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Abstract. Rainfall derivatives are in their infancy since starting trad-
ing on the Chicago Mercentile Exchange (CME) since 2011. Being a
relatively new class of financial instruments there is no generally recog-
nised pricing framework used within the literature. In this paper, we
propose a novel framework for pricing contracts using Genetic Program-
ming (GP). Our novel framework requires generating a risk-neutral den-
sity of our rainfall predictions generated by GP supported by Markov
chain Monte Carlo and Esscher transform. Moreover, instead of having
a single rainfall model for all contracts, we propose having a separate
rainfall model for each contract. We compare our novel framework with
and without our proposed contract-specific models for pricing against the
pricing performance of the two most commonly used methods, namely
Markov chain extended with rainfall prediction (MCRP), and burn anal-
ysis (BA) across contracts available on the CME. Our goal is twofold, (i)
to show that by improving the predictive accuracy of the rainfall process,
the accuracy of pricing also increases. (ii) contract-specific models can
further improve the pricing accuracy. Results show that both of the above
goals are met, as GP is capable of pricing rainfall futures contracts closer
to the CME than MCRP and BA. This shows that our novel framework
for using GP is successful, which is a significant step forward in pricing
rainfall derivatives.

Keywords: Rainfall derivatives, Derivative pricing, Gibbs sampler, Ge-
netic Programming

1 Introduction

Rainfall derivatives fall under the umbrella concept of weather derivatives, which
are similar to regular derivatives defined as contracts between two or more par-
ties, whose value is dependent upon the underlying asset. In the case of weather
derivatives, the underlying asset is a weather type, such as temperature or rain-
fall. The main difference between normal derivatives and weather derivatives is
that weather is not tradeable. Hence, typical pricing methods that exist in the
literature for other derivatives are not suitable for weather derivatives.

In this problem domain the underlying asset is the accumulated rainfall over
a given period, which is why it is crucial to predict rainfall as accurately as
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possible to reduce potential mispricing. Contracts based on the rainfall index
are decisive for farmers and other users whose income is directly or indirectly
affected by the rain. A lack or too much rainfall is capable of destroying a farmer’s
crops, hence their income. Thus, rainfall derivatives are a method for reducing
the risk posed by adverse or uncertain weather circumstances. Moreover, they
are a better alternative than insurance, because it can be hard to prove that
the rainfall has had an impact unless it is destructive, such as severe floods or
drought. Similar contracts exist for other weather variables, such as temperature.

Within the literature rainfall derivatives is split into two main parts. Firstly,
predicting the level of rainfall over a specified time and secondly, pricing the
derivatives based on different contract periods/length. Both aspects carry their
own unique problems, with the former being a very hard time series to pre-
dict accurately, due to its volatility and redundance of its reoccurring pattern.
The latter part of rainfall derivatives constitutes an incomplete market3. This
means the standard pricing models such as the Black-Scholes model are inca-
pable of pricing rainfall derivatives, because of the violation of the assumptions
of the model; namely no arbitrage pricing. This paper focuses on pricing rainfall
derivatives based on the predicted level of rainfall.

In order to predict the level of rainfall for rainfall derivatives, Markov-chain
extended with rainfall prediction (MCRP) [19] and spatial-temporal rainfall
(STR) models [18] have been used. More recently, Genetic Programming (GP)
has been applied as an alternative predictive technique [9, 8, 7]. By predicting
the underlying variable of rainfall, this increases the accuracy of pricing, which
is crucial because contracts are priced ahead of time—up to a year ahead. Hav-
ing the best possible predictive method reduces uncertainty in the market and
boosts confidence in rainfall derivative pricing.

There is little literature on rainfall derivatives, due to being quite a new
concept and rainfall being very difficult to accurately measure. The pricing tech-
niques that have been applied so far are indifference pricing [6] and arbitrage
free approach [5]. Both work in slightly different ways, with indifference pricing
assuming the investor has a utility function which is a function of risk. The ar-
bitrage free approach on the other hand is a method to change the measure of
the underlying asset using the Esscher transform, taking the user from the real
world to the risk neutral world through a probabilistic shift. Prior to contracts
trading on the Chicago Mercantile Exchange (CME), indifference pricing was
the initial technique [6, 13], since contracts began trading in 2010, the arbitrage
free approach has now become the standard pricing technique [5, 17, 15].

This paper derives contract prices for U.S.A. cities using the most recent pric-
ing technique of the arbitrage free approach. As mentioned previously, we use
the arbitrage free approach since the contracts have started to trade and are able
to compare contract prices between different techniques against actual contract
prices quoted on the CME. In order to derive contract prices, we require a tech-
nique that can maximise the accuracy of the prediction process before pricing.

3 In incomplete markets, the derivative can not be replicated via cash and the under-
lying asset; this is because one can not store, hold or trade weather variables.



We use GP for three reasons, (i) GP has been shown to outperform the stan-
dard approach of MCRP in [9, 8, 7]. (ii) There is a correlation between predictive
accuracy and pricing accuracy [12, 1], meaning that GP should improve pricing
performance. (iii) We are able to define contract specific equations, rather than
a single model representing an entire year.

In this paper we use GP to predict the level of rainfall for a selection of
cities from around U.S.A, which has not been done before to the best of our
knowledge. Moreover, we create a novel framework for calculating the derivative
prices using GP to estimate the underlying variable of rainfall. In order to do
so using the arbitrage free approach, we need to generate a probability density
function (PDF) out of the deterministic equations generated by GP. We develop
a range of strategies in order to create a PDF, that represents the rainfall process
before translating these into the risk-neutral world using the Esscher transform.
The strategies consist of taking a sample of predictions across the evolution
period over several runs. Thus, the computational overhead of GP is reduced.

One potential issue using a sampling approach is not having sufficient samples
to generate a PDF that can adequately reflect rainfall. To cope with this issue
we use Markov chain Monte Carlo (MCMC) in order to estimate the population
density from a sample of our top predictive models generated from GP. The use
of MCMC helps to generate a PDF that we can use with confidence.

Additionally, we show the limitation of pricing over the year using a sin-
gle model. The current framework within MCRP only allows for one model to
replicate rainfall over the year. On the other hand, GP is capable of producing
more flexible equations that can be specifically evolved for a certain contract pe-
riod. Therefore, we hypothesise that having contract-specific models will further
improve the pricing accuracy, over a single GP equation for an entire year.

Hence, the contribution of this paper is a novel framework for estimating
the prices under risk-neutral conditions for GP. This allows us to explore the
importance of having a more suitable and robust rainfall prediction method for
deriving contract prices for rainfall derivatives. Using the proposed framework
with and without contract-specific models in this paper, the prices can be com-
pared against real market data and we can evaluate how well GP is able to price
rainfall derivatives.

The paper is laid out as follows. In Section 2 we introduce the data used in our
experimentation. In Section 3, we give an overview of how the Esscher transform
is used to derive contract prices. In Section 4, we introduce the methodology
proposed in this paper to translate the predictions generated by GP into rainfall
derivative prices. In Section 5, we outline the experimental setup used in this
work. In Section 6 we show the results for both the rainfall prediction process
and the pricing steps. Finally, we conclude in Section 7.

2 Data

We focus on the data sets that have been used for pricing derivatives on the
CME. Rainfall contracts are available for 10 cities in U.S.A.: Chicago, Dallas,
Des Moines, Detroit, Jacksonville, Kansas, Los Angeles, New York, Portland



and Raleigh. The contracts traded for these cities are futures and options for
monthly or seasonal rainfall indices.

For the monthly index, the contract is defined by the accumulated amount
of rainfall within each calender month. Whereas, the seasonal contracts are de-
fined by the accumulated amount of rainfall between two and eight consecutive
months. The contracts themselves are only available between the months March
through till October. The notional value of one rainfall contract is 50 USD per
0.1 index point, where 1 index point equates to 1 inch of rainfall.

To maximise the predictive performance of GP before pricing, we use the
data transformation proposed in [9] to smooth the problem landscape. As an
example, Figure 1a shows the original daily rainfall data for Detroit, and Figure
1b shows the result of the data transformation. By making the problem landscape
of rainfall prediction a simpler problem, we can enhance the rainfall prediction
accuracy, which is the first of the two steps to pricing.

(a) Daily rainfall of Detroit (b) Accumulated rainfall after applying the
transformation

Fig. 1: A comparison between the daily rainfall time series of Detroit and after
applying the data transformation from [9].

3 Pricing

One of the key characteristics of the weather derivative market is the nature of
the incomplete market, whereby the underlying weather indices are non-tradable
assets and can not be replicated by other risk factors. In other words, it is im-
possible to construct a riskless hedge portfolio containing the weather derivative.
The standard approach is to price a futures contract F (t; τ1, τ2) at time t with
accumulation period [τ1, τ2], by calculating the risk-neutral expectation Q of the
rainfall index I(τ1, τ2) with accumulation period [τ1, τ2] based on the informa-
tion set Ft available at time t. Therefore, the underlying variable is required to
calculate the index over an accumulation period. We can express the price of a
futures contract by the following:

F (t; τ1, τ2) = expQ [I(τ1, τ2)|Ft] = expQ

[
τ2∑

τ=τ2

Rτ |Ft

]
. (1)



Our rainfall estimates I(τ1, τ2) is considered the expected price under the
canonical measure P , but are within the ‘risky’ world. Therefore, we require Q ∼
P such that all tradable assets in the market are martingales after discounting.
Since the market is incomplete, there will exist many different martingales (Q),
where it is impossible to find a unique risk-neutral measure Q [11, 3], such that
Q is equivalent to the physical measure P . In order to calculate the arbitrage
price under risk-neutral conditions, we require an equivalent martingale measure
where Q = Qθ using the Esscher transform [4], where θ represents the market
price of risk (MPR). The MPR is the additional return or risk premium expected
by investors for being exposed to undertaking the futures contract. When pricing
with Black Scholes and similar pricing models, the unique equivalent martingale
measure is obtained by changing the drift in the Brownian motion. The Esscher
transform has been widely used across financial applications [10], more recently
across rainfall derivative pricing [5, 15]. To use the Esscher transform we require
estimating the type of distribution for our predictions. We then apply a constant
MPR to transform our distribution to find the expected price under the risk-
neutral measureQθ, where θ is calibrated to the market data. The transformation
of probability density f(x) of a random variable X to a new probability density
f(x; θ) with parameter θ is the Esscher transform, given by:

f(x; θ) =
exp(θx)f(x)∫∞

−∞ exp(θx)f(x)dx
(2)

4 Adapting Genetic Programming to the Esscher
transform

The motivation behind using Genetic Programming (GP) is threefold. Firstly,
GP has not been applied to the pricing of rainfall derivatives, whilst it has been
shown to improve the prediction against the currently used methods. Secondly,
it has been noted [12, 1] that improving the prediction of the underlying variable
leads to more accurate pricing. Therefore, by applying GP to the pricing domain,
we aim to improve the pricing performance, which should help boost confidence
in trading contracts. Finally, GP provides a flexible platform to predict rainfall
contracts on a contract by contract basis. Therefore, we further tailor GP for
maximising the pricing performance.

Before pricing, we need to perform an intermediate step in order for GP to
calculate risk-neutral prices using the Esscher transform. One of the key aspects
of the Esscher transform is the probabilistic shift under P ∼ Q in order to
find a unique equivalent martingale close to the predicted level of rainfall. This
requires constructing a probability density function (PDF) out of the predictions
generated. The current approaches in rainfall derivatives are stochastic processes
that simulate unique rainfall pathways on each iteration. Despite GP being a
stochastic algorithm, the output is a deterministic model and can not be used
to estimate the expected index of rainfall. However, GP does generate many
different equations to describe the rainfall process over the evolution process.



In order to recreate the outcome of a stochastic process (e.g. MCRP), we
create a subset of rainfall equations generated from GP for every run of GP
we perform. By building a large enough sample using many subsets of different
rainfall equations, we can form a PDF of the expected level of rainfall for each
day. The PDF that is generated can be manipulated to price under the risk-
neutral density using the Esscher transform. Based on the nature of rainfall, we
do expect to generate a non-gaussian distribution similar to the underlying data,
which is assumed to follow either a gamma or mixed-exponential distribution
[19].

4.1 Strategy for prediction selection

To generate a PDF requires having several different observations for the same
time point, but we require a sufficient number in order to determine what form
the distribution takes. Using MCRP, one would typically run the chain 10,000
times in order to generate sufficient samples, which for GP is unfeasible given the
computational cost to run GP 10,000 times if we were to take the final prediction
from each run. To reduce the overhead, we propose taking a sample of the best
solutions from the final generation. Not only will this reduce the computational
cost, but is a simple method to extract the required information. One concern is
that taking too many samples from the final generation may reduce the fit of a
distribution, by poor predictions being selected, which will heavily skew results.
Thus, we must find the best possible balance.

We present a sample of results for a contract of March using various strategies
in Figure 2. Figures 2a - 2c show the PDF of choosing between 1, 5 and 10
individuals per GP run over 50 runs and Figures 2d - 2f show the outcome over
100 runs instead. Therefore, Figure 2a contains a total of 50 samples, whereas,
Figure 2f contains a total of 1000 samples. We choose the sample sizes based on
avoiding longer runs of GP and reducing the risk of selecting too many extreme
values that may exist from poor fitting solutions. We noticed that samples of 25
or larger posed a risk of selecting extreme values. What can be seen from the
figures is the nonguassianity of the predictions, which we would expect and we
do not wish to exceed 100 runs of GP, due to computational overhead. In some
cases we do witness that GP seems to find a modal value for the prediction with
a fairly narrow distribution. From a pricing perspective this is a positive sign as
GP is able to determine what it believes to be the expected outcome.

Based on the PDF’s generated, we notice that in several cases no clear distri-
bution can be easily identified, shown in Figure 3. This is sign that not enough
samples have been generated and we would anticipate that generating more sam-
ples would lead to a clear distribution. However, we are attempting to reduce
the computational overhead and necessity of running 10,000 separate GP runs.
Hence, we employ Markov chain Monte Carlo (MCMC) to estimate the true
parameters for the distribution we expect and can replicate the missing samples
required to generate a PDF of our rainfall predictions.



(a) 1 per run (50) (b) 5 per run (50) (c) 10 per run (50)

(d) 1 per run (100) (e) 5 per Run (100) (f) 10 per run (100)

Fig. 2: The probability densities generated from GP for different strategies are
shown for Detroit for the contract period of March (01/03/2011 - 31/03/2011).
Values in brackets represents the number of GP runs, with the number per run
showing how many samples are chosen to form the PDF at each run.

4.2 Markov chain Monte Carlo with Gibbs sampling

The first key ingredient in Bayesian inference is the observation whose values are
initially uncertain and described through a PDF. Another critical aspect is the
previous belief about values of the parameter of interest, before observing the
data. Bayesian theory is based on Bayes’ Theorem, which allows new evidence to
update beliefs through probabilities. Consider a random sample x = (x1, . . . , xn)
and the parameter of interest θ ∈ Θ with Θ being the parameter space. The
likelihood function of θ is defined as: f(x1, . . . , xn|θ), the prior distribution p(θ)
is the PDF before the observation of the value x. The inference is then based
on the probability distribution of θ after observing the value of x, upon which
information becomes available. We can then obtain the posterior distribution:

p(θ|x1, . . . , xn) =

∏n
i=1 f(xi|θ)p(θ)∫ ∏n
i=1 f(xi|θ)p(θ)dθ

∝
n∏
i=1

f(xi|θ)p(θ).
(3)

In order to estimate the posterior distribution, using Equation 3, we can use
MCMC simulation when the posterior distribution is available. We can draw
new samples of parameter θ = (θ1, . . . , θp) directly from the joint posterior
p(θ|x1, . . . , xn). We can estimate the joint posterior using Gibbs sampler, which
is one type of MCMC to estimate the posterior. Gibbs sampling begins with an
initialised vector of θ0 = (θ01, . . . , θ

0
p). At each iteration t, each component θtj is

sampled from the conditional distribution given all the other components of θ
to generate a new vector of θt = (θt1, . . . , θ

t
p). The sampling step of θ follows as:



(a) 10 per run (100) (b) 10 per run (100) (c) 10 per run (100)

Fig. 3: Situations where a clear density can not be identified for contracts traded
for Detroit in June (a), Jacksonville in June(b) and New York in April (c). Values
in brackets represents the number of GP runs, with the number per run showing
how many samples are chosen to form the PDF at each run.

θt1 ∼ p(θ1|θt−12 , θt−13 , . . . , θt−1p , x1, . . . , xn)

θt2 ∼ p(θ2|θt−11 , θt−13 , . . . , θt−1p , x1, . . . , xn)

...

The sampling steps end once the last iteration has been reached, with suf-
ficient iterations to achieve convergence. The predictive rainfall rt of days of
interest t follows an independent reparameterised Gamma distribution in the
form of the mean and standard deviation of the initial rainfall predictions:

f(rt|α, β) =
βα

Γ (α)
rα−1t e−βrt , α =

µ2

σ2
, β =

µ

σ2
. (4)

Hence the parameters of interest of the likelihood distribution in Equation
4 are the mean and the standard deviation parameters. The prior probability
distributions are the same for both parameters of interest, note that they both
have vague priors, the Uniform priors U(0, 1). In order to estimate the posterior
of the parameters of interest, we use JAGS [16], which is an iterative MCMC
simulation method, using a Gibbs sampler described previously. We run a total
of 50,000 iterations including 10,000 iterations being the burn-in period.

Figure 4 shows the density plots of the Markov chains for both the shape and
the rate parameters of the Gamma distribution obtained by using JAGS. Note
that each posterior density, all simulated Markov chains converge to stationary,
shown by the clear peak. Hence, the number of iterations and burn-in period
used are sufficient to achieve convergence of the Markov chains.

Figure 4 also shows the estimated kernel density of the predicted rainfall
amounts by using the posterior means of the shape and the rate parameters in



Fig. 4: The estimated kernel density of the predicted rainfall amounts and the
density plots of our posterior estimates for the shape and rate parameter.

the Gamma distribution. We can see that the estimated density is representable
of the target density of the rainfall prediction. This shows that using MCMC has
assisted GP in creating a PDF that can be used for pricing, whilst minimising
the overhead.

4.3 Pricing using estimated densities

Now that the densities of our rainfall prediction under P have been estimated,
we can apply the Esscher transform to shift our density to discover the expected
price under the risk-neutral measure Qθ. To do so requires one final step, which
is to estimate the distribution generated and describe it under a non-guassian
distribution using Normal-Inverse Gaussian (NIG) [2]. NIG is a four parameter
distribution, suitable for semi-heavy tails and skewness, which can be observed
from our rainfall predictions. Applying the NIG will give us the expected price
under Q, whereas, our previous steps gave us the expected price under P . We
require the price under Q since this is the risk-neutral level. Moreover, NIG gives
us a flexible framework to price under and maintains the statistical properties
after changing the MPR (θ).

NIG has been used for several applications of risk-neutral modelling across
a variety of financial problems. The NIG has a PDF in the closed form of:

f(x|α, β, µ, δ) =
αδ exp(δ

√
α2 − β2 + β(x− µ))

π
√
δ2 + (x− µ)2

K1

(
α
√
δ2 + (x− µ)2

)
, (5)

where K1 denotes the modified Bessel function of the second kind. α con-
trols the steepness, µ the location, β the skewness and δ is the scaling of the
distribution. By using the Esscher transform, we manage to keep the shape of
the distribution and we modify the NIG under the Esscher transform with MPR
(θ) becoming NIG(α, β + θ, µ, δ). In order to estimate the parameters for NIG,
we use an optimisation algorithm of Expectation-Maximisation (EM).



Table 1: The optimal configuration of GP/GA found by iRace. Parameters with
a * are used by both the GP-part and GA-part of GP from [7].

GP/GA parameters

Max depth of tree 9 Elitism* 2%
Population size* 1000 Number of generations* 90
Crossover* 96% ERC negative low -412.30
Mutation* 46% ERC negative high -201.63
Primitive 42% ERC positive low 96.87
Terminal/Node bias 25% ERC positive high 382.84

Set Value

Functions
ADD, SUB, MUL, DIV,
POW, SQRT, LOG

Terminals

11 rt periods {rt−1, rt−2, . . . , rt−11},
10 ry periods {ry−1,ry−2,. . . ,ry−10},
ERC,
Constants in the range [-4,4]

5 Experimental setup

The purpose of our experiments is to compare the GP against the existing MCRP
and burn analysis (BA) against contract prices as quoted by the Chicago Mer-
centile Exchange (CME). We use BA as it is the most frequently used benchmark
in financial applications, where the expected prices under P are calculated based
on the cost and payout of the same contract in the previous year. It computes
the expected outcome over the accumulation period I(τ1, τ2) with an additional
risk premium that may occur. Therefore, Q = P and the MPR is zero. BA can
not price contracts on a daily basis, but acts as a reasonable benchmark.

For this paper we use the GP outlined in [7], which is a hybrid GP that
decomposed the problem of rainfall prediction into smaller subproblems assisted
by a Genetic Algorithm (GA). For details of this technique, hereafter referred to
as GP/GA, see [9]. GP/GA has been shown to outperform the current approach
of MCRP on European data sets. We tune the parameters for MCRP on the
historical data and tune GP/GA using a package called iRace [14] on the training
set. We present the optimal parameters along with the terminals and functions
for GP/GA in Table 1.

Evaluating the predictive performance of the algorithms at predicting rainfall
is crucial before we look at the pricing performance. We expect that the better
the rainfall prediction the better the pricing performance. Therefore, we run
the GP/GA algorithm and compare its rainfall predictive performance against
MCRP, on all 10 data sets specified in Section 2. This is the first time GP has
been applied to the data of U.S.A. cities that are used for rainfall derivatives.

We train GP/GA from 01/Jan/2001 - 31/Dec/2010 before testing on the un-
seen test set (01/Jan/2011 - 31/Dec/2011). Recall that Section 4.1 discussed the



effect of different strategies. Based on previous experiments we discovered that
100 runs, saving the best 10 predictions per run, gave us the best performance
in order to estimate a PDF that we can price under. Therefore, we report the
average predictive performance over the 100 runs for each city. Additionally, we
run MCRP 10,000 times using the mixed-exponential distribution to estimate
the level of rainfall on a particular day.

6 Results

The performance of rainfall prediction of GP/GA and MCRP is shown in Table
2 based on the average RMSE performance on the testing set for each city.

Table 2: The average RMSE performance in tenths of mm for each of our ap-
proaches across each city. The best performance is shown in bold.

City GP/GA MCRP

Chicago 776.19 703.05
Dallas 524.05 1543.45
Des Moines 526.55 825.22
Detroit 653.42 498.86
Jacksonville 667.10 1098.33
Kansas 513.59 891.70
Los Angeles 321.97 941.00
New York 1087.66 987.21
Portland 530.04 636.07
Raleigh 561.43 829.17

GP/GA achieved the lowest RMSE over seven data sets compared to MCRP,
which outperformed GP/GA three times. This is a very good result, showing that
GP/GA predicts the underlying weather variable of rainfall more accurately than
the most commonly used approach in the literature. This is essential to avoid
problems of mispricing, which decrease the confidence within the price of derived
contracts.

In order to determine whether the above results are statistically significant,
we compare the two approaches by using the Wilcoxon signed-rank test. The
null hypothesis that there is no significant difference between both approaches
is rejected with a p value of 0.0195, which is less than the 5% level. Therefore,
GP/GA provides more accurate rainfall predictions.

We now turn to pricing the contracts using GP/GA with MCRP and BA as
benchmarks. Due to the limited availability of complete data from Bloomberg,
we present the results of pricing for 3 of the above cities, Detroit, Jacksonville
and New York over the monthly contracts for periods March to October. Based
on the general performance of the algorithms from Table 2, we would expect
MCRP to price more accurately in two out of these three cities. Table 3 shows
the prices for each contract against the actual contract price traded on the CME.



Table 3: The prices derived from GP/GA, MCRP and BA are shown with the
comparison from the quoted prices on the CME for monthly contracts from
March - October.

Contract
Period

CME GP/GA MCRP BA

Detroit March 2.30 2.90 2.57 2.38
April 2.70 2.99 3.05 2.88
May 4.10 4.18 3.52 3.40
June 3.50 3.23 3.46 3.55
July 3.60 3.32 3.69 3.24
August 3.00 3.06 3.60 3.31
September 3.00 3.21 3.09 3.33
October 2.40 3.44 2.91 2.53

Jacksonville March 3.70 5.32 3.99 3.87
April 2.40 2.55 2.87 2.84
May 2.80 2.67 3.18 2.50
June 7.50 6.39 5.72 6.16
July 7.00 6.91 7.57 6.32
August 7.00 4.10 8.29 6.44
September 8.10 4.72 6.90 8.02
October 2.60 2.92 4.19 4.03

New York March 4.20 3.59 3.75 4.26
April 4.40 3.68 3.96 4.30
May 3.20 3.71 4.54 3.76
June 5.00 4.37 4.69 4.42
July 4.50 2.87 4.85 4.93
August 4.30 4.46 4.53 4.52
September 4.20 4.95 3.99 3.88
October 4.60 6.06 3.98 3.90

In order to generate the prices, we follow the methodology outlined in Section
4. Our goal is to price as close to the CME as possible.

Table 3 shows that GP/GA prices closer to the CME 9 times, while MCRP
priced closer 7 times and BA priced closer 8 times. According to the Friedman
test, at the 5% significance level there was no significant difference between ap-
proaches with a p value of 0.5818. This important result shows that GP/GA is
able to price rainfall derivatives comparably to those on the CME. Interestingly,
these findings support the hypothesis that better prediction leads to better pric-
ing, which is shown in Table 2, where MCRP outperformed GP/GA for Detroit
and New York for rainfall prediction. For each of those two cities MCRP priced
closer to the CME than GP/GA. Similarly, GP/GA priced closer to the CME
than MCRP for Jacksonville. For the purpose of this paper we leave the MPR
constant at 0, but it would be possible to shift our predictions in line with the
contract prices quoted by the CME.



Please note these prices were calculated based on all available information up
to 2011 (31/12/2010) and are the result of the historical average payoff. Usually
with pricing, the price changes over time depending on whether more or less
rainfall is expected and trader behaviour gets nearer to maturity. Unfortunately
we are unable to track the prices due to the lack of data available.

One of the drawbacks to the current procedure of having a single rainfall
equation to explain a year of rainfall is the difficulty on predicting the chaotic
nature of rainfall time-series data. This creates models that can not capture the
dynamics of rainfall over time, but instead capture the general trend over the
year. Therefore, we propose moving away from a one-size-fits-all model and have
contract-specific models.

To improve the pricing under Q, we propose building individual rainfall mod-
els for each contract. From the experimentation, we noticed that having separate
models should increase the predictive accuracy, as we focus on a smaller sub-
set of data. We split the training set into 3 month partitions, where the first
two months are the months prior to the contract of interest. For example, pre-
dicting a contract in March would consist of the data from 01/Jan - 31/Mar.
We perform this partition for every year to train our model before testing on
the same patition. We provide the results of RMSE for GP (GP/GA-P) and
MCRP (MCRP-P) under this partition set up in Table 4, along with the new
prices of GP. The prices for MCRP remain unchanged, because the model is still
the same. This is one of the weaknesses of MCRP is that it can not be used
to develop dynamic models for pricing, whereas GP can take full advantage of
dynamic modelling.

Using the results from Table 4, we observe better predictive accuracy when
partitioning the data into 3 month segments and the behaviour of rainfall is
better explained. By partitioning the data we outperform MCRP in 16 cases
in terms of rainfall prediction (66.67%), which shows that having a dynamic
model is better and in no case do we perform worse than GP predicting over
an entire year. Based on the Wilcoxon signed rank test, GP/GA statistically
outperforms MCRP at the 5% significance level with a p value of 0.0278, showing
that partitioning the data does statistically lead to better predictive accuracy.
Moreover, this reflects in more accurate pricing: in 19 cases we price closer to
the CME than GP/GA before partitioning. Table 5 shows the results of the
Friedman test and Holm post-hoc test for the results in Table 4.

Table 5 shows that partitioning the data has a really positive effect on the
accuracy of our pricing, whereby GP/GA-P achieves an average rank of 1.95,
compared with BA, MCRP and GP/GA (2.40, 2.73 and 2.92 respectively). Note
that partitioning the time series leads to a significant increase against GP/GA
for pricing with a p value of 0.0101 at the 5% significance level. GP/GA-P does
not outperform MCRP at the 5% significance level for the problem of pricing at
the CME, but it does so at the 10% significance level.

One of the issues of having contract specific equations is the increase in
complexity by having multiple equations to explain the rainfall process over the
year. For each city we would have eight models explaining the data rather than



Table 4: The predictive accuracy of GP/GA-P and MCRP-P, along with the
prices for GP/GA and GP/GA-P and CME. The bold values represents a supe-
rior performance in either rainfall prediction or pricing performance.

Rainfall prediction Contract prices
City Contract GP/GA-P MCRP-P GP/GA-P GP/GA CME

Detroit March 540.62 575.27 2.24 2.90 2.30
April 606.06 586.26 2.93 2.99 2.70
May 562.86 607.70 4.18 4.18 4.10
June 533.23 538.05 3.68 3.23 3.50
July 648.17 484.01 3.58 3.32 3.60
August 738.62 540.95 3.05 3.06 3.00
September 791.66 857.00 2.86 3.21 3.00
October 593.26 827.28 3.71 3.44 2.40

Jacksonville March 459.87 1349.03 3.47 5.32 3.70
April 361.95 1397.80 2.32 2.55 2.40
May 570.78 1270.63 2.70 2.67 2.80
June 535.54 1051.15 7.94 6.39 7.50
July 571.43 660.87 7.13 6.91 7.00
August 606.88 563.55 5.23 4.10 7.00
September 772.97 760.28 6.05 4.72 8.10
October 538.14 975.60 2.86 2.92 2.60

New York March 611.27 343.46 3.52 3.59 4.20
April 512.40 430.12 4.22 3.68 4.40
May 462.04 658.33 2.69 3.71 3.20
June 483.19 955.26 5.14 4.37 5.00
July 1214.59 1510.32 5.21 2.87 4.50
August 1885.99 1933.50 4.50 4.46 4.30
September 1921.82 1718.51 4.61 4.95 4.20
October 768.11 1458.09 4.05 6.06 4.60

one model. Future work should look at condensing the concept of GP/GA-P into
a single model.

To summarise, GP/GA performs very well for predicting the underlying
weather variable of rainfall and for pricing against MCRP. Moreover, we have
shown the benefits of having a separate GP for each contract by partitioning
the time series into shorter time frames. We witness a statistical improvement
over GP/GA without partitioning and MCRP and outperform (but not statis-
tically) BA, which should be the more accurate approach for the initial pricing
of contracts. This is a very important step within pricing, being able to predict
the level of rainfall better than current approaches and to price appropriately as
well, with the data sets we have available to us.



Table 5: The mean ranks of the four approaches, the Friedman test statistic
and the respective p values for the Holm post-hoc test (using the best method
(GP/GA-P) as the control method). Significant results are shown in bold.

Friedman p-value 0.0467

Approach Ranks p value Holm score

GP/GA-P 1.95 -
BA 2.40 0.2404 0.0500
MCRP 2.73 0.0386 0.0250
GP/GA 2.92 0.0101 0.0167

7 Conclusion

This paper introduces a novel approach for dealing with the pricing of rainfall
derivatives. Our novelty is the proposed creation of probabilistic models gen-
erated from Genetic Programming (GP), with the assistance of Markov chain
Monte Carlo (MCMC). By developing this approach, we are able to price rain-
fall derivatives using the Esscher transform, a popular technique for calculating
risk premiums. The motivation for this paper comes from the work of [9, 8, 7]
where GP was used to predict the rainfall time series with a range of alternative
approaches across European cities. However, the work did not present informa-
tion on pricing. In this paper we show the effect of pricing under GP with the
assistance of MCMC in order to create a probabilistic density function, which
we are able to price under risk-neutral conditions.

We evaluate the performance of rainfall prediction on U.S.A. cities using
a decomposition based Genetic Programming (GP/GA) [7]. We find sufficient
evidence that the algorithm has a superior predictive power than the most cur-
rently used approach within the literature of rainfall derivatives. Based on the
hypothesis that better prediction leads to better pricing [1], we would expect
our model to perform better for pricing in those cities where GP/GA outper-
formed the standard approach. We find that there is evidence to suggest that
the hypothesis is true, in the contracts for cities we had available to us. In an
attempt to increase the pricing performance under GP/GA we proposed generat-
ing contract-specific models, rather than a one-size-fits-all approach. We found
this to significantly increase predictive accuracy and subsequently the pricing
performance.

Future work will include looking at GP to produce stochastic equations to
describe the rainfall time series, this would replace the sampling strategy and
MCMC before applying the risk-neutral densities. More analysis on the proposed
contract specific approach in an attempt to maximise the performance. Finally,
upon the availability of rainfall derivative data, we can understand the pricing
dynamics and how the prices change over time, which includes studying the
effect that the market price of risk has on rainfall derivative contracts.
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