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ABSTRACT  1 

This study analyzes the impact of increased horizontal resolution in coupled and atmosphere-only climate 2 

models on the simulation of climate patterns in South America. To this end, we analyze models of the 3 

HadGEM1.1 family with three different horizontal resolutions in the atmosphere - 135, 90 and 60 km - and in 4 

the ocean – 1-1/3o and 1/3o. In general, the coupled simulation with the highest resolution (60 km) has smaller 5 

systematic errors than the atmosphere-only models for seasonal fields over SA (precipitation, temperature and 6 

circulation). The simulations, both coupled and atmosphere-only, represent observed spatial patterns related to 7 

the seasonal march of the Intertropical Convergence Zone (ITCZ), formation and positioning of the South 8 

Atlantic Convergence Zone, and the subtropical Atlantic and Pacific highs; nevertheless they overestimate the 9 

rainfall rate, especially for the ITCZ and over the western border of the higher-elevation areas such as southern 10 

Chile. For the Atlantic ITCZ and the continental branch of the SACZ in particular, the coupling combined with 11 

higher resolution results in a more realistic spatial pattern of rain. All simulations correctly represent the phase 12 

and amplitude of the annual cycle of precipitation and air temperature over the most subdomains in South 13 

America. The results show that despite some problems, increasing the resolution of the HadGEM1.1 family of 14 

models results in a more realistic representation of climate patterns over South America and the adjacent oceans. 15 

Keywords: South America, coupled, atmospheric, resolution 16 
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1. Introduction 18 

South America (SA) is a continent with great latitudinal extension, with a diversified surface physiography and a 19 

large mountain range, the Andes, located on its western side, extending from 60°S to the tropics. The continent 20 

has tropical, sub-tropical and extratropical characteristics, and because of its large area, it is influenced by 21 

various dynamic systems with different spatial and temporal scales, resulting in differing climatic regimes in its 22 

sub-regions. Prominent among the wide variety of systems that determine the climate of SA are the South 23 

Atlantic Convergence Zone (SACZ; Satyamurty et al 1998; Kodama 1992; Carvalho et al., 2004), the 24 

Intertropical Convergence Zone (ITCZ; Uvo 1989a; Waliser and Gautier 1993), mesoscale convective systems 25 

(SCMs; Machado and Rossow 1993; Sakamoto et al. 2011), upper-level vortices – VCANs (Gan and Kousky 26 

1986), and the Bolivian High – BH (Gutman and Schwerdfeger 1965; Lenters and Cook 1997). It is also 27 

important to highlight the El Niño/Southern Oscillation (ENSO) phenomenon and the sea surface temperature 28 

(SST), which directly affect the climatic variability of SA and are among the main challenges for climate 29 

modeling (Grimm and Silva Dias 1995; Ambrizzi et al. 1995; Cavalcanti et al. 2009). 30 

The large-scale seasonal patterns of meteorological variables are constantly being analyzed across the globe, and 31 

a more realistic representation of their characteristics still remains a challenge for climate modeling. Among the 32 

systems that determine the climate variability and are not yet well simulated by climate models, despite having 33 

well defined seasonal cycles, are the zones of convergence. Simulations of these systems are constantly being 34 

evaluated in order to understand model errors. For example, errors in intensity, position and displacement of the 35 

convergence zones acting over SA have been discussed by Custodio et al. (2012) and Bombardi and Carvalho 36 

(2009). Furthermore, in the case of coupled models, common errors are the breaking up of the ITCZ (Yu and 37 

Mechoso 1999; Ma et al. 1996; Cavalcanti et al. 2002; Biasutti et al. 2006; Silva et al. 2014), as well as 38 

representation of circulation patterns and of the rain in the highlands of the Andes. There is general agreement 39 

that the global climate models still need constant evaluation in order to identify errors in simulations and to 40 

indicate directions for improvement. 41 

Proceeding from the AR4 (IPCC, Solomon et al. 2007) and from the errors shown in the climate models of 42 

CMIP3, climate models have been improved, and their resolutions refined as shown in the IPCC AR5 report 43 

(IPCC, 2013). Here the IPCC showed that the ability of these models to simulate surface temperatures had 44 

increased in many, but not all, aspects with respect to the AR4. For the mean annual rainfall in the AR5, models 45 

also showed an improvement compared to those of the AR4, with an increase in global spatial correlation 46 
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between simulations and observations. However, on a regional scale, precipitation continues to present large 47 

errors, and evaluation of this scale remains difficult due to observational uncertainties (Hegerl et al. 2015). 48 

Increased horizontal resolution of global models is constantly being tested in climate modeling centers around 49 

the world (Shaffrey et al. 2009; Mizielinski et al. 2014). However, few studies have evaluated how increased 50 

resolution, both in the ocean and in the atmosphere (in the case of coupled models) impact simulations in 51 

specific regions of the globe. One of the first initiatives to simultaneously increase the resolution in the 52 

atmosphere and ocean in coupled models took place with in the UK High Resolution Global Environmental 53 

Modelling (HiGEM) project at the National Centre for Atmospheric Science (NCAS, Shaffrey et al. 2009) and 54 

the UK-Japan Climate Collaboration (Roberts et al. 2009) in Yokohama, Japan. 55 

According to Roberts et al. (2009), increased horizontal resolution in the HadGEM1.1 family of models 56 

improved some aspects of the simulations such as tropical instability waves and their interaction with the tropical 57 

atmosphere. These authors point out that the interaction between the tropical instability waves and the response 58 

of near-surface winds impact the average state of the equatorial Pacific Ocean and therefore the average global 59 

climate and ENSO. The ability of the atmosphere to respond to small-scale structures in the SST in a more 60 

realistic way was apparent in studies of Shaffrey et al. (2009) and Roberts et al. (2009) with models from the 61 

HadGEM1.1 family. For the atmosphere, high-resolution simulations have shown significant improvements in 62 

the representation of storm trajectories and in the distribution of precipitation over Europe, where orographic 63 

effects are important (Pope and Stratton 2002; Junge et al. 2006). As for the case of the oceans, the resolution 64 

affects the representation of ocean eddies, which can result in improvements in wind direction, circulation and 65 

westerly currents (originating from the west; Shaffrey et al. 2009). 66 

In SA, general circulation models (GCMs) have shown some ability to predict seasonal rainfall especially in the 67 

northeast of Brazil, due to its strong relationship to SST anomalies (Nobre et al. 2001; Moura and Hastenrath 68 

2004). In the case of coupled general circulation models some major problems in the simulation of rainfall in SA 69 

are linked to the discrepancy in the intensity and location of the SACZ and its seasonal evolution, as well as 70 

problems in the exact quantification of the seasonal precipitation over the major basins of the continent (Vera et 71 

al. 2006b). The coupled general circulation models used in the IPCC AR4, do not reproduce, for example, the 72 

rainfall maximum observed over southeastern South America (SESA) during the cold season (Seth et al. 2010; 73 

Vera et al. 2006b). According to Cavalcanti et al. (2002) the global model CPTEC-COLA underestimates 74 

(overestimates) the rainfall in the tropical (subtropical) sectors of the convergence zones. On the other hand, over 75 
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the Andes and in northeastern Brazil this model overestimates the precipitation, while a large deficit of rainfall 76 

was observed in the interior of the South American continent, including the Amazon basin. 77 

The coupled models of the HadGEM1.1 family with finer horizontal grids (135 and 90 km) were previously 78 

analyzed over South America by Custodio et al. (2012), albeit with a slightly different physical formulation 79 

(version 1.2) and pointed out some improvement in the representation of migration and positioning of the ITCZ 80 

and Pacific and Atlantic subtropical highs. Furthermore, the models reproduce the location and seasonal 81 

evolution of the SACZ, indicating significant improvements over the coarse horizontal resolution models (Vera 82 

et al. 2006b; Seth et al. 2010). In contrast, the Brazilian climate model (BESM-OA2.3) developed by 83 

CPTEC/INPE, with intermediate horizontal grid (1.875 degrees in the atmosphere), analyzed by Nobre et al. 84 

(2013), showed errors similar to those of other coupled models, such as a double ITCZ displaced to the south 85 

and with the South Pacific Convergence Zone (SPCZ) almost absent. In addition, the BESM-OA2.3 simulated 86 

excessive rainfall over the oceans and a deficit over the continent, especially over the Amazon basin. 87 

The objective of the present study is to evaluate the impact of horizontal resolution in global coupled and 88 

atmosphere-only models on the climatology of SA. The simulations were performed using the high-resolution 89 

model of the HadGEM1.1 family at three different horizontal grid spacings in the atmosphere (~135, 90 and 60 90 

km at 50°N) and two in the ocean (1-1/3o and 1/3o). Basically two important aspects are addressed. First, if and 91 

how refining the horizontal resolution in this model impacts the simulated climate over South America, and 92 

second, what is the impact of SST on this climatology. 93 

2. Materials and Methods 94 

2.1. Model 95 

The simulations described in this paper share a common model formulation, HadGEM1 (Johns et al. 2006; 96 

Martin et al. 2006; Ringer et al. 2006). The model has three components: atmosphere, ocean, and sea ice. 97 

HadGEM1 was used in the IPCC Fourth Assessment Report with horizontal grid spacing of 1.25° latitude x 98 

1.875° longitude (N96) for the atmosphere, and 1° x 1° in the ocean (augmented to 1/3° meridionally near the 99 

equator). From HadGEM1, two higher-resolution configurations were developed: HiGEM (Shaffrey et al. 2009) 100 

and NUGEM, in the context of high-resolution programs developed in partnership between the Natural 101 

Environment Research Council (NERC) and the Met Office Hadley Centre. NUGEM was developed in the 102 

context of the UK-Japan Climate Collaboration and its configuration is fully detailed in Strachan et al. (2013). 103 
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HiGEM and NUGEM were developed based on a number of small modifications in the dynamics core of the 104 

(parent) HadGEM1, necessary for enabling the increased resolution in the ocean and atmosphere (Roberts et al. 105 

2009), but they share identical physical parametrizations to allow a clean comparison of the effect of resolution. 106 

After these high-resolution numerical experiments were completed, a low-resolution version was produced for 107 

full consistency and it is commonly referred to as HadGEM1.1. The lowest-resolution results shown in this paper 108 

are from HadGEM1.1, but for brevity this model configuration is referred to as HadGEM in Table 1 and 109 

subsequent text. The horizontal resolution of HiGEM is 0.83° latitude x 1.25° longitude (N144) in the 110 

atmosphere, and 1/3 x 1/3° globally for the ocean and sea ice. The ocean/sea ice model in NUGEM are identical 111 

to those used in HiGEM. 112 

The atmospheric component of HadGEM family models has a non-hydrostatic dynamical core with semi-113 

Lagrangian transport, where the equations are discretized on the Arakawa C grid. In addition, the model includes 114 

an iterative scheme for aerosols. The parameterizations of the boundary layer and convective schemes are 115 

virtually identical to those used in HadCM3 (Pope et al. 2000). HadGEM has 38 vertical levels with the top of 116 

the model set at 39 km; thus the stratosphere is not completely resolved. HadGEM uses the second version of the 117 

UK Met Office Surface Exchange Scheme (MOSES-II; Cox et al. 1999; Martin et al. 2006) to represent the 118 

surface processes allowing the description of the heterogeneous coverage of the earth's surface by use of nine 119 

different types of surface. 120 

The oceanic component of the HiGEM/NUGEM, follows that used in the HadGEM (Johns et al. 2006), but with 121 

a higher horizontal resolution and some additional improvements. The oceanic model is formulated on a 122 

spherical latitude-longitude grid, with 40 vertical levels spaced unevenly, with higher resolution near the surface 123 

to better address the mixed layer and the ocean-atmosphere interaction processes. The maximum ocean depth is 124 

5,500 m. A more detailed description of the ocean model can be obtained in Shaffrey et al. (2009). 125 

As with the other components, the formulation for the sea ice also follows that used in HadGEM. However, the 126 

values of some parameters and the introduction of subschemes for space and time for the ice dynamics were 127 

changed. Rather than existing as a separate sub-model, part of the ice is treated within the ocean model, and a 128 

small part is resolved by the atmospheric model. The ocean model addresses the dynamics, redistribution 129 

mechanics, and thermodynamics of the sea ice, while the atmospheric model calculates the ice-air fluxes and the 130 

temperature of the ice surface using the time step of the atmosphere to allow the representation of the diurnal 131 
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cycle of the ice. Mean fields are then transferred to the ocean model at each coupling time step (once a day). 132 

Further details on the sea ice component of HadGEM can be obtained in McLaren et al. (2006). 133 

2.2. Simulations 134 

The present study analyzed and compared six simulations of the HiGEM series using the same dynamic core, 135 

and the same physical parameterization and radiative forcing. All simulations used the radiative forcing (e.g. 136 

greenhouse gases and aerosol climatologies) for the year 1990, with the model running freely in response to this 137 

forcing. The simulations differ only in being either coupled or atmosphere-only and in terms of horizontal grid 138 

spacings in the atmosphere and ocean (see details and nomenclature in Table 1). In the atmosphere-only models, 139 

SST and sea ice are prescribed by the data from the Atmospheric Model Intercomparison Project (AMIP II; 140 

Gates et al. 1999), with horizontal resolution of 1° x 1° latitude/longitude. 141 

The characterizations of austral summer (December-January-February - DJF) and austral winter (June-July-142 

August - JJA) climates are analyzed over all of SA, while the annual cycle is evaluated in the five subdomains 143 

shown in Figure 1. The regions are identified as: AMZ (Amazon), NDE (Northeast), SESA (Southeastern South 144 

America), Andes (AND) and Patagonia (PAT). The climate patterns are classified as to precipitation, 145 

temperature and circulation at low and high levels. 146 

2.3. Data 147 

The climate simulations are compared to different analyses of observations, which have different spatial and 148 

temporal resolutions. For seasonal climatology and annual precipitation cycle the analyses used were: (a) 149 

Climate Prediction Center - Merged Analysis of Precipitation (CMAP; Xie and Arkin 1996) with horizontal 150 

resolution 2.5° (period 1979-2008); (b) Climate Research Unit (CRU; Mitchell and Jones 2005) horizontal 151 

resolution 0.5° (period 1979-2002); (c) Global Precipitation Climatology Project (GPCP; Quartly et al. 2007) 152 

with horizontal resolution of 2.5° (period 1979-2008); (d) Climate Prediction Center (CPC; Chen et al. 2008) 153 

horizontal resolution of 1° (period 1979-2005); (e) Tropical Rainfall Measuring Mission (TRMM; Bookhagen B, 154 

in review) horizontal resolution of 0.04° (period 1998 to 2009) product 3B31. In the validation of air temperature 155 

the analyses used are: (a) the National Centers for Environmental Prediction (NCEP; Kalnay et al. 1996) 156 

horizontal resolution of 2.5° (period 1979-2008); (b) European Centre for Medium-Range Weather Forecasts 157 

(ECMWF) ERA-Interim, hereafter ERAIN on a horizontal grid of 1.5° (Dee et al. 2011; period 1979-2008); (c) 158 

and CRU. Circulation at high and low levels is compared with the ERAIN reanalysis. The ensemble of analyses 159 
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used in the validation of the seasonal pattern and the annual cycle represents mean values of the CMAP, GPCP, 160 

CRU and CPC analyses for precipitation and of ERAIN, CRU and NCEP for air temperature. 161 

3. Results 162 

3.1. Seasonal climatology: Precipitation and air temperature 163 

According to Figures 2 and 3, the seasonal march of the ITCZ in the coupled simulations is similar to that 164 

observed (TRMM and ensemble), although there are some differences between the simulations and observations 165 

in the intensity of the rain from this system. Comparison of the global coupled models to the ensemble in the 166 

summer (Fig. 2) and winter (Fig. 3) shows overestimation (underestimation) of rain intensity to the north (south) 167 

of the ITCZ over the Pacific. In comparison to TRMM, which has high spatial resolution, the differences 168 

between simulations and analysis (or errors) are smaller. The north-south shifting of the ITCZ is correctly 169 

simulated by the coupled models as well as the atmosphere-only models. However, in some cases, for example 170 

Figure 3g, in the atmosphere-only models, the north-south extent of the ITCZ near the north coast of SA is 171 

greater. In the austral summer, over the Atlantic Ocean the ITCZ is positioned further south, near the north-172 

northeastern coast of Brazil in the coupled models. 173 

However in DJF, as is shown by the analyses (Figs. 2a-b) for the ITCZ over the Atlantic, there is only one 174 

maximum of rain, centered at ~25-30°W, -5°N, and in the Pacific this rain band is more intense toward the west 175 

but weakens near the west coast of Central America. In both basins, the spatial pattern of rain in the ITCZ 176 

simulated by NUGEM (Fig. 2e) is closer to the analyses (Figs. 2a, b) than in other simulations. This indicates the 177 

importance of both the horizontal resolution and the ocean-atmosphere coupling in the organization of the rain in 178 

the ITCZ. In addition, comparing NUGEM to NUGAM, there is a clear indication that the high-frequency 179 

temporal variability of the SST, resulting from the coupling in NUGEM, appears to be more important for 180 

reproducing the observed pattern of rain than the prescription of the average observed monthly SST value in 181 

NUGAM. In terms of intensity, simulated rainfall by NUGEM in the ITCZ and the Atlantic and Pacific has 182 

values closer, respectively, to the ensemble (Fig. 2a) and TRMM (Fig. 2b). The rain area in the Atlantic ITCZ is 183 

centered at ~3-4°N and 30°W in NUGEM, which corresponds to the latitude of convergence of the trade winds 184 

in the lowermost troposphere (the layer between 1000-900 hPa), that is, in the coupling-resolution combination, 185 

rain was responding to the correct positioning of the large-scale convergence at low levels (figure not shown) 186 

and the associated convective systems. Using a coupled regional model of high resolution (1/4 deg), Seo et al. 187 
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(2008) obtained similar results to those of the NUGEM, i.e., a more realistic ITCZ in the tropical Atlantic. 188 

According Seo et al. (2008), this occurs provided that the convection associated with the East African waves 189 

reinforces the ITCZ precipitation in an environment in which large-scale convergence at low levels is also more 190 

intense. 191 

Simulations from coupled models used in this study, HadGEM and HiGEM, show a break in the Pacific ITCZ in 192 

summer (Figs. 2c,d), a common error in global models, which can be attributed to their adjustment in the mass 193 

flux. Since much rain is produced in a particular region, between ~ 5-10°N, the model then generates 194 

compensating subsidence, which dries a nearby region (Cavalcanti et al. 2002; Gandu and Silva Dias 1998). 195 

Some studies, such as Ma et al. (1996), Yu and Mechoso (1999) and Li et al. (2002) also attribute the double 196 

ITCZ to the underestimation of the stratus cloud cover on the Peruvian coast in the southeast Pacific, a common 197 

problem in atmosphere-only GCMs that directly affects the simulation of the ITCZ. In NUGEM, with increased 198 

horizontal resolution, there is a much less significant break in the ITCZ. In the atmosphere-only models, the 199 

equatorial Pacific ocean rainfall in the ITCZ is less intense, thus reducing the double ITCZ. In these models the 200 

spatial pattern of the ITCZ shows little change with increasing horizontal resolution, with the bias suffering only 201 

a slight increase in NUGAM. The double ITCZ was also identified in the study by Custodio et al. (2012) with 202 

version 1.2 of the HadGEM family of models. Nevertheless, with respect to the intensity of the ITCZ, especially 203 

over the Atlantic Ocean, version 1.2 models show higher wet biases than those of version 1.1. 204 

In DJF (Fig.2), the presence of the SACZ in the analyses (TRMM and ensemble) is indicated by a region of high 205 

rainfall values that extends from southern Amazonia to the subtropical Atlantic Ocean, where its oceanic branch 206 

is situated on the southeast coast of Brazil (Kodama 1992; Carvalho et al. 2004; Carvalho et al. 2002; 207 

Satyamurty et al. 1998). As for the flow at 850 hPa (Fig. 4), northwest winds carry moisture from the Amazon 208 

region to the subtropics of SA, which together with the western branch (northeast wind) of the South Atlantic 209 

Subtropical High favor the release of intense convective activity in the tropics and subtropics of South America. 210 

Figure 2 makes it clear that the coupled simulations produce a spatial pattern of the SACZ that is closest to the 211 

observations of TRMM as well as the ensemble. Analyzing the differences due to the horizontal resolution in 212 

coupled simulations (Fig. 2), the refinement in the grid in NUGEM implies greater similarities to TRMM 213 

observations in the representation of the northwest/southeast extent of the continental SACZ. In addition, 214 

compared to TRMM, in NUGEM the wet bias in the continental branch of ZCAS is smaller than in other 215 

coupled simulations (HadGEM and HiGEM). In atmosphere-only models, the highest horizontal resolution in 216 
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NUGAM acts only to increase SACZ rainfall in both the continental and oceanic branch, thereby increasing the 217 

wet bias of the simulation. 218 

During the winter, the spatial pattern of rain in the oceanic branch of the ITCZ simulated by the coupled models 219 

is closer to the analysis than in atmosphere-only models (Fig. 3). As in the analysis, the coupled models simulate 220 

heavier rainfall in the eastern sector of the tropical Atlantic basin, while the atmosphere-only models simulate a 221 

maximum of rain in the western sector of this basin. In general, atmosphere-only models underestimate the rain 222 

in the ITCZ in the southwest sector of the North Atlantic Ocean, near the west coast of Africa, both when 223 

compared to the ensemble and TRMM. This error in atmosphere-only models in simulating the Atlantic ITCZ is 224 

common among uncoupled global climate models. Biasutti et al. (2006) identified a similar pattern, which was 225 

attributed to the difficulty of atmosphere-only models in representing the correct relationship between SST and 226 

precipitation in the Atlantic region. Basically, since SST is warmer in the southwestern equatorial Atlantic, 227 

models tend to simulate the maximum precipitation over this region, indicating a direct relationship between the 228 

two, which affects the convergence surface and thus the location of the ITCZ (Biasutti et al. 2006). 229 

 Both the coupled and atmosphere-only models simulate the extensive dry area on the continent, from 230 

the northeast to the southeast of Brazil (north of 20ºS) in winter (Fig. 3), with some differences in the size of this 231 

dry area. The coupled models excel in simulating the extent of this area similarly to the ensemble and slightly 232 

less than in TRMM. On the narrow band in eastern of northeastern Brazil heavier rainfall occurs during JJA, 233 

both in simulations and in observations (Fig. 3). According to Kousky (1980) this rain would result just from the 234 

convergence of the trade winds and the nocturnal land breeze. However, more recent studies indicate a major 235 

contribution to the rain in this area from easterly waves propagating over the tropical Atlantic (Kayano 2003; 236 

Diedhiou et al. 2010; Torres and Ferreira 2011; Gomes et al. 2015). On the continent in JJA, the areas with the 237 

greater rainfall rate are situated in northwest and southeast SA (SESA) in all simulations, agreeing with the 238 

pattern present in the observations (Figure 3). In the latter region, much of the rain results from 239 

passage/development of extratropical cyclones and associated frontal systems, which are more frequent during 240 

the winter (Gan and Rao 1991; Reboita et al. 2010b). In northwestern SA precipitation is mainly organized by 241 

the action of the ITCZ. In both areas, the spatial pattern of rainfall (location of maxima/minima) simulated by 242 

NUGEM is closer to TRMM than simulated by NUGAM, indicating the importance of ocean-atmosphere 243 

coupling in the reproduction of observed patterns. 244 
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As mentioned, in winter there is also a strong correlation between the spatial patterns of simulated rain and 245 

observed dataset (ensemble and TRMM). However, the rain rate is overestimated in some regions, especially the 246 

western edge of mountainous regions such as the south of Chile. This is a common feature of many models that 247 

block the flow from the west and force upward motion with consequent intense precipitation, i.e., incorrectly 248 

simulating the circulation and precipitation patterns associated with elevated topographies (Stern and Miyakoda 249 

1995; Cavalcanti et al. 2002). In addition, owing to the small number of direct observations (stations) as well as 250 

the poor quality of estimates via satellite in the Andean region, the validation of rain becomes difficult in this 251 

area. From the observational point of view, the analysis of rain in extratropical mountainous regions needs to be 252 

improved, so that models can be correctly evaluated. Comparison of Figures 2 and 3 indicates that the increase in 253 

horizontal resolution in coupled models (HiGEM and NUGEM) helps to reduce the excessive rainfall simulated 254 

by HadGEM over the mountainous Andes region (from 25⁰ to 10⁰S, especially in summer). 255 

Another important factor in seasonal fields of precipitation is that in much of Amazonia, coupled simulations 256 

represent the rain similarly to the ensemble and TRMM in the two seasons, with small systematic errors, except 257 

in its northernmost portion. This represents a significant improvement compared to other GCMs, such as the 258 

MCGA (atmospheric GCM) of CPTEC-COLA (Cavalcanti et al. 2002), ECMWF (Brankovic and Molteni 1997) 259 

and NCAR-CCM3 (Hurrell et al. 1998), which show a significant rain deficit over the Amazon region during the 260 

summer. Atmosphere-only models during the summer have, in general, higher systematic errors than coupled 261 

models in the Amazon. 262 

Comparison of the seasonal maps shows that coupled models (Figs. 2-3 c, d, e) produce a spatial pattern similar 263 

to the analyses and TRMM and in some seasons increased horizontal resolution helps to reduce the bias of the 264 

simulation. Examples of this occur over the center-west of Brazil during the winter (Fig. 3), in addition to 265 

subtropical and tropical areas of the Andes throughout the year. In general, coupled models, although 266 

overestimating precipitation, have smaller systematic errors in seasonal fields than do the atmosphere-only 267 

models. These results indicate that the increase in resolution associated with ocean-atmosphere coupling which 268 

includes diurnal variation of the SST, results in more realistic simulations of precipitation over SA and the 269 

tropical sector of tropical oceans than do the models of the HadGEM family.  270 

The spatial distribution of temperature in summer (Fig. 4) and winter (Fig. 5) over the oceans in the atmospheric 271 

and coupled simulations is similar to that of the ensemble, while over the continent the differences between the 272 

simulations and the ensemble are larger. The models simulate a warmer and colder atmosphere, respectively, 273 
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over north-central and south-central SA. In the atmosphere-only models, systematic errors are smaller than in the 274 

coupled models in northern and in southeast-central parts of SA. Over the oceans atmospheric simulations are 275 

slightly warmer than the ensemble, including the region of the ITCZ in the Northern Hemisphere. The better 276 

performance of the atmosphere-only models in representing the air temperature is consistent with the fact that 277 

these are forced with the observed SST, which acts as a direct regulator for the simulation of temperature.  278 

In summer (Fig. 4), both in the coupled and the atmosphere-only models, higher temperatures (above 22°C) 279 

occur in the latitudinal belt 5°N-30°S, while in the winter (Fig. 5) such temperatures have a smaller north-south 280 

extent, 5°N-20°S. Temperatures below 20°C already occur over the Andes and the higher latitudes south of 35°S 281 

and south of 25°S, respectively, in summer and winter, in both atmospheric and coupled simulations. The 282 

simulated hot and cold regions in these models agree with the results obtained by Collins et al. (2009) who 283 

analyzed the seasonal pattern of the NCEP/NCAR reanalysis for two periods, 1948-1975 and 1976-2007. 284 

In summer, coupled models were colder than the ensemble in their simulation of the Pacific equatorial region 285 

(Fig. 4b-d), but among these simulations HiGEM (Fig. 4c) shows the lowest systematic errors. In the Atlantic 286 

Ocean, HadGEM and NUGEM underestimate the temperature in relation to the ensemble in the summer, not 287 

simulating a temperature above 26 °C anywhere in a region that extends all the way to the Brazilian northeast 288 

coast. HiGEM is the only one that shows elevated temperatures from the Brazilian east coast to Africa in the 289 

equatorial region. In contrast, NUGEM has the lowest error in the southern part of the Atlantic, where 290 

temperatures are below 24°C. In winter (Fig. 10) the coupled models are also colder than the ensemble in the 291 

equatorial Pacific and Atlantic oceans. In the equatorial Pacific the existence of a cold bubble (centered at the 292 

equator) elongated toward the west may result from more intense trade winds (Fig. 7) with the consequent 293 

intensification of upwelling in the coupled simulations. The ensemble shows a region on the continent in 294 

northeastern SA with temperatures above 26°C, which in the coupled models is not properly simulated. Only 295 

HiGEM and NUGEM simulations show elevated temperatures in this region, though with a much smaller extent 296 

than the ensemble. The model with low horizontal resolution (HadGEM), in addition to not simulating this warm 297 

region in winter on the continent, is cooler by 2°C (or more) in the equatorial Pacific (Fig. 10b). 298 

Blazquez and Nuñez (2012) showed that in the summer, fall, and spring the high-resolution global atmospheric 299 

model of the Japanese Meteorological Agency (JMA/MRI), underestimates the temperature by up to 4°C in 300 

eastern Argentina, western Uruguay, southern Chile and tropical latitudes. In comparison, the errors both in the 301 

coupled and the atmospheric simulations analyzed here are much smaller (bias of less than +0.5°C in these 302 
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regions) than those obtained in Blazquez and Nuñez (2012). The JMA/MRI model used a grid spacing of 20 km 303 

(TL959), i.e., higher than the horizontal resolution of the models discussed here, and even so it presents 304 

significant errors in the simulation of seasonal temperature. This indicates that in addition to increasing the 305 

resolution of climate models, the physical parameterizations of these models are also of great importance in 306 

reducing simulation errors over SA. 307 

The results indicate that increasing the resolution helped to reduce errors in the simulation of temperature, 308 

especially over the oceans in atmosphere-only models. In general, the largest systematic errors occur over oceans 309 

and northern SA. The equatorial region of the Pacific Ocean is also identified in the seasonal analysis of 310 

precipitation (Figs. 2 and 3) as having a break in the ITCZ. The results show that the coupled models also have 311 

relatively large errors in air temperature over the ocean. This indicates the need for improvements in the 312 

simulation of SST, which has a direct impact on air temperature over the ocean due to the turbulent processes at 313 

the air-sea interface. 314 

3.2 Seasonal climatology: Circulation at low and upper levels 315 

As for the circulation at low levels during the austral summer (Fig. 6), some characteristic systems such as the 316 

trade winds and the Pacific and the Atlantic subtropical highs, are identified and properly represented by both 317 

coupled and atmosphere-only models. However, there were some differences in intensity in relation to ERAIN. 318 

The deflection by the Andes toward the tropics of the northeast trade winds coming from the North Atlantic is 319 

closer to ERAIN in the simulations with higher horizontal resolution. In the equatorial Atlantic near the northern 320 

coast of SA the wind speed errors are smaller in NUGEM. At high latitudes (south of 40°S), the westerly flow 321 

over the Pacific Ocean and Atlantic is present in all simulations (Fig. 6b-g), but with speeds closer to ERAIN in 322 

NUGEM. Still in the circulation patterns at low levels, in all simulations the Pacific and Atlantic subtropical 323 

high are properly positioned and have strengths close to those in the reanalysis. 324 

The flow at 850 hPa shows that the maximum northwest wind speed east of the Andes, which characterizes the 325 

low level jet, is more intense in summer (Fig. 6) than in winter (Fig. 7) in ERAIN. In this analysis, the LLJ 326 

undergoes a meridional displacement between winter and summer, being centered further north in summer 327 

(northern Bolivia) and further south in winter (northern Paraguay). The coupled and atmosphere-only models 328 

correctly simulate these characteristics observed in the LLJ in ERAIN. In winter, the winds at 850 hPa on the 329 

northeast coast of SA are stronger in atmosphere-only models than in the coupled models and ERAIN (Fig. 7). 330 
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This pattern in the atmosphere-only models can explain the greater intensity of the ITCZ in this area (Fig. 3), 331 

since the deceleration of the trade winds induces greater convergence and increased rainfall. 332 

With the increase of the horizontal resolution in the coupled models, the LLJ intensifies as shown in Figure 8, a 333 

vertical cross section of the wind speed at 17.5°S latitude in summer, the season during which the LLJ is quite 334 

typical (Marengo et al. 2004). Furthermore, with the increased resolution the core of the LLJ is moved west, 335 

closer to the Andes, i.e., the jet is centered at ~61°W in HadGEM and ~63°W in NUGEM. This indicates a direct 336 

impact of the more realistic topography used by NUGEM, and in this simulation the position of the LLJ is closer 337 

to that of ERAIN. On the other hand, with the increase in resolution, the core of the LLJ occurs at higher 338 

pressure levels (~8.5 m/sec at 800 hPa in NUGEM) and is more intense than in ERAIN (~4.5 m/sec at 850 hPa). 339 

The intensification of the LLJ with increased horizontal resolution in coupled simulations can result in increased 340 

moisture transport from the Amazon region to southeastern SA. This jet upon decelerating, induces greater 341 

convergence of moisture flux in the region and increases the precipitation rate in NUGEM. It is noteworthy that 342 

in the summer period the Amazon region is a large moisture source with direct impact on the organization of 343 

convective activity in southeastern South America. In the atmospheric simulations, in both the intensity of the 344 

core of the LLJ as well as the vertical level of its top speed, there is virtually no change with increased horizontal 345 

resolution of the models (Fig. 8). In these three simulations, the core of the LLJ is located at higher pressure 346 

levels (~700 hPa in NUGAM and 725 hPa in HadGAM) than in ERAIN (~850 hPa). However, the maximum 347 

speed of the LLJ is smaller than that in coupled simulations and closer to that of ERAIN. Besides the LLJ, 348 

simulations adequately reproduce the speed maxima in the lowermost troposphere (between 1000-900 hPa) 349 

associated with the subtropical anticyclones in the Pacific (west of 75°W) and Atlantic (east of 45°W). 350 

ERAIN shows in Figure 9 the circulation at 200 hPa over SA, where the two characteristic systems that are 351 

prominent during the summer are the Bolivian High (AB - centered at ~22°S-60°W) and the trough over 352 

northeastern Brazil (CN - axis at ~20°W). The coupled and atmosphere-only models simulate these two systems 353 

as similar to ERAIN in position and intensity. The AB is a quasi-stationary anticyclone which in ERAIN is 354 

centered at ~20°S, 70°W. Although the simulations correctly represent the position of the AB, it worth noting 355 

that this system is simulated closer to ERAIN in NUGEM than in other simulations. The small error in 356 

positioning the AB in the simulations can be explained by the realistic representation of rain in the Amazon 357 

basin since numerical studies indicate that this system would be a response to the heat source associated with 358 

convection in this basin (Lenters and Cook 1997; Gandu and Geisler 1991). The CN is also represented in the six 359 
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analyzed simulations, although the coupled as well as the atmosphere-only models locate it east of its position in 360 

ERAIN. Even in summer, the models show a pattern similar to ERAIN in the  simulation of the speed maximum 361 

in the westerly flow over the southeast sector of the South Atlantic Ocean (east of ~30-20°W and centered on 362 

45°S latitude) and the weakening of the subtropical jet over the south Pacific and South America (Fig. 9). 363 

NUGEM simulates both factors of the 200 hPa flow at mid-latitudes more closely to ERAIN.  364 

3.3. Regional climatology: annual cycle and biases 365 

The annual cycles of precipitation and temperature for five subdomains of South America are shown in Figures 366 

10 and 11. In region AMZ (Fig. 10a), the rainy season in the ensemble occurs from December to March 367 

(maximum of 10 mm day -1) while the dry season occurs from June-August (minimum of 1 mm day -1). All 368 

simulations correctly represent the phase of the annual cycle of rain in the region, which is reflected in high 369 

correlation coefficient values (between 0.98 and 0.99) as shown in Fig. 10b. However the simulations are wetter 370 

over a large part of the year (mainly from January to March) than the ensemble, except NUGEM in some months 371 

of the year. The refinement of the grid in coupled models (NUGEM) contributed to a smaller bias (0.2 mm day-372 

1), while for the atmosphere-only models (NUGAM) the bias increases with the increase in resolution (1.4 mm 373 

day-1). Fig. 10b also shows that the simulated standard deviation is close to the ensemble, especially in NUGEM 374 

and HiGEM. This would indicate the importance of ocean-atmosphere coupling and grid refinement for realistic 375 

simulations of rain over AMZ. 376 

As pointed out by Custodio et al. (2012), who analyzed version 1.2 of the HadGEM and HiGEM (coupled 377 

models), version 1.2 of the coupled and atmosphere-only models of the HadGEM1 family did not have the dry 378 

bias in the region of the Amazon basin that is pointed to as a common error in many climate models in the region 379 

(Cavalcanti et al. 2002; Li et al. 2002; Marengo et al. 2003; Seth and Rojas 2003; Seth et al. 2007; Ma et al. 380 

2011). This error is usually attributed to the smoothing of the Andes in global climate models. For the models of 381 

the HadGEM family, although versions differ from one another in their configurations, these differences did not 382 

alter significantly the representation of the annual cycle of precipitation in AMZ. 383 

The observations show that the rainy season in NDE is concentrated in the months from January-April, with a 384 

peak in March, due to the shift to the south of the ITCZ (Fig. 10c). In the following months the rain decreases 385 

abruptly, reaching minimum values (1 mm day-1) in August-September (Fig. 10c). The coupled and atmosphere-386 

only models are in phase with the observed annual cycle of rain with correlation of greater than 0.95 (Fig. 10d), 387 
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but there are some differences in intensity. Among coupled models (Fig. 10c), those with lower resolution 388 

(HadGEM and HiGEM) present the highest relative biases (47% and 37%, respectively) for the region since they 389 

are wetter (drier) than the ensemble during the rainy (dry) season. The larger amplitude of the annual rain cycle 390 

in these simulations is reflected in the larger values of the standard deviation (Fig. 10d). NUGEM remains drier 391 

than the ensemble throughout the year, and among the coupled simulations provides the lowest relative bias (-392 

25%) and standard deviation, similar to that of the ensemble. In the NDE region, the biases of precipitation in the 393 

atmosphere-only models (13% in HadGAM, +3% in HiGAM, and 5% in NUGAM) are smaller than in the the 394 

coupled models. The best performance of atmosphere-only models in simulating the annual cycle of precipitation 395 

in the NDE is directly related to incorrect positioning of the ITCZ over northern SA in HadGEM and HiGEM 396 

(see Figures 3c-d). The increase of the horizontal resolution in the coupled models lessens the overestimation of 397 

rainfall in NDE while correctly positioning the ITCZ (see Fig. 3e). 398 

During the rainy season the wet bias in NDE occurs in most simulations (atmospheric and coupled) indicating 399 

little association with the SST. Possibly these errors are related to the local scale physical processes that are not 400 

being correctly resolved in the models of the HadGEM family such as, for example, parameterization of 401 

convection. By comparing our results with those of Custodio et al. (2012) it can be seen that the changes 402 

between coupled versions 1.1 and 1.2 of the HadGEM family do not present a clear trend since in the rainy and 403 

dry seasons the bias decreases and increases, respectively, in version 1.2. 404 

In the analysis (ensemble), the rainy and dry seasons occur from June to August and from October to April, 405 

respectively, in the SESA region (Fig. 10e). This pattern is correctly simulated by coupled and atmosphere-only 406 

models, although they overestimate the rainfall rate throughout most of the year. In this region only the coupled 407 

model with lowest resolution (HadGEM) remains drier than the observation ensemble from January to April. For 408 

annual rainfall, the relative biases in SESA range from +20% in HiGEM and HiGAM to values close to zero in 409 

HadGEM and HiGAM, in other words, values always less than 0.85 mm day-1. In this region increasing the 410 

resolution increases the rainfall rate and the relative bias. However, in all simulations the biases are much lower 411 

than previously reported for other global models (Seth et al. 2010; Blazquez and Nuñez 2012) and regional 412 

models (da Rocha et al. 2014) in a similar area. Compared to Custodio et al. (2012), the version assessed here 413 

(1.1) does not change the representation of the annual cycle of precipitation in the SESA. In addition, these 414 

results represent an improvement compared to the nine coupled models of the CMIP3 project (Seth et al. 2010) 415 

and some of the CMPI5 models, which that underestimate the spring rainfall by 50% (da Rocha et al. 2014). 416 
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Together with the small annual bias in all simulations the phase and amplitude of the annual precipitation cycle 417 

is similar to the ensemble, as indicated by the high correlation (between ~0.8 and 0.9) and similar standard 418 

deviations in SESA (Fig. 10f). By comparison, in this region, the atmosphere-only, as well as the coupled 419 

simulations, represent a great improvement over the CMIP3 models, which are very dry (bias ~ -3 mm day-1) 420 

during the winter and do not simulate the observed phase of the annual cycle of precipitation, principally the 421 

peak rainfall in April. 422 

In regions AND (Fig. 10g) and PAT (Fig. 10i), the coupled as well as the atmosphere-only models, although in 423 

phase, are wetter than the ensemble throughout the year. This pattern was identified in seasonal fields (Figs. 2 424 

and 3), in view of the fact that these areas are in the southern part of the Andes where all simulations 425 

overestimate the rain. In these two regions, the monthly rainfall is small and there is not much difference 426 

between rainfall throughout the year in the ensemble, while the models simulate an annual cycle with greater 427 

amplitude, implying higher simulation errors. In the AND subdomain (Figure 10g), almost all of which is 428 

located over the Andes, the amplitude of the annual precipitation cycle for the ensemble is small (≈1.0 mm day-429 

1). With the increase of the horizontal resolution the simulated rain intensity increases and therefore the bias as 430 

well, which is greater in NUGEM (+67%) and NUGAM (+58%) than in HiGEM (+32%) and HiGAM (+27%) 431 

with the HadGEM and HadGEM providing intermediate values. In this region the correlation for the annual 432 

cycle is low (less than 0.4) in most simulations, except in HadGEM and HadGAM (Fig. 11h). In the higher 433 

resolution models (NUGEM and NUGAM) the increase in RMSE (Fig. 10h) may indicate, besides the larger wet 434 

bias, a bigger difference between the simulated and observed maxima and minima. In PAT (Fig. 10i), rain in the 435 

ensemble increases in the months of May and June, which is not properly represented in all simulations. Among 436 

the coupled models, only NUGEM presents heavier rain in May, while HadGEM and HiGEM simulate only a 437 

maximum in June. Among the atmosphere-only models, the peaks observed in May-June are not simulated 438 

correctly, and only NUGAM simulates maximum rainfall between April and June. With increased resolution the 439 

simulations in PAT have an annual rainfall cycle closer to the ensemble, both in coupled and in atmosphere-only 440 

models (Fig. 10i). The correlation for the annual cycle is high in the PAT region (~ 0.8) and in all simulations 441 

the amplitude of the annual cycle is slightly lower than in the ensemble (Fig. 10j). Furthermore, the diagram 442 

shows that all simulations have standard deviation values close to the ensemble and small RMSE (Fig. 10j).  443 

The annual cycles of temperature for the subdomains and their Taylor diagrams are shown in Figure 11. Among 444 

the regions analyzed, the smallest range of temperature in the ensemble occurs in AMZ (Fig. 11a), where the 445 
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temperature remains close to 25°C, with an increase of at most 1°C beginning in August. In AMZ, comparison 446 

with observations shows great discrepancies in the maximum and the minimum values, with differences of up to 447 

1°C. In this region, both coupled as well as atmosphere-only models simulate the semi-annual cycle, with two 448 

periods of maximum temperature - from September to November and from January to February. This feature 449 

does not occur in the annual cycle of precipitation as discussed above. Among the coupled and atmosphere-only 450 

models, except for the months from June to July, the models with resolutions of 135 and 90 km have the smallest 451 

systematic errors in relation to the ensemble. In this region the increased horizontal resolution increases the bias 452 

of the coupled and atmospheric simulations, ie -0.3°C (+0.8°C) in HadGEM (HadGAM) to +1.5°C (+1.3°C) in 453 

NUGEM (NUGAM). The three atmospheric simulations and NUGEM have high correlations (between 0.8 and 454 

0.9) for the annual cycle in temperature, while HadGEM and HiGEM had a slightly lower correlation (~0.7). The 455 

larger amplitude of the annual temperature cycle in the simulations implies higher standard deviations and 456 

RMSE in the AMZ region (Fig. 11b). The poor performance of lower resolution horizontal models in 457 

representing the annual temperature cycle indicates that the increased resolution is not the only factor to reduce 458 

the temperature simulation errors in the AMZ. 459 

The annual temperature cycle in the ensemble for the NDE region (Figure 11b) locates the warmest period in the 460 

months from September to March and the coldest from May to August. The coupled and atmosphere-only 461 

models correctly represent these periods. In the NDE, the temperature bias of the atmosphere-only models is 462 

lower from January to September, while from October to December it is lower in the coupled models. Increased 463 

horizontal resolution reduces the cold bias in the coupled simulations from -1.7°C in HiGEM to -0.3°C in 464 

NUGEM. In atmosphere-only simulations the bias for annual temperature remains practically constant with 465 

increasing resolution (0.2°C and 0.1°C respectively in HadGAM and NUGAM). Figure 11b shows that, except 466 

for NUGEM, the simulations show high temporal correlation to the annual temperature cycle (~0.95), but 467 

simulate a larger amplitude of the annual cycle than observed. 468 

In regions SESA, AND, and PAT the annual cycle of temperature in the ensemble indicates the cold season from 469 

June to September and the warm season from December to March (Fig. 11e, g, i). The coupled and atmosphere-470 

only models are in phase with the observations in these three regions. The amplitude in the simulations is similar 471 

to that of the ensemble in DNA and PAT, but in SESA it is larger in all simulations, reflected in higher RMS and 472 

standard deviations (Figs. 11f, h, j). All simulations correctly represent the length of the seasons in these regions, 473 

with the largest systematic errors occurring in the cold period. The correct simulation of phase involves high 474 
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correlation values for the annual cycle (above 0.95) and standard deviation close to that of the ensemble (Fig. 475 

11). The similarity of the RMS in these regions in all simulations illustrates the correctness of the phase 476 

adjustment presented by the models in these regions. In the coupled simulations, increasing the resolution 477 

reduces the mean annual temperature bias to very small values (lower than ± 0.3°C), but this positive impact of 478 

horizontal resolution does not occur in the atmosphere-only simulations. 479 

Increased horizontal resolution in the HadGEM family of models does not particularly impact the representation 480 

of the annual cycle of temperature in the SA subdomains analyzed. This indicates that for the reduction of 481 

systematic temperature errors in this family of models, just a refinement of the grid is not sufficient, indicating 482 

that other physical parameterizations still require adjustments in their configuration. But it is noteworthy that the 483 

errors for the average annual temperature are small, always less than ±1.5°C  in all evaluated regions. 484 

4. Conclusions  485 

Evaluation of seasonal climatology shows that the coupled and atmosphere-only models of HadGEM family 486 

realistically represent the main climate-generating mechanisms over South America (the SACZ, ITCZ, 487 

subtropical Atlantic and Pacific highs, and transient systems in subtropical-extratropical latitudes). In general, 488 

coupled models simulate the north-south movement, the intensity of and position of the longitudinal band of rain 489 

over the equatorial Atlantic of the ITCZ more closely to that observed in both TRMM and the ensemble, than do 490 

the atmosphere-only models. In these models, increased horizontal resolution contributes toward the reduction of 491 

the wet bias in the region of the ITCZ increasing the agreement with the observations on the localization of the 492 

rainfall maximum in the Atlantic ITCZ and reducing errors in its north-south displacement. In addition, in the 493 

coupled models the patterns of location and strength of the SACZ and the Pacific and the Atlantic subtropical 494 

highs are closer to those observed than in atmosphere-only models. 495 

Comparing the seasonal errors in precipitation and temperature, it is noted that the simulations with greater 496 

systematic temperature errors on the continent also show, especially in the area of the ITCZ, larger errors in the 497 

precipitation; that is, the coupled simulations with more intense rainfall are cooler than the atmospheric 498 

simulations. This indicates a positive feedback between higher rainfall rate and more cloud cover, and 499 

consequently, reduction in the amount of incident radiation, implying a colder troposphere. 500 

In general, the coupled simulation with highest atmospheric resolution (60 km) has systematic errors smaller 501 

than the atmospheric simulation for the seasonal precipitation, temperature and circulation fields. In this case, the 502 
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increase in resolution associated with the ocean-atmosphere coupling, which includes daily variability of SST, 503 

provides more realistic simulations of atmospheric patterns observed in South America and the tropical sector of 504 

adjacent oceans. 505 

In most of the subdomains analyzed, both coupled and global atmosphere-only models simulate the phase of the 506 

annual cycle (dry/rainy and cold/warm seasons) similar to what is observed. Over the Amazon region the 507 

highlight, especially in coupled models, is the better performance of higher resolution simulations in 508 

representing the annual rain cycle, thus  showing the importance and the positive impact of increased horizontal 509 

resolution for precipitation in the continental tropical sector of SA. 510 

The impact of increased horizontal resolution of HadGEM family models on the phase and amplitude of the 511 

annual cycle of precipitation and temperature does not present a common pattern in all subdomains. For 512 

temperature, the errors of coupled and atmosphere-only models analyzed are small over SA - smaller than those 513 

reported in other global atmosphere-only models of high horizontal resolution by Blazquez and Nuñez (2012). 514 

This indicates that the increase in horizontal resolution is an important associated factor, but the physical 515 

parameterizations in the models are also relevant for realistic simulation of the phenomena described in this 516 

paper. 517 

Based on the present results, it can be concluded that for the regions analyzed, the HadGEM family models 518 

simulate satisfactorily the observed climatology of both precipitation and temperature, and that errors still 519 

present are mainly in magnitude for these variables and can be considered small in comparison to errors found in 520 

simulations by other models. 521 
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