion in this paper 

suggests that there is a completely new approach to statistical analysis waiting to be 

discovered and developed. 

 

11. Conclusion 

It has been argued that complex systems scientists cannot by themselves perform experiments 

on complex socio-technical systems, and that the best they can do is to perform experiments 

alongside policy makers who are constantly undertaking large and small experiments. In this 

context it has been shown that the nature of prediction in the implementation of real systems 

is much more complicated than it is in traditional science. In particular, the goals identified by 

policymakers change through time, and this is usually managed through the design and 

management processes. It is suggested that the combination of policy and design is the 

opportunity – the only opportunity – for complex systems scientists to be involved in in-vivo 

experiments. In turn this opens up the need for new methodological and statistical approaches 

for the science of complex systems. 
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