
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. (2017) DOI:10.1002/qj.3014

Marginal stability and predator–prey behaviour
within storm tracks
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A predator–prey relationship between storm track intensity and growth rate is revealed in
reanalysis data of the North Atlantic and North Pacific, as well as in an idealized global
circulation model with a zonally asymmetric heating dipole. Averaging in the phase space
of these two quantities reveals that both quantities oscillate on approximately monthly
time-scales. These oscillations occur due to quasi-periodic bursts in storm track activity
that reduce excess baroclinicity and bring the flow back towards a state that is marginally
stable to those bursts. Many detailed properties of these oscillations are reproduced well
by a two-dimensional dynamical system, especially in respect of the North Atlantic storm
track which is more zonally constrained than that in the North Pacific. It is predicted
and observed that on average stronger storm events occur less frequently but grow on a
shorter time-scale. The results suggest that nonlinearly oscillating behaviour around a state
of baroclinic neutrality is a general feature of localized storm tracks, and they offer a new
perspective on the study of baroclinic instability.
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1. Introduction

In the steady state of the Northern Hemisphere, maxima in
storm track activity and baroclinicity are co-located with areas of
intensified meridional temperature gradients on the eastern coasts
of Eurasia and North America (Hoskins and Valdes, 1990). One
may expect this co-location, as baroclinicity can be defined by the
sharpness of these gradients and is proportional to the growth rate
of baroclinic eddies that form the storm tracks. Conversely, when
these eddies are sufficiently intense, they reduce the temperature
gradients and thus the baroclinicity, an idea which has led to
low-order parametrizations of eddy heat flux (which is a measure
of storm track activity) as eddy diffusion (e.g. Larichev and Held,
1995; Griffies, 1998; Barry et al., 2002). This nonlinear relationship
between baroclinicity and storm track activity complicates the
temporal variability of these two quantities. As a result, the
traditional linear theory of baroclinic instability (e.g. Charney,
1947; Eady, 1949), where a constant shear induces exponentially
growing perturbations, is only valid for the initial stage of the
baroclinic eddy development.

There is substantial theoretical evidence that this nonlinear
relationship manifests itself as oscillations of the mean vertical
wind shear (which is related to baroclinicity, by thermal wind
balance) and baroclinic eddies in the governing equations. For
example, using the two-layer quasi-geostrophic (QG) model
with a small departure from a critical shear (beyond which

instability occurs), Pedlosky (1970) studied the weakly nonlinear
interaction between the mean flow and the primary wave. This
nonlinearity was shown to yield an oscillation of the perturbation
amplitude due to it alternately changing the sign of its vertical
phase. Such phase changes are associated with reducing and
increasing the overall wind shear, resulting in transitions between
marginally stable and marginally unstable states, respectively. In
the inviscid case, the system can oscillate reversibly around a
state of baroclinic neutrality. Because this behaviour arises from
the inertial properties of the interaction between the mean flow
and the primary wave alone, these oscillations do not require
any forcing or interacting harmonics to maintain them. Pedlosky
(1982) later found that, for situations at the minimum critical
shear, the oscillatory behaviour is actually more complex due
to non-negligible resonant behaviour. Nevertheless, beyond the
minimum critical shear his theory still provides a good example
of the mutual interaction between perturbations and the mean
flow.

Thompson (1987) also used the two-layer QG model and
found an oscillation between the mean flow and the primary
wave in a truncated five-dimensional closed system. One mode of
this system represents the mean thermal wind and the remaining
four modes represent the perturbation. However, in this case the
period of this oscillation was found to be directly proportional
to the ratio between the square roots of heating and friction
(Thompson, 1988), implying that diabatic processes are essential
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for the existence of these oscillations. Realistic values of this
diabatic forcing yielded a period of approximately 23 days. Similar
oscillations in the two-layer channel model were recovered by
Lorenz (1963b), who used a less severe truncation of the model
to obtain a 14-dimensional system. Lorenz additionally found
that transitions of the system into different more stable or more
chaotic regimes were possible, depending on the scale of the eddies
and the magnitude of the imposed diabatic forcing. Smaller eddies
and larger heating led to a less stable system and eventually chaos.
Fleming (2014) found similar characteristics in the Thompson
(1987) model, while observing that, when chaos is approached,
baroclinic instability becomes very strong and reminiscent of
explosive baroclinic development observed in the atmosphere.

In light of the theories above, it is apparent that some periodic
or quasi-periodic temporal interaction between the mean shear
and eddies is expected in the atmosphere. However, although
laboratory experiments can replicate some of the theoretically
predicted oscillatory behaviour (e.g. Hide, 1958; Hart, 1972), the
baroclinic behaviour of the atmosphere is often deemed to be too
irregular and characteristic of non-periodic chaotic behaviour
(e.g. Lorenz, 1963a).

Nevertheless, some recent observational evidence suggests
a coherent mutual interaction between storm track activity
and baroclinicity on various time-scales in both hemispheres
(Ambaum and Novak, 2014; Thompson and Woodworth, 2014;
Novak et al., 2015; Thompson and Li, 2015). These studies
heuristically indicate that a predator–prey relationship may exist
between baroclinicity (prey) and storm track activity (predator),
as follows. The build-up of baroclinicity due to a diabatic forcing,
such as land–sea contrast, orography and oceanic boundary
currents (Brayshaw et al., 2011), enhances eddy growth until eddy
mixing becomes sufficient to reduce baroclinicity, overriding the
effect of the diabatic forcing. Once the baroclinicity is low enough
to inhibit any further eddy generation, the storm track activity
falls and allows the diabatic forcing to replenish the baroclinicity
and the cycle repeats. Such cycling additionally agrees with the
quasi-oscillatory behaviour between the mean end eddy energies
observed in the Southern Hemisphere (Randel and Stanford,
1985). Despite the qualitative agreement of this predator–prey
mechanism with observations, little attempt has yet been made
to quantitatively compare the observed variability with existing
theoretical predictions.

This article analyses ERA-Interim December–February (DJF)
data to uncover an explicit mean oscillatory relationship between
the storm track activity and baroclinicity in the storm tracks of the
North Atlantic and the North Pacific. Additionally, results from
an idealized global circulation model (GCM) with no orography
indicate that this behaviour may apply to all localized storm tracks.
The detailed properties of the observed oscillatory behaviour are
then analysed and compared to those of the Ambaum and Novak
(2014) nonlinear oscillator model.

The Ambaum–Novak model is a two-dimensional dynamical
system and therefore lacks the potential to become chaotic (Hirsch
and Smale, 1974). Despite its simplicity, the authors found a good
qualitative agreement between the model behaviour and that of
the North Atlantic storm track, using time-lag composites centred
around extreme bursts of storm track activity. This article uses
more quantitative methods and several storm tracks to produce
a more thorough comparison with the Ambaum–Novak model,
and to provide more insight into the detailed properties of the
observed cycling behaviour.

Section 2 briefly describes the Ambaum–Novak model and
some insightful properties of its oscillations. Section 3 discusses
the data used and section 4 outlines the construction of a phase
space plot from noisy observations. Sections 5 and 6 compare the
qualitative and quantitative properties of the Ambaum–Novak
model to those of the observed phase space plots in the North
Atlantic. Section 7 then investigates whether the oscillating
properties also apply to other localized storm tracks and other
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Figure 1. Examples of phase space plots for the numerically integrated
Ambaum–Novak model for (a) the instantaneous heat flux, f , and (b) the
corresponding transformed heat flux, y = ln(f /F), where F is the diabatic forcing
and s is the excess baroclinicity. The system was scaled to be non-dimensional.
The line thickness is proportional to the relative speed of the oscillations in the
non-dimensional phase space and time is in the clockwise direction.

measures of storm track activity. The remaining section discusses
the results and their wider implications.

2. The Ambaum-Novak model

Ambaum and Novak (2014) proposed a two-dimensional
model to describe the nonlinear oscillator relationship between
baroclinicity and eddy meridional heat flux (a measure of storm
track activity) as follows:

ds

dt
= F − f , (1)

df

dt
= 2(s − s0)f , (2)

where s = −kdT/dy is baroclinicity which is proportional to
the negative meridional temperature gradient, and f = kl2v′T ′
is the scaled heat flux assumed to scale with the squared eddy
amplitude. k is a constant and l the meridional wavenumber. s0

represents a constant eddy dissipation rate and F is a constant
diabatic forcing that restores baroclinicity. It is apparent that the
constant diabatic forcing is the steady-state value of heat flux and
the eddy dissipation rate is the steady-state value of baroclinicity.
Investigation of the steady state of the model and its application
to the Earth’s atmosphere is the subject of a separate study and
will not be discussed here further.
Although the Ambaum–Novak model was initially constructed
based on heuristic arguments, an equivalent relationship can
be obtained by further truncation of the published models of
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Thompson (1987) and Lorenz (1984), both of which are based
on simplifications of the primitive equations (Thompson, 1987;
van Veen, 2003). In the Thompson (1987) model, the equation
for the mean shear flow is identical to Eq. (1), except for an
additional linear damping term. The four perturbation equations
of the Thompson (1987) model can be written in the form of
a matrix which, under vanishing β, is analogous in structure to
Eq. (2). Similarly, the equations of the squared perturbations in
Lorenz (1984) model can be combined to form an analogous
equation system to the Ambaum–Novak model. Although the
Lorenz (1984) system includes additional terms of asymmetric
heating and linear damping of the mean flow, both of these effects
could be argued to be small, based on global observations (Oort,
1964).

Ambaum and Novak (2014) show that a useful transformation
of the heat flux as

y = ln (f /F) (3)

allows Eqs (1) and (2) to be combined to form

d2y

dt2
= 2F(1 − ey). (4)

This equation is a nonlinear oscillator. For small y it linearizes
to d2y/dt2 = −2Fy, with a natural frequency of ω0 = √

2F. The
intensity of the diabatic forcing therefore determines the natural
frequency of the oscillator, as was the case for the Thompson
(1987) model. At higher amplitudes the nonlinear terms can
no longer be neglected. Equation (4) can be simplified using a
successive approximation method (Landau and Lifshitz, 1976)
that yields a correction to the natural frequency, which for the
second-order approximation is

ω = ω0 − 1

24
ω0y2

max, (5)

where ymax is the amplitude of oscillations of the transformed
heat flux, y. The model therefore predicts that the period of
oscillation increases with the amplitude of heat flux events due to
the nonlinearity.

Ambaum and Novak (2014) further demonstrate that the
symmetry of the model oscillations changes with amplitude. At
higher amplitudes, heat flux peaks become more pronounced,
more abrupt and less frequent, and baroclinicity exhibits a
saw-tooth pattern, falling abruptly during heat flux events but
recovering relatively slowly. Such behaviour is more consistent
with a relaxation oscillation rather than a simple linear oscillation
for which the shape and frequency are constant with amplitude.

Another property of the Ambaum–Novak model is that the
amplitude of the perturbations is constant in time, as is evidenced
by the zero time derivative of the Lyapunov function:

E = 1

2
ẏ2 + V(y), (6)

where dE/dt = 0, and V(y) = 2F(ey − y − 1) is the ‘potential’
of the system, so the system oscillates around its equilibrium in
neutral limit cycles.

A further insight into the cycling behaviour can be gained by
studying the baroclinicity–heat flux phase space. One can do
this by plotting baroclinicity against heat flux, using timeseries
from Eqs (1) and (2) obtained for several different amplitudes
(i.e. different values of E). An example of such a phase space
plot for the two non-dimensionalized variables is shown in
Figure 1(a). Time is in the clockwise direction and the thickness
of the contours is proportional to the speed of propagation
along the trajectories in the non-dimensional phase space. The
aforementioned predator–prey relationship emerges whereby
baroclinicity increases at times of low heat flux and the subsequent

Baroclinicity

Heat flux

Figure 2. Time-mean DJF plots of heat flux (black, 10 and 20 K m s−1 contours)
and baroclinicity (grey, 0.5 and 0.6 day−1 contours) calculated from the ERA-
Interim reanalysis. The averaging sectors for heat flux (thin black boxes) and
baroclinicity (thin grey boxes) are also shown.

bursts in heat flux erode the baroclinicity to values at which heat
flux production is inhibited. The low heat flux then allows the
baroclinicity to be slowly replenished again. At high amplitudes,
the burst-like nature of the heat flux is additionally evident from
the skewness of the contours along the horizontal axis (similar
to Fleming, 2014), as well as from the faster speed of oscillation
when the heat flux is high.

According to Eq. (3), the forcing parameter F is used to
compute the transformed heat flux, y, which produces the phase
space plot in Figure 1(b). This transformation is applied because
it is the y variable that facilitates the mathematical description of
the system as an oscillator in Eq. (4). It is this phase space that
will be predominantly used to compare the oscillatory properties
of the Ambaum–Novak model with those of both the ERA-
Interim reanalysis and the GCM data below. Due to the logarithm
in Eq. (3), the negative part of y is stretched compared to
the untransformed heat flux. The central trajectories are almost
circular, similar to those of a linear oscillator. The trajectories then
become more skewed and variable in the speed of propagation as
the amplitude increases and the system becomes more nonlinear.

The following properties predicted by the Ambaum–Novak
model will be tested against atmospheric observations in sections 5
and 6:

(i) the spiky nature of heat flux and the slow recovery of
baroclinicity, implying two time-scales;

(ii) the clockwise oscillation in the baroclinicity–heat flux
phase space which becomes more skewed with amplitude;

(iii) the similarity of the system to a linear oscillator at small
amplitudes;

(iv) the decrease of frequency with amplitude in a quadratic
fashion; and

(v) the increase of speed of the onset and termination of heat
flux events with increasing amplitude.

3. Datasets

3.1. Reanalysis

Observations are based on the 6-hourly December–February
(DJF) ERA-Interim reanalysis dataset spanning 1979–2014,
produced by the European Centre for Medium-range Weather
Forecasting (ECMWF; Uppala et al., 2005). The instantaneous
meridional eddy heat flux (v′T ′) is vertically averaged between 925
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and 700 hPa and based on perturbations from the 10-day Lanczos
filter, in order to isolate transient eddy variability within the
storm tracks. Following Hoskins and Valdes (1990), baroclinicity
is measured by the maximum Eady growth rate at 775 hPa,
s = 0.31f0N−1dU/dZ, where f0 = 2� sin φ, N = g

√
d(ln θ)/dZ

and Z is the geopotential height.
To produce one-dimensional time series of each variable,

spatial averaging over the beginning of each storm track was
applied. In the North Atlantic the averaging sector spans 35–50◦N
and 290–320◦E for heat flux, and 30–50◦N and 270–320◦E for
baroclinicity. In the North Pacific the averaging spans 30–50◦N
and 150–195◦E for heat flux, and 25–45◦N and 120–170◦E for
baroclinicity. These sectors were chosen to comprise the respective
maxima of the two variables (Figure 2), the latitudes of which are
fairly constant in time (Novak et al., 2015).

In the North Atlantic, other measures of storm track activity
have also been tested. These include eddy kinetic energy
{1/2(u′2 + v′2)} at 250 and 850 hPa, meridional wind variance at
250 hPa, potential vorticity variance at 315 K, geopotential height
variance at 250 and 500 hPa, and the mean sea-level pressure
variance. The upper-level eddy kinetic energy, which is discussed
in more detail below, was spatially averaged over 40–55◦N and
290–330◦E, over its North Atlantic maximum.

3.2. Aquaplanet GCM: PUMA

The Portable University Model of Atmosphere (PUMA; Fraedrich
et al., 1998) was used here to test whether the predator–prey
relationship also occurs in storm tracks of medium complexity
models. The model is adapted from the Hoskins and Simmons
(1975) spectral GCM with dry dynamics and a linear
parametrization of the diabatic forcing and dissipation (Held and
Suarez, 1994). The frictional time-scale increases exponentially
from 0.5 days at the lowermost level to infinity at the 0.8 sigma
level and above, and the thermal damping time-scale ranges from
1.2 days at the lowermost level to 30 days in the uppermost level,
following a similar set-up to Fraedrich et al. (2005).

The T42 horizontal resolution (corresponding approximately
to a 2.8◦×2.8◦ grid) and 10 vertical sigma levels were used
to simulate a single localized storm track without orography.
This storm track was produced by imposing a midlatitude
heating–cooling dipole with a southwest to northeast orientation
(following Frisius et al., 1998).

Daily data of eddy heat flux and baroclinicity (both calculated
using the above method) were extracted for 25 winters of the
experiment, with the first year being discarded as a spin-up
year. The time-mean view of these variables relative to the
heating–cooling dipole is displayed in Figure 3. The figure
also shows the spatial averaging sector spanning 30–60◦N and
100–180◦E for both variables.

4. Construction of phase plots from data

This section outlines the method employed to construct
baroclinicity–heat flux phase space plots from the relatively
noisy time series of the reanalysis data (example time series can
be found in Ambaum and Novak, 2014), to extract the average
behaviour of the two variables.

Baroclinicity was first scaled as σ = 2s/
√

2F (according to
the Ambaum-Novak model), so as to make the system non-
dimensional. The value of F/kl2 is estimated directly from the
phase space plots by locating the central value of heat flux which
the trajectories encircle. The long-time mean of heat flux is very
close to this central value. kl2 is assumed to be a constant factor,
and the choice of its value is discussed in the Appendix.

Next the tendencies of each variable were obtained using
the centred-difference method. These were then averaged on a
30 × 30 grid of the phase space, using two-dimensional Gaussian
kernel averaging in the phase space (i.e. the closest points to a grid
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Figure 3. Time-mean DJF plots of heat flux (black; 10, 15 and 20 K m s−1

contours) and baroclinicity (grey; 0.6, 0.7, 0.8 and 0.9 day−1 contours) calculated
from the PUMA experiment. The averaging sector is shown by the thin black box
and the location of the heating–cooling dipole is shown in light grey.
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Figure 4. Schematic explaining the construction of a phase space plot for noisy
data. The steps are to (a) extract each DJF time series of baroclinicity and heat
flux; (b) calculate the tendencies in both variables, obtaining a vector in the phase
space for each time step; and (c) divide the phase space into a grid and apply a
Gaussian weighted average to all data points (of all DJF time series) in this phase
space to obtain one average tendency vector per grid point, as in (d). The last step
is to plot streamlines using these average tendencies.

point were allocated the highest weights in the average for that
grid point). The coarseness of this averaging can be quantified by
the standard deviation of the filtering kernel. Using the resulting
gridded phase-space vectors streamlines were plotted to display
the overall behaviour while ignoring the grid boxes that only
contained less than three data points of the original timeseries.
The main steps of this method are depicted in Figure 4.

5. North Atlantic: qualitative comparison with the model

Examples of the North Atlantic phase space plots are shown in
Figure 5. The black arrows are the trajectory streamlines and their
thickness is proportional to the speed of oscillation in the scaled
non-dimensional phase space. The shading is a two-dimensional
histogram, with the darker shading representing a higher data
point density extracted from the raw time series. The phase space
plots for fine (small filter size), medium and coarse (large filter
size) smoothing are shown in Figures 5(a)–(c), respectively. The
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(a) (b) (c)

(d) (e) (f)

Figure 5. Phase space plots for (a)–(c) the observed instantaneous heat flux, fv′T ′ and (d)–(f) the transformed heat flux, y = ln(f /F), where F is the diabatic forcing
(in this case around F/kl2 = 28 K m s−1) and s is the excess baroclinicity. Line thickness is proportional to the speed of oscillation in the scaled non-dimensional phase
space and the shading is the 2D histogram (showing values of 10, 50 and 100+ data points). The plots in (c,f) are averaged using a coarse filter (standard deviation: 1.1),
while finer filters have been used for (b, e) and (a,d) (0.65 and 0.2 respectively). The radii of the grey ellipses at the bottom right corner mark the standard deviations
of the averaging Gaussian filter. Only the filtered tendencies that were surrounded (within a distance of one grid point) by two or more raw data points are plotted.

constant baroclinicity offset (s0) was chosen to be the centre of
the oscillations (0.56 day−1), which is close to the time-mean
value of baroclinicity (0.57 day−1). The clockwise direction of
propagation around a single point is reminiscent of the phase
space plot of the Ambaum–Novak model (Figure 1(a)). The skew
towards high heat flux also concurs with the model and it reflects
the spiky nature of the observed heat flux that was previously
noted by Swanson and Pierrehumbert (1997) and Messori and
Czaja (2013). Furthermore, it is apparent from the thickness of
the observed trajectories that the speed of oscillation during the
bursts in heat flux does increase with amplitude, as predicted
above.

However, there are also some marked differences between the
phase space plots of the data and the Ambaum–Novak model.
For example, the model does not contain any negative heat flux
values and thus its phase space plot can be very compressed near
zero for high amplitudes. On the other hand, the reanalysis data
show some negative values and less skewness along the heat flux
axis, especially for coarser smoothing. Although fine smoothing
produces a skewed shape that is more consistent with the model
phase space plot, it additionally reveals a more fine-scale structure
which is uncharacteristic of the model. Some of this fine-scale
structure most likely arises from sampling issues. As is shown in
the Appendix, too little or too much filtering seems to cause a
departure from the model, and there is an optimal size of the
smoothing filter, which produces consistent results.

In order to quantify whether the oscillatory properties of the
North Atlantic storm track are consistent with the predicted ones,
heat flux was transformed into the y variable. The corresponding
phase space plots equivalent to those discussed above are displayed
in Figures 5(d)–(f), respectively. It should be noted that the
sparse negative values of heat flux were neglected due to the
natural logarithm in Eq. (3). The phase space plots exhibit
similar characteristics to that of the Ambaum–Novak model
(Figure 1(b)), though again more structure is apparent for the
finest smoothing. The system oscillates around a single point
where the data density peaks. The smallest amplitude oscillations

are more regular and thus are closer to being linear, concurring
with the prediction above.

It is noted that the filtered tendencies are composed of raw
tendencies with relatively large standard deviations of sizes
comparable to the filtered tendency values (not shown). The
reader is thus reminded that the filtered oscillatory behaviour
should be interpreted as an average property of the system, rather
than representing the system’s instantaneous behaviour.

Nevertheless, it is apparent that despite its simplified nature,
the Ambaum–Novak model can qualitatively replicate the general
features of the average observed behaviour. It is stressed here that
this is the case for any (visually) reasonable size and shape of
the kernel chosen to smooth the tendencies over the phase space.
The next section demonstrates that additional optimization of the
filter shape can result in a good quantitative agreement between
the model and the observations.

6. North Atlantic: quantitative comparison with the model

To compare the model and observed data more quantitatively,
this section focuses on the case of the medium-sized filter (with
standard deviation of 0.65 units of the scaled phase space) and
the scaling factor of kl2 = 3.1×10−13 K−1m−1s−1. The choice of
these parameters yielded appropriate scaling of the baroclinicity
(Appendix). Figure 5(e) is the associated phase space plot.

In order to estimate the frequency of the North Atlantic
oscillations for trajectories of different amplitudes, the tendencies
of all grid points were first interpolated across the phase
space using a cubic spline interpolation. The system was
then numerically integrated in time (using the fourth-order
Runge–Kutta method) from different starting amplitudes of y
at s = 0, until a full cycle was completed. The time period
(T = 2π/ω) was obtained by summing the number of the 6-
hourly intervals it took for each trajectory to complete a cycle, and
was then converted to angular frequency. Because the observed
trajectories are not quite closed, error bars were calculated using
the same procedure, but starting the integration in time from
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(a) (b)

Figure 6. The change with increasing amplitude in (a) the angular frequency of oscillations (ω) and (b) the tendency of y at y = 0, showing the exact numerical model
solution (solid line), the approximated second-order model solution (dashed line) and the reanalysis data filtered as in Figure 5(e) (points). Note that the sampling of
the smallest amplitudes below ymax = 0.2 is omitted due to the data resolution being too coarse to resolve such small changes there.

Figure 7. Power spectra of the North Atlantic heat flux (black thick solid line) and
baroclinicity (grey thick solid line) time series from the raw reanalysis timeseries,
with their respective fitted red noise spectra (thin solid lines) and the 99%
confidence interval (dashed lines).

different points along the semicircle of each trajectory in the
region of positive y (between the highest and lowest points
of baroclinicity). The interquartile range and median of the
resulting frequency values were then calculated and displayed in
Figure 6(a). Note that due to the finite temporal resolution of the
data, sampling at the smallest amplitudes was omitted.

The exact numerically integrated solution of the
Ambaum–Novak model and its second-order approximation
(from Eq. (5)) are also displayed. The model was parametrized
using F = 1/2ω2

0 where ω0 was estimated from the observed fre-
quency of the smallest amplitude (assumed to be approximately
equal to the natural frequency). The tendency of y at y = 0 with
increasing amplitude was also plotted (Figure 6(b)), in order to
quantify the speed of the onset and termination of heat flux events
of different magnitudes.

The frequency of oscillation is almost constant for the smallest
amplitudes, approximately marking the natural frequency, ω0, of
the oscillator. As the amplitude increases further, the frequency
decreases and drops off sharply after approximately ymax = 1. This
pattern of change agrees very well with the idealized model even
at high amplitudes. In fact, the agreement is better between the
data and the exact model solution than the agreement between
the exact model solution and its second-order approximation.
The strong agreement between the model and reanalysis data also
appears in the plot of y-tendency at y = 0. As the amplitude of
oscillations increases, the tendencies of both branches increase in
magnitude. The agreement is less good for the positive branch at

large amplitudes, most likely because at that point the numerically
integrated trajectories, along which the speed was estimated, had
already travelled through the region of negative y of the phase
space (with the trajectories having been initiated in the region of
positive y). Tendencies at negative y values are less well defined
due to the logarithm in Eq. (3). This behaviour can be contrasted
with that of a linear oscillator in which case the frequency would
be constant and the speed would increase linearly with amplitude.

The results above and the discussion in the Appendix imply
that there is a preferred (natural) frequency of the observed
system, though the averaging introduces some dependency. It is
therefore of interest to see whether this natural frequency can
be detected in the power spectra of the two variables. These
were constructed in Figure 7 using the raw November–March
reanalysis time series of heat flux and baroclinicity, and the
Welsch spectrum estimation method, with a Hanning window
and no overlap (similar to Thompson and Li, 2015). The power
spectra are the thick solid lines. In order to determine whether
the observed variability is significantly different from red noise,
red noise timeseries were calculated using lag-1 autocorrelations
to produce red-noise spectra (thin solid lines) fitted to the
baroclinicity and heat flux spectra. The 99% confidence level
(dashed lines) was calculated using the chi-squared statistic.
Following Thompson and Li (2015), the red noise fit to heat flux
is based on high-pass (30 day) filtered timeseries to remove the
dominant low-frequency variability, thus enhancing the fit to the
observed power spectrum. However, the choice of the width of
this high-pass filter is not unique and the level of significance is
sensitive to this choice.

The baroclinicity spectrum behaves very much like the red
noise spectrum, but peaks rather more prominently at the very low
frequencies, starting from 0.2 rad day−1 and lower, with the higher
end of these values being comparable to the natural frequency
values found in the above phase space plots. While the heat flux
spectrum also peaks at these low frequencies, the spectrum differs
from the red noise by a more pronounced higher frequency
variability. It would be difficult to conclude from these spectra
alone that the timeseries oscillate (as was revealed by the phase
space plots above and by the time-lag composites in Ambaum
and Novak, 2014). The quasi-periodic nature of the oscillations
means that dominant sharp peaks are not necessarily apparent
in the power spectra. However, the similarity of the two spectra
at the low frequencies (close to the natural frequency value) is
an indication that these two timeseries vary most prominently at
similar timescales.

7. Applicability of the Ambaum–Novak model to other eddy
variables and storm tracks

In order to investigate whether the above oscillating relationship
in the North Atlantic applies independently to other measures
of storm track activity, the identical analysis to that above was
performed for eddy kinetic energy (EKE= 1/2{u′2 + v′2}) at 250
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(a) (b)

(c) (d)

Figure 8. Analysis of the variability of y(EKE) (calculated at 250 hPa and averaged between 40–55◦N and 290–330◦E) and baroclinicity in the Atlantic storm track,
showing (a) the phase space plot with the 2D histogram (grey shading, with contour intervals of 10, 50 and 100 data points) and the filter standard deviation (grey
ellipse); (b) the angular frequency change with amplitude, as in Figure 6(a); (c) the y(EKE)-tendency change with amplitude at y(EKE) = 0, as in Figure 6(b); and (d) the
power spectra of the raw baroclinicity (grey) and EKE (black; constructed as in Figure 7) time series.

and 850 hPa, meridional wind variance (v′2) at 250 hPa, potential
vorticity variance (PV ′2) at 315 K, geopotential height variance
(Z′2) at 250 and 500 hPa, and the mean sea-level pressure variance
(MSLP′2). Note that, as before, these variables are the ‘unfiltered
variances’, where the products of the perturbations were not
subsequently averaged (as is the case in traditional covariance
calculations). This last step was omitted in order to investigate the
instantaneous variability rather than the 10-day filtered signal.
Because all the above storm track activity measures yielded similar
(or better) results, only the results from the upper-level EKE
analysis and its logarithmic transform, y(EKE) = ln (EKE/F(EKE)),
are presented here. Again, F(EKE) is the steady-state value of EKE
and corresponds to the diabatic forcing in the model.

The baroclinicity–y(EKE) phase space plot is shown in
Figure 8(a). Qualitatively, the data concur with the model,
whereby the phase space again exhibits a general oscillating
behaviour in the clockwise direction, and the speed of oscillation
increases with amplitude during the onset and termination of
high storminess events. However, this time the trajectories are
less regular and are being suppressed in the negative y territory
by an apparent second attracting node, most likely resulting
from sampling issues. Although the grey-scale shading shows
that most data points are within the primary oscillation, the
quantitative comparison between the data and the model is
affected by this secondary node. The frequency change with
amplitude (Figure 8(b)) is sharper than that of the model and
the natural frequency is lower than that estimated from the heat
flux in the previous section. Additionally, the y tendency at y = 0
contains substantially larger error bars (Figure 8(c)).

Inspecting the EKE power spectrum in Figure 8(d) reveals that
the very low frequency peak that was found in the heat flux case
is not apparent. Instead, two other large peaks appear around
0.4 and 0.8 rad day−1. Since the EKE spectrum does not exhibit
dominant variability at the same frequencies as the baroclinicity
spectrum, it is unsurprising that the phase space plot is less neat

than the heat flux case. Due to the resulting additional higher-
frequency structure in the phase space, coarser filtering was
applied leading to an underestimation of the natural frequency.

It was found that the agreement with the model improves
if the sector used for spatial averaging of EKE is moved to a
more upstream location, rather than being centred over the EKE
maximum (which is more downstream than the maxima in heat
flux and baroclinicity). Furthermore, if the low-level EKE is used,
results that are very similar to those obtained when using heat flux
can be recovered, with a natural frequency of ω0 = 0.11 rad day−1

(not shown). Similar results apply for the MSLP variance analysis
with ω0 = 0.13 rad day−1 (not shown).

Having found that the North Atlantic exhibits an oscillatory
behaviour with a period of around 30–50 days, it is of interest to
investigate whether such behaviour exists in other storm tracks.
The present analysis is restricted to localized storm tracks, and
so the North Pacific storm track was additionally investigated. Its
phase space plot for baroclinicity and the transformed heat flux
is shown in Figure 9(a). The general clockwise major circulation
with speed of oscillation increasing with amplitude agrees with the
picture observed in the North Atlantic. However, the oscillations
are less regular and not quite centred around the highest data
point density. Additionally, a secondary node appears in the
region of negative y and positive excess baroclinicity. The natural
frequency (Figure 9(b)) is much lower than in the North Atlantic,
even if the filtering kernel is decreased to the smallest value that
allows a coherent oscillation around the phase space (not shown).
Despite these inconsistencies, the quantitative agreement between
the model and data is still reasonable for both the frequency and
the negative y-tendency changes with amplitude (Figures 9(b) and
(c)). The positive branch of y-tendencies is evidently suppressed
by the additional structure in that region of the phase space.
The secondary circulation forces the trajectories to deform and
enter the more central region of the phase space plot, where
lower y-tendencies persist (i.e. where the energy of the oscillator
is lower).
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(a) (b)

(c) (d)

Figure 9. As Figure 8, but for baroclinicity and heat flux in the North Pacific storm track.

Investigating the power spectra (Figure 9(d)) reveals that the
most dominant heat flux modes have an angular frequency of
0.55 rad day−1. In contrast, the Pacific baroclinicity spectrum
peaks at frequencies that are more than five times smaller, similar
to the baroclinicity frequency peaks found in the North Atlantic.
As a result, the oscillating behaviour is less well defined in the
phase space. The maximum of the storm track activity in the
North Pacific is situated further downstream from the maximum
of the baroclinicity (Figure 2). As in the Atlantic upper-level EKE
case, it is plausible that the lowered spatial co-location between
baroclinicity and heat flux in the Pacific degrades their mutual
interaction and allows other (higher-frequency) variability to
dominate the system. This can be confirmed by conducting the
same analysis but averaging both baroclinicity and heat flux over
the same geographical sector in the North Pacific. This yields
a very good quantitative agreement with the Ambaum–Novak
model (not shown).

Finally, the heat flux–baroclinicity phase space of the storm
track of the 25 winters of the PUMA experiment is studied.
Again, the phase space plot in Figure 10(a) exhibits a clockwise
circulation around the maximum of the data point density,
with increasing speed of oscillation with amplitude. However,
the circulation trajectories are somewhat tilted in this case,
implying that the heat flux peak occurs slightly earlier in relation
to the dip in baroclinicity compared to the two real storm
tracks. The more quantitative oscillatory properties, namely the
changes with amplitude in frequency and y tendency at y = 0,
are displayed in Figures 10(b) and (c). Again, the agreement with
the Ambaum–Novak model is very good for both properties,
and the natural frequency is consistent with that observed in the
North Atlantic, despite the apparently large size of the kernel used
to average over the phase space. Studying the power spectrum
(Figure 10(d)) , the highest peaks are near 0.9 rad day−1, though
both variables also exhibit strong peaks at higher frequencies,
which no doubt contribute substantially to the average behaviour
in the phase space. Qualitatively similar behaviour can also be
found when using the zonal mean to define the eddies, and also
for perpetual equinox conditions (not shown).

It is noted that a better quantitative agreement with the
Ambaum–Novak model can be obtained by increasing the

temporal and spatial resolution of the model as well as by creating
a more locally confined storm track (as will be shown as part
of a forthcoming study). However, the model set-up here was
intentionally chosen to be highly simplified in order to indicate
that the predator–prey behaviour is likely present in any localized
storm track.

8. Summary and discussion

The localized storm tracks of the North Atlantic, the North Pacific
and the idealised GCM exhibit a predator–prey relationship
between storm track activity (predator) and baroclinicity (prey).
This relationship is based on the competing effects of high
storm track activity reducing meridional temperature gradients
(and thus baroclinicity) and a restoring forcing that enhances
the baroclinicity when storm track activity is low. In time, this
relationship leads to burst-like oscillations in storm track activity
and saw tooth-like oscillations in baroclinicity (characterized by
a fast reduction and a slow restoration). The observation of this
behaviour in all of the studied storm tracks, as well as for several
different measures of storm track activity, suggests that this is a
feature of all localized storm tracks.

This nonlinearly oscillating relationship was observed by
Ambaum and Novak (2014) for approximately weekly time-
scales, though the present analysis of the system’s phase space
indicates that the dominant scales are closer to 30–50 days,
which is also reflected in the similarity of low-frequency spectral
peaks of baroclinicity and storm track activity. These time-scales
are more akin to those observed by Randel and Stanford
(1985) for oscillations between mean and eddy energies in
the Southern Hemisphere, as well as to those associated with
the Baroclinic Annular Modes in both hemispheres (Thompson
and Woodworth, 2014; Thompson and Li, 2015). All of this
observational evidence further supports the existence of the
predator–prey relationship between storm track activity and
its growth rate at the longer time-scales. As a result of this
relationship, the system seems to undergo transitions between a
baroclinicity-eroding state of intense storm track activity and a
more stable baroclinicity-replenishing state, as suggested by Stone
(1978). These arguments are also reminiscent of the index cycle
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(a) (b)

(c) (d)

Figure 10. As Figure 8, but for baroclinicity and heat flux in the storm track of the PUMA experiment.

(Namias, 1950) which is characterized by transitions between
regimes of zonal and wavy jet structures.

Despite the cycling behaviour of the system, power spectra
of both baroclinicity and storm track activity do not show
unambiguous evidence of pure periodicity in the winter season
(agreeing with Thompson and Li, 2015), but instead the analysis
above implies a more quasi-periodic behaviour. Therefore care
should be taken when computing composites of different large
storm events, as the periodicity may be masked by the different
time-scales of the events (e.g. Ambaum and Novak, 2014). For this
reason, the properties of the observed oscillations were studied
here in the baroclinicity–storm track activity phase space. The
phase space analysis summarizes the oscillatory properties of the
system at different amplitudes, without having to assume that
different-amplitude events occur on similar time-scales.

A more quantitative investigation revealed some sensitivity to
the size and shape of the filter that was used to smooth the raw
timeseries over the baroclinicity–heat flux phase space. Since
the raw data series are relatively noisy, averaging is necessary
to recover their overall behaviour, though excessive averaging
can damp the desired structures. An optimal size was therefore
selected by mutual tuning of the detailed properties of the data
and those of the Ambaum–Novak model. However, even in the
absence of such tuning, any reasonable size and shape of the filter
produces the same qualitative features.

It was found that the average time period of oscillation and
speed of onset and termination of storm events both increase
with the amplitude of those events, implying that more extreme
events occur more suddenly but less frequently. This may be
of considerable use in the context of climate change studies.
For example, modelling studies (e.g. Pinto et al., 2009) have
found that in warmer climates North Atlantic storms will become
less frequent but retain their current amplitude. This suggests
that the system would enter a new regime in the phase space
with a lower diabatic forcing (F). This is consistent with the
idea that diabatic processes, such as boundary currents and
land–sea contrast, would be less efficient at sharpening the low-
level meridional temperature gradient in a climate with a warmer
Arctic (e.g. Barnes and Screen, 2015). Preliminary results show

that the predator–prey behaviour exists in the Coupled Model
Intercomparison Project Phase 5 (CMIP5) climate models and a
forthcoming study aims to present the response of this behaviour
to the climate change forcing more explicitly.

It should be noted that, although the oscillation in the phase
space was observed in all storm tracks studied here, it was
somewhat less defined in the North Pacific. Nakamura and
Sampe (2002) have found that, as the East Asian winter monsoon
intensifies, the enhanced westerlies trap the Pacific synoptic-
scale eddies within the subtropical jet core and guide them
southward and downstream, away from the maximum low-level
baroclinicity. In doing so, they reduce the interaction between
the upper and lower levels which is essential for baroclinic
growth, as is consistent with the barotropic governor mechanism
(James and Gray, 1986). Consequently, the Pacific storm track
peaks in intensity further downstream of the baroclinicity
maximum. This would move a substantial part of the eddy
erosion of temperature gradients outside the region of maximum
baroclinicity, where (instead of the diabatic heating sharpening
temperature gradients) downstream fluxing of recycled energy
from previous flow structures would dominate the eddy growth
(Orlanski and Katzfey, 1991; Chang and Orlanski, 1993). The
worse co-location of highest storm track activity and maximum
baroclinicity would make the interaction between baroclinicity
and eddies weaker and the predator–prey relationship would be
less clear. In addition, some measures of storm track activity,
such as PV variance, only exhibit a maximum over the North
Atlantic in the winter time mean, because of the Pacific mid-
winter minimum in storm track activity. It was therefore more
difficult to identify the correct spatial averaging domain over the
North Pacific storm track.

In contrast, the stationary forcing and weaker winds in the
North Atlantic allow the storm track to be more longitudinally
confined and the heat flux (and thus the region of maximum
mixing of temperature) is more co-located with the maximum of
baroclinicity. Any changes in one variable can therefore be imme-
diately felt by the other. As a result, the theory of baroclinic insta-
bility is more applicable here and the predator–prey behaviour
is more detectable. It is noted that in general the barotropic
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(a)

(b)

Figure 11. Comparison of the unforced inertial oscillatory system of Pedlosky
(1970) and the diabatically forced system of Ambaum and Novak (2014), showing
(a) the non-dimensional potentials of the two systems, with the natural frequency
of the Ambaum–Novak model being tuned to the frequency of the Pedlosky
(1970) model near the potential minimum; and (b) the corresponding non-
dimenisonal phase space plot of the Pedlosky (1970) system. A represents the
(third-order) amplitude of the baroclinic wave and s represents the dA/dt which
relates to the vertical wind shear of the mean flow. The shading in (b) emphasizes
different initial amplitudes, with darker shading marking higher values. Note that
the potential of the Ambaum–Novak model in (a) was shifted to coincide with
one of the potential minima of the Pedlosky (1970) model for better comparison.

interaction between eddy momentum fluxes and the mean flow
occurs further downstream where eddies begin to decay and where
baroclinicity is relatively low. This ‘barotropic’ eddy–mean flow
interaction should be distinguished from the interaction between
mean baroclinicity and eddy heat fluxes, which occurs mostly
during the growing stage of eddies, more upstream and closer
to the maximum baroclinicity (e.g. James, 1994). While eddies
may propagate downstream beyond the averaging region, this
advection can be modelled as part of eddy dissipation.

The other focus of this article was to compare the above
observed behaviour to the low-complexity yet nonlinear oscillator
model of Ambaum and Novak (2014). Even though the model
lacks a large part of the complexity of the real system (such as the
slight convergence or divergence of the circulating trajectories
of the phase space), it still proved capable of reproducing
the general observed behaviour. For example, it exhibits the
clockwise circulation in the baroclinicity–heat flux phase space.
It also predicts the observed approximately quadratic increase
of time period with amplitude and the approximately linear
increase of the speed of onset and termination of heat flux
events as the amplitude increases. For an appropriate filter, these
properties show a strikingly good agreement between the model
and the observed system. In some cases, the agreement between
the observed data and the exact numerical model solution was
better than the agreement between the exact solution and its

second-order approximation. Even though the Ambaum–Novak
model was parametrized with the observed natural frequency,
such changes of the system with amplitude are not prescribed in
the model and its agreement with the real system is not trivial.

It was also found that in general low-level measures of
storm track activity produce a neater comparison with the
Ambaum–Novak model. The upper levels may have more
memory of pre-existing flow structures that propagate from
the upstream regions, which may introduce additional variability
into the phase space. The clearest picture was found using low-
level heat flux, low-level EKE and MSLP variance, averaged over
the region of maximum baroclinicity.

Furthermore, the phase space of the reanalysis data in
conjunction with the Ambaum–Novak model imply that the
recovery of the baroclinicity occurs slowly (with a time-scale
2π/

√
F estimated between 30 and 50 days, corresponding to the

range of natural frequencies found for different coarseness of
averaging) relative to the eddy dissipation (with a time-scale
1/s0 of around 2 days). The difference in the time-scales can
also be observed from the burst-like nature of storm track
activity (Messori and Czaja, 2013), as well as from the speeds
of oscillating trajectories across the phase space. These speeds
are very slow during low storm track activity and fast during
high activity. This supports Stone’s (1978) baroclinic adjustment
theory, whereby the system fluctuates around a state of baroclinic
neutrality, between two regimes when eddies are either efficient
or inefficient at reducing meridional temperature, so as to prevent
the system from becoming too stable or unstable. Storm tracks
can be seen to be baroclinically neutral in the steady state by
definition. However, because the efficient-eddying regime occurs
in short-term bursts whilst the baroclinicity-recovering regime
occurs slowly, the storm tracks are marginally stable (with respect
to the vigorous eddy mixing) for the majority of the time.

The Ambaum–Novak model further suggests that diabatic
forcing is crucial in determining the frequency of the oscillations,
as well as setting the steady-state value of the storm track activity.
On the other hand, the steady-state baroclinicity is predicted to
be set by eddy dissipation and remain insensitive to the diabatic
forcing. This insensitivity of baroclinicity to diabatic forcing has
been observed previously in the atmosphere and in idealized
simulations, though the precise mechanisms are still unclear
(Stone, 1978; Schneider and Walker, 2006; Zurita-Gotor, 2008;
Jansen and Ferrari, 2013). While investigation of the explicit
response of steady-state storm tracks to diabatic forcing and eddy
dissipation is beyond the scope of the present study, it is suggested
here that the Ambaum–Novak model may provide some useful
insight into this behaviour.

It was additionally indicated that most of the reanalysis data
lie within the near-linear regime, where the exact numerical and
second-order approximated solutions only just start to diverge
from each other. This observation strengthens the scope for
using the weakly-nonlinear theory for the baroclinic instability of
localized storm tracks.

However, it should be noted that the mechanism discussed
here is different to that of Pedlosky (1970), who used the weakly
nonlinear theory to predict oscillatory behaviour between the
perturbation amplitude and the underlying baroclinicity. In this
study the system is dependent on the overshooting of the eddy
mixing effect (and thus phase angle reversal) which would allow
eddies to return energy to the mean flow. Consequently, the two
quantities oscillate inertially whilst propagating downstream with
the perturbation. On the other hand, the model used in this study
(as well as that of Thompson, 1987) does not include such a
mutual feedback. Once the eddies decay to almost zero activity,
their phase angle never attains negative values, and so the eddies do
not have the ability to return available potential energy back to the
flow. This is where the necessity of the diabatic heating becomes
apparent for this model, as without it the baroclinicity would not
be replenished. In other words, Pedlosky (1970) eddies have a
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dual role: they erode baroclinicity when it is high, and replenish
it when it is below the critical value. Ambaum and Novak (2014)
eddies are only able to erode it. The different potentials of the two
systems can be compared in Figure 11(a). It is apparent that the
two systems exhibit a similar behaviour near their steady-state
equilibria, where their potentials are at their minima and their
oscillations are nearly linear (not shown). For larger values, the
two systems differ significantly, as can be observed by studying
their respective phase space plots (Figures 1(b) and 11(b)).

It can be concluded that the predator–prey relationship
between baroclinicity and storm track activity appears to be a
general feature of all localized storm tracks. This relationship
is characterized by both quantities oscillating quasi-periodically
around their steady states due to the baroclinic adjustment of
storm tracks. This agrees with the weakly nonlinear theory that
the assumption of a constant background wind shear is insufficient
to adequately describe storm track dynamics.
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Appendix

Sensitivity of oscillation properties to phase space filtering

There are two parameters to which we found our quantitative
analysis of the oscillatory properties in the phase space was

(a)

(b)

Figure A1. Comparison of the effects of largest, medium and finest filtering on
(a) the frequency change with amplitude and (b) the change in the y tendency
at y = 0 with amplitude. This comparison is based on the North Atlantic heat
flux and baroclinicity, and the scaling factor kl2 = 3.1×10−13 K−1 m−1 s−1 was
selected. The numbers indicate the standard deviations of the filters. The medium
filter changes are equivalent to Figure 6.

(a)

(b)

Figure A2. As Figure A1, but comparing different values of the scaling factor, kl2

(K−1 m−1 s−1) for the medium-sized filter.

Figure A3. Natural frequency change with the scaling factor, kl2, tested for
the North Atlantic heat flux and baroclinicity phase space (points), using the
medium-sized filter. The analytical prediction of the relationship based on the
Ambaum–Novak model is also shown by the solid line (see text for more detail).

sensitive: the size and the shape of the Gaussian smoothing filter
that was used to average over the phase space. To demonstrate
the effect of changing filter size, Figure A1(a) shows the change
in frequency with amplitude for cases when fine, coarse and
medium smoothing of the phase space was applied. It is apparent
that excessive smoothing makes the decrease in frequency with
amplitude very slow and it yields a lower natural frequency
compared to the cases when smaller-sized filters are used.
However, the smallest-sized filter exhibits a decrease in frequency
that is no longer monotonous, reflecting the additional fine-
scale structure of the phase space plot (Figures 5(a) and (d)).
As mentioned earlier, one must compromise between losing the
desired structure and gaining additional fine-scale noise. The
focus in the main text is therefore on the optimal medium-sized
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(a) (b)

Figure A4. Change of the Lyapunov function along the trajectories of one cycle in the phase space plot for different starting amplitudes of ymax for (a)
kl2 = 0.9×10−13 K−1 m−1 s−1 and (b) kl2 = 3.1×10−13 K−1 m−1 s−1. The legend indicates the initial amplitude (ymax) of each trajectory. The points at which the
trajectories reached the positive and negative heat flux at s = 0 (squares and crosses, respectively), and positive and negative baroclinicity at y = 0 (diamonds and
circles, respectively) are also shown.

filter. It should be noted that, while the analysis of the frequency
change with amplitude is rather sensitive to the filter size, the
analysis of the y-tendency change with amplitude during the onset
and termination of heat flux events is less sensitive (Figure A1(b)).

The shape of the smoothing filter is closely related to the value
of the scaling factor kl2, which is used to scale baroclinicity to its
non-dimensional equivalent (σ = 2s/

√
2F). A proper scaling of

the system should allow the use of a circular filter in the non-
dimensional phase space. However, if the scaling factor was too
small, then the baroclinicity would be too stretched relative to the
y variable (and the filter too compressed along the baroclinicity
axis). In the case of an excessively stretched baroclinicity, the
Ambaum–Novak model predicts that the trajectories would travel
too far along the baroclinicity axis in the phase space into regions
of higher energy (or Lyapunov function, E) where the speeds are
higher, which could make the overall oscillation period shorter,
and vice versa. In the data, this effect of baroclinicity stretching
on the time period was found to be true for all reasonable filter
sizes and amplitudes tested (Figure A2).

As a further example, Figure A3 shows how the natural
frequency, obtained using the medium-sized filter, decreases as
the scaling factor increases. This figure also shows the analytical

relationship that ω0 = √
2F =

√
2ckl2v′T ′ predicted by the

Ambaum–Novak model, where c is an empirically determined
constant which scales the time-mean heat flux to make it equal
to the central point in the phase space plot. In this case c = 1.03
since the time-mean heat flux lies very close to the central value.
It is reasonable to expect that the convergence of the predicted
analytical relationship with the observed (filter-dependent)
values would indicate the appropriate value for the scaling
factor. For the medium-sized filter, the convergence is at
ckl2 = 0.9×10−13 K−1 m−1 s−1. The corresponding variability of
the Lyapunov function of a selection of trajectories of different
amplitudes is shown in Figure A4(a). Each trajectory represents
integrations in time (using the fourth-order Runge–Kutta
method), starting from the maximum heat flux when s = 0, until
an entire cycle has been completed. It is apparent that when
the trajectories reach the heat flux maxima and minima, the
Lyapunov function for this particular scaling factor decreases
substantially compared to the times when the trajectories are
near the baroclinicity maxima and minima. This implies that
the baroclinicity is still a little overstretched. The system was
therefore further tested for slightly higher values of the scaling
factor, with kl2 = 3.1×10−13 K−1 m−1 s−1 yielding the least
pronounced fluctuations in the Lyapunov function, as shown
in Figure A4(b). Evidently, the Lyapunov function also varies at
times when the trajectories are not at the maxima and minima
of heat flux or baroclinicity, reflecting the additional structure in
the data that is not characteristic of the Ambaum–Novak model.
The overall Lyapunov function also decreases slightly in time

mirroring the trajectory convergence towards the centre, as is
shown in the corresponding phase space plot (Figure 5(e)). As
noted in the main text, low-amplitude oscillations are almost
linear and so they exhibit smaller fluctuations in the Lyapunov
function, as well as a reduced overall decay of the latter.

It should be pointed out that, if one explores the scaling
of the kl2 factor, it can be found empirically that the value of
the Eady scale k = 0.31g/(NT0) ≈ 0.78 m K−1s−1 and c = 1.03.
For kl2 = 3.1×10−13 K−1 m−1 s−1, this would therefore yield the
meridional extent of the storm track (or half of the wavelength)
of 5000 km. This seems excessive, but is the right order of
magnitude. It should be noted that the maximum Eady growth
rate is known to overestimate the length-scales of cyclones (James,
1994), meaning that it may require larger than observed eddies to
produce a more realistic baroclinicity. In addition, it is apparent
that the data analysis includes a substantial amount of averaging
of the phase space due to the additional noise of the data. It was
shown that averaging reduces the natural frequencies and would
thus increase the spatial scales of the disturbances estimated from
the above scaling.

It was shown above that the filter can be tuned to adhere
to the Ambaum–Novak model and the remnants of the data
variability can be classed as noise. However, the model itself can
be parametrized to adhere to the data. Thus it could be argued that
there is no perfect precise size and shape of the filter. The results
here merely state that a consistency between the Ambaum–Novak
model and the observed data can be achieved by their mutual
tuning. This consistency is by no means obvious and not always
perfectly achievable, as seen in the North Pacific storm track case
in the main text. Additionally, a moderate consistency between
the qualitative behaviour of the data and the model can be
achieved without the mutual tuning, as long as a reasonable filter
size and shape are selected (i.e. a filter that reflects the data point
distribution adequately along both axes of the phase space). This
consistency of the idealized Ambaum–Novak model with the
observed storm tracks suggests that similar dynamics underline
them. For more unequivocal results, it may be useful to analyse
the remaining data variability (here viewed as noise) and isolate it
from the phase space oscillations in medium-complexity models.
This is beyond the scope of this article.
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