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Sensitivity analysis of Hamiltonian and reversible
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Abstract. Stability of a linear autonomous non-onservative system inthe presene of potential, gyrosopi, dissipative, and non-onservativepositional fores is studied. The ases when the non-onservative systemis lose either to a gyrosopi system or to a irulatory one, are exam-ined. It is known that marginal stability of gyrosopi and irulatorysystems an be destroyed or improved up to asymptoti stability dueto ation of small non-onservative positional and veloity-dependentfores. We show that in both ases the boundary of the asymptoti sta-bility domain of the perturbed system possesses singularities suh as\Dihedral angle", \Break of an edge" and \Whitney's umbrella" thatgovern stabilization and destabilization as well as are responsible for theimperfet merging of modes. Sensitivity analysis of the ritial parame-ters is performed with the use of the perturbation theory for eigenvaluesand eigenvetors of non-self-adjoint operators. In ase of two degrees offreedom, stability boundary is found in terms of the invariants of ma-tries of the system. Bifuration of the stability domain due to hangeof the struture of the damping matrix is desribed. As a mehanialexample, the Hauger gyropendulum is analyzed in detail; an instabilitymehanism in a general mehanial system with two degrees of freedom,whih originates after disretization of models of a rotating dis in fri-tional ontat and possesses the spetral mesh in the plane 'frequeny'versus 'angular veloity', is analytially desribed and its role in the ex-itation of vibrations in the squealing dis brake and in the singing wineglass is disussed.Keywords: matrix polynomial, Hamiltonian system, reversible system,Lyapunov stability, inde�nite damping, perturbation, dissipation-induedinstabilities, destabilization paradox, multiple eigenvalue, singularity.
⋆ The work has been partly supported by the Alexander von Humboldt Foundationand by the German Researh Foundation, Grant DFG HA 1060/43-1.



32 O. N. Kirillov
1 IntroductionConsider an autonomous non-onservative system�x + (ΩG + δD) _x + (K + νN)x = 0, (1)where dot stands for the time di�erentiation, x ∈ R

m, and real matrix K = KTorresponds to potential fores. Real matries D = DT , G = −GT , and N = −NTare related to dissipative (damping), gyrosopi, and non-onservative positional(irulatory) fores with magnitudes ontrolled by saling fators δ, Ω, and νrespetively. A irulatory system is obtained from (1) by negleting veloity-dependent fores �x + (K + νN)x = 0, (2)while a gyrosopi one has no damping and non-onservative positional fores�x +ΩG _x + Kx = 0. (3)Cirulatory and gyrosopi systems (2) and (3) possess fundamental symmetriesthat are evident after transformation of equation (1) to the form _y = Ay with
A =

[
−1

2
ΩG I

1
2
δΩDG + 1

4
Ω2G2 − K − νN δD − 1

2
ΩG

]
, y =

[
x_x+1

2
ΩGx

]
, (4)where I is the identity matrix.In the absene of damping and gyrosopi fores (δ = Ω = 0), RAR = −Awith

R = R−1 =

[
I 0

0 −I

]
. (5)This means that the matrix A has a reversible symmetry, and equation (2)desribes a reversible dynamial system [16, 19, 33℄. Due to this property,det(A − λI) = det(R(A − λI)R) = det(A + λI), (6)and the eigenvalues of irulatory system (2) appear in pairs (−λ, λ). With-out damping and non-onservative positional fores (δ = ν = 0) the matrix Apossesses the Hamiltonian symmetry JAJ = AT , where J is a unit sympletimatrix [17, 23, 28℄

J = −J−1 =

[
0 I

−I 0

]
. (7)As a onsequene,det(A − λI) = det(J(A − λI)J) = det(AT + λI) = det(A + λI), (8)whih implies that if λ is an eigenvalue of A then so is −λ, similarly to thereversible ase. Therefore, an equilibrium of a irulatory or of a gyrosopi



Sensitivity analysis of Hamiltonian and reversible systems 33system is either unstable or all its eigenvalues lie on the imaginary axis of theomplex plane implying marginal stability if they are semi-simple.In the presene of all the four fores, the Hamiltonian and reversible sym-metries are broken and the marginal stability is generally destroyed. Instead,system (1) an be asymptotially stable if its harateristi polynomial
P(λ) = det(Iλ2 + (ΩG + δD)λ+ K + νN), (9)satis�es the riterion of Routh and Hurwitz. The most interesting for many ap-pliations, ranging from the rotor dynamis [3{5, 14, 25, 27, 30, 31, 48, 49, 59, 62℄to physis of the atmosphere [9, 29, 62, 66℄ and from stability and optimizationof strutures [8, 10, 11, 15, 22, 26, 33, 39, 54, 55, 65, 69℄ to frition-indued instabil-ities and aoustis of frition [40, 42, 61, 67, 71{73, 75, 76℄, is the situation whensystem (1) is lose either to irulatory system (2) with δ,Ω ≪ ν (near-re-versible system) or to gyrosopi system (3) with δ, ν≪ Ω (near-Hamiltoniansystem). The e�et of small damping and gyrosopi fores on the stability ofirulatory systems as well as the e�et of small damping and non-onservativepositional fores on the stability of gyrosopi systems are regarded as paradox-ial, sine the stability properties are extremely sensitive to the hoie of theperturbation, and the balane of fores resulting in the asymptoti stability isnot evident, as it happens in suh phenomena as \tippe top inversion", \risingegg", and the onset of frition-indued osillations in the squealing brake and inthe singing wine glass [31, 48, 49, 59, 61, 62, 67, 71{73,75{77℄.Historially, Thomson and Tait in 1879 were the �rst who found that dissipa-tion destroys the gyrosopi stabilization (dissipation-indued instability) [1,28, 62, 66℄. A similar e�et of non-onservative positional fores on the stabilityof gyrosopi systems has been established almost a entury later by Lakhadanovand Karapetyan [12, 13℄. A more sophistiated manifestation of the dissipation-indued instabilities has been disovered by Ziegler on the example of a dou-ble pendulum loaded by a follower fore with the damping, non-uniformly dis-tributed among the natural modes [8℄. Without dissipation, the Ziegler pendu-lum is a reversible system, whih is marginally stable for the loads non-exeedingsome ritial value. Small dissipation of order o(1) makes the pendulum eitherunstable or asymptotially stable with the ritial load, whih generially is lowerthan that of the undamped system by the quantity of order O(1) (the destabi-lization paradox ). Similar disontinuous hange in the stability domain for thenear-Hamiltonian systems has been observed by Holopainen [9, 66℄ in his studyof the e�et of dissipation on the stability of barolini waves in Earth's atmo-sphere, by Hoveijn and Ruijgrok on the example of a rotating shaft on an elastifoundation [30℄, and by Crandall, who investigated a gyrosopi pendulum withstationary and rotating damping [31℄. Contrary to the Ziegler pendulum, theundamped gyropendulum is a gyrosopi system that is marginally stable whenits spin exeeds a ritial value. Despite the stationary damping, orresponding



34 O. N. Kirillovto a dissipative veloity-dependent fore, destroys the gyrosopi stabilization[1℄, the Crandall gyropendulum with stationary and rotating damping, wherethe latter is related to a non-onservative positional fore, an be asymptot-ially stable for the rotation rates exeeding onsiderably the ritial spin ofthe undamped system. This is an example of the destabilization paradox in theHamiltonian system.As it was understood during the last deade, the reason underlying the desta-bilization paradox is that the multiparameter family of non-normal matrix op-erators of the system (1) generially possesses the multiple eigenvalues relatedto singularities of the boundary of the asymptoti stability domain, whih weredesribed and lassi�ed by Arnold already in 1970-s [17℄. Hoveijn and Ruijgrokwere, apparently, the �rst who assoiated the disontinuous hange in the rit-ial load in their example to the singularity Whitney umbrella, existing on thestability boundary [30℄. The same singularity on the boundary of the asymptotistability has been identi�ed for the Ziegler pendulum [47℄, for the models of disbrakes [72, 76℄, of the rods loaded by follower fore [54, 55℄, and of the gyropen-dulums and spinning tops [63, 70℄. These examples reet the general fat thatthe odimension-1 Hamiltonian (or reversible) Hopf bifuration an be viewed asa singular limit of the odimension-3 dissipative resonant 1 : 1 normal form andthe essential singularity in whih these two ases meet is topologially equivalentto Whitney's umbrella (Hamilton meets Hopf under Whitney's umbrella) [45,66℄.Despite the ahieved qualitative understanding, the development of the sen-sitivity analysis for the ritial parameters near the singularities, whih is essen-tial for ontrolling the stabilization and destabilization, is only beginning andis involving suh modern disiplines as multiparameter perturbation theory ofanalytial matrix funtions [7, 18, 20, 23, 24, 28, 29, 37, 41, 57, 58℄ and of non-self-adjoint boundary eigenvalue problems [51, 53{55℄, the theory of the struturedpseudospetra of matrix polynomials [56, 73℄ and the theory of versal defor-mations of matrix families [30, 45, 47, 60℄. The growing number of physial andmehanial appliations demonstrating the destabilization paradox due to aninterplay of non-onservative e�ets and the need for a justi�ation for the useof Hamiltonian or reversible models to desribe real-world systems that are infat only near-Hamiltonian or near-reversible requires a uni�ed treatment of thisphenomenon.The goal of the present paper is to �nd and to analyze the domain of asymp-toti stability of system (1) in the spae of the parameters δ, Ω, and ν with spe-ial attention to near-reversible and near-Hamiltonian ases. In the subsequentsetions we will ombine the study of the two-dimensional system, analyzingthe Routh-Hurwitz stability onditions, with the perturbative approah to thease of arbitrary large m. Typial singularities of the stability boundary will beidenti�ed. Bifuration of the domain of asymptoti stability due to hange of



Sensitivity analysis of Hamiltonian and reversible systems 35the struture of the matrix D of dissipative fores will be thoroughly analyzedand the e�et of gyrosopi stabilization of a dissipative system with inde�nitedamping and non-onservative positional fores will be desribed. The estimatesof the ritial parameters and expliit expressions, approximating the boundaryof the asymptoti stability domain, will be extended to the ase of m > 2 de-grees of freedom with the use of the perturbation theory of multiple eigenvaluesof non-self-adjoint operators. In the last setion the general theory will be ap-plied to the study of the onset of stabilization and destabilization in the modelsof gyropendulums and dis brakes.
2 A circulatory system with small velocity-dependent forcesWe begin with the near-reversible ase (δ,Ω ≪ ν), whih overs Ziegler's andNikolai's pendulums loaded by the follower fore [8, 10, 11, 33, 47, 43, 44, 53, 66℄(their ontinuous analogue is the visoelasti Bek olumn [10, 39, 54, 55℄), theReut-Sugiyama pendulum [50℄, the low-dimensional models of dis brakes byNorth [67, 73℄, Popp [40℄, and Sinou and Jezequel [72℄, the model of a masssliding over a onveyor belt by Ho�mann and Gaul [42℄, the models of rotorswith internal and external damping by Kimball and Smith [3, 4℄ and Kapitsa [5,66℄, and �nds appliations even in the modeling of the two-legged walking andof the dynamis of spae tethers [32℄.
2.1 Stability of a circulatory systemStability of system (1) is determined by its harateristi polynomial (8), whihin ase of two degrees of freedom has a onvenient form provided by the Leverrier-Barnett algorithm [21℄

P(λ, δ, ν,Ω) = λ4 + δtrD λ3 + (trK + δ2 detD +Ω2) λ2 +

(δ(trKtrD − trKD) + 2Ων) λ + detK + ν2, (10)where without loss of generality we assume that detG = 1 and detN = 1.In the absene of damping and gyrosopi fores (δ = Ω = 0) the system (1)is irulatory, and the polynomial (10) has four roots −λ+, −λ−, λ−, and λ+,where
λ± =

√
−
1

2
trK ± 1

2

√
(trK)2 − 4(detK + ν2). (11)The eigenvalues (11) an be real, omplex or purely imaginary implying insta-bility or marginal stability in aordane with the following statement.

Proposition 1. If trK > 0 and detK 6 0, irulatory system (2) with twodegrees of freedom is stable for νd
2 < ν2 < νf

2, unstable by divergene for
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ν2 6 νd

2, and unstable by utter for ν2 > νf
2, where the ritial values νdand νf are

0 6
√

− detK =: νd 6 νf :=
1

2

√
(trK)2 − 4detK. (12)If trK > 0 and detK > 0, the irulatory system is stable for ν2 < νf

2 andunstable by utter for ν2 > νf
2.If trK 6 0, the system is unstable.The proof is a onsequene of formula (11), reversible symmetry, and the fatthat time dependene of solutions of equation (2) is given by exp(λt) for simpleeigenvalues λ, with an additional|polynomial in t|prefator (seular terms) inase of multiple eigenvalues with the Jordan blok. The solutions monotonouslygrow for positive real λ implying stati instability (divergene), osillate with aninreasing amplitude for omplex λ with positive real part (utter), and remainbounded when λ is semi-simple and purely imaginary (stability). For K, havingtwo equal eigenvalues, νf = 0 and the irulatory system (2) is unstable inagreement with the Merkin theorem for irulatory systems with two degrees offreedom [34, 62℄.

Fig. 1. Stability diagrams and trajetories of eigenvalues for the inreasing parameter
ν > 0 for the irulatory system (2) with trK > 0 and detK < 0 (a) and trK > 0 anddetK > 0 (b).Stability diagrams and motion of eigenvalues in the omplex plane for νinreasing from zero are presented in Fig. 1. When trK > 0 and detK < 0 thereare two real and two purely imaginary eigenvalues at ν = 0, and the system isstatially unstable, see Fig. 1(a). With the inrease of ν both the imaginary andreal eigenvalues are moving to the origin, until at ν = νd the real pair mergesand originates a double zero eigenvalue with the Jordan blok. At ν = νd thesystem is unstable due to linear time dependene of a solution orresponding to
λ = 0. The further inrease of ν yields splitting of the double zero eigenvalue



Sensitivity analysis of Hamiltonian and reversible systems 37into two purely imaginary ones. The imaginary eigenvalues of the same sign arethen moving towards eah other until at ν = νf they originate a pair of doubleeigenvalues ±iωf with the Jordan blok, where
ωf =

√
1

2
trK. (13)At ν = νf the system is unstable by utter due to seular terms in its solutions.For ν > νf the utter instability is aused by two of the four omplex eigenvalueslying on the branhes of a hyperboli urveIm λ2 − Reλ2 = ω2

f . (14)The ritial values νd and νf onstitute the boundaries between the di-vergene and stability domains and between the stability and utter domainsrespetively. For trK > 0 and detK = 0 the divergene domain shrinks to apoint νd = 0 and for trK > 0 and detK > 0 there exist only stability and utterdomains as shown in Fig. 1(b). For negative ν the boundaries of the divergeneand utter domains are ν = −νd and ν = −νf.In general, the Jordan hain for the eigenvalue iωf onsists of an eigenvetor
u0 and an assoiated vetor u1 that satisfy the equations [53℄

(−ω2
f I + K + νfN)u0 = 0, (−ω2

f I + K + νfN)u1 = −2iωfu0. (15)Due to the non-self-adjointness of the matrix operator, the same eigenvaluepossesses the left Jordan hain of generalized eigenvetors v0 and v1

vT
0 (−ω2

f I + K + νfN) = 0, vT
1 (−ω2

f I + K + νfN) = −2iωfv
T
0 . (16)The eigenvalues u0 and v0 are biorthogonal

vT
0u0 = 0. (17)In the neighborhood of ν = νf the double eigenvalue and the orrespondingeigenvetors vary aording to the formulas [52, 53℄

λ(ν) = iωf ± µ
√
ν− νf + o((ν − νf)

1

2 ),

u(ν) = u0 ± µu1

√
ν− νf + o((ν− νf)

1

2 ),

v(ν) = v0 ± µv1

√
ν − νf + o((ν− νf)

1

2 ),

(18)where µ2 is a real number given by
µ2 = −

vT
0Nu0

2iωfv
T
0u1

. (19)



38 O. N. KirillovFor m = 2 the generalized eigenvetors of the right and left Jordan hains atthe eigenvalue iωf, where the eigenfrequeny is given by (13) and the ritialvalue νf is de�ned by (12), are [52℄
u0 =

[
2k12 + 2νf

k22 − k11

]
, v0 =

[
2k12 − 2νf

k22 − k11

]
, u1 = v1 =

[
0

−4iωf

]
. (20)Substituting (20) into equation (19) yields the expression

µ2 = −
4νf(k11 − k22)

2iωfv
T
0u1

=
νf

2ω2
f

> 0. (21)After plugging the real-valued oeÆient µ into expansions (18) we obtain anapproximation of order |ν − νf|
1/2 of the exat eigenvalues λ = λ(ν). This anbe veri�ed by the series expansions of (11) about ν = νf.

2.2 The influence of small damping and gyroscopic forces on the stability

of a circulatory systemThe one-dimensional domain of marginal stability of irulatory system (2) givenby Proposition 1 blows up into a three-dimensional domain of asymptoti stabil-ity of system (1) in the spae of the parameters δ, Ω, and ν, whih is desribedby the Routh and Hurwitz riterion for the polynomial (10)
δtrD > 0, trK + δ2 detD +Ω2 > 0, detK + ν2 > 0, Q(δ,Ω, ν) > 0, (22)where

Q := −q2 + δtrD(trK + δ2 detD +Ω2)q− (δtrD)2(detK + ν2),

q := δ(trKtrD − trKD) + 2Ων. (23)Considering the asymptoti stability domain (22) in the spae of the pa-rameters δ, ν and Ω we remind that the initial system (1) is equivalent to the�rst-order system with the real 2m×2m matrix A(δ, ν,Ω) de�ned by expression(4). As it was established by Arnold [17℄, the boundary of the asymptoti stabil-ity domain of a multiparameter family of real matries is not a smooth surfae.Generially, it possesses singularities orresponding to multiple eigenvalues withzero real part. Applying the qualitative results of [17℄, we dedue that the partsof the ν-axis belonging to the stability domain of system (2) and orrespondingto two di�erent pairs of simple purely imaginary eigenvalues, form edges of thedihedral angles on the surfaes that bound the asymptoti stability domain ofsystem (1), see Fig. 2(a). At the points ±νf of the ν-axis, orresponding to thestability-utter boundary of system (2) there exists a pair of double purely imag-inary eigenvalues with the Jordan blok. Qualitatively, the asymptoti stabilitydomain of system (1) in the spae (δ, ν,Ω) near the ν-axis looks like a dihedral
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Fig. 2. Singularities dihedral angle (a), trihedral angle (b), and deadlok of an edge(or a half of the Whitney umbrella ()) of the boundary of the asymptoti stabilitydomain.angle whih beomes more aute while approahing the points ±νf. At thesepoints the angle shrinks forming the deadlok of an edge, whih is a half of theWhitney umbrella surfae [17, 30, 45℄, see Fig. 2(). In ase when the stabilitydomain of the irulatory system has a ommon boundary with the divergenedomain, as shown in Fig. 1(a), the boundary of the asymptoti stability do-main of the perturbed system (1) possesses the trihedral angle singularity at
ν = ±νd, see Fig. 2(b).The �rst two of the onditions of asymptoti stability (22) restrit the regionof variation of parameters δ and Ω either to a half-plane δtrD > 0, if detD > 0,or to a spae between the line δ = 0 and one of the branhes of a hyperbola
| detD| δ2 − Ω2 = 2ω2

f , if detD < 0. Provided that δ and Ω belong to thedesribed domain, the asymptoti stability of system (1) is determined by thelast two of the inequalities (22), whih impose limits on the variation of ν. Solv-ing the quadrati in ν equation Q(δ, ν,Ω) = 0 we write the stability ondition
Q > 0 in the form

(ν− ν−

cr)(ν − ν+

cr) < 0, (24)with
ν±cr(δ,Ω) =

Ωb±
√
Ω2b2 + ac

a
δ. (25)The oeÆients a, b, and c are

a(δ,Ω) = 4Ω2 + δ2(trD)2, b(δ,Ω) = 4νfβ∗ + (δ2 detD +Ω2)trD,
c(δ,Ω) = ν2

f((trD)2 − 4β2
∗) + (ω2

ftrD − 2νfβ∗)(δ
2 detD +Ω2)trD, (26)where

β∗ :=
tr(K −ω2

f I)D

2νf

. (27)For detK 6 0, the domain of asymptoti stability onsists of two non-intersetingparts, bounded by the surfaes ν = ν±cr(δ,Ω) and by the planes ν = ±νd,



40 O. N. Kirillovseparating it from the divergene domain. For detK > 0, inequality detK+ν2 >

0 is ful�lled, and in aordane with the ondition (24) the asymptoti stabilitydomain is ontained between the surfaes ν = ν+

cr(δ,Ω) and ν = ν−

cr(δ,Ω).The funtions ν±cr(δ,Ω) de�ned by expressions (25) are singular at the origindue to vanishing denominator. AssumingΩ = βδ and alulating a limit of thesefuntions when δ tends to zero, we obtain
ν±0 (β) := lim

δ→0
ν±cr = νf

4ββ∗ ± trD√
(trD)2 + 4(β2 − β2

∗)

(trD)2 + 4β2
. (28)The funtions ν±0 (β) are real-valued if the radiand in (28) is non-negative.

Proposition 2. Let λ1(D) and λ2(D) be eigenvalues of D. Then,
|β∗| 6

|λ1(D) − λ2(D)|

2
. (29)If D is semi-de�nite (detD > 0) or inde�nite with

0 > detD > −
(k12(d22 − d11) − d12(k22 − k11))2

4ν2
f

, (30)then
|β∗| 6

|trD|

2
, (31)and the limits ν±0 (β) are ontinuous real-valued funtions of β. Otherwise,there exists an interval of disontinuity β2 < β2

∗ − (trD)2/4.Proof. With the use of the de�nition of β∗, (27), a series of transformations
β2
∗ −

(trD)2

4
=

1

4ν2
f

(
(k11 − k22)(d11 − d22)

2
+ 2k12d12

)2

−
(d11 + d22)2

4

((k11 − k22)2 + 4k2
12)

4ν2
f

= − detD −
(k12(d22 − d11) − d12(k22 − k11))2

4ν2
f

(32)yields the expression
β2
∗ =

(λ1(D) − λ2(D))2

4
−

(k12(d22 − d11) − d12(k22 − k11))2

4ν2
f

. (33)For real β∗, formula (32) implies inequality (30). The remaining part of theproposition follows from (33).Inequality (30) subdivides the set of inde�nite damping matries into twolasses.
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Fig. 3. The funtions ν+

0 (β) (bold lines) and ν−

0 (β) (�ne lines), and their bifurationwhen D is hanging from weakly- to strongly inde�nite.
Definition 1. We all a 2×2 real symmetri matrix D with detD < 0 weaklyinde�nite, if 4β2

∗ < (trD)2, and strongly inde�nite, if 4β2
∗ > (trD)2.As an illustration, we alulate and plot the funtions ν±0 (β), normalized by

νf, for the matrix K > 0 and inde�nite matries D1, D2, and D3

K=

[
27 3

3 5

]
, D1=

[
6 3

3 1

]
, D2=

[
7 4

3

√
130 − 11

4
3

√
130 − 11 1

]
, D3=

[
7 5

5 1

]
. (34)The graphs of the funtions ν±0 (β) bifurate with a hange of the dampingmatrix from the weakly inde�nite to the strongly inde�nite one. Indeed, sine

D1 satis�es the strit inequality (30), the limits are ontinuous funtions withseparated graphs, as shown in Fig. 3(a). Expression (30) is an equality for thematrix D2. Consequently, the funtions ν±0 (β) are ontinuous, with their graphstouhing eah other at the origin, Fig. 3(b). For the matrix D3, ondition (30)is not ful�lled, and the funtions are disontinuous. Their graphs, however, arejoint together, forming ontinuous urves, see Fig. 3(). The alulated ν±0 (β) arebounded funtions of β, non-exeeding the ritial values±νf of the unperturbedirulatory system.
Proposition 3.

|ν±0 (β)| 6 |ν±0 (±β∗)| = νf. (35)Proof. Let us observe that µ±0 := ν±0 /νf are roots of the quadrati equation
ν2

faβµ
2 − 2δΩb0νfµ− δ2c0 = 0, (36)with δ2aβ := a(δ, βδ), b0 := b(0, 0), c0 := c(0, 0). Aording to the Shurriterion [6℄ all the roots µ of equation (36) are inside the losed unit disk, if

δ2c0 + ν2
faβ = (trD)2 + 4(β2 − β2

∗) + (trD)2
> 0,

2δΩνfb0 + ν2
faβ − δ2c0 = (β + β∗)

2
> 0,

−2δΩνfb0 + ν2
faβ − δ2c0 = (β − β∗)

2
> 0. (37)



42 O. N. KirillovThe �rst of onditions (37) is satis�ed for real ν±0 , implying |µ±0 (β)| 6 1 with
|µ+

0 (β∗)| = |µ−

0 (−β∗)| = 1.The limits ν±0 (β) of the ritial values of the irulatory parameter ν±cr(δ,Ω),whih are ompliated funtions of δ and Ω, e�etively depend only on the ratio
β = Ω/δ, de�ning the diretion of approahing zero in the plane (δ,Ω). Alongthe diretions β = β∗ and β = −β∗, the limits oinide with the ritial utterloads of the unperturbed irulatory system (2) in suh a way that ν+

0 (β∗) =

νf and ν−

0 (−β∗) = −νf. Aording to Proposition 3, the limit of the non-onservative positional fore at the onset of utter for system (1) with dissipativeand gyrosopi fores tending to zero does not exeed the ritial utter loadof irulatory system (2), demonstrating a jump in the ritial load whih isharateristi of the destabilization paradox.Power series expansions of the funtions ν±0 (β) around β = ±β∗ (with theradius of onvergene not exeeding |trD|/2) yield simple estimates of the jumpsin the ritial load for the two-dimensional system (1)
νf ∓ ν±0 (β) = νf

2

(trD)2
(β∓ β∗)

2 + o((β∓ β∗)
2). (38)Leaving in expansions (38) only the seond order terms and then substituting

β = Ω/δ, we get equations of the form Z = X2/Y2, whih is anonial for theWhitney umbrella surfae [17, 30, 45℄. These equations approximate the bound-ary of the asymptoti stability domain of system (1) in the viinity of the points
(0, 0,±νf) in the spae of the parameters (δ,Ω, ν). An extension to the asewhen the system (1) has m degrees of freedom is given by the following state-ment.
Theorem 1. Let the system (2) with m degrees of freedom be stable for
ν < νf and let at ν = νf its spetrum ontain a double eigenvalue iωf withthe left and right Jordan hains of generalized eigenvetors u0, u1 and v0,
v1, satisfying equations (15) and (16). De�ne the real quantities

d1 = Re(vT
0Du0), d2 = Im(vT

0Du1 + vT
1Du0),

g1 = Re(vT
0Gu0), g2 = Im(vT

0Gu1 + vT
1Gu0), (39)and

β∗ = −
vT

0Du0

vT
0Gu0

. (40)Then, in the viinity of β := Ω/δ = β∗ the limit of the ritial utter load
ν+

cr of the near-reversible system with m degrees of freedom as δ → 0 is
ν+

0 (β) = νf −
g2

1(β − β∗)
2

µ2(d2 + β∗g2)2
+ o((β − β∗)

2). (41)



Sensitivity analysis of Hamiltonian and reversible systems 43Proof. Perturbing a simple eigenvalue iω(ν) of the stable system (2) at a �xed
ν < νf by small dissipative and gyrosopi fores yields the inrement

λ = iω−
vTDu

2vTu
δ−

vTGu

2vTu
Ω+ o(δ,Ω). (42)Sine the eigenvetors u(ν) and v(ν) an be hosen real, the �rst order inrementis real-valued. Therefore, in the �rst approximation in δ and Ω, the simpleeigenvalue iω(ν) remains on the imaginary axis if Ω = β(ν)δ, where

β(ν) = −
vT (ν)Du(ν)

vT (ν)Gu(ν)
. (43)Substituting expansions (18) into formula (43), we obtain

β(ν) = −
d1 ± d2µ

√
νf − ν+ o (

√
νf − ν)

g1 ± g2µ
√
νf − ν+ o (

√
νf − ν)

, (44)wherefrom expression (41) follows, if |β− β∗| ≪ 1 .

Fig. 4. For various ν, bold lines show linear approximations to the boundary of theasymptoti stability domain (white) of system (1) in the viinity of the origin in theplane (δ,Ω), when trK > 0 and detK > 0, and 4β2
∗ < (trD)2 (upper row) or 4β2

∗ >

(trD)2(lower row).After substituting β = Ω/δ the formula (41) gives an approximation of theritial utter load
ν+

cr(δ,Ω) = νf −
g2

1(Ω− β∗δ)
2

µ2(d2 + β∗g2)2δ2
, (45)



44 O. N. Kirillovwhih has the anonial Whitney's umbrella form. The oeÆients (21) and (39)alulated with the use of vetors (20) are
d1 = 2(k22 − k11)tr(K −ω2

f I)D, g1 = 4(k11 − k22)νf

d2 = −8ωf(2d12k12 + d22(k22 − k11)), g2 = 16ωfνf. (46)With (46) expression (41) is redued to (38).Using exat expressions for the funtions ω(ν), u(ν), and v(ν), we obtainbetter estimates in ase when m = 2. Substituting the expliit expression forthe eigenfrequeny
ω2(ν) = ω2

f ±
√
ν2

f − ν2, (47)following from (11){(13), into the equation (43), whih now reads
δ

(
2νfβ∗ +

(
ω2(ν) −ω2

f

) trD)
− 2Ων = 0, (48)we obtain

Ω =
νf

ν

[
β∗ ±

trD
2

√
1−

ν2

ν2
f

]
δ. (49)Equation (49) is simply formula (28) inverted with respet to β = Ω/δ.

Fig. 5. The domain of asymptoti stability of system (1) with the singularities Whitneyumbrella, dihedral angle, and trihedral angle when K > 0 and 4β2
∗ < (trD)2 (a), K > 0and 4β2

∗ > (trD)2 (b), and when trK > 0 and detK < 0 ().We use the linear approximation (49) to study the asymptoti behavior ofthe stability domain of the two-dimensional system (1) in the viinity of theorigin in the plane (δ,Ω) for various ν. It is enough to onsider only the asewhen trK > 0 and detK > 0, so that −νf < ν < νf, beause for detK 6 0 theregion ν2 < ν2
d 6 ν2

f is unstable and should be exluded.For ν2 < ν2
f the radiand in expression (49) is real and nonzero, so that inthe �rst approximation the domain of asymptoti stability is ontained betweentwo lines interseting at the origin, as depited in Fig. 4 (entral olumn). When
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ν approahes the ritial values ±νf, the angle beomes more aute until at
ν = νf or ν = −νf it degenerates to a single line Ω = δβ∗ or Ω = −δβ∗respetively. For β∗ 6= 0 these lines are not parallel to eah other, and due toinequality (31) they are never vertial, see Fig. 4 (right olumn). However, thedegeneration an be lifted already in the seond-order approximation in δ

Ω = ±δβ∗ ±
ωftrD√detD + β2

∗

2νf

δ2 +O(δ3). (50)If the radiand is positive, equation (50) de�nes two urves touhing eah otherat the origin, as shown in Fig. 4 by dashed lines. Inside the usps |ν±cr(δ,Ω)| > νf.The evolution of the domain of asymptoti stability in the plane (δ,Ω),when ν goes from ±νf to zero, depends on the struture of the matrix D and isgoverned by the sign of the expression 4β2
∗ − (trD)2. For the negative sign theangle between the lines (49) is getting wider, tending to π as ν → 0, see Fig. 4(upper left). Otherwise, the angle reahes a maximum for some ν2 < ν2

f andthen shrinks to a single line δ = 0 at ν = 0, Fig. 4 (lower left). At ν = 0 the
Ω-axis orresponds to a marginally stable gyrosopi system. Sine the linearapproximation to the asymptoti stability domain does not ontain the Ω-axisat any ν 6= 0, small gyrosopi fores annot stabilize a irulatory system inthe absene of damping fores (δ = 0), whih is in agreement with the theoremsof Lakhadanov and Karapetyan [12, 13℄.Reonstruting with the use of the obtained results the asymptoti stabilitydomain of system (1), we �nd that it has three typial on�gurations in theviinity of the ν-axis in the parameter spae (δ,Ω, ν). In ase of a positive-de�nite matrix K and of a semi-de�nite or a weakly-inde�nite matrix D theaddition of small damping and gyrosopi fores blows the stability interval ofa irulatory system ν2 < ν2

f up to a three-dimensional region bounded bythe parts of a singular surfae ν = ν±cr(δ,Ω), whih belong to the half-spae
δtrD > 0, Fig. 5(a). The stability interval of a irulatory system forms anedge of a dihedral angle. At ν = 0 the angle of the intersetion reahes itsmaximum (π), reating another edge along the Ω-axis. While approahing thepoints ±νf, the angle beomes more aute and ends up with the deadlok of anedge, Fig. 5(a).When the matrix D approahes the threshold 4β2

∗ = (trD)2, two smoothparts of the stability boundary orresponding to negative and positive ν ometowards eah other until they touh, when D is at the threshold. After D beomesstrongly inde�nite this temporary glued on�guration ollapses into two poketsof asymptoti stability, as shown in Fig. 5(b). Eah of the two pokets has adeadlok of an edge as well as two edges whih meet at the origin and form asingularity known as the \break of an edge" [17℄.The on�guration of the asymptoti stability domain, shown in Fig. 5(),orresponds to an inde�nite matrix K with trK > 0 and detK < 0. In this ase



46 O. N. Kirillovthe ondition ν2 > ν2
d divides the domain of asymptoti stability into two parts,orresponding to positive and negative ν. The intervals of ν-axis form edges ofdihedral angles, whih end up with the deadloks at ν = ±νf and with thetrihedral angles at ν = ±νd, Fig. 5(). Qualitatively, this on�guration does notdepend on the properties of the matrix D.

Fig. 6. Bifuration of the domain of the asymptoti stability (white) in the plane (δ,Ω)at ν = 0 due to the hange of the struture of the matrix D aording to the riterion(44).We note that the parameter 4β2
∗ − (trD)2 governs not only the bifurationof the stability domain near the ν-axis, but also the bifuration of the wholestability domain in the spae of the parameters δ, Ω, and ν. This is seen fromthe stability onditions (24){(26). For example, for ν = 0 the inequality Q > 0is redued to c(δ,Ω) > 0, where c(δ,Ω) is given by (26). For positive semi-de�nite matries D this ondition is always satis�ed. For inde�nite matriesequation c(δ,Ω) = 0 de�nes either hyperbola or two interseting lines. In aseof weakly-inde�nite D the stability domain is bounded by the ν-axis and one ofthe hyperboli branhes, see Figure 6 (left). At the threshold 4β2

∗ = (trD)2 thestability domain is separated to two half-onial parts, as shown in the enter ofFigure 6. Strongly-inde�nite damping makes impossible stabilization by smallgyrosopi fores, see Figure 6 (right). In this ase the non-onservative foresare required for stabilization. Thus, we generalize the results of the works [35,36℄, whih were obtained for diagonal matries K and D. Moreover, the authorsof the works [35, 36℄ did not take into aount the non-onservative positionalfores orresponding to the matrix N in equation (1) and missed the existene ofthe two lasses of inde�nite matries, whih lead to the bifuration of the domainof asymptoti stability. We an also onlude that at least in two dimensions therequirement of de�niteness of the matrix D established in [46℄ is not neessaryfor the stabilization of a irulatory system by gyrosopi and damping fores.
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3 A gyroscopic system with weak damping and circulatory

forcesA statially unstable potential system, whih has been stabilized by gyrosopifores an be destabilized by the introdution of small stationary damping, whihis a veloity-dependent fore [1℄. However, many statially unstable gyropendu-lums enjoy robust stability at high speeds [31℄. To explain this phenomenon aonept of rotating damping has been introdued, whih is also proportional tothe displaements by a non-onservative way and thus ontributes not only tothe matrix D in equation (1), but to the matrix N as well [3{5, 31℄. This leadsto a problem of perturbation of gyrosopi system (3) by weak dissipative andnon-onservative positional fores [14, 27, 31, 32, 46, 48, 49, 59, 62, 63, 66, 74℄.
3.1 Stability of a gyroscopic systemIn the absene of dissipative and irulatory fores (δ = ν = 0), the polynomial(10) has four roots ±λ±, where

λ± =

√
−
1

2
(trK +Ω2) ± 1

2

√
(trK +Ω2)2 − 4detK. (51)Analysis of these eigenvalues yields the following result, see e.g. [47℄.

Proposition 4. If detK > 0 and trK < 0, gyrosopi system (3) with twodegrees of freedom is unstable by divergene for Ω2 < Ω−

0

2, unstable byutter for Ω−

0

2
6 Ω2 6 Ω+

0

2, and stable for Ω+

0

2
< Ω2, where the ritialvalues Ω−

0 and Ω+

0 are
0 6

√
−trK − 2

√detK =: Ω−

0 6 Ω+

0 :=

√
−trK + 2

√detK. (52)If detK > 0 and trK > 0, the gyrosopi system is stable for any Ω [2℄.If detK 6 0, the system is unstable [1℄.Representing for detK > 0 the equation (51) in the form
λ± =

√

−
1

2

(
Ω2 −

1

2

(
Ω−

0

2
+Ω+

0

2
))

± 1

2

√(
Ω2 −Ω−

0

2
) (
Ω2 −Ω+

0

2
)
. (53)we �nd that at Ω = 0 there are in general four real roots ±λ± = ±(Ω+

0 ±Ω−

0 )/2and system (3) is statially unstable. With the inrease of Ω2 the distane
λ+ −λ− between the two roots of the same sign is getting smaller. The roots aremoving towards eah other until they merge at Ω2 = Ω−

0

2 with the originationof a pair of double real eigenvalues ±ω0 with the Jordan bloks, where
ω0 =

1

2

√
Ω+

0

2
−Ω−

0

2
=

4
√detK > 0. (54)



48 O. N. KirillovFurther inrease of Ω2 yields splitting of ±ω0 to two ouples of omplex on-jugate eigenvalues lying on the irleReλ2 + Imλ2 = ω2
0. (55)The omplex eigenvalues move along the irle until at Ω2 = Ω+

0

2 they reahthe imaginary axis and originate a omplex-onjugate pair of double purelyimaginary eigenvalues ±iω0. For Ω2 > Ω+

0

2 the double eigenvalues split intofour simple purely imaginary eigenvalues whih do not leave the imaginary axis,Fig. 7.

Fig. 7. Stability diagram for the gyrosopi system with K < 0 (left) and the orre-sponding trajetories of the eigenvalues in the omplex plane for the inreasing param-eter Ω > 0 (right).Thus, the system (3) with K < 0 is statially unstable for Ω ∈ (−Ω−

0 ,Ω
−

0 ),it is dynamially unstable for Ω ∈ [−Ω+

0 ,−Ω
−

0 ]∪ [Ω−

0 ,Ω
+

0 ], and it is stable (gy-rosopi stabilization) for Ω ∈ (−∞,−Ω+

0 )∪ (Ω+

0 ,∞), see Fig. 7. The values ofthe gyrosopi parameter ±Ω−

0 de�ne the boundary between the divergene andutter domains while the values ±Ω+

0 originate the utter-stability boundary.
3.2 The influence of small damping and non-conservative positional forces

on the stability of a gyroscopic systemConsider the asymptoti stability domain in the plane (δ, ν) in the viinityof the origin, assuming that Ω 6= 0 is �xed. Observing that the third of theinequalities (22) is ful�lled for detK > 0 and the �rst one simply restrits theregion of variation of δ to the half-plane δtrD > 0, we fous our analysis on theremaining two of the onditions (22).Taking into aount the struture of oeÆients (26) and leaving the linearterms with respet to δ in the Taylor expansions of the funtions ν±cr(δ,Ω), we



Sensitivity analysis of Hamiltonian and reversible systems 49get the equations determining a linear approximation to the stability boundary
ν =

trKD − trKtrD − trDλ2
±(Ω)

2Ω
δ

=
2trKD + trD(Ω2 − trK) ± trD√

(Ω2 + trK)2 − 4detK
4Ω

δ, (56)where the eigenvalues λ±(Ω) are given by formula (51).For detK > 0 and trK > 0 the gyrosopi system is stable at any Ω. Con-sequently, the oeÆients λ2
±(Ω) are always real, and equations (56) de�ne ingeneral two lines interseting at the origin, Fig. 8. Sine trK > 0, the seondof the inequalities (22) is satis�ed for detD > 0, and it gives an upper boundof δ2 for detD < 0. Thus, a linear approximation to the domain of asymptotistability near the origin in the plane (δ, ν), is an angle-shaped area between twolines (56), as shown in Fig. 8. With the hange of Ω the size of the angle isvarying and moreover, the stability domain rotates as a whole about the origin.As Ω → ∞, the size of the angle tends to π/2 in suh a way that the stabilitydomain �ts one of the four quadrants of the parameter plane, as shown in Fig. 8(right olumn). From (56) it follows that asymptotially as Ω → 0

ν(Ω) =
νf

Ω

(
β∗ ±

trD
2

)
+ o

(
1

Ω

)
. (57)Consequently, the angle between the lines (56) tends to π for the matries Dsatisfying the ondition 4β2

∗ < (trD)2, see Fig. 8 (upper left). In this ase inthe linear approximation the domain of asymptoti stability spreads over twoquadrants and ontains the δ-axis. Otherwise, the angle tends to zero as Ω →

0, Fig. 8 (lower left). In the linear approximation the stability domain alwaysbelongs to one quadrant and does not ontain δ-axis, so that in the absene ofnon-onservative positional fores gyrosopi system (3) with K > 0 annot bemade asymptotially stable by damping fores with strongly-inde�nite matrix
D, whih is also visible in the three-dimensional piture of Fig. 5(b). The three-dimensional domain of asymptoti stability of near-Hamiltonian system (1) with
K > 0 and D semi-de�nite or weakly-ide�nite is inside a dihedral angle with the
Ω-axis as its edge, as shown in Fig. 5(a). With the inrease in |Ω|, the setion ofthe domain by the planeΩ = const is getting more narrow and is rotating aboutthe origin so that the points of the parameter plane (δ, ν) that where stable atlower |Ω| an lose their stability for the higher absolute values of the gyrosopiparameter (gyrosopi destabilization of a statially stable potential system inthe presene of damping and non-onservative positional fores).To study the ase when K < 0 we write equation (56) in the form

ν =
Ω+

0

Ω

[
γ∗ +

trD
4

√
Ω2

Ω+

0

2
− 1

(√
Ω2 −Ω+

0

2 ±
√
Ω2 −Ω−

0

2

)]
δ, (58)
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Fig. 8. For various Ω, bold lines show linear approximations to the boundary of theasymptoti stability domain (white) of system (1) in the viinity of the origin in theplane (δ, ν), when trK > 0 and detK > 0, and 4β2
∗ < (trD)2 (upper row) or 4β2

∗ >

(trD)2 (lower row).where
γ∗ :=

tr[K + (Ω+

0

2
−ω2

0)I]D

2Ω+

0

. (59)
Proposition 5. Let λ1(D) and λ2(D) be eigenvalues of D. Then,

|γ∗| 6 Ω+

0

|λ1(D) + λ2(D)|

4
+Ω−

0

|λ1(D) − λ2(D)|

4
. (60)Proof. With the use of the Cauhy-Shwarz inequality we obtain

|γ∗| 6 Ω+

0

|trD|

4
+

tr(K − trK
2

I)(D − trD
2

I)

2Ω+

0

6 Ω+

0

|trD|

4
+

|λ1(K) − λ2(K)||λ1(D) − λ2(D)|

4Ω+

0

. (61)Taking into aount that |λ1(K) − λ2(K)| = Ω−

0Ω
+

0 , we get inequality (60).Expression (58) is real-valued whenΩ2 > Ω+

0

2 orΩ2 6 Ω−

0

2. For suÆientlysmall |δ| the �rst inequality implies the seond of the stability onditions (22),whereas the last inequality ontradits it. Consequently, the domain of asymp-toti stability is determined by the inequalities δtrD > 0 and Q(δ, ν,Ω) > 0,and its linear approximation in the viinity of the origin in the (δ, ν)-plane hasthe form of an angle with the boundaries given by equations (58). For Ω tend-ing to in�nity the angle expands to π/2, whereas for Ω = Ω+

0 or Ω = −Ω+

0
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Fig. 9. For various Ω, bold lines show linear approximations to the boundary of theasymptoti stability domain (white) of system (1) in the viinity of the origin in theplane (δ, ν), when K < 0.it degenerates to a single line ν = δγ∗ or ν = −δγ∗ respetively. For γ∗ 6= 0these lines are not parallel to eah other, and due to inequality (60) they neverstay vertial, see Fig. 9 (left). The degeneration an, however, be removed in theseond-order approximation in δ

ν = ±δγ∗ ±
trD√

ω2
0 detD − γ2

∗

2Ω+

0

δ2 +O(δ3), (62)as shown by dashed lines in Fig. 9 (left). Therefore, gyrosopi stabilizationof statially unstable onservative system with K < 0 an be improved up toasymptoti stability by small damping and irulatory fores, if their magnitudesare in the narrow region with the boundaries depending on Ω. The lower thedesirable absolute value of the ritial gyrosopi parameterΩcr(δ, ν) the poorerhoie of the appropriate ombinations of damping and irulatory fores.To estimate the new ritial value of the gyrosopi parameter Ωcr(δ, ν),whih an deviate signi�antly from that of the onservative gyrosopi system,we onsider the formula (58) in the viinity of the points (0, 0,±Ω+

0 , ) in theparameter spae. Leaving only the terms, whih are onstant or proportional to√
Ω±Ω+

0 in both the numerator and denominator and assuming ν = γδ, we�nd
±Ω+

cr(γ) = ±Ω+

0 ±Ω+

0

2

(ω0trD)2
(γ∓ γ∗)2 + o((γ− γ∗)

2), (63)After substitution γ = ν/δ equations (63) take the form anonial for the Whit-ney umbrella. The domain of asymptoti stability onsists of two pokets of twoWhitney umbrellas, seleted by the onditions δtrD > 0 and Q(δ, ν,Ω) > 0.Equations (58) are a linear approximation to the stability boundary in theviinity of the Ω-axis. Moreover, they desribe in an impliit form a limit ofthe ritial gyrosopi parameter Ωcr(δ, γδ) when δ tends to zero, as a fun-tion of the ratio γ = ν/δ, Fig. 10(b). Most of the diretions γ give the limitvalue |Ω±
cr(γ)| > Ω+

0 with an exeption for γ = γ∗ and γ = −γ∗, so that
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Ω+

cr(γ∗) = Ω+

0 and Ω−

cr(−γ∗) = −Ω+

0 . Estimates of the ritial gyrosopi pa-rameter (63) are extended to the ase of arbitrary number of degrees of freedomby the following statement.

Fig. 10. Blowing the domain of gyrosopi stabilization of a statially unstable onser-vative system with K < 0 up to the domain of asymptoti stability with the Whitneyumbrella singularities (a). The limits of the ritial gyrosopi parameter Ω±
cr as fun-tions of γ = ν/δ (b).

Theorem 2. Let the system (3) with even number m of degrees of freedom begyrosopially stabilized for Ω > Ω+

0 and let at Ω = Ω+

0 its spetrum ontaina double eigenvalue iω0 with the Jordan hain of generalized eigenvetors
u0, u1, satisfying the equations

(−Iω2
0 + iω0Ω

+

0 G + K)u0 = 0,

(−Iω2
0 + iω0Ω

+

0 G + K)u1 = −(2iω0I +Ω+

0 G)u0. (64)De�ne the real quantities d1, d2, n1, n2, and γ∗ as
d1 = Re(uT

0Du0), d2 = Im(uT
0Du1 − uT

1Du0),

n1 = Im(uT
0Nu0), n2 = Re(uT

0Nu1 − uT
1Nu0), (65)

γ∗ = −iω0

uT
0Du0

uT
0Nu0

, (66)where the bar over a symbol denotes omplex onjugate.Then, in the viinity of γ := ν/δ = γ∗ the limit of the ritial value ofthe gyrosopi parameter Ω+

cr of the near-Hamiltonian system as δ → 0 is
Ω+

cr(γ) = Ω+

0 +
n2

1(γ− γ∗)
2

µ2(ω0d2 − γ∗n2 − d1)2
, (67)whih is valid for |γ− γ∗| ≪ 1.



Sensitivity analysis of Hamiltonian and reversible systems 53Proof. Perturbing the system (3), whih is stabilized by the gyrosopi foreswith Ω > Ω+

0 , by small damping and irulatory fores, yields an inrement toa simple eigenvalue [53℄
λ = iω−

ω2uTDuδ− iωuTNuν

uTKu +ω2uTu
+ o(δ, ν). (68)Choose the eigenvalues and the orresponding eigenvetors that merge at Ω =

Ω+

0

iω(Ω) = iω0 ± iµ
√
Ω−Ω+

0 + o(|Ω−Ω+

0 |
1

2 ),

u(Ω) = u0 ± iµu1

√
Ω−Ω+

0 + o(|Ω−Ω+

0 |
1

2 ), (69)where
µ2 = −

2ω2
0u

T
0u0

Ω+

0 (ω2
0u

T
1u1 − uT

1Ku1 − iω0Ω
+

0 uT
1Gu1 − uT

0u0)
. (70)Sine D and K are real symmetri matries and N is a real skew-symmetri one,the �rst-order inrement to the eigenvalue iω(Ω) given by (68) is real-valued.Consequently, in the �rst approximation in δ and ν, simple eigenvalue iω(Ω)remains on the imaginary axis, if ν = γ(Ω)δ, where

γ(Ω) = −iω(Ω)
uT (Ω)Du(Ω)

uT (Ω)Nu(Ω)
. (71)Substitution of the expansions (69) into the formula (71) yields

γ(Ω) = −(ω0 ± µ
√
Ω−Ω+

0 )
d1 ∓ µd2

√
Ω −Ω+

0

n1 ± µn2

√
Ω −Ω+

0

, (72)wherefrom the expression (67) follows, if |γ− γ∗| ≪ 1.Substituting γ = ν/δ in expression (72) yields the estimate for the ritialvalue of the gyrosopi parameter Ω+

cr(δ, ν)

Ω+

cr(δ, ν) = Ω+

0 +
n2

1(ν− γ∗δ)
2

µ2(ω0d2 − γ∗n2 − d1)2δ2
. (73)We show now that for m = 2 expression (67) implies (63). At the ritial valueof the gyrosopi parameter Ω+

0 de�ned by equation (52), the double eigenvalue
iω0 with ω0 given by (54) has the Jordan hain

u0 =

[
−iω0Ω

+

0 − k12

−ω2
0 + k11

]
, u1 =

−1

ω2
0 − k22

[
0

iω0(k22 − k11) −Ω+

0 k12

]
. (74)



54 O. N. KirillovWith the vetors (74) equation (70) yields
µ2 =

Ω+

0

2

(ω2
0 − k11)(ω2

0 − k22)

Ω+

0

2
ω2

0 − k2
12

=
Ω+

0

2
> 0, (75)whereas the formula (66) reprodues the oeÆient γ∗ given by (59). To showthat (63) follows from (67) it remains to alulate the oeÆients (65). We have

n1 = −2Ω+

0ω0(ω2
0 − k11), ω0d2 − γ∗n2 − d1 = −2ω2

0(ω2
0 − k11)trD. (76)Taking into aount that (Ω+

0 )2 = −trK + 2ω2
0, and using the relations (76) in(73) we exatly reprodue (63).Therefore, in the presene of small damping and non-onservative positionalfores, gyrosopi fores an both destabilize a statially stable onservative sys-tem (gyrosopi destabilization) and stabilize a statially unstable onservativesystem (gyrosopi stabilization). The �rst e�et is essentially related with thedihedral angle singularity of the stability boundary, whereas the seond one isgoverned by the Whitney umbrella singularity. In the remaining setions wedemonstrate how these singularities appear in mehanial systems.

4 The modified Maxwell-Bloch equations with mechanical

applicationsThe modi�ed Maxwell-Bloh equations are the normal form for rotationallysymmetri, planar dynamial systems [28, 48, 59℄. They follow from equation (1)for m = 2, D = I, and K = κI, and thus an be written as a single di�erentialequation with the omplex oeÆients�x+ iΩ _x+ δ _x+ iνx+ κx = 0, x = x1 − ix2, (77)where κ orresponds to potential fores. Equations in this form appear in gy-rodynamial problems suh as the tippe top inversion, the rising egg, and theonset of osillations in the squealing dis brake and the singing wine glass [14,31, 48, 59, 62, 66, 68, 76℄.Aording to stability onditions (22) the solution x = 0 of equation (77) isasymptotially stable if and only if
δ > 0, Ω >

ν

δ
−
δ

ν
κ. (78)For κ > 0 the domain of asymptoti stability is a dihedral angle with the

Ω-axis serving as its edge, Fig. 11(a). The setions of the domain by the planes
Ω = const are ontained in the angle-shaped regions with the boundaries

ν =
Ω±

√
Ω2 + 4κ

2
δ. (79)
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Fig. 11. Two on�gurations of the asymptoti stability domain of the modi�ed Maxwell-Bloh equations for κ > 0 (a) and κ < 0 (b) orresponding to gyrosopi destabilizationand gyrosopi stabilization respetively; Hauger's gyropendulum ().The domain shown in Fig. 11(a) is a partiular ase of that depited in Fig. 5(a).For K = κI the interval [−νf, νf] shown in Fig. 5(a) shrinks to a point so thatat Ω = 0 the angle is bounded by the lines ν = ±δ√κ and thus it is less than
π. The domain of asymptoti stability is twisting around the Ω-axis in suh amanner that it always remains in the half-spae δ > 0, Fig. 11(a). Consequently,the system stable at Ω = 0 an beome unstable at greater Ω, as shown inFig. 11(a) by the dashed line. The larger magnitudes of irulatory fores, thelower |Ω| at the onset of instability.As κ > 0 dereases, the hypersurfaes forming the dihedral angle approaheah other so that, at κ = 0, they temporarily merge along the line ν = 0and a new on�guration originates for κ < 0, Fig. 11(b). The new domainof asymptoti stability onsists of two disjoint parts that are pokets of twoWhitney umbrellas singled out by inequality δ > 0. The absolute values ofthe gyrosopi parameter Ω in the stability domain are always not less than
Ω+

0 = 2
√

−κ. As a onsequene, the system unstable at Ω = 0 an beomeasymptotially stable at greater Ω, as shown in Fig. 11(b) by the dashed line.
4.1 Stability of Hauger’s gyropendulumHauger's gyropendulum [14℄ is an axisymmetri rigid body of mass m hingedat the point O on the axis of symmetry as shown in Figure (11)(). The body'smoment of inertia about the axis through the point O perpendiular to the axisof symmetry is denoted by I, the body's moment of inertia about the axis ofsymmetry is denoted by I0, and the distane between the fastening point and theenter of mass is s. The orientation of the pendulum, whih is assoiated withthe trihedron Oxfyfzf, with respet to the �xed trihedron Oxiyizi is spei�edby the angles ψ, θ, and φ. The pendulum experienes the fore of gravity G =

mg and a follower torque T that lies in the plane of the zi and zf oordinateaxes. The moment vetor makes an angle of ηα with the axis zi, where η is a



56 O. N. Kirillovparameter (η 6= 1) and α is the angle between the zi and zf axes. Additionally,the pendulum experienes the restoring elasti moment R = −rα in the hingeand the dissipative moments B = −bωs and K = −kφ, where ωs is the angularveloity of an auxiliary oordinate system Oxsyszs with respet to the inertialsystem and r, b, and k are the orresponding oeÆients.Linearization of the nonlinear equations of motion derived in [14℄ with thenew variables x1 = ψ and x2 = θ and the subsequent nondimensionalizationyield the Maxwell-Bloh equations (77) where the dimensionless parameters aregiven by
Ω =

I0

I
, δ =

b

Iω
, κ =

r−mgs

Iω2
, ν =

1− η

Iω2
T, ω = −

T

k
. (80)The domain of asymptoti stability of the Hauger gyropendulum, given by (78),is shown in Fig. 11(a,b).Aording to formulas (52) and (54), for the statially unstable gyropen-dulum (κ < 0) the singular points on the Ω-axis orrespond to the ritialvalues ±Ω+

0 = ±2
√

−κ and the ritial frequeny ω0 =
√

−κ. Noting that
Ω+

cr(ν = ±
√

−κδ, δ) = ±Ω+

0 and substituting γ = ν/δ into formula (78), weexpand Ω+

cr(γ) in a series in the neighborhood of γ = ±√
−κ

Ω+

cr(γ) = ±2
√

−κ± 1√
−κ

(γ∓
√

−κ)2 + o
(
(γ∓

√
−κ)2

)
. (81)Proeeding from γ to ν and δ in (81) yields approximations of the stabilityboundary near the singularities:

Ω+

cr(ν, δ) = ±2
√

−κ± 1√
−κ

(ν∓ δ√−κ)2

δ2
. (82)They also follow from formula (63) after substitutingω0 =

√
−κ, and γ∗ =

√
−κ,where the last value is given by (59). Thus, Hauger's gyropendulum, whih isunstable at Ω = 0, an beome asymptotially stable for suÆiently large |Ω| >

Ω+

0 under a suitable ombination of dissipative and nononservative positionalfores. Note that Hauger failed to �nd Whitney umbrella singularities on theboundary of the pendulum's gyrosopi stabilization domain.
4.2 Friction-induced instabilities in rotating elastic bodies of revolutionThe modi�ed Maxwell-Bloh equations (77) with Ω = 2Ω̃, κ = ρ2 − Ω̃2, and
ν = 0 and δ = 0, where ρ > 0 is the frequeny of free vibrations of the potentialsystem orresponding to δ = Ω̃ = ν = 0, desribe a two-mode approximationof the models of rotating elasti bodies of revolution after their linearizationand disretization [67, 71, 76℄. In the absene of dissipative and non-onservative



Sensitivity analysis of Hamiltonian and reversible systems 57positional fores the harateristi polynomial (10) orresponding to the oper-ator L0(Ω̃) = Iλ2 + 2λΩ̃G + (ρ2 − Ω̃2)I, whih belongs to the lass of matrixpolynomials onsidered, e.g., in [38℄, has four purely imaginary roots
λ±p = iρ± iΩ̃, λ±n = −iρ± iΩ̃. (83)In the plane (Ω̃, Im λ) the eigenvalues (83) form a olletion of straight linesinterseting with eah other { the spetral mesh [64, 76℄. Two nodes of themesh at Ω̃ = 0 orrespond to the double semi-simple eigenvalues λ = ±iρ. Thedouble semi-simple eigenvalue iρ at Ω̃ = Ω̃0 = 0 has two linearly-independenteigenvetors u1 and u2

u1 =
1√
2ρ

(
0

1

)
, u2 =

1√
2ρ

(
1

0

)
. (84)The eigenvetors are orthogonal uT

i uj = 0, i 6= j, and satisfy the normalizationondition uT
i ui = (2ρ)−1. At the other two nodes at Ω̃ = ±Ω̃d there exist doublesemi-simple eigenvalues λ = 0. The range |Ω̃| < Ω̃d = ρ is alled subritial forthe gyrosopi parameter Ω̃.In the following, with the use of the perturbation theory of multiple eigen-values, we desribe the deformation of the mesh aused by dissipative (δD)and non-onservative perturbations (νN), originating, e.g. from the fritionalontat, and larify the key role of inde�nite damping and non-onservative po-sitional fores in the development of the subritial utter instability. This willgive a lear mathematial desription of the mehanism of exitation of parti-ular modes of rotating strutures in fritional ontat, suh as squealing disbrakes and singing wine glasses [67, 71, 76℄.Under perturbation of the gyrosopi parameter Ω̃ = Ω̃0 + ∆Ω̃, the doubleeigenvalue iρ into two simple ones bifurates aording to the asymptoti formula[58℄
λ±p = iρ+ i∆Ω̃

f11 + f22

2
± i∆Ω̃

√
(f11 − f22)2

4
+ f12f21 (85)where the quantities fij are

fij = uT
j

∂L0(Ω̃)

∂Ω̃
ui

∣∣∣∣∣
eΩ=0,λ=iρ

= 2iρuT
j Gui. (86)The skew symmetry of G yields f11 = f22 = 0, f12 = −f21 = i, so that (86) givesthe exat result (83).

4.2.1 Deformation of the spectral mesh. Consider a perturbation of the gy-rosopi system L0(Ω̃) + ∆L(Ω̃), assuming that the size of the perturbation
∆L(Ω̃) = δλD + νN ∼ ε is small, where ε = ‖∆L(0)‖ is the Frobenius norm



58 O. N. Kirillovof the perturbation at Ω̃ = 0. The behavior of the perturbed eigenvalue iρ forsmall Ω̃ and small ε is desribed by the asymptoti formula [58℄
λ = iβ+ iΩ̃

(f11 + f22)

2
+ i
ǫ11 + ǫ22

2

± i

√
(Ω̃(f11 − f22) + ǫ11 − ǫ22)2

4
+ (Ω̃f12 + ǫ12)(Ω̃f21 + ǫ21), (87)where fij are given by (86) and ǫij are small omplex numbers of order ε

ǫij = uT
j ∆L(0)ui = iρδuT

j Dui + νuT
j Nui. (88)With the use of the vetors (84) we obtain

λ = iρ−
µ1 + µ2

4
δ±

√
c, c =

(
µ1 − µ2

4

)2

δ2 +

(
iΩ̃+

ν

2ρ

)2

, (89)where the eigenvalues µ1, µ2 of D satisfy the equation µ2 − µtrD + detD = 0.Separation of real and imaginary parts in equation (89) yieldsRe λ = −
µ1 + µ2

4
δ±

√
|c| + Re c

2
, Imλ = ρ±

√
|c| − Re c

2
, (90)where Re c =

(
µ1 − µ2

4

)2

δ2 − Ω̃2 +
ν2

4ρ2
, Im c =

Ω̃ν

ρ
. (91)The formulas (89)-(91) desribe splitting of the double eigenvalues at the nodesof the spetral mesh due to variation of parameters.Assuming ν = 0 in formulas (90) we �nd that

(Re λ+
µ1 + µ2

4
δ

)2

+ Ω̃2 =
(µ1 − µ2)2

16
δ2, Imλ = ρ (92)when

Ω̃2 −
(µ1 − µ2)2

16
δ2 < 0, (93)and

Ω̃2 − (Im λ− ρ)
2

=
(µ1 − µ2)2

16
δ2, Reλ = −

µ1 + µ2

4
δ, (94)when the sign in inequality (93) is opposite. For a given δ equation (94) de�nesa hyperbola in the plane (Ω̃, Im λ), while (92) is the equation of a irle in theplane (Ω̃,Reλ), as shown in Fig. 12(a,). For traking the omplex eigenvaluesdue to hange of the gyrosopi parameter Ω̃, it is onvenient to onsider theeigenvalue branhes in the three-dimensional spae (Ω̃, Imλ,Re λ). In this spaethe irle belongs to the plane Im λ = ρ and the hyperbola lies in the planeReλ = −δ(µ1 + µ2)/4, see Fig. 13(a,).
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Fig. 12. Origination of a latent soure of the subritial utter instability in preseneof full dissipation: Submerged bubble of instability (a); oalesene of eigenvalues inthe omplex plane at two exeptional points (b); hyperboli trajetories of imaginaryparts ().The radius rb of the irle of omplex eigenvalues|the bubble of instabil-ity|and the distane db of its enter from the plane Re λ = 0 are expressed bymeans of the eigenvalues µ1 and µ2 of the matrix D

rb = |(µ1 − µ2)δ|/4, db = |(µ1 + µ2)δ|/4. (95)Consequently, the bubble of instability is \submerged" under the surfae Reλ =

0 in the spae (Ω̃, Imλ,Reλ) and does not interset the plane Re λ = 0 under theondition db > rb, whih is equivalent to the positive-de�niteness of the matrix
δD. Hene, the role of full dissipation or pervasive damping is to deform thespetral mesh in suh a way that the double semi-simple eigenvalue is inatedto the bubble of omplex eigenvalues (92) onneted with the two branhes ofthe hyperbola (94) at the pointsImλ = ρ, Reλ = −δ(µ1 + µ2)/4, Ω̃ = ±δ(µ1 − µ2)/4, (96)and to plunge all the eigenvalue urves into the region Re λ 6 0. The eigenvaluesat the points (96) are double and have a Jordan hain of order 2. In the omplexplane the eigenvalues move with the variation of Ω̃ along the lines Reλ = −dbuntil they meet at the points (96) and then split in the orthogonal diretion;however, they never ross the imaginary axis, see Fig. 12(b).The radius of the bubble of instability is greater then the depth of its submer-sion under the surfae Reλ = 0 only if the eigenvalues µ1 and µ2 of the dampingmatrix have di�erent signs, i.e. if the damping is inde�nite. The damping withthe inde�nite matrix appears in the systems with fritional ontat when thefrition oeÆient is dereasing with relative sliding veloity [35, 36, 40℄. Inde�-nite damping leads to the emersion of the bubble of instability meaning that the
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Fig. 13. The mehanism of subritial utter instability (bold lines): The ring (bub-ble) of omplex eigenvalues submerged under the surfae Re λ = 0 due to ation ofdissipation with detD > 0 - a latent soure of instability (a); repulsion of eigenvaluebranhes of the spetral mesh due to ation of non-onservative positional fores (b);emersion of the bubble of instability due to inde�nite damping with detD < 0 ();ollapse of the bubble of instability and immersion and emersion of its parts due toombined ation of dissipative and non-onservative positional fores (d).eigenvalues of the bubble have positive real parts in the range Ω̃2 < Ω̃2
cr, where

Ω̃cr = δ
2

√
− detD. Changing the damping matrix δD from positive de�nite toinde�nite we trigger the state of the bubble of instability from latent (Reλ < 0)to ative (Re λ > 0), see Fig. 13(a,). Sine for small δ we have Ω̃cr < Ω̃d, theutter instability is subritial and is loalized in the neighborhood of the nodesof the spetral mesh at Ω̃ = 0.In the absene of dissipation, the non-onservative positional fores destroythe marginal stability of gyrosopi systems [12, 13℄. Indeed, assuming δ = 0 inthe formula (89) we obtain

λ±p = iρ± iΩ̃± ν

2ρ
, λ±n = −iρ± iΩ̃∓ ν

2ρ
. (97)



Sensitivity analysis of Hamiltonian and reversible systems 61Aording to (97), the eigenvalues of the branhes iρ+ iΩ̃ and −iρ− iΩ̃ of thespetral mesh get positive real parts due to perturbation by the non-onservativepositional fores. The eigenvalues of the other two branhes are shifted to theleft from the imaginary axis, see Fig. 13(b).

Fig. 14. Subritial utter instability due to ombined ation of dissipative and non-onservative positional fores: Collapse and emersion of the bubble of instability (a);exursions of eigenvalues to the right side of the omplex plane when eΩ goes fromnegative values to positive (b); rossing of imaginary parts ().In ontrast to the e�et of inde�nite damping the instability indued bythe non-onservative fores only is not loal. However, in ombination with thedissipative fores, both de�nite and inde�nite, the non-onservative fores anreate subritial utter instability in the viinity of diabolial points.From equation (89) we �nd that in presene of dissipative and irulatoryperturbations the trajetories of the eigenvalues in the omplex plane are de-sribed by the formula
(Re λ+

trD
4
δ

)
(Imλ − ρ) =

Ω̃ν

2ρ
. (98)Non-onservative positional fores with ν 6= 0 destroy the merging of modes,shown in Fig. 12, so that the eigenvalues move along the separated trajetories.Aording to (98) the eigenvalues with | Imλ| inreasing due to an inrease in |Ω̃|move loser to the imaginary axis then the others, as shown in Fig 14(b). In thespae (Ω̃, Im λ,Reλ) the ation of the non-onservative positional fores sepa-rates the bubble of instability and the adjaent hyperboli eigenvalue branhesinto two non-interseting urves, see Fig 13(d). The form of eah of the neweigenvalue urves arries the memory about the original bubble of instability,so that the real parts of the eigenvalues an be positive for the values of the



62 O. N. Kirillovgyrosopi parameter loalized near Ω̃ = 0 in the range Ω̃2 < Ω̃2
cr, where

Ω̃cr = δ
trD
4

√

−
ν2 − δ2ρ2 detD
ν2 − δ2ρ2(trD/2)2

. (99)follows from the equations (89)-(91).The eigenfrequenies of the unstable modes from the interval Ω̃2 < Ω̃2
cr areloalized near the frequeny of the double semi-simple eigenvalue at the node ofthe undeformed spetral mesh: ω−

cr < ω < ω+

cr

ω±

cr = ρ± ν

2ρ

√

−
ν2 − δ2ρ2 detD
ν2 − δ2ρ2(trD/2)2

. (100)When the radiand in formulas (99) and (100) is real, the eigenvalues make theexursion to right side of the omplex plane, as shown in Fig. 14(b). In presene ofnon-onservative positional fores suh exursions behind the stability boundaryare possible, even when dissipation is full (detD > 0).The equation (99) desribes the surfae in the spae of the parameters δ,
ν, and Ω̃, whih is an approximation to the stability boundary. Extrating theparameter ν in (99) yields

ν = ±δρtrD√
δ2 detD + 4Ω̃2

δ2(trD)2 + 16Ω̃2
. (101)If detD > 0 and Ω̃ is �xed, the formula (101) desribes two independent urvesin the plane (δ, ν) interseting with eah other at the origin along the straightlines given by the expression

ν = ±ρtrD
2
δ. (102)However, in ase when detD < 0, the radial in (101) is real only for δ2 <

−4Ω̃2/ detD meaning that (101) desribes two branhes of a losed loop inthe plane of the parameters δ and ν. The loop is self-interseting at the originwith the tangents given by the expression (102). Hene, the shape of the surfaedesribed by equation (101) is a one with the "8"-shaped loop in a ross-setion,see Fig. 15(a). The asymptoti stability domain is inside the two of the fourpokets of the one, seleted by the inequality δtrD > 0, as shown in Fig. 15(a).The singularity of the stability domain at the origin is the degeneration of amore general on�guration shown in Fig. 5(b).The domain of asymptoti stability bifurates when detD hanges from neg-ative to positive values. This proess is shown in Fig. 15. In ase of inde�nitedamping there exists an instability gap due to the singularity at the origin.Starting in the utter domain at Ω̃ = 0 for any ombination of the parameters
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Fig. 15. Domains of asymptoti stability in the spae (δ, ν, eΩ) for di�erent types ofdamping: Inde�nite damping detD < 0 (a); semi-de�nite (pervasive) damping detD =

0 (b); full dissipation detD > 0 ().
δ and ν one an reah the domain of asymptoti stability at higher values of
|Ω̃| (gyrosopi stabilization), as shown in Fig. 15(a) by the dashed line. Thegap is responsible for the subritial utter instability loalized in the viinityof the node of the spetral mesh of the unperturbed gyrosopi system. WhendetD = 0, the gap vanishes in the diretion ν = 0. In ase of full dissipation
(detD > 0) the singularity at the origin unfolds. However, the memory aboutit is preserved in the two instability gaps loated in the folds of the stabilityboundary with the loally strong urvature, Fig. 15(). At some values of δ and
ν one an penetrate the fold of the stability boundary with the hange of Ω, asshown in Fig. 15() by the dashed line. For suh δ and ν the utter instabilityis loalized in the viinity of Ω̃ = 0.The phenomenon of the loal subritial utter instability is ontrolled bythe eigenvalues of the matrix D. When both of them are positive, the folds ofthe stability boundary are more pronouned if one of the eigenvalues is loseto zero. If one of the eigenvalues is negative and the other is positive, the loalsubritial utter instability is possible for any ombination of δ and ν inludingthe ase when the non-onservative positional fores are absent (ν = 0).The instability mehanism behind the squealing dis brake or singing wineglass an be desribed as the emersion (or ativation) due to inde�nite dampingand non-onservative positional fores of the bubbles of instability reated bythe full dissipation in the viinity of the nodes of the spetral mesh.
ConclusionsInvestigation of stability and sensitivity analysis of the ritial parameters andritial frequenies of near-Hamiltonian and near-reversible systems is ompli-ated by the singularities of the boundary of asymptoti stability domain, whih



64 O. N. Kirillovare related to the multiple eigenvalues. In the paper we have developed themethods of approximation of the stability boundaries near the singularities andobtained estimates of the ritial values of parameters in the ase of arbitrarynumber of degrees of freedom using the perturbation theory of eigenvalues andeigenvetors of non-self-adjoint operators. In ase of two degrees of freedom thedomain of asymptoti stability of near-reversible and near-Hamiltonian systemsis fully desribed and its typial on�gurations are found. Bifuration of the sta-bility domain due to hange of the matrix of dissipative fores is disovered anddesribed. Two lasses of inde�nite damping matries are found and the expliitthreshold, separating the weakly- and strongly inde�nite matries is derived.The role of dissipative and non-onservative fores in the paradoxial e�etsof gyrosopi stabilization of statially unstable potential systems as well as ofdestabilization of statially stable ones is lari�ed. Finally, the mehanism ofsubritial utter instability in rotating elasti bodies of revolution in fritionalontat, exiting osillations in the squealing dis brake and in the singing wineglass, is established.
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