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Adaptive Position Tracking Control of High-speed Trains with

Piecewise Dynamics*

Zehui Mao1, Gang Tao2, Bin Jiang1 and Xing-Gang Yan3

Abstract— This paper addresses the adaptive position track-
ing control problem for high-speed trains with time-varying
resistances and mass in the motion dynamics. To handel these
time-varying parameters with piecewise constant characteris-
tics, a piecewise constant model with unknown parameters is in-
troduced for different train operation conditions. An integrated
adaptive controller structure is constructed to have the capacity
to achieve plant-model matching with known parameters and
complete system parametrization with unknown parameters,
which is desirable for adaptive tracking control. For the train
position tracking requirement, the reference model system is
specifically chosen. Stable adaptive laws are designed to update
the adaptive controller parameters in the presence of the
unknown piecewise constant system parameters. Closed-loop
stability and asymptotic state tracking are proved. Simulation
results on a high-speed train model are presented to illustrate
the desired adaptive position tracking control performance.

I. INTRODUCTION

As high-speed trains is one of the most comfortable and

rapidly transit systems, the control problem of trains have

attracted a considerable number of studies to maintain safe

and reliable operation. Due to the characteristics (high-speed)

of the train, the automatic train operation plays an important

role in driving the train, when the operation conditions

change.

During the past years, some results on controller design for

high-speed trains have been obtained, see, for example [1]-

[4]. Among the existing results, the model-based controller

design methods are always used, in which the constant or

the variable model parameters with known upper bounds are

employed. In practice, the dynamic motion model of the

train is a time-varying nonlinear model dependent on the

operating conditions. Especially, for the high-speed train,

the aerodynamic resistance will change largely, when the

train moves at a high-speed or passes a tunnel. Thus, the

constants or bounded variable parameters cannot represent

the characteristics of the system dynamics well, which moti-

vates us to propose a new model to describe the high-speed
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train for the control design. In this paper, considered the

piecewise characterizes of the train operating conditions, a

new piecewise constant model with unknown parameters is

presented to represent the train dynamics.

According to requirements on trains and lines, such as

timetable, predefined platforms or emergency shutdown, the

position trajectory calculations for high-speed trains is im-

portant for safe operations. Speed regulation is one of the

main way to achieve the position trajectory tracking. To

deal with the unknown parameters in the proposed piecewise

constant model and to achieve good tracking performance

(see [5], [6]), the adaptive techniques is suit for the controller

design problem.

This paper is focused on the position tracking problem

for the high-speed trains with the piecewise dynamic char-

acteristics. A piecewise constant model is used to describe

the train motion dynamics with its variable parameters. The

controller structure, design conditions, and adaptive laws are

derived to construct the automated train control scheme.

The main contributions of this paper can be summarized

as follows: (i) A piecewise constant model is introduced

to describe the train motion dynamics with its piecewise

dynamics. (ii) The adaptive controller with reference model,

structure and adaptive laws is developed to achieve the train

position tracking, in the present of the unknown piecewise

constant parameters.

The rest of this paper is organized as follows: In Section II,

the dynamical model of high-speed trains are introduced. In

Section III, an adaptive controller is developed for the train

with unknown parameters to position tracking. In Sections

IV, a simulation study is presented to show the performance

of the proposed method. Finally, some conclusions are given

in Section V.

II. PROBLEM FORMULATION

In this section, we will introduce the dynamic model of

high-speed trains, which can be modelled as a piecewise

constants model.

High-speed Train Motion Model. From [4], the longitu-

dinal motion dynamics of a train can be described as:

M(t)ẍ(t)=F (t)− Fr(t)− Fg(t)− Fc(t), (1)

where x(t) is the position of the train, M(t) is the mass

of the train, F (t) is the traction force, Fr(t) is the general

resistance, Fg(t) is the force caused by motion on the grade,

Fc(t) is the force caused by motion on the curve. The force

F (t) acting on the train, is generated by the traction system

to achieve the tractive effort or dynamic braking.



According to [7], the Davis equation is usually used to

express the the general resistance Fr(t):

Fr(t)=ar(t) + br(t)v(t) + cr(t)v
2(t), (2)

where ar(t) defines the train’s rolling resistance component,

br(t) defines the train’s linear resistance, cr(t) defines the

train’s nonlinear resistance; v(t) is the speed of the train.

From [8], the grade resistance force Fg and the curvature

force are modeled as:

Fg(t)=M(t)g sin θ(t), (3)

Fc(t)=0.004D(t)M(t), (4)

where θ(t) is the slope angle of the current track. D(t) is

the degree of curvature and can be calculated by D(t) =
0.5dw/R(t), with dw being the distance between the front

and rare wheels of the train, and R(t) being the curve radius.

Piecewise Dynamics Analysis. The train’s mass is a

constant, when it is running between two stations. The mass

parameter M(t) can be modeled as a piecewise constant

function depending on the displacement x of the train.

The accurate models of coefficients ar, br and cr are

complex, time-varying and dependent on many factors,

which causes difficulty for the control design in practice.

According to [9], the changes of the coefficients ar, br and

cr mainly depend on the current conditions of the train (mass,

speed, tunnel passing, etc.). These coefficients ar, br and cr
can be considered as constants under the certain operating

condition. The train operating conditions determines by the

train displacement x and velocity ẋ. Thus, the coefficients

ar, br and cr can be modeled as the piecewise constants

depending on the displacement x and velocity ẋ of the train.

According to the characteristics of the track line, the

slope angle θ(t) and the degree of curvature D(t) can be

considered as a piecewise constant depending on the position

x of the train. For high-speed trains, the variables x and

ẋ representing the displacement and velocity of the train,

respectively, can be measured online by the speed sensors

and track circuits.

From the above analysis, it can be seen that the motion

model of the high-speed train is in general described by a

time-varying dynamic equation, which can be approximated

by certain piecewise constant functions, as the train operating

conditions usually follow certain piecewise properties. In this

paper, the controller design problem for the high-speed train

modelled by a piecewise constant model will be focused,

especially for the case that the parameters of the train are

unknown.

Piecewise Dynamic Model. With the expressions (2)-(4)

of the resistance forces, the train dynamic model (1) can be

rewritten as

M(t)ẍ(t)=F (t)−
(

ar(t) + br(t)ẋ(t) + cr(t)ẋ
2(t)

)

−M(t)g sin θ(t)− 0.004D(t)M(t). (5)

Define m(t) =
1

M(t)
, a(t) =

ar(t)

M(t)
, b(t) =

br(t)

M(t)
,

c(t) =
cr(t)

M(t)
and ϑ(t) = sin θ(t). Then, equation (5) can

be rewritten as

ẍ(t)=m(t)F (t) −
(

a(t) + b(t)ẋ(t) + c(t)ẋ2(t)
)

)

−gϑ(t)− 0.004D(t). (6)

During the train operation, we define Ω as the region for

all possible system states x(t) and ẋ(t), with its l subregions

Ωi, i = 1, . . . , l. Because m(t), a(t), b(t), c(t), ϑ(t), and

D(t) are dependent on the displacement x and velocity ẋ
of the train, the values of (m(t), a(t), b(t), c(t), ϑ(t), D(t))
are determined as (m(t), a(t), b(t), c(t), ϑ(t), D(t)) =
(mi, ai, bi, ci, ϑi, Di). If (x(t), ẋ(t)) ∈ Ωi, where i =
1, . . . , l, mi, ai, bi, ci, ϑi, and Di are unknown constants.

The time instants when (x(t), ẋ(t)) jumps from one region

to another are known, due to the available x(t) and ẋ(t).
The indicator functions χi(t) are introduced to describe

the piecewise constants of the parameters in equation (6), as

follows:

χi(t)=

{

1, if (x(t), ẋ(t)) ∈ Ωi,
0, otherwise,

(7)

l
∑

i=1

χi(t)=1, χp(t)χq(t) = 0, for p 6= q. (8)

We assume that the common boundaries do not exist, which

imply that (x(t), ẋ(t)) only belongs to one region. Since

(x(t), ẋ(t)) ∈ Ωi can be available in real-time, the functions

χi(t) defined in (7) can be known.

With x1 = x and x2 = ẋ, the motion dynamics (5) can

be expressed as

ẋ1(t)=x2(t), (9)

ẋ2(t)=m(t)F (t) − a(t)− b(t)x2(t)− c(t)x2

2(t))

−gϑ(t)− 0.004D(t), (10)

where

m(t)=
l

∑

i=1

miχi(t), a(t) =
l

∑

i=1

aiχi(t), (11)

b(t)=

l
∑

i=1

biχi(t), c(t) =

l
∑

i=1

ciχi(t), (12)

ϑ(t)=

l
∑

i=1

ϑiχi(t), D(t) =

l
∑

i=1

Diχi(t), (13)

with mi, ai, bi, ci, ϑi, and Di being unknown constants, and

χi(t) being the indicator functions defined in (7).

Comparison. For the existing works, the dynamic motion

models for high-speed trains are considered with the con-

stant parameters, or the unknown constant parameters and

bounded uncertainties. In [10], the model (5) without the

grade resistance and the curvature resistance terms is ob-

tained, and the experiment is done to validate the acceptable

accuracy of the obtained model with constant coefficients

ar, br and cr. Also, in [2], [11] and [12], without the grade

resistance and the curvature resistance terms, the model (5)

with the constant coefficients ar, br and cr, is used to study

the control problems. On the other hand, in [3], [4] and [13],



to make the motion dynamic model of the train in a better

accuracy and be more closed to the practical conditions, the

parameters in the general resistance Fr(t) are considered

as unknown constants, and a bounded uncertain term is

introduced to model the disturbances from rail conditions

(ramp, tunnel, curvature, etc.).

In this work, we employ the ramp and curvature resis-

tance model from [8], and describe the longitudinal motion

of the high-speed train as equation (5). According to the

characteristics of these parameters in resistances (see analysis

in [7]-[8]), we assume that train conditions are piecewise

changes and invariable in a certain rail. Further, considering

the models studied in literatures [2]-[4], [10], [12] and [13],

the piecewise constant model is proposed, which can be

more closed to the real train, and its accuracy is enough

to investigate the control problem. There exists some more

complex train operating conditions that are not considered

in this paper and need future study.

Objective. The objective of this paper is to develop

an adaptive position tracking control for high-speed trains

described by (9) and (10), with unknown friction parameters

modeled in (11), (13), to guarantee the system stability and

asymptotic tracking properties.

III. ADAPTIVE CONTROLLER DESIGN

In Section II, the dynamic motion of high-speed trains

is modeled as a piecewise constant nonlinear system with

unknown parameters. For this class of system, the controller

design has not been available. In this section, a new adaptive

state feedback controller is proposed to achieve the closed-

loop stability (signal boundedness) and state tracking for the

high-speed train.

A. Reference Model System

This paper is focused on the position tracking problem for

high-speed trains. The reference model should be designed

to make the reference trajectory xd1(t) satisfy the require-

ments based on timetable, platforms or some speed-reduction

induced by the emergent conditions.

The following linear reference model system is used to

produce the reference trajectory xd(t):

ẋd(t)=Adxd(t) +Bdr(t), xd(t) = [xd1(t), xd2(t)]
T(14)

where xd1(t) is the desired position trajectory, r(t) ∈ R is

the reference input signal, which is continuous and bounded,

Ad is a stable matrix.

According to the structure of the train system (9)-(10), the

reference model system should be chosen as the following

structure:
[

ẋd1(t)
ẋd2(t)

]

=

[

0 1
−ad1 −ad2

] [

xd1(t)
xd2(t)

]

+

[

0
bd

]

r(t), (15)

where ad1 > 0, ad2 > 0, and bd > 0.

To design the reference input for the Distance-To-Go

(DTG) curve under the reference model, the relationship

between xd1(t) and r(t) should be obtained firstly. The

transfer function can be calculated as

xd1(t)=
bd

s2 + ad2s+ ad1
[r](t). (16)

For the second order transfer function, the damping should

not be less than 1, i.e., the reference model should work

on the overdamping or critical damping condition to ensure

there do not exist the overshoot in the output. Then, we can

obtain ad2/2
√
ad1 ≥ 1. Further, according to the Distance-

To-Go (DTG) curve and considered the speed operation

conditions including acceleration, reacceleration, constant

speed, deceleration, constant speed, redeceleration, and slow-

ing down, the position trajectory is a piecewise continues

function, which results in the input signal a piecewise

continues function. The desired position trajectory can be

transferred into the s dominant. Then, through the transfer

function (16), the input signal can be obtained. Further, via

the inverse Laplace transform, we can obtain the input signal,

i.e., the reference input r(t).

B. Controller Structure

As the reference model be chosen, we propose the follow-

ing adaptive state feedback controller structure:

F (t)=kx1
(t)x1(t) + kx2

(t)x2(t) + kr(t)r(t)

+â(t) + ĉ(t)x2

2
(t) + gϑ̂(t) + 0.004D̂(t), (17)

where r(t) is the reference input signal, kx1
(t), kx2

(t),
kr(t), â(t), ĉ(t), ϑ̂(t), and D̂(t) are time-varying param-

eters defined as kx1
(t) =

∑l

i=1
kx1i

(t)χi(t), kx2
(t) =

∑l

i=1
kx2i

(t)χi(t), kr(t) =
∑l

i=1
kri(t)χi(t), â(t) =

∑l

i=1
âi(t)χi(t), ĉ(t) =

∑l

i=1
ĉi(t)χi(t), ϑ̂(t) =

∑l

i=1
ϑ̂i(t)χi(t), D̂(t) =

∑l

i=1
D̂i(t)χi(t), with kx1i

(t),

kxi2
(t), kri(t), âi(t), ĉi(t), ϑ̂i(t), and D̂i(t) being adaptive

parameters (to be obtained from some stable adaptive laws,

as the estimates of some nominal parameters to be defined),

and χi(t) being defined in (7).

C. Plant-Model Matching

To design an adaptive control law for the system (9)-(10)

with unknown piecewise constant parameters, it is needed

to derive the nominal control law which can satisfy the

matching condition and achieve the tracking of xd(t) by x(t),
when implemented by true plant parameters. The nominal

control law is designed as

F (t)=k∗x1
(t)x1(t) + k∗x2

(t)x2(t) + k∗r (t)r(t)

+a∗(t) + c∗(t)x2

2
(t) + gϑ∗(t) + 0.004D∗(t),(18)

where the parameters k∗x1
(t), k∗x2

(t), k∗r (t), a∗(t), c∗(t),

ϑ∗(t), D∗(t) are defined as k∗x1
(t) =

∑l

i=1
k∗x1i

χi(t),

k∗x2
(t) =

∑l

i=1
k∗x2i

χi(t), k∗r (t) =
∑l

i=1
k∗riχi(t),

a∗(t) =
∑l

i=1
a∗iχi(t), c∗(t) =

∑l

i=1
c∗iχi(t), ϑ∗(t) =

∑l

i=1
ϑ∗

iχi(t), D
∗(t) =

∑l

i=1
D∗

i χi(t), with k∗x1i
, k∗x2i

, k∗ri,
a∗i , c∗i , ϑ∗

i , D∗

i , being constants and satisfying:

ad1=−mik
∗

x1i
, ad2 = bi −mik

∗

x2i
, bd = mik

∗

ri, (19)

ai=mia
∗

i , ci = mic
∗

i , ϑi = miϑ
∗

i , Di = miD̂
∗

i . (20)



The equations in (19)-(20) describe the plant-model

matching conditions, that is, if the piecewise constant pa-

rameters mi, ai, bi, ci, ϑi, and Di are known, then nominal

parameters k∗x1i
, k∗x2i

, k∗ri, a∗i , c∗i , ϑ∗

i , D∗

i exist to satisfy

(19)-(20) and the nominal control law (18) results in the

closed-loop system

ẋ1(t)=x2(t), (21)

ẋ2(t)=−ad1x1(t)− ad2x2(t) + bdr(t), (22)

which has a bounded solution x1(t), x2(t). The tracking

errors e1(t) = x1(t) − xd1(t) and e2(t) = x2(t) − xd2(t)
under the nominal control law satisfy:

ė1(t)= e2(t), (23)

ė2(t)=−ad1e1(t)− ad2e2(t), (24)

which implies that e1(t) and e2(t) approach zero exponen-

tially as t → ∞, due to the choice of ad1 > 0 and ad2 > 0
to make Ad stable.

D. Tracking Error Equation

When the piecewise constant parameters mi, ai, bi, ci,
ϑi, and Di are unknown, it is required to use the adaptive

control law (17) to ensure the stability and tracking of the

closed-loop system. To design the adaptive update law for

kx1i
(t), kx2i

(t), kri(t), âi(t), ĉi(t), ϑ̂i(t), and D̂i(t), which

are the estimates of the unknown constant parameters k∗x1i
,

k∗x2i
, k∗ri, ξ

∗, a∗i , c∗i , ϑ∗

i and D∗

i , we define the parameter

errors as k̃x1i
(t) = k∗x1i

− kx1i
(t), k̃x2i

(t) = k∗x2i
− kx2i

(t),

k̃ri(t) = k∗ri − kri(t), ãi(t) = a∗i − âi(t), c̃i(t) = c∗i −
ĉi(t), ϑ̃i(t) = ϑ∗

i − ϑ̂i(t), D̃i(t) = D∗

i − D̂i(t), and use the

control law (17) and the system (9)-(10) under the matching

condition (19)-(20), to obtain the tracking error equations

ė1(t)= e2(t), (25)

ė2(t)=−ad1e1(t)− ad2e2(t)

+
l

∑

i=1

1

k∗ri
bd

(

k̃x1i
(t)χi(t)x1(t) + k̃x2i

(t)χi(t)x2(t)

+k̃ri(t)χi(t)r(t) + ãi(t)χi(t) + c̃i(t)χi(t)x
2

2(t)

+gϑ̃i(t)χi(t) + 0.004D̃i(t)χi(t)
)

, (26)

based on which the adaptive update laws for kx1i
(t), kx2i

(t),
kri(t), âi(t), ĉi(t), ϑ̂i(t), and D̂i(t), will be proposed.

E. Adaptive Laws

With e(t) = [e1(t), e2(t)]
T , the following parameter

adaptive laws are used to update the controller parameters

in (17):

k̇x1i
(t)=−Γx1i

x1(t)e
T (t)PdBdχi(t), (27)

k̇x2i
(t)=−Γx2i

x2(t)e
T (t)PdBdχi(t), (28)

k̇ri(t)=−Γrir(t)e
T (t)PdBdχi(t), (29)

˙̂ai(t)=−Γaie
T (t)PdBdχi(t), (30)

˙̂ci(t)=−Γcix
2

2
(t)eT (t)PdBdχi(t), (31)

˙̂
ϑi(t)=−Γϑige

T (t)PdBdχi(t), (32)

˙̂
Di(t)=−ΓDi0.004e

T (t)PdBdχi(t), (33)

where Γx1i
, Γx2i

, Γri, Γci, Γai, Γϑi, and ΓDi are positive

constants and Pd > 0, satisfying AT
d Pd +PdAd = −Qd, for

some Qd > 0.

F. Stability Analysis

Based on the adaptive laws (27)-(33), the following sta-

bility and tracking properties can be obtained:

Theorem 1: For the piecewise constant system (9)-(10)

and the reference model system (15), the controller (17)

with its parameters updated by the adaptive laws (27)-(33)

ensures the boundedness of all closed-loop signals, and the

asymptotic state tracking: limt→∞ e(t) = 0.

Proof: The values of the parameters ad1, ad2 and bd ensure

the stability of (15), i.e., xd(t) ∈ L∞.

The following continuous Lyapunov function is chosen:

V = eTPde+

l
∑

i=1

1

k∗ri

(

Γ−1

x1i
k̃2x1i

+ Γ−1

x2i
k̃2x2i

+ Γ−1

ri k̃
2

ri

+Γ−1

ai ã
2

i + Γ−1

ci c̃
2

i + Γ−1

ϑi ϑ̃
2

i + Γ−1

DiD̃
2

i

)

.(34)

Using the estimation error equations (25)-(26) and the adap-

tive laws (27)-(33), the time derivative of V becomes

V̇ =−eT (t)Qde(t) ≤ 0, (35)

which indicates that the closed-loop system consisting of

(25)-(26) and (27)-(33) is uniformly stable and its solutions

is uniformly bounded, that is, e(t), x1(t), x2(t), kx1i
(t),

kx2i
(t), kri(t), âi(t), ĉi(t), ϑ̂i(t), D̂i(t), and ė(t) are all

bounded. Then, with the structure of the controller (17),

the boundedness of ν0(t) is ensured. Further, (35) implies

e(t) ∈ L2 and so limt→∞ e(t) = 0. ∇

G. Multi-trains Tracking

It should be note that on the track line, there are always

several trains operation simultaneously. For the following

trains, the safe distances to the preceding train should be

guaranteed by the controller. Right now, most of the existing

controller design are based on the pre-specified speed or posi-

tion trajectories, which are designed off-line considering the

allocated running time and the characteristics of automatic

train operation.

Consider the situation when there are two trains on the

same track: The preceding train A with position z(t) and

following train B with position x(t). Our task is to design a

control law to guarantee the safe distance between these two

trains to avoid possible collisions.

If we treat the position z(t) of Train A as a reference

point to design a control law for Train B, we can choose

xd1(t) = z(t)−Ld (or less) with Ld being the safe distance

to keep between tao trains, as the desired reference signal

for the position x(t) of Train B to track.

If we treat the position x(t) of Train B as a reference

point to design a control law for Train A, we can choose

zd1(t) = x(t)+Ld (or larger) with Ld being the safe distance

to keep between tao trains, as the desired reference signal for

the position z(t) of Train A to track.



For the model reference adaptive control, the controller

is designed to track the desired trajectories resulted in the

reference model with reference input. Thus, the reference

models for the following trains should be considered the safe

distance problem.

We give the multiple reference models as follows:

ẋj
d1=xj

d2, (36)

ẋj
d2=−ajd1x

j
d1 − ajd2x

j
d2 + bjdr

j(t), (37)

where j = 1, 2, . . . , Tn, Tn is the number of the trains that

work in one line simultaneously. When j = 1, equations

(36)-(37) represent the headmost train. The controller pro-

posed in (17) can be used directly to ensure the real-time

position values determined by Distance-To-Go curve.

For the following trains, i.e., j = 2, . . . , Tn, the safe

distance should be considered as follows:

xj−1

d1 (t)− xj
d1(t)=Ld, (38)

where Ld > 0 is a constant representing the desired position

of train j behind the preceding one.

As the following train starts off after the preceding one

and follows the timetable, the reference model (15) with the

adaptive controller (17) can be used to achieve the targets.

When there is any fault occurred in the preceding train and

resulting in the speed reduction, the reference model should

be modified on-line, especially the reference input. Thanks

to the structure of the reference model chosen referring the

plant, only the amplitudes of the input signals (parameters

of the exponential function or jump function) should be

modified to reduce the speed to guarantee the safe distance.

H. Summary

Problem and Results. In this paper, we focus on the

position tracking control design problem for the high-speed

trains. The motion dynamic model is used to the controller

design, which brings in the time-varying frictions and results

in a time-varying nonlinear model. To deal with the time-

varying model, a piecewise model with unknown parame-

ters is introduced to describe the train longitudinal motion

dynamic model. Then, an integrated adaptive controller is

proposed to achieve the state tracking (position and related

speed tracking), in the presence of the unknown system

piecewise constant parameters.

Comparison. Compared with some existed adaptive con-

troller, an integrated adaptive controller is proposed in this

paper to deal with the piecewise constants model in the

presence of the unknown parameters. If a single adaptive

control in [14] is used for the piecewise constants model,

the transient responses will be appeared during the model

switchings, that is when the piecewise model changes its

sub-models, the single adaptive controller should adjust its

control parameters to make the tracking error to zero, which

leads to the transient responses (over shoots, oscillation,

etc.,). If there is not enough dwelling time for each sub-

model, the system would be unstable. The integrated adaptive

controller can overcome the transient responses problem,

because all the sub-models are considered and the controller

can cover the all possible controller. If a set of controller is

used, there should exist a decision maker to choose which

controller is suitable for the working model. The proposed

integrated adaptive controller does not need a special deci-

sion maker, because its matching conditions can achieve the

decision automatically.

IV. SIMULATION STUDY

A simulation study on a high-speed train is presented

to demonstrate the effectiveness of the proposed adaptive

controller. The system parameters are borrowed from a CRH

type train ([15], [16]), in which 4 motors are considered.

Tracking performance and reference model. To verify

the control scheme well and according to [15], [16], several

operation conditions including acceleration, reacceleration,

constant speed, deceleration, constant speed, redeceleration,

and slowing down until fully stop are considered during

the train operation. Choose the parameters of the reference

model as ad1 = 0.12, ad2 = 1.9 and bd = 1/(500× 103).
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Fig. 1. Distance and velocity trajectories.

Simulation conditions. In this section, we consider the

train does not stop during the travel. The mass of the train

does not change and is chosen as Mi = M = 500 ton.

Considered the tunnel, slope and curvature in the rail, 4

modes will be considered. The parameters (mi, ai, bi, ci,
ϑi, and Di defined in (11)-(13)) are set as:

(i) For t < 400 s, the train bakes up. In this case, the

coefficients are chosen as a1 = 2.25, b1 = 1.9×10−3,

c1 = 3.2× 10−4, θ1 = 0, D1 = 0.



(ii) During 400 ≤ t < 800 s, the train entrances the tunnel.

Then only c2 is replaced by c2 = 9.2 × 10−4, with

a2 = a1, b2 = b1, θ2 = θ1 and D2 = D1.

(iii) At 800 s, the train exits the tunnel and travels in the

slope and curvature track. For 800 ≤ t < 1200 s, the

coefficients are c3 = c1 = 3.2 × 10−4, θ3 = 0.015,

D3 = 0.34, with a3 = a1, b3 = b1.

(iv) After 1200 s, the train moves in the open air and

horizontal track to slow down until fully stop. For

1200 ≤ t < 2000 s, the coefficients are the same as

that of the baking up, i.e., a4 = a1, b4 = b1, c4 = c1,

θ4 = θ1 and D4 = D1.

For simulation purpose, the initial sates are chosen as

xd(0) = x(0) = [0 0]T , and the initial parameter estimates

are set as 95% of their nominal values. The related gains of

the adaptive laws in (27)-(33) are chosen as 2.
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Fig. 2. Tracking errors.

Simulation results. Figs. 1-2 show the simulation results

of the high-speed train dynamic motion modelled by a

piecewise constant model. Fig. 1 shows the distances (a)

and velocities (b) of the train and the reference model. Fig. 2

shows the state tracking errors including the distance (a) and

velocity (b). From the simulation results, we can obtain that

the proposed adaptive controller can achieve the close-loop

stability and asymptotic tracking properties of the train even

in the presence of parameters changes.

V. CONCLUSIONS

In this paper, the adaptive position tracking problem is

addressed for high-speed trains with the piecewise dynamics.

A piecewise constant model is used to represent the train

dynamics with piecewise dynamics. An adaptive controller

are developed to deal with the unknown parameters of

the piecewise model. Simulation results further confirm the

effectiveness of the proposed controller.
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