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Abstract 

Among the number of optical sources, vertical-cavity surface-emitting lasers (VCSELs) 
are relatively recent type of semiconductor laser devices, which are attractive for a 
number of applications particularly for free space optical (FSO) communication 
systems. In such systems reliable optical devices with lower power consumption and 
low cost are among the key requirements. VCSELs typically operate with unstable 
output polarization modes, and there is a need to improve their output power regarding 
to the polarization instability, particularly when introducing the optical feedback (OF).  

This thesis investigate a number of key properties of VCSEL including the polarization 
instability, hysteresis loop (HL), relative intensity noise (RIN) and how to control the 
polarization switching (PS). The investigations are based on the analytical studies and 
extensive experimental work. PS properties of VCSEL are investigated by introducing 
variable polarization optical feedback (VPOF) with the modulation frequency and 
modulation depth. The dependency conditions for the HL, RIN and PS are determined 
with VPOF. Under OF, the threshold current (I th) of VCSEL is reduced by 11.5% and 
the PS, which is demonstrated theoretically and experimentally, is completely 
suppressed. The PS positions are depending on the polarization angle of OF, OF levels 
and the bias current. The PS disappeared with the modulation depth of 78.66%, whereas 
it is entirely vanished with the modulation frequency of 200 MHz. The hysteresis width 
of the VCSEL polarization modes is reduced by increasing the feedback level. The 
minimum RIN value of -156 dB/Hz is achieved at a zero degree of the polarization 
angle for the dominant polarization mode of VCSEL under VPOF.  

For the first time, a novel technique based on employing orthogonal polarization OF is 
proposed to supressed the nonlinearity associated with the modulated VCSEL, where 
the second, third, and fourth harmonics are completely suppressed to the noise floor. 
Finally, optimal operating conditions for a high-quality polarization-resolved chaos 
synchronization of the polarization modes of VCSEL with VPOF are experimentally 
and theoretically studied. A perfect value of 99% of the correlation dynamics for the 
chaotic synchronization of the polarization modes of VCSEL is found with a zero time 
delay over a wide range of polarization angle.  

Finally, Simulink and Origin software version 6.1 are used in this work to simulate and 
plot the results. The simulation results are agreed with the experimental results, which 
show that the chaotic synchronization dynamic of the polarization modes can be 
achieved by VPOF. 
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Chapter 1  

Introduction 

 

1.1 Background   
 

Free space optics (FSO) or outdoor optical wireless, is concerned with the transmission 

of information through the atmosphere from one point to another by using visual or 

laser beam to get optical communications. A significant progress has been made since 

1960s in FSO with the discovery of optical sources, particularly laser sources. Since 

then, the FSO has become one of the important fields in communications and has 

attracted a large number of researchers at a global level. The FSO first stated in the 

military application for covert communication because of inherent security compared 

with the radio frequency based technologies [1]. FSO technologies have a number of 

attractive features such as narrow optical beam width, thus avoiding potential interfere 

with the other beam, low costs system requirements, no fibre optic cables to lay (so no 

need for expensive rooftop connections equipment), very large bandwidth, excellent 

frequency re-use capabilities and compatibility with the exiting optical fibre 

communication networks [2, 3]. 

In vast majority of the semiconductor laser diode (SLD) applications, such as 

communication systems employing a high pump source and on optical fibre, the edge 

emitting lasers (EELs) are the dominant source and are widely used. However, EELs are 

too costly requiring optical fibre coupling, which results in additional power loss. 

Therefore, attention has been focused on VCSEL devices with potentially low 
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manufacturing cost for various applications including optical communication systems. 

VCSEL is a semiconductor laser, which has a resonant cavity that is vertically formed 

with the surfaces of the epitaxial layers. The lasing of VCSELs was first demonstrated 

in 1979 where a gallium indium arsenide phosphide grown on an indium phosphide 

GaInAsP/InP material was used for the active region, the emitted light had a wavelength 

of 1300nm. VCSEL devices with optical and electrical properties offer a number of 

advantages such as a low threshold current, which enables these devices to be directly 

modulated at high frequencies, small beam divergence that allows good coupling 

efficiency with the optical fibre, symmetrical output beam profile, small switching 

transients, circular light-output mode, high packaging density, and very low power 

consumption compared to the conventional edge-emitting semiconductor laser devices 

[4]. VCSELs are the key and dominant source in local area networks thanks to their 

advantages such as wafer scale testing and ease of fabrication [5].  

The VCSELs at 850 nm wavelength have been widely used in optical interconnections 

[6], in local area networks [7] due to their lower-power consumption, higher data rate 

and low manufacturing cost [8].VCSELs have also been adopted in chaos based optical 

wireless communications (OWC) thanks to their unpredictable behaviours under the 

strong optical feedback (OF) regime [9, 10].  

In the past few years, the chaotic dynamics of VCSELs with OF has been the subject of 

great interest for researchers theoretically and experimentally [11, 12], particularly, for 

secure optical communications. Recently, chaotic synchronization of the orthogonal 

polarization modes of VCSEL has received wide attention over previously available 

technology as a means of offering a secure communications [13, 14]. In this context, 

chaos-based optical communications using laser polarization modes intensity have 

attracted intensive research interest due to its encryption capabilities [15]. The 
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information signal is used intensity modulate the VCSEL, which is set to operate in the 

chaotic oscillation of the polarization mode, and can be retrieved at the receiver upon 

synchronization with an identical VCSEL [11, 16]. VCSELs have also played an 

important role in deployment and optimization of high-speed short-range 

communication links, thanks to their attractive feature [8]. 

However, VCSEL present a number of problems, including the polarization instability 

also known as polarization switching (PS). Another drawback is that VCSELs have low 

power emission compared with EELs. This is because of high reflectivity of the 

distributed Bragg reflector (DBR) mirror which led to low quantum efficiency [17]. PS 

can occur at different conditions, such as free running VCSEL operation by either 

increasing the injection current or changing of the temperature of the laser cavity [18]. 

PS of VCSELs can also happen by the external parturition, such as an optical feedback 

[19] and an optical injection [20]. On the other hand, VCSELs usually emit a multi 

transverse mode especially at high level of injection current due to spatial hole-burning 

and carrier diffusion effects as a result of large transverse dimensions (~10 μm radius). 

These drawbacks significantly affect the device performance, and therefore need to be 

improved. VCSELs are very sensitive to the effects of OF because of their high gain 

and a very short cavity length (few μm) [21]. 

External OF, on the other hand, can be used for controlling instability associated with 

VCSELs thus improving the performance in form of reduced threshold current, as a 

result of reduced losses inside the laser cavity, and intensity noise [22, 23]. Threshold 

current reduction of the semiconductor laser is a typical feature of optical feedback [21, 

24]. For semiconductor laser diodes a maximum threshold current reduction of 11.5% 

has been achieved with a short external cavity length (7.5 cm) of the OF [25]. While a 

maximum threshold reduction of 5.6% has been reported for VCSEL with polarization 
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OF in [26]. It is well-known that the conventional OF strongly influences the VCSEL 

dynamics. Therefore, the dynamics of semiconductor lasers subject to the conventional 

OF [27, 28] have widely been studied both practically and theoretically [27, 29, 30]. 

The relative intensity noise (RIN) characteristics of semiconductor laser are important 

parameter in many applications and needs to be kept low, for example in optical 

communications [31]. Fluctuations in photon densities result in the intensity noise 

observed at the output of the laser [32]. RIN of -135 dB at a low feedback level between 

-45 dB to -35 dB has been reported, which is degraded by about 20 dB at a high 

feedback level of -10 dB [33]. However, a theoretical model of a semiconductor laser 

has demonstrated a significant reduction in RIN from -124.8 to -149 dB/Hz when using 

OF [34]. Despite of a rich varieties of dynamics in VCSELs provided by the 

conventional OF, the dynamics of rotated polarization angle  ߠ௣ of the OF are 

considerably different [35]. This technique can lead to a complex dynamics, such as the 

chaotic behaviour, which could be exploited in optical communications for security 

reasons. In recent years we have seen the application of chaotic systems in optical 

communications because of the chaos dynamic, which is continually unstable and is 

difficult or impossible to predict its system behaviour. This feature adds more security 

in communication systems [11]. 

This thesis includes an intensive experimental works about the dynamics of variable 

polarization optical feedback (VPOF) for the polarization characteristics of VCSEL, 

which gives more insight and assessment of the VCSEL characteristics. The 

experimental results agreed well with the theoretical results obtained and it 

demonstrated the recent theoretical analysis in literature. Interestingly, in this work 

different properties have been considered including PS, threshold current, RIN 

characteristics and nonlinearity of the VCSEL. It has been found that these parameters 
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are drastically affected by the orthogonal OF with rotated ߠ௣. On the other hand, 

selective OF is also applied, when the difference between the feedback strengths of the 

two modes is great enough the OF assumes the dominant role on the polarization 

properties. The VCSEL with a strong feedback level requires a smaller ߠ௣ to implement 

PS.  Moreover, preserving OF is considered, the polarization properties is different 

compared with selective OF, the PS was not observed for the whole range of the OF 

levels that were used in the measurements.  

A novel way was used in this thesis to suppress harmonic distortion of VCSEL based on 

T-shaped polarization OF. It is demonstrated that the power peaks of the spectrum are 

strongly dependent on the type of the polarization that is being pumped back into the 

VCSEL.  The harmonic distortion decreases and the spectrum peaks (2nd and 3rd) were 

completely suppressed when using the orthogonal polarization OF. For the RIN 

characteristics, it is show that RIN level strongly depends on the PS position and 

modulation signal. It is found that VPOF with modulation signal leads to increased 

oscillations of the signal and a change the RIN spectrum.  

Furthermore, the VCSEL properties under VPOF combine with important parameter of 

modulation signal, frequency and modulation depth have also been demonstrated in this 

work. These modulation parameters can be used to eliminate PS of VCSEL. In terms of 

the chaotic dynamic of the VCSEL under VPOF, a clear relationship has been found 

between achieving a higher value of chaotic synchronization and both  ߠ௣  and OF level 

based on VPOF. A correlation coefficient function has been used to evaluate the chaotic 

synchronization modes, a maximum value obtained is -0.99 without time delay between 

the two modes. As far as we know, this is a better value for practical work. Moreover, a 

complex dynamics and high dimension chaos synchronization have been demonstrated 

for the polarization modes of VCSEL under VPOF. 
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1.2 Research Motivation  
 

A huge number of experimental works have been reported on the characteristics of 

VCSELs and how it can be improved. However, their polarization dynamics have not 

been fully understood [36-38]. In the literature, several works describing the operation 

characteristics of VCSELs with VPOF have been demonstrated [39-42]. However, the 

dynamics of VPOF, which influence the polarization dynamics of VCSEL, are still 

under investigation because the dynamics consequences of VPOF are not fully 

understood yet. Therefore, better understanding the VCSEL’s dynamic and addressing 

un-solved issues will ultimately lead to improved VCSEL performance for polarization-

sensitive applications such as optical switching and optical wireless communications 

[42]. OF can lead to increased polarization inversion and mode competition of the 

VCSEL and involving multiple switching which destabilizes the laser modes emission 

and its dynamic solution. Interestingly, VPOF is recently proposed for the external 

cavity feedback as an effective tool to control the polarization instability of VCSEL [41, 

43]. Still, the experimental studies on VPOF are yet inconclusive. The motivation for 

this thesis is to carry out several experimental investigations for comprehensive 

characterization of the polarization dynamics of VCSELs. 

The PS phenomenon has unwanted effects in many applications, such as 

communications systems and networks because it can affect the noise level thus leading 

to a reduced signal to noise ratio (SNR) [44]. However, PS features are attractive in a 

number of applications including optical switching, high capacity data processing and 

information storage systems  [45, 46]. The polarization modulation of the laser is one of 

the most attractive schemes for a communication links [47]. This is because of the 

polarization beam is the most stable characteristic while propagating through the 

atmosphere [48].  
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In data communication there is a growing need for high security in order to prevent 

hacking of information and systems intrusions. There are a number of ways in dealing 

with information security including digital signature, quantum key distribution (QKD), 

the spread spectrum technique and synchronization of chaotic signal [49-51]. 

Interestingly enough VCSELs exhibit unpredictable chaotic and dynamic properties 

especially when it is subject to an external OF, which can be fully exploited in chaotic 

optical communications [49]. A crucial point is to identify the laser operating conditions 

that provide the best quality synchronization conditions and those which provide the 

optimized message extraction. Therefore, the need for further investigation of the 

VCSEL’s to address the issues associated with chaotic optical systems and how it will 

fulfil the basic performance requirements for optical wireless communication systems is 

required. 

 

1.3 Research Objectives 
 

The VPOF can significantly alter the bi-stability properties of VCSELs [40]. It has also 

been shown that the irregular dynamics of the polarization mode of VCSEL are 

drastically modified using selective-optical feedback [52]. In this thesis, the polarization 

characteristics of VCSEL with VPOF are intensively investigated. The goal of this 

thesis is to provide a detailed experimental study and mathematical model for 

polarization dynamics of VCSEL under effects of VPOF.  

Polarization instability in a VCSEL can cause mode-partition noise when used in an 

optical communications [53]. Therefore, possible ways of improving the stable 

polarization mode operation using external control mechanisms i.e., VPOF are 

investigated in this thesis. In addition, the effect of the laser bias current on the PS 
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properties of the VCSEL is also investigated to show their influence and who it is 

change the PS position. 

A number of researches addressing the RIN properties of the individual mode of a 

semiconductor laser have been reported [8, 30, 44, 54-56]. However, these findings 

offer a limited insight to the important problem of noise properties of the polarization 

mode in many applications that used polarization light. Such applications are including 

wireless communication systems. Thus the need for further research works on the RIN 

properties of the polarization modes of VCSEL. Furthermore, VCSEL with VPOF 

exhibit characteristics, which can be exploited as chaotic synchronization source for a 

secure communication system. In this thesis a complex dynamics and high dimension 

chaos synchronization with VPOF are investigated to demonstrate the potential of the 

VCSEL based chaotic communications. 

 

1.4 Original Contributions 
 

i. In Chapter 3, experimentally demonstrating the induced hysteresis loop (HL) 

using VPOF and determining dependency conditions the HL, the results have 

been published in [57]. 

ii.  In Chapter 4, practical verification of polarization characteristics of VCSEL in 

terms of its instabilities has been presented.  

iii.  The modulation signal is demonstrated as a new tool to control the polarization 

switching properties of the VCSEL, which is demonstrated in Chapter 4, the 

results have been published in [58]. 
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iv. For the first time, a novel way has been proposed in Chapter 5 to elimination the 

nonlinearity associated with the VCSEL by the way of employing orthogonal 

polarization optical feedback, the results have been published in [59, 60].  

v. Investigation of the relative intensity noise (RIN) characteristics of the two 

polarization modes in VCSEL has been provided in Chapter 5. Determining 

what the optimal condition to achieve a minimum value for RIN with variable 

polarization optical feedback (VPOF), the results have been published in [61, 

62].  

vi. Identifying an optimal operating condition for the high-quality of polarization-

resolved chaos synchronization of VCSEL’s polarization modes under VPOF, 

the results have been published in [63, 64]. 

vii.  Experimentally obtained a perfect chaotic synchronization of transmitter with 

correlation coefficient of -0.99 with a zero time delay over a wide range of ߠ௣. 

The last two point’s achievements (vi and vii) have been presented in Chapter 6, 

[63, 64]. 
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1.6 Thesis Outline 

The thesis is composed of seven chapters, Chapter 2 gives an overview of the VCSEL 

characteristics including, light-current (L-I) curve, OF mechanism, polarization 

switching, hysteresis properties and bi-stability, relative intensity noise, nonlinearity, 

chaotic dynamics and VCSEL under direct current modulation. On the other hand, the 

chapter describes the equations used to obtain the numerical results presented in 

subsequent chapter. A model is developed based on the rate equations, which describe 

how OF effects, particularly VPOF with selective and preserve OF, are included in the 

formulation. Identical and practical parameters values of VCSEL are considered in the 

Simulink model to investigate the polarization properties. The developed model consists 

of a carrier and photon rate equation as well as a field equation for each polarization 

mode. 

Chapter 3 present the VCSEL properties in the absence of external OF (free running 

operation) and with external OF. These properties included L-I characteristics, 

hysteresis properties and bi-stability. Additionally, the polarization extinction ratio of 

the polarization modes of the VCSEL with OF is presented. 

Chapter 4 considers the PS properties of VCSELs, VPOF with selective and preserve 

OF. In two configurations, A and B depending on the OF type, (selective and preserve 

OF), the influence of VPOF on the polarization properties of VCSELs is investigated 

theoretically and experimentally. The experimental data were used as real parameters in 

theoretical model. Further investigation of PS of VCSEL subject to intensity modulated 

and Optical Feedback are also presented in this chapter. Influences of the modulation 

frequency and modulation depth have been presented as well as the effect of changing 

bias current. 
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Chapter 5 investigates the effect of parallel and orthogonal optical feedback, (POF) and 

(OOF) respectively, on the dynamic range and the harmonics characteristics of 

VCSELs. The possibility of suppressing the nonlinearity of the polarization mode of 

VCSEL has been demonstrated. Temperature and drive current effects are also 

investigated in terms of the nonlinear dynamics. The chapter also outlines the study of 

VCSEL noise characteristics considering the modulation parameters of frequency and 

amplitude. The RIN characteristics have been provided under the effect of VPOF. 

Chapter 6 considers the effects of VPOF on the chaotic characteristics of VCSEL over a 

wide range of ߠ௣ and feedback levels. The possibility of achieving complete 

synchronization between the polarization modes of VCSEL with VPOF is 

demonstrated. The VPOF achieve a complex dynamics and polarization mode hopping 

in VCSELs with high-quality chaos synchronization over a wide range of ߠ௣  is also 

reported. Simulation results and Simulink model are provided in this chapter. 

Chapter 7 summarizes the main results of this research and outlines the future works.  
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Chapter 2  

Free Space Optics and VCSELs 

Characteristics Overview 

 

2.1 Introduction 

 

The FSO communications technology depends on the propagation of the laser beam 

through the channel. In the past decade, the FSO technology has been used for 

applications such as satellite-to-satellite cross links and among mobile or stationary 

terminals to provide high bandwidth wireless communication links. FSO will be a 

powerful technique and one of the most unique tool to address the issues that have been 

created in high speed communication such as bandwidth limitation and security [65-67]. 

The FSO based interconnect is the most promising scheme that could lead to increased 

speed, reduced size and compact packaging in future ICs [68]. 

In general, FSO systems uses the wavelength range between 750 and 1600 nm owing to 

the optical energy that travels through atmosphere have similar properties at these 

wavelengths (visible and near-IR wavelength) [69]. However lower and higher 

wavelength are also being considered for specific applications. The wavelengths 

between 780-850 nm are the most popular because of readily available and inexpensive 

components, which have an attenuation of less than 0.2 dB/km [69]. The majority of 

FSO systems designed to operate at a transmission window located at a wavelength 

range of around 780–850 nm. Laser devices that emit 780 nm are available and 

inexpensive, but have short lifespan so must be considered during system design. At 
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850 nm, high-performance transmitter, inexpensive and reliable, therefore they are 

commonly used in network and transmission systems. Furthermore, there are many 

devices that operate in this wavelength, such as avalanche photodiode (APD), highly 

sensitive silicon (Si) and VCSELs. 

The optical sources used for such systems are light emitted diode or laser. Both light 

emitting diodes and laser diodes (LD) are used in FSO communications. LDs are mainly 

for outdoor and medium to long range applications, however the latter is ideal for high 

speed line of sight links both in indoor and outdoor application [69, 70]. With 

increasing demand, high security transmission data over a network, Chaos based FSO 

communications technology is one of the most promising technique to prevent all kinds 

of hacking information [65]. The message can be encoded with spectrum of the chaos 

and be sent through an FSO channel. In the past few years, the chaotic dynamics of 

VCSELs with OF has been the subject of great interest for researchers theoretically and 

experimentally [11, 12]; particularly, for secure optical communications. Recently, 

chaotic synchronization of the orthogonal polarization modes of VCSEL has received 

wide attention as a means of offering a secure communications [13, 14]. In this context, 

chaos-based optical communications using laser polarization modes intensity have 

attracted intensive research interest due to its encryption capabilities [15]. The 

information signal is used intensity modulate the VCSEL, which is set to operate in the 

chaotic oscillation of the polarization mode, and can be retrieved at the receiver upon 

synchronization with an identical VCSEL [11, 16]. 

This chapter contains an overview about the VCSEL characteristics for FSO and optical 

chaos dynamics in Sections 2.2 and 2.3, respectively. Polarization properties of VCSEL 

studied in this thesis which includes; optical and electrical properties, light-current (L-I) 

properties and polarization switching (PS) in Section 2.4, 2.5 and 2.6 respectively, 
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principle OF mechanism in Section 2.7, a brief introduction about the hysteresis and 

relative intensity nose (RIN) are resented in Section 2.8 and 2.9 respectively, a short 

background about the nonlinearity and VCSELs under current modulation are presented 

in Sections 2.10 and 2.11,respectively. Finally in section 2.12 theoretical analysis 

including the rate equations and the polarization dynamics analysis of VCSEL subjected 

to VPOF are outlined.    

 

2.2   VCSELs for Free Space Optics 
 

Since 1992, VCSELs based on GaAs have been extensively studied. Some devices 

exhibiting sub-milliampere threshold were demonstrated by improving the quality of the 

active region and the laser cavity [4, 71]. From 1999 and onwards, VCSELs based 

optical transceivers have been introduced into Giga-bit/sec Ethernet and high-speed 

local area network. VCSELs are being applied in various optical systems such as optical 

fibre networks, parallel optical interconnects laser printers, and high density optical 

disks [17]. Recently, VCSEL array has been proposed as a concept of a compact FSO 

communications terminal thanks to their high reliability and high-speed modulation (2.5 

Gb/s) under high optical power operation [65].   

VCSELs are relatively recent type of semiconductor laser devices, which are attractive 

for a number of applications from sensors to telecommunications. VCSEL is a SL, 

which has a resonant cavity that is vertically formed with the surfaces of the epitaxial 

layers. Typically SLs devices consist of semiconductor layers grown on top of each 

other on a substrate. Usually the growth processing is achieved in a molecular-beam-

epitaxy (MBE) or metal-organic-chemical-vapor-deposition (MOCVD) growth reactor. 

Figure 2.1 show the oxide-confined VCSEL top-emitting structure. The construction of 
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VCSEL is particularly different from other lasers, an active layer sandwiched between 

highly reflectivity mirrors in range of about 99.5 to 99.9%, which is placed at the 

bottom and top of the device structure as shown in the figure 2.1. These mirrors consist 

of distributed Bragg reflectors (DBRs), which is made up of several quarter-

wavelength-thick layers of semiconductors. These layers have alternatively high and 

low refractive indexes. The VCSEL emission can be from the top or bottom of the 

device [72]. There are several categories of VCSELs based on the optical and electrical 

confinement techniques, active layer design and wavelength emission.  The most 

important issue in fabrication such devices is the optical confinement factor, because of 

the conversion efficiency of the electrical-to-optical signal.  
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Figure 2-1: VCSEL with a selectively-oxidized top-emitting structure.  

 

VCSEL has become a very important source, which effectively displacing EELs for 

applications such as high speed data communication and chaos for local area networks 

[8]. VCSELs consist of a small active volume (few μm) and these have a very low 

threshold current (few μA) compared with EELs (~300 μm) [73]. This is one of the 

attractive features that give the higher reliability than edge-emitters devices. This 
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chapter contains a background of the VCSEL characteristics that were investigated in 

this thesis and theoretical analysis for these properties with OF effects.  

 

2.3   Optical Chaos Characteristics for Communications  
 

In recent years the application of chaotic system in optical communications have 

become attractive because of the chaos dynamic, which is continually unstable and is 

difficult or impossible to predict system behaviours. This feature adds more security in 

communication systems. There is a need to increase the security protection of data being 

transmitted in order to prevent hacking of information and systems intrusions. VCSELs 

exhibit unpredictable chaotic and dynamic properties especially when it is subject to an 

external OF, thus making them a promising candidate for transmission sources in 

chaotic optical communication systems [74, 75]. The chaotic communication system 

has three main parts, as depicted in Fig. 2-2, transmitter (Tx), channel (Noise) and 

receiver (Rx). The time delay between the two chaotic synchronization waveforms is 

the key to distinguish massage from these two signals of synchronization. It is important 

to match the corresponding parameters (internal and external) of Tx and Rx to achieve a 

complete synchronization. External parameters such as bias current, temperature and so 

on of both Tx and Rx can be controlled easily; however, the internal parameters such as 

optical loss, gain and quantum efficiency are difficult to be accurately controlled. Under 

the additive chaos modulation encryption scheme, the encoded messages can be 

successfully extracted based on a good synchronization oscillation between the Tx and 

Rx signal. At the Tx a chaotic carrier is employed to improve the overall security of the 

system. The modulated chaotic carrier signal is transmitted over the communication 

channel. At the Rx detection is carried out using exactly the same chaotic oscillator as in 

the Tx to ensure successful recovery of the information signal. 
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Figure 2-2: Block diagram of chaotic communication system. 

 

Successful message encoding/decoding in an unpredictability-enhanced chaotic 

VCSELs system is achieved numerically via the chaos-shift-keying technique. Using 

two VCSELs, which are subject to VPOF, and polarization-preserved optical injection, 

are adopted. Improved  decoding performance is achieved by choosing a proper 

polarizer angle, and the security is, to some extent, enhanced owing to the VPOF [76]. 

Message encoding and decoding using the chaotic VCSELs has been experimentally 

demonstrated in [77].  

2.3.1 Chaos Synchronization in VCSEL 

 

Chaotic synchronization based on semiconductor lasers and their applications in secure 

communications have attracted considerable attention. The first demonstration of chaos 

synchronization was by Pecora and Carroll [78]. Recently, chaos synchronization in 

optical communications systems employing SL diodes has been a hot topic in 

applications where security is paramount. In such systems, a message is encoded into a 

noise like signal generated by laser source with chaotic behaviour [79]. In this context, 

chaos-based optical communications have attracted intensive research interest due to its 

encryption capabilities. A popular optical source adopted in such systems is the 
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VCSELs because of their unique features especially when subjected to VPOF. 

Furthermore, a different chaotic pattern and complex dynamics can be achieved under 

rotated-polarization angle of OF [11, 35, 80, 81]. 

Nowadays, we have seen a number of experimental and theoretical research activities 

on chaos, chaos synchronization and communication characteristics of VCSELs. 

Synchronization of the chaos is achieved experimentally in un-directionally coupled 

external-cavity vertical-cavity surface-emitting SLs operating in an open-loop regime. 

The polarization of the injected beam was perpendicular to that of the free-running 

receiver (x polarization). The injected beam and the y-polarized component of the 

receiver show good synchronization [11, 76, 77, 82-88]. It has been shown that two 

VCSELs can be synchronized under appropriate conditions. However, synchronization 

is lost at a higher mirror reflectivity (i.e., 50%). 

In contrast, a higher external reflectivity leads to a more chaotic behaviour in the output 

power of VCSELs. VCSEL’s dynamic can be driven into the chaotic regime by means 

of an external OF. The synchronization has been observed over a range of values of the 

coupling parameter such as the drive current, external reflectivity and coupling 

coefficient [82]. Solitary VCSEL can exhibits strong anti-phase dynamics between own 

orthogonal polarization modes [14]. However, one study has presented an anti-phase 

oscillation between transverse electric (TE) and transverse magnetic (TM) modes in a 

SL with polarization-rotated OF. It has achieved a  maximum value of correlation 

coefficient of the synchronization modes of -0.68 (-0.99) experimentally (theoretically) 

with zero time lag between the orthogonal modes under appropriate conditions [42]. 

Polarization-resolved dynamics of VCSEL has been used in this work for the chaos 

synchronization technique. To best of our knowledge no experimental work has been 



20 
 

found in the literature has done a correlation coefficient of -0.99 with zero time delay of 

the orthogonally polarization modes of VCSEL as demonstrated here in this thesis. 

 

2.4   Optical and Electrical Properties of VCSELs 
 

As discussed above the structure of VCSEL is completely different from other 

semiconductor structures devices that have been realised so far, such as distributed 

feedback laser (DFB) or EELs [17]. What makes VCSEL structure unique is that the 

emitting light is perpendicular to the surface of the laser. Consequently, this dramatic 

difference in the VCSEL structure makes a similar design technique impossible for 

convention facet emitting lasers. Because of the main concern in these devices is to 

achieve high-longitudinal side-mode suppression, which is completely disregarded in 

the VCSEL design [89]. 

VCSELs gained a reputation as a superior technology for applications such as fibre-

channel, Gigabit Ethernet and intra-systems, free space optical communications, optical 

fibre communications and optical recording [90-92]. However, VCSELs have a number 

of problems based on large frequency chirp and polarization insensibility, which limit 

their performance in fibre-optic communication systems, as well as causing limitations 

in transmission distances and speed [53]. Such drawbacks are related to the laser noise 

properties and also depend on polarization mode fluctuation [56]. VCSELs are very 

sensitive to the effects of optical feedback (OF) and optical injection because of their 

high gain and very short cavity length [21]. In the next few sections these problems will 

discussed and more insight will provided.  
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2.5   Light-current (L-I) Curve Characteristics 
 

VCSEL when operating near threshold current usually lases in a single polarization 

mode [93]. However, VCSEL can oscillate with the orthogonally polarized 

simultaneously, owing to their circular symmetry structure [94]. VCSEL emit mainly 

linearly polarized light. However, its orientation is not well distinguish because of the 

laser cavity and the gain medium are quasi isotropic in the active layer. In most sensing 

applications and data communications, a polarization stability of VCSEL and how it can 

be controlled is essential [95]. Consequently, the polarization mode linearity of 

VCSELs when modulated is of critical concern; particularly, in applications such as 

optical communications and optical memory [96]. One of the essential parameter of a 

SL is light-current (L-I ) curve, the laser efficiency can be predicted from the L-I curve 

properties [97]. The polarization-resolved L-I curve properties have been studied in 

details with VPOF in Chapter 3. 

 

2.6   Polarization Switching  
 

Most VCSELs devices typically emit linearly polarized light. In fact, instability is a 

common features in VCSELs devices owing to weak material and cavity anisotropies 

[41], therefore polarization instability can happen without external perturbation. 

However, under some conditions - such as when the bias current is increased or an 

external OF is introduced - the linearly polarized state switches to the orthogonal 

linearly polarized state. This usually occurs due to changes in the gain and loss of the 

orthogonally polarized modes [98], and changes in the operating temperature as well as 

the magnitude and directionally of the bias current [99]. Based on the relevant studies in 

the literature, experimental and theoretical works on VCSELs have shown that 

increasing the injection current and the OF level can lead to increased polarization 
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inversion and mode competition between the laser polarization modes. Mode 

competition is involving multiple switching, which destabilizes the laser emission and 

dynamic solutions. Interestingly, variable polarization based OF was recently proposed 

for external cavity feedback as an effective tool to control the polarization instability of 

VCSEL [41]. 

 The PS features of SLs are of interest for a wide range of applications including optical 

switching, storage system and high capacity data processing. It has been observed that 

PS can occur under the fixed bias current and OF conditions [39]. In VCSEL the 

position of PS is mainly determine by three factors; the net gain of the two polarization 

modes, the electric field and the injection current [52]. A critical issue in developing 

such laser devices is how to determine and control their polarization instability. 

Controllable PS has been investigated in [27, 93, 100] by considering the effects of a 

number of parameters including the OF strength, optical injection and frequency 

detuning. 

 The first experimental work that demonstrated the PS in VCSELs was reported in 1993 

[101], using optical injected. Since that time the polarization bi-stability of VCSELs has 

been the subject of extensive research from both theoretical and experimental 

perspective. However, the majority of previous studies have focused on influences of 

conventional OF on the dynamics and polarization characteristics of VCSELs [28, 102, 

103]. The polarization properties of SLs subject to the OF with non-rotated [27, 28, 52, 

93, 94, 100, 102, 104-108] and variable rotated polarization angles have been studied 

experimentally and theoretically in [39, 40, 57, 80, 109, 110]. It has shown that a laser 

under the OF effect can emit in certain polarization mode and increasing the level of OF 

dose lead to supressed the polarization instability. Controllable PS of VCSEL has also 
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been investigated in [27, 93, 100], where the effects of a number of parameters such as 

the OF strength, optical injection and frequency detuning were considered. 

Recently, numerical simulations results on the influence of polarization-rotated OF on 

the polarization properties of VCSEL have been reported in [39]. It has been observed 

that PS can be occur even for a fixed bias current and an OF level. Furthermore, PS 

properties are depending on the OF level and the polarization angle ߠ௣, where smaller  ߠp is required to implement the PS when the OF level increase. No experimental work 

on these theoretical findings has been reported yet. In VCSELs it is possible to achieve 

PS by means of thermal effects [111], optical injection [112], strong enough OF [113] 

and rotated polarization angle of OF [40]. In the later, it was shown that by employing a 

polarization controller to obtain the variable polarization angle, VCSEL exhibit 

dominant PS for a fixed bias current and OF for the case of the selected polarization 

feedback, whereas in case of preserving the OF the dominant PS is not observed in the 

entire parameter space.  

 

2.7   VCSELs with Optical Feedback  
 

VCSELs are very sensitive to external OF because of their short cavity length and a 

large emitting area [114].  OF is normally needed in some applications that use a 

VCSEL in order to control their polarization properties or to achieve optimum dynamic 

characteristics for VCSEL applications. As a result, such devices under OF mechanism 

have been the subject of extensive research, where the polarization properties are 

studied theoretically and experimentally [19, 22, 25, 27-29, 39]. A schematic diagram of 

a VCSEL subject to external OF is shown in Fig. 2-3. An external plane mirror with 

high reflectivity is used to reflect back part of the output laser beam into the internal 
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cavity of the laser. The reflected beam is called the OF. The external cavity length 

represents the distance between the laser facet and the external mirror.  

The external cavity length of OF and the external mirror reflectivity are important 

parameter in the mechanism of OF. The dynamic characteristics of a semiconductors 

laser are found to be dependent on the external cavity length and feedback strength or 

mirror reflectivity [27, 114].  

VCSEL 
External cavity 

length

External 

mirror

Optical feedback scheme 

 

Figure 2-3: Optical feedback scheme for VCSEL. 

 

Five OF regimes have been experimentally assessed in [115] varying from weak (-80 

dB) to high (-8 dB) level depending on OF effects. Regime I at the weak level of OF, 

the laser line emission can be narrowed or broadened depending on the phase of the 

reflected beam of OF [116]. In Regime II splitting of the emission beam is observed, 

which arise from the longitudinal mode hopping depending on the OF strength and the 

distance of the reflector [117]. Regime III, at an approximately feedback level of -45 

dB, does not depend on the distance to the reflection, the laser mode becomes narrow 

and the mode hopping is suppressed. In regime IV where the feedback level is 

approximately -40 dB, as the feedback increase the laser line width broadens and the 

coherence length reduces, where the effects of this regime are independent of the phase 

of the feedback light, this regime termed as “coherence collapse” [118]. In Regime V a 

strong OF level is needed to achieve stable operation of the external cavity mode. 
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At highest OF level, usually greater than -10 dB, the antireflection coating of the laser 

facet is necessary. In this regime the laser operates on a single longitudinal mode with a 

narrow line width and is relatively insensitive to the additional external optical 

perturbations. In highest level of OF chaotic behaviours is appearing in the laser 

dynamics system. Therefore, the laser chaotic dynamics under Regime V operation have 

attracted considerable attention due to potential application in secure optical 

communication [19]. The majority of previous studies have focused on the influence of 

conventional OF on the dynamics and polarization characteristics of VCSELs [28, 102, 

103]. However, OF with variable polarization angle does lead to a number of interesting 

dynamics in VCSEL including chaotic, bi-stabilities, time-period pulsing dynamics etc. 

[119], and how they depend on OF are interesting topic to study further [52, 120]. 

2.7.1 Variable Polarization Optical Feedback 

 

The polarization properties of SLs subject to conventional OF [27, 28] have been 

studied extensively both practically and theoretically [27, 29, 30], which gives rich 

varieties of dynamics. It is well-known that the OF will strongly influence VCSELs’ 

dynamics and characteristics. However, these characteristics are considerably different 

when laser is subjected to the  rotated angle of polarization OF [35]. In the past ten 

years, several works have investigated the SL properties with a variable polarization 

angle of OF both numerically and experimentally [39, 121]. The theoretical prediction 

of the PS position with the OF level and  ߠ௣ is that the PS is dominant at a smaller angle 

at higher OF levels. It was also predicted that larger ߠ௣ forces the laser to emit via the 

suppressed mode. In addition, a complex dynamics and route to the chaos have also 

been observed both experimentally and theoretically depending on the rotation of the 

polarization OF. 
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The polarization characteristics of VCSEL with a variable polarization OF (VPOF) will 

lead to a chaotic behaviour that could be exploited in optical communication for 

security reasons. Controllable PS has also been investigated with VPOF in many works 

[39, 100] under different condition as mentioned in section 2.4. The polarization 

rotation angle can be controlled by a quarter-wave plate [102, 122], polarizer [80], 

Faraday rotator [81, 123], where  all these optical devices have the ability to create 

polarization-rotated OF. In this thesis, both quarter-wave plate and polarizer devices 

have been used to achieve VPOF. 

 

2.8   Hysteresis Properties and Bi-stability of VCSEL  
 

In recent years we have seen a growing interest in studying the bi-stability in SLs since 

its first introduction in 1964 [18, 124]. Because of their attractive properties, SLs have 

further increased motivation to apply a function of optical devices based on bi-stability 

properties [17]. An optical bi-stability (OB) system is one which exhibits two stable 

optical output states for the same single input state as in a Fabry-Perot resonator with an 

optical cavity filled with materials with intensity-dependent refractive index [124].  The 

property of gain saturation is considered the main origin  of bi-stability  [46]. Bi-

stability has many advantages, such as inherent optical gain and low optical switching 

power, therefore, bi-stability is expected to play an important role in future optical 

switching and communication systems [125]. In optical networks VCSEL devices are 

good candidates for optical signal processing [46] because of their many advantages 

over other semiconductor device, including bi-stability and PS characteristics, which 

can occur in free running VCSELs, as well as being  induced by external optical 

injection [101]. 
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The hysteresis can occur in PS of the free-running VCSEL using injection current 

sweep rate. OB is applicable to a numerous applications including optical memory [46], 

optical transistor [126], all-optical switching [127], optical flip-flop memories, and 

among others. In recent years we have seen a growing interest in exploring and realizing 

OB in nonlinear nanophotonic systems [128]. A theoretical results show that the HL is 

sensitive to the bias current and the possibility of enhancing the hysteresis size with fast 

injection current compared to slow injection current [18, 129].  

 

2.9    Relative Intensity Noise of VCSEL  
 

The studies of the intensity noise characteristics of laser diodes are important in many 

applications, such as optical communication systems. Fluctuations in the photon 

densities does appear as an intensity noise in output power of laser devices, while 

variations in the carrier density result in the frequency noise [32]. The relative intensity 

noise (RIN) can be utilized as a good measure of the laser dynamics [130], since it 

correlates well with the output power fluctuation of the laser source. VCSELs have 

played an important role in allowing deployment and optimization of high-speed short-

range communication links, thanks to their reduced size, higher speed, lower power 

consumption, and low cost [8]. VCSEL with the relative noise levels of the their 

drawbacks based on the large frequency chirp and polarization insensibility, is valid for 

most practical applications with modulation process [131]. However, such noise level 

limit their performance in optical fibre communications, as well as causing limitations 

in transmission distances and data rates [53, 56]. 

A numerical investigation reported in [120] indicated that RIN of VCSEL with low 

feedback levels is relatively unaffected except for narrowing and enhancement of the 



28 
 

relaxation oscillation peaks. In [132], it has been found that polarization of the VCSEL 

mode plays a significant role in determining the noise spectra. The RIN is an important 

factor, which determines the achievable modulation bandwidth in communication 

systems. Therefore, it is important to understand the effects of RIN on each individual 

mode of VCSEL. Different studies have addressed the effects of RIN at individual 

modes of VCSEL, e.g., application of VCSEL in low noise image processing [133]. In 

[33] the effects of OF on the RIN of VCSEL was investigated. At the low OF levels of -

45 to -35 dB the measured RIN of -135 dB/Hz was reported, while it is degraded of 20 

dB/Hz at a high OF of -10 dB. Moreover, lower RIN of -149 dB/Hz using VCSEL was 

outlined in [34].  

As stated in [7], a strong OF can lead to a reduced RIN owing to the phase effect of the 

reflected light in the laser cavity, provided the light is from a pure single mode 

oscillation [30]. In this thesis, the RIN characteristics under strong OF and VPOF have 

been experimentally investigated.  

 

2.10 Nonlinearity of VCSELs  
 

The nonlinear behaviour of SL with modulation signal is a subject of great interest in 

many researches [134]  particularly for optical communication due to, for instance their 

effects to limit the RF dynamic range of optical devices. The nonlinear behaviour of  

optical devices such as EEL and VCSEL is a major limiting factor in analogue optical 

communications [135] and has been widely investigated [43, 136-138]. The nonlinear 

dynamics of VCSELs as a result of optical injection  and  OF was investigated in [43]. 

Noise and different physical mechanisms, such as spatial-hole burning, phase coupling, 

gain anisotropy and birefringence effects can lead to rich nonlinearity properties in SL. 

In [139, 140] it was shown that nonlinear induced harmonic distortion can lead to 
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decreased power efficiency of VCSEL. Recently, special attention has been paid to light 

polarization  in VESCELs [43]. 

In the VCSELs under current modulation (CM) the nonlinear dynamics and chaos are 

easily realized due to the mode competition or polarization mode switching [141]. 

Furthermore, in semiconductors laser the nonlinear distortion appears when the laser is 

being driven near threshold current [140]. High nonlinearity in the L-I curve of VCSEL 

devices has been reported when the laser is biased near the threshold current at high 

modulating frequency [136], which has led to harmonic distortions. Nonlinear gain 

saturation of the lasing transition produce a nonlinear behaviour in the L-I 

characteristics of VCSELs devices, which  lead to increase the relaxation oscillation 

damping and eliminate the light intensity through the reduction of differential gain 

[142].  

 

2.11 VCSEL under Current Modulation  
 

In a number of applications such as communication systems, high pump sources and 

optical fibre communication systems, the EEL diodes are the most widely used source. 

However, with EELs there is the requirement for optical fibre coupling and waveguides 

owing to its large divergence angle. A potential alternative light source for such 

applications would be VCSELs with their unique features such as low cost, circular 

output beam, higher data rate and lower power consumption [143, 144]. VCSELS are 

also considered to be ideal for gigabit Ethernet and optical interconnects [90, 145, 146]. 

Consequently, the polarization mode linearity of VCSELs when modulated is of critical 

concern particularly in applications such as optical communications and optical memory 

[96]. 
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There has been also several works dealing with the polarization properties of VCSELs 

when subjected to current modulation. VCSEL with a high frequency modulation 

current and subjected to weak OF have been theoretically investigated [147]. It was 

shown that applying small signal modulation does not induce PS, except for the low 

frequency range of 1 Hz to 100 kHz. However, under large signal modulation, the 

situation is different, where for certain modulation frequencies PS may occur by 

adjusting the modulation amplitude. On the other hand, the influence of low frequency 

modulation  (1 Hz~100 KHz) on PS of VCSELs subject to the weak OF level (-39 dB) 

has been investigated with no PS being observed [148]. It has been shown that 

depending on the OF level [110] and the drive current [100] the laser favours the 

suppressed mode emission. In this thesis, modulation parameters such as frequency and 

modulation depth have been used in presence of high level of OF (-7 dB) and VPOF 

which presented in chapter 4.  

 

2.12 Theoretical Analysis of VCSELs 
 

2.12.1 Rate Equations 

 

In order to assess VCSEL performance theoretically and to investigate their properties, 

it is imperative to utilise rate equations describing the time variation of the carrier and 

photon density.  

2.12.2 Carrier and Photon Density Dynamics 

These equations are shown below describing the rate equations for the carrier decay � 

and the photon decay ܵ as a function of time ݐ. These can be written as the subtracting 

carrier recombination rate via laser emission  � ߥ௚ܵ, and loss mechanisms  �/�௖, from 
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the carrier generation rate  ݍ/��ߟ�, by stimulated and spontaneous emissions [32, 80, 

136]: 

ௗேሺ௧ሻௗ௧ = ఎ��௤� − ேሺ௧ሻ�� − � ሺݐሻߥ௚ܵሺݐሻ,                         (2. 1) 

The sources of photons are stimulated and spontaneous emissions. However, only a 

small fraction of the spontaneous emission is coupled into a given laser mode and this 

component may often be neglected. Losses of photons are governed by a photon 

lifetime �௣, is given by: 

ௗௌሺ௧ሻௗ௧ = � ሺݐሻߥ௚ܵሺݐሻ + ௦௣ ܴ௦௣ߚ� − ௌሺ௧ሻ�೛  ,              (2. 2) 

where I is the current density, Și is the injection efficiency, V is the active volume, q is 

the unit charge, G is the gain coefficient, �௖is the carrier lifetime, vg is the photon group 

velocity, Γ is the confinement factor, ßsp is the spontaneous emission factor, and ܴ௦௣ is 

the spontaneous recombination rate. The gain coefficient is assumed to be a linear 

function of carrier density and can be expressed as: 

 �ሺtሻ = ݃� ேሺtሻ−ேοଵ+�ௌሺtሻ  ,       (2. 3) 

Here ݃� is the linear gain coefficient, ϵ the gain saturation coefficient, and Nₒ is the 

carrier number at transparency. At the study-state condition, the gain of a laser above 

threshold should always equal the threshold gain, otherwise optical amplitude continues 

to increase which cannot happen in the steady-state. The same argument is valid for the 

carrier density in the steady-state because of both G and N are combine in the cavity of 

the laser, so [149]: 

� = �th,            ሺ� > �th)      (2. 4) 
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� = �th,           ሺ� > �th)       (2. 5) 

At the study state condition, gain = loss and can be assumed to be constant, therefore we 

have: 

�௧ℎ = ଵ�೛,        (2. 6) 

where �௧ℎ is the threshold current. The average modal gain can be written as: 

 < � >௧ℎ= ��௧ℎ =<ܽ� > + ଵ�  ݈݊ ቀ ଵோቁ,    (2.7) 

Where �  is the total cavity length,  ܴ  is the mean mirror reflectivity, for simplicity the 

mirror loss term ( 
ଵ�  ݈݊ሺ ଵோሻ ) is abbreviated as ܽ௠ and the photon loss ( 

ଵ�೛ ) is defined by:   

ଵ�೛ = > ௚ሺߥ ܽ� > +ܽ௠ሻ,        (2.8) 

The internal cavity loss of the laser is ሺ ܽ� + ܽ௠ሻ, ܽ �  is the photon losses, and ܽ௠ is 

the mirror loss parameter. 

��௧ℎ = ଵ�೛�� =< ܽ� > +ܽ௠,      (2. 9) 

At the study state condition and from equation 2.1 the photon density above threshold 

can be written as: 

ܵ = ఎ� ሺ�−��ℎሻ௤�ீ�ℎ��  ,            ሺ� > �௧ℎ)     (2. 10) 

To obtain the output power of the laser we have to extract the total optical energy inside 

the cavity ��௡, which is defined in terms of the energy loss rate through the mirrors 

  :௚ܽ௠ሻ asߥ)
��௡ = ܵℎߥ �௖,        (2. 11) 
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�௢௨௧ =  ܵℎߥ �௖ߥ௚ܽ௠,       (2. 12)  

where �௖ is the cavity volume, and hv is the photon energy. Substituting from Eq.(2.10) 

and (2.9) and using � = �/�௖ in Eq. (2.12), now the laser out power can be written in a 

common expression as [150], 

�௢௨௧ = �ߟ ௔೘௔�+௔೘  ℎ�௤  ሺ� − �௧ℎሻ,                      (2. 13) 

The differential quantum efficiency is given by: 

ௗߟ = �ߟ ௔೘௔�+௔೘ ,        (2. 14)  

We can simplify Eq. (2.13) to be as:  

�௢௨௧ሺݐሻ = ௗߟ ℎ�௤ ሺ�ሺݐሻ − �௧ℎሻ,      (2. 15) 

When a laser is subject to direct modulation current, the total injection current is given 

by:  

�ሺݐሻ = �ௗ௖ + �௠ሺݐሻ,       (2. 16) �ௗ௖ is the bias current (time-independent), and �௠ሺݐሻ is the modulating current (time 

varying), which could be given in a sinusoidal form as: 

�௠ሺݐሻ = �௠ ݁�௙೘௧,       (2. 17) 

where ݂௠ is the modulation frequency (Hz). 

 

2.12.3 Basic Schemes of the Polarization OF  

 

The principles schemes for the selective and preserve polarization OF that are used in 

this thesis with rotated polarization angle for VCSEL are illustrated in Fig. (2-4). For 

preserve OF, both component (XP and YP) re-injected into VCSEL, see Fig. (2-4(a)), 
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while in the selective OF scheme, only one component (XP or YP) was selected to be 

re-injected into VCSEL, see Fig. (2-4(b)). The quarter-wave plate (QWP) is inserted 

into the external cavity to rotate polarization OF. The fast axis (0°) of the QWP is 

defined as the pure XP OF and the 45° as the pure YP OF. Figure 2-4(a) shows the 

polarization-preserve OF where the polarization of the reflected light is the 

instantaneous of the original emission light of VCSEL. Figure 2-4(b) displays the 

polarization-selective OF, where the polarization beam splitter (PBS) is used to select 

one of the polarization modes of the VCSEL. The external mirror (M) with high 

reflectivity is used to provide the OF to the laser. The laser beam is collimated and 

focusing using an objective lens.   

M

QWPLens

VCSEL

       PBS

M

QWPLens

VCSEL

(a)

(b)

 

Figure 2-4: Principle schemes of (a) preserve OF and (b) selective polarization rotating 

OF. 
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2.12.4 The XP and YP Dynamics with VPOF 

 

Several models accounted for two polarization mode dynamics in SL and widely used 

with rotated polarization angle of OF [39, 80, 151-153]. VCSELs usually exhibit single 

polarization mode emission with high orthogonal mode suppression when lasing as a 

standalone laser without external perturbation. We modified the flowing rate equations 

for a single mode VCSEL with VPOF in order to describing their dynamical properties. 

The OF is provided by an external cavity using high reflectivity mirrors where part of 

the output light is rotated using QWP and re-injects back into the laser. The OF delay 

time τ is given by the external cavity length �௘௫௧, where  � = ଶ��ೣ� �  , and c is the velocity 

of light in vacuum. It should be mentioned that, the case of  ߠ௣ = 0° corresponds to pure 

XP feedback and the case of  ߠ௣ = 90° corresponds to pure YP feedback. The equations 

take the form (the subscripts (x, y) indicate the XP and YP modes, respectively)         

[39, 80]: 

ௗாೣሺ௧ሻௗ௧ = ଵଶ [�௫ሺݐሻሺ�ሺݐሻ − ��ሻ − ௫]�௫ߛ + ݇௫�௫ሺݐ − �ሻ (௣ߠ)ݏ݋ܿ +  ௫     (2. 18)ߦ௦௣ߚ√

ௗா೤ሺ௧ሻௗ௧ = ଵଶ [�௬ሺݐሻሺ�ሺݐሻ − ��ሻ − ௬]�௬ߛ + ݇௫�௫ሺݐ − �ሻ (௣ߠ)݊�ݏ +  ௬    (2. 19)ߦ௦௣ߚ√

ௗ�ೣሺ௧ሻௗ௧ = �ଶ [�௫ሺݐሻሺ�ሺݐሻ − ��ሻ − [௫ߛ − ݇௫ ாೣሺ௧−�ሻாೣሺ௧ሻ (௣ߠ)ݏ݋ܿ −  ௫   (2. 20)ߦ௦௣ߚ√

ௗ�೤ሺ௧ሻௗ௧ = �ଶ [�௬ሺݐሻሺ�ሺݐሻ − ��ሻ − ௬]−݇௫ߛ ாೣሺ௧−�ሻா೤ሺ௧ሻ (௣ߠ)݊�ݏ −  ௬   (2. 21)ߦ௦௣ߚ√

Equation (2.1) can be rewrite as below to compensate for OF:  

ௗேሺ௧ሻௗ௧ = ఎ��௤� − ேሺ௧ሻ� − ሺ�ሺݐሻ − ��ሻ × �௫ሺݐሻ|�௫ሺݐሻ|ଶ + �௬ሺݐሻ|�௬ሺݐሻ|ଶ
  (2. 22) 
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 ∅ሺݐሻ = −∆�௫,௬ݐ + �௫,௬� + ∅௬ሺݐሻ − ∅௫ሺݐ − �ሻ      (2. 23) 

Here Ex and Ey are the varying amplitudes of the XP and YP mode respectively, ݇௫and ݇௬ are the feedback strengths of XP and YP mode respectively, ߚ௦௣is the strength of the 

spontaneous emission, ߦ௫,௬ is  independent Gaussian white noise sources with zero 

mean and unit variance for XP and YP mode, ∅ and � are the phase and the angular 

frequency, respectively.  

For preserve OF case, both XP and YP mode are utilized to pass through the external 

cavity and then be re-injected into VCSEL. Due to the rotation of polarization angle, the 

feedback strength for XP and YP components can be expressed as [122]: 

݇௫ = ݇ × √ଵ+௖௢௦2ሺఏ೛ሻଶ          (2. 24) 

݇௬ = ݇ × √ଵ+௦�௡2ሺఏ೛ሻଶ          (2. 25) 

 The rate equations for preserve-OF can be expressed as follows: 

ௗாೣௗ௧ = ଵଶ [�௫ሺ�ሺݐሻ − ��ሻ − ௫]�௫ߛ + ݇௫�௫ሺݐ − �ଵሻ (௣ߠ)ݏ݋ܿ − ݇௬�௬ሺݐ − �ଶሻ (௣ߠ)݊�ݏ  ௫      (2. 26)ߦ௦௣ߚ√+

ௗா೤ௗ௧ = ଵଶ [�௬ሺ�ሺݐሻ − ��ሻ − ௬]�௬ߛ + ݇௫�௫ሺݐ − �ଵሻ (௣ߠ)݊�ݏ + ݇௬�௬ሺݐ − �ଶሻ (௣ߠ)ݏ݋ܿ  ௫     (2. 27)ߦ௦௣ߚ√+

The feedback strength ݇ can be calculated from the feedback ratio F (in dB) used in the 

experiment as [115, 154]:  

݇ = ଵ−ோ���೙ √ோ೘ோ�          (2. 28) 
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where  ��௡ = ଶ��೙ ௡��   is the internal round-trip delay time (s), ݊� is the refractive index, 

Lin (m) is the internal cavity length, Ro is the facet reflectivity, and Rm represents 

external reflectivity and can be expressed as Rm =10F/10 (in dB) is the feedback ratio 

used in the experiment. 

 

2.13 Conclusions 
 

In this chapter, an overview to FSO and polarization properties of VCSEL including of 

optical chaos, optical and electrical properties, L-I characteristics, PS, hysteresis 

properties, RIN, nonlinearity behaviours and VCSEL under modulation current were 

presented. In addition, dynamical properties of the two orthogonal polarization modes 

of VCSEL with VPOF using the rate equation were described. It was known that FSO is 

a powerful and promising technique to increase the data transmission rat in 

communication systems. Most FSO systems use a wavelength range between 780 to 

850 nm. For this wavelength range, which has a low attenuation less than 0.2 dB/km, 

optical devices are available and inexpensive. Although, polarization properties of 

VCSELs have intensively been studied however, they are still under active investigation 

due to its potential applications as in secure communication and nonlinear optical 

systems.  

The Chapter also in brief described VCSEL problems and the possibility to control 

polarization instability. In fact, SLs are particularly sensitive to the feedback light, 

showing a destabilized optical output power. The polarization properties of VCSELs are 

altered when subjected to OF. The basic concept of OF with proposed technique of this 

thesis VPOF were presented with previous studies using this technique on VCSELs. 

Strong OF led to nonlinearity behaviours in the output power of the laser. Hysteresis 
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properties also presented in brief, where theoretical studies showed that the HL is 

sensitive to the bias current and enhances with the fast injection current compared to the 

slow injection current. Hysteresis width was also sensitive to the OF level and sweep 

of ߠ௣, where a narrow width could be achieved with a low OF level and a slow swept 

of ߠ௣. The RIN level of VCSEL can be reduced using a strong OF owing to the phase 

effect of the reflected light. This was also presented in details with OF. It was referring 

that the VPOF is still under active study and their consequences on the polarization 

properties of semiconductor laser are not fully understood. Such a technique was 

investigated theoretically for controlling the polarization instability in VCSEL. The 

dynamical properties of VCSEL polarization modes with VPOF were developed in a 

theoretical model and discussed in detail using the rate equations, which use to verify 

the experimental results of this work and to better understanding of the VPOF effects.  
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Chapter 3  

Light-Current (L-I) Characteristics 

and Hysteresis Properties under 

VPOF 

 

3.1   Introduction 
 

 

SLs with their attractive properties have further increased motivation to apply functions 

of optical devices based on bi-stability properties [128]. Typically VCSELs devices 

exhibit unstable polarization properties due to inherent structures, such as PS, which 

appear at the laser output power and can be exploited it in many applications such as 

optical memory and data storage [46, 94]. In VCSELs it is possible to achieve PS of the 

polarization modes by using an optical injection [112, 155], strong enough OF [156] 

and rotated polarization angle of OF [40],  as well as thermal effects [111]. The 

hysteresis can occur in the PS of the two polarization modes of VCSEL at free-running 

operation using injection current sweep rate [18]. It is well-known that the OF level 

would strongly influence VCSELs’s dynamics. Theoretical and experimental 

investigations demonstrated that OF induce attractive properties in VCSELs such as 

chaos and bi-stabilities and how they are depending on OF strength [52, 120]. A 

theoretical study based on the framework of the spin-flip model (SFM) has 

demonstrated that the hysteresis width is modified by the frequency detuning of the 

VCSELs’ polarization modes [157].  It has shown that the hysteresis loop (HL) is 

sensitive to the bias current and the possibility of enhancing the hysteresis size with fast 
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injection current compared to slow injection current. In this chapter the L-I curve 

properties of VCSEL is describe with and without OF in section 2.3. After that the 

influence of VPOF on the PS properties of a VCSEL has been investigated 

experimentally and the results are presented in section 2.4. In section 3.5, the 

polarization extinction ratio of the polarization modes of VCSEL is presented using 

VPOF effects. 

 

3.2 VCSELs Devices under Study 
 

In this thesis several VCSELs devices have been used, which were provided by 

different companies, their optical and electrical properties are provided in Table 3-1. All 

these devices were used in the experiments and their properties were investigated. These 

devices offer different optical and electrical properties, such as threshold current, output 

power, emission wavelength, relative intensity noise, polarization stability, etc. 

However, they are emitting a single transverse and longitudinal mode with a slight 

deference in the emission wavelength, which is between 850 to 852 nm. The VCSELs 

under study are lasing in a linear polarized mode near the threshold current and they 

exhibit different �௧ℎ values of 0.5 mA, 1.5 mA, 2.9 mA and 3.9 mA with various output 

powers which reaches up to 2 mW. All VCSEs devices are emitting stable polarization 

(no PS occur under free running operation), except for one VCSEL that exhibits two 

types of switching (PSI and PSII) at free running operation (see Fig. 3-3), this will 

explained later in the next section. The next section provides the L-I curve 

characteristics of the free running VCSELs under study as well as the L-I curve 

characteristics under OF effects.  
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Table 3-1: Optical and Electrical Characteristics of VCSELs devices 

Avalon Photonic 
Devices 

Ray Can Devices Thorlabs Devices Philips Devices  

Premium 850 nm single 
mode VCSEL,TO46    

850 nm single mode 
VCSEL,RC12xxx1-T 

Single mode VCSEL   
850 nm 

Single mode VCSEL   
852 nm 

Medium oxidation 
process 

Side mode suppression 
25 dB 

Oxidation process Side mode suppression 
30 dB 

No polarization flips 
Gaussian beam profile 

High speed high 
performance 
communication 
application 

Flat window 
 

3dB modulation 
bandwidth 1GHz 

Operating voltage 2.2 V Operating voltage 3 V High speed 2.5Gbps RIN -130 -120 dB 
Threshold current         
3.9 mA 

Threshold current           
3 mA 

Threshold Current         
1.5 mA 

Threshold current         
0.5 mA 

Max. optical output 
power  0.5  mW 
 

Max optical output 
power  0.7  mW 
 

Max Optical Output 
power  2 mW 
 

Max optical output 
power  1  mW 
  

Side mode suppression 
20 dB 

Operating temperature 
Range  
0 to 85 ºC  
 

Operating Temperature 
Range  
5 to 80 ºC  
 

Operating temperature 
Range  
-20 to 80 ºC  
 

 

3.3  Free Running (L-I) Curve Characteristics of VCSELs 

In this section the optical properties of the L-I curve characteristics of the VCSELs that 

were used in this thesis are presented including the polarization-resolved output power 

with and without OF. The standalone VCSELs lase in a fundamental mode with two 

orthogonal polarization modes for the entire range of bias current �௕ used in the 

experiments. Fig. 3-1, displays the experimental setup for the free running L-I curve 

measurements of VCSELs. The laser is driven by laser diode driver (Newport, 505B) 

and is temperature controlled by temperature controlled with a thermoelectric 

temperature controller (TED 200C) to within 0.01oC. The laser output is collimated 

using objective lens (Aspheric Lens, f = 4.51 mm). A half wave plate (HWP) (Zero-

Order Half-Wave Plate) and a polarization beam splitter (PBS) (Cube, 620 - 1000 nm) 

are used to direct the orthogonal polarizations of the VCSEL to the photodetectors (PD) 

(New Focus Nanosecond photo detector, model No). 1621. The HWP and PBS are used 

only when measured the VCSEL polarization-resolved L-I curve using an optical power 
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meter (Anritsu, ML9001A) and then removed when measuring the total output power 

(IT). The L-I plots were obtained using LabVIEW controlled by a personal computer. 

VCSEL

PD

HWP

PBS

P
D

Lens

Temperature& 

current controller

Power meter

 

Figure 3-1: Experimental setup to measure output power properties of VCSELs, half 
wave plates (HWP), polarization beam splitter (PBS) and photo detector (PD). 

 

Fig. 3-2 displays the L-I characteristics of standalone VCSELs under study, where in 

Fig. 3-2(a) the total output power and in Fig. 3-2(b) the polarization-resolved output 

power of the VCSEL are presented. The first lasing mode in Fig. 3-2(b) with a full 

square black line refers to the X-polarization (XP) and the suppressed mode with a full 

dot red line corresponds to the Y-polarization (YP) mode. For all VCSELs (except one) 

no PS was observed over the whole �௕ range. Fig. 3-3 shows the total output power (a) 

and the polarization resolved output power (b) of the standalone VCSEL combined with 

two PS without any external perturbation. PS occurs between the orthogonal 

polarization modes of the VCSEL when �௕ increase from zero to 9 mA.  The first type 

of switching (PSI) occurs at ~ 6.3 mA from the high-frequency mode (XP) to the mode 

with low frequency (YP). While the second type of switching (PSII) is observed at �௕ of 

~ 7.6 mA corresponding to PS from the XP (low frequency mode) to the orthogonal 
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mode (YP) with the high frequency mode, as depicted in Fig. 3-3(b). Both types of 

switching (i.e., PSI and PSII)  are defined and studied in detail in  [158].  
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Figure 3-2:  light-current characteristics of free-running VCSELs under study (a) the 
total output power and (b) the polarization-resolved output power.  
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Figure 3-3: The L-I characteristic of standalone VCSEL, (a) total output power, (b) 
polarization-resolved output power with two PS. 

 

3.3.1  Threshold Current Reduction and L-I Curve Characteristics under OF  

 

As we mentioned earlier in Chapter 1 that the OF can reduce �௧ℎ value of the laser due 

to reduced losses inside the cavity of the laser and the intensity noise [22, 23]. A lasing 

threshold reduction in VCSEL is observed under strong OF. Fig. 3-3 displays the L-I 

curve characteristics of VCSEL subject to -5.5 dB of OF. Fig. 3-4(a) shows IT under 

rotating the YP mode by 90° and reinjecting it back to the VCSEL. In this figure, clearly 
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we can see the VCSEL start lasing at �௧ℎ~͵.Ͷͷ ݉�, with the threshold current reduction �௧ℎோ  of ~ 11.5% compared with that of standalone VCSEL (3.9 mA). However, VCSEL 

exhibits low output power and slop efficiency compared with the standalone VCSEL, as 

displaying in Fig.3-4(a). �௧ℎோ is defined by:  

�௧ℎோ = ��ℎி௥௘௘ ௥௨௡௡�௡௚−��ℎ௨௡ௗ௘௥ ைி��ℎி௥௘௘ ௥௨௡௡�௡௚  × ͳͲͲ        (3.1) 

Fig. 3-4(b) shows the polarization-resolved output power of VCSEL subject to the 

orthogonal OF.  The VCSEL display two PS and mode fluctuation at higher values 

of �௕. The first and second PS occurs at  �௕ of ~7.5 mA and ~8.6 mA, respectively.    
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Figure 3-4: light-current characteristics of VCSELs under-5.5 dB OF (a) the total 
output power of VCSEL with YP OF, (b) the polarization-resolved output power of 
VCSEL under VPOF.  

 

3.4  Hysteresis Properties and Bi-Stability in the Polarization Mode 
of VCSEL 

 

Recently, bi-stability properties of VCSELs with VPOF have been studied theoretically 

[39, 40]. It was shown that the HL width is depending on the sweep rate of  ߠ௣ and the 

feedback delays and the feedback strength can significantly affect the size of HL. 

However, the polarization bi-stability properties of such devices subject to VPOF have 
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not yet been experimentally reported. VPOF provides different ways and more 

flexibility of controllable polarization properties of SLs, which justifies in depth 

investigation.  

The results of this investigation show that the hysteresis size is significantly affected by 

the OF levels. For higher OF level of -6.4 dB the HL width is much narrower than that 

of the lower OF level of -8.3 dB, which agrees with the theoretical investigation in [40] 

and experimental study in [52]. In this chapter the hysteresis properties are investigated 

using a  different technique, which is VPOF mechanism compared with the 

experimental studies reported in the literature [52].  

3.4.1 Experimental Configuration for HL Measurements  

 

Fig. 3-5 displays the experimental setup for the delayed VPOF to measure the HL 

properties. The system is composed of an 850 nm single mode VCSEL (Avalon 

photonics UK Components Ltd) with a threshold current of ~3.9 mA at free running 

operation. The VCSEL is driven by a DC source (7651 YOKOGAWA) and is 

temperature controlled with a thermoelectric temperature controller (TED 200) to within 

0.01oC. Both beam splitters (BS1&2) 50/50 splitter. A polarizer is used to select the 

polarization direction in which measurements are carried out the output of which is 

measured using a photodetector (PD) (New Focus Nanosecond photo detector, model 

No. 1621). An optical power meter (OPM) is used to measure the optical output power 

and the feedback light from the feedback loop. 

 A half wave plate (HWP1) is used to select the orthogonal polarization (YP) direction, 

which is injected back into the VCSEL, whereas HWP2 is used for rotating the 

polarization direction of YP from 0o to 90o. Note that 0o and 90o are defined as the 1st 

and 2nd polarization modes i.e., XP and YP, respectively. An optical isolator (ISO) (> 40 
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dB) is utilized to ensure that the beam is rotating clockwise within the loop; 5o rotation 

in HWP2 is equivalent to 10o rotation the polarization. The intensity of the beam within 

the loop is adjusted using the neutral density filter (NDF) (OD: 0-2.0, ARC: 650 - 1050 

nm). Finally M1-3 is used to establish the optical loop.  ߠ௣ is varying from 0o  to 90o 

pure parallel an orthogonal OF respectively, with respect to XP of the standalone 

VCSEL. Basically  ߠ௣ controls the strength of fixed feedback to both modes of XP and 

YP. The OF level that used here is within regime V, as reported in [115], to study the 

HL properties of the VCSEL.   

VCSEL

Power MeterTemperature &Current

Controller

Lens

polarizer

PD

HWP1 HWP2ISO

M3
M2

M1

BS1 BS2

NDF
 

Figure 3-5: Experimental setup; VCSEL with external cavity included, non-polarizer 
beam splitter (BS), polarizer, photo detector (PD) and optical feedback loop which 
consist of mirrors (M1, 2, 3), BS2, half wave plates (HWP1, 2), optical isolator (ISO) 
and neutral density filter (NDF). 

 

3.4.2 Results and Discussion  

 

At high levels of OF, VCSEL exhibits an abrupt PS when  ߠ௣ is swept from 0o to 90o 

and vice versa. We observe a HL beyond the polarization angle of 45o, which is barely 
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affected by the level of the feedback. Fig. 3-6 displays the polarization resolved L-I 

characteristic of the free-running VCSEL. For the XP-mode the characteristics is that of 

a typical laser devices with �௧ℎ of around 3.9 mA where as for the YP-mod there is no 

obvious threshold knee beyond the maximum limited injected current. Thus, the figure 

shows that the YP-mode is being suppressed. Therefore, no PS is observed in the free 

running VCSEL. Orthogonal polarization feedback (YP) has been employed to obtain 

polarization bi-stability under a high OF level. In this case of investigation �௕  was fixed 

at 6 mA for all experimental measurements. The polarization angle  ߠ௣ is increased 

linearly from 0o to 90o in an upward scan and then decreased from 90o to 0o in a 

downward scan. 
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Figure 3-6: Polarization-resolved L-I curve of the free-running VCSEL, the square 
black line is the XP mode and the dot red line is the YP mode. 

 

Fig. 3-7 displays the polarization resolved intensities of VCSEL as a function of  ߠ௣ for 

the XP and YP modes when subjected to an OF level of -11 dB. The OF level here is 

defined as a ratio of the feedback power (measured at BS2) to the total VCSEL output 

power (measured before BS1), see Fig. 3-5. As shown in Fig. 3-7 the VCSEL output 

intensity displays low sensitive to the polarization variation of OF with no evidence of 
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lay PS over the given range of polarization angle. The VCSEL lases with the dominant 

mode (i.e. XP) and the YP mode is being suppressed. This is because the OF plays less 

important role when the feedback effect is smaller than the gain effect of the mode as a 

demonstrated in Ref [39].  

However, when the OF level increase their influence is clearly observed in the output 

power of the polarization modes.  Fig. 3-8 shows the optical intensity as a function of  ߠ௣ for the XP and YP mode for OF of -8.3 dB. Both  reference levels (-8.3 and -6.4 dB) 

in Figs. 3-8(a) and (b) selected are within the well-defined feedback regime V, which is 

the highest level feedback power ratio, as in [115].  
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Figure 3-7: Polarization-resolved intensities as a function of the polarizer angle, XP 
and YP mode. The external optical feedback is Fixed at -11 dB. 

 

At these levels of the feedback the XP is the dominant mode switching to the YP mode 

after 45o of rotation of ߠ௣. This is due to as  ߠ௣ increases the XP mode losing more and 

more feedback while the YP mode is gaining more feedback [39].In Fig. 3-8(a), for the 

optical feedback level of -8.3 dB, PS occurs at 60o ( ߠ௣௨ଵ) and 69.9o ( ߠ௣௨ଶ) in upward 

scan of  ߠ௣ from 0o to 90o, while in the downward scan from 90o to 0o PS occurs at 
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different angles of 89.7o ( ߠ௣ௗଵ) and 70o ( ߠ௣ௗଶ) that causes variation in the hysteresis 

width. In this case the width W of HL is 11.6o. Correspondingly, in Fig.3-8 (c) for the 

feedback level of -6.4 dB, PS take place at  ߠ௣௨ଵ= 60o and șpu2 = 69.6o, for the upward 

scan and  ߠ௣ௗଵ = 79.8o and  ߠ௣ௗଶ = 70o for the downward scan.  
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Figure 3-8: Polarization-resolved intensities as a function of polarization angle, (a) 
represent the XP mode, the arrow down (up) corresponds to increasing (decreasing)  ߠ௣ 
and (b) represent the  YP mode, the arrow up (down) corresponds to increasing 
(decreasing)  ߠ௣, The external optical feedback fixed at -8.3 dB, (c) represent the Xp 
mode, the arrow down (up) corresponds to increasing (decreasing)  ߠ௣ and (d) 
represent the  YP mode, the arrow up (down) corresponds to increasing (decreasing)  ߠ௣, The external optical feedback fixed at -6.4 dB. 

 

The HL width W is 10.4o. Note that in Figs. 3-8(a) and 3-8(c)  ߠ௣௨ଵ are equal and  ߠ௣ௗ is 

more sensitive to the OF than  ߠ௣௨, which is quite similar to the numerical calculations 
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reported in [40].The results show that changes in the size of HL are depending on the 

OF strength. We observe that narrow and wide HLs takes place for higher and lower 

levels of OF, respectively. Variation of the polarization OF can cause HL in output 

power of the VCSEL depending on the level of OF. The results in Figs. 3-8(b) and (d) 

show the intensity of the YP-mode against  ߠ௣ for the feedback levels of -8.3 and -6.4 

dB, respectively. In Fig. 3-8(b), for the upward scan of the YP mode switch to XP mode 

at  ߠ௣௨ଵ =59. 7o and  ߠ௣௨ଶ = 69.9o, while in the downward scan the PS occur at  ߠ௣ௗଵ = 

89. 7o and  ߠ௣ௗଶ = 59.7o. 

 However, for the feedback level of -6.4 dB, see Fig. 3-8(d), the upward scan of  ߠ௣ 

display different position for the switching point than Fig. 3-8(b) where  ߠ௣௨ଵ and  ߠ௣௨ଶ 

are 60o and 89. 7o, respectively and for the downward scan the values are 89.7o and 70o, 

respectively. The width of HL is 11.7o at -8.3 dB and 10.2o at -6.4 dB. These results 

verify that larger feedback levels do lead to a narrower HL. 

 

3.5  Polarization Extinction Ratio of Polarization Modes of VCSEL  
 

 

VCSELs offer very attractive features, such as very low threshold current (μA) low cost 

and circular output power beam.  However, polarization stabilization remains an issue in 

such devices due to their inherent structures, which lead to instability polarization gain 

[52]. The PS between the orthogonally modes easily occurs by changing the injection 

current of the laser. Recently, several works have investigated the polarization modes 

properties of VCSELs with rotated polarization angle of OF both theoretically and 

experimentally [39, 57, 88, 159].  Polarization extinction ratio (PEX) is an important 

factor in modulation amplitude requirements for error-free data transmission [160]. 
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For this investigation the influence of rotated polarization OF (RPOF) on the 

polarization resolved light-current (L-I) characteristics of VCSEL is examined 

experimentally. The two orthogonally polarization modes (XP and YP) of the VCSEL 

are rotated and re-injected individually to the VCSEL using a T-shaped external cavity 

OF. The VCSEL is subjected to rotating the parallel and orthogonal polarization OF, 

RPOF and ROOF respectively. Polarization stabilization of the VCSEL is evaluated 

using the L-I curve measurements and PEX. It has been show that the output power of 

the VCSEL is strongly modified by the ROOF, which is enforces the laser to emit in 

certain polarization mode. However, RPOF does have a less important effect on the 

polarization properties and the extinction ratio values of the VCSEL.  

As mentioned above, in two cases of the feedback based on the T-shaped scheme the 

polarization properties have been examined. M1 (M2) and QWP are provided RPOF 

(ROOF). 

3.5.1 Results and Discussion  

 

The schematic diagram of the experimental setup is shown in Fig. 3-9. The ROOF is 

attained with M2 (M1 is closed) and the RPOF is achieved with M1 (M2 is closed) as 

display in the setup. We refer to polarizations parallel and orthogonal light to that of 

solitary device light. VCSEL operating at 850 nm was used in the experiment with a 

similar L-I curve characteristics that were presented in section 3.4. A QWP and NDF 

are used to rotate  ߠ௣ and control the feedback level, respectively. The collimated laser 

beam was reflected back to the VCSEL using two mirrors placed at ~ 40 cm away from 

the VCSEL. The laser output power decomposed in two orthogonally polarized modes 

using a cube PBS. An optical power meter was used to measure the output power 

variation using after passing through a linear polarizer (P), which is used to select the 

polarization mode. 
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Figure 3-9:  T-shaped feedback scheme for parallel and orthogonal polarization 
feedback, non-polarizer beam splitter (BS), polarizer (P), photo detector (PD), mirrors 
(M1, 2),  quarter wave plates (QWP), and neutral density filter (NDF). 

 

The feedback ratio is defined as the ratio of the power fed back into the VCSEL relative 

to the total output power of the free running operation of the laser. In this study we 

defined  ߠ௣ = 0o   to a maximum power of the XP OF and  ߠ௣ = 90o to a maximum power 

of the YP OF. PEX is defined as the optical power ratio between the two orthogonally 

polarized XP and YP modes.  

For the two polarization feedback schemes the L-I curve characteristics of the VCSEL 

have measured under feedback level of ~ -6 dB. The maximum PEX of the free running 

VCSEL is ~16.8 dB. This is strongly affected by the ROOF scheme as we can see in Fig 

3-10. This figure shows the output power response of the VCSEL subject to both XP 

and YP OF with only rotating  ߠ௣  of the parallel mode (XP). For this case of the 

feedback VCSEL start lasing with the orthogonal polarizations mode (YP), which 

become the dominant mode. The PEX degraded to 10 dB at 0o. The two orthogonal 

polarization states are degenerated at 0o, while they are well separated at 90o. The 

VCSEL emits two modes simultaneously for several mA, after that the YP become the 
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dominant mode. The YP mode gain is strong enough to let the mode become the 

dominant mode, while at 90o the XP mode loss the feedback light and becomes 

suppressed [39, 159]. The results are also indicated that  �௧ℎ of the VCSEL decreased by 

several μA combine with decreasing the slope efficiency of the output power [29]. 
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Figure 3-10:  Measured output power response of VCSEL with rotated XP mode of the 
optical feedback and fixed YP mode at (a) 0o and (b) 90o; (c) and (d) display 
corresponding extinction ration measurements of (a) and (b) respectively.  

 

In case of RPOF, the orthogonal OF (YP) is closed, no PS is observed and the laser 

lases in the XP mode over the entire range of �௕ , see Fig. 3-11(a & b). The maximum 

value of PEX is 17.8 dB at 0o, while it is 14.5 dB at 90o of ߠ௣ . The polarization 

direction selectivity is enhanced at  ߠ௣ = 0o and the PEX value increases by 1 dB 

compared with that of the free running results.  
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However, when  ߠ௣ = 90o, which mean the XP mode loss the OF, the YP mode starts 

increase especially at higher values of  �௕ , which lead to the PEX values deteriorated. 

This is because the XP mode obtain the maximum feedback light at 0o with no feedback 

for the YP mode [39].  
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Figure 3-11: Measured the output power response of VCSEL with rotated the XP mode 
of the optical feedback and closed the YP feedback at (a) 0o and (b) 90o; (c) and (d) 
display the corresponding extinction ration measurements of (a) and (b) respectively.  

 

The results indicated that the orthogonal polarization OF forces the laser to emit in 

certain polarization state. Whiles the parallel polarization OF can enhance the 

corresponding polarization mode of standalone VCSEL, which in turn lead to increase 

PEX between the two orthogonal modes.   

Next, the polarization intensities of the VCSEL under the effects of VPOF of the 

parallel and orthogonal polarization modes are investigated. In this case, both the 
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feedback level and  �௕  are fixed at 6 dB and 6.8 mA respectively, while the QWP angle 

is varied from 00 to 180o. In Fig. 3-12(a) displays the results of RPOF (the orthogonal 

OF is closed), clearly can be seen that the rotated only the parallel OF does not have 

significant effect on the VCSEL polarization emission over the entire range of  ߠ௣ .   
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Figure 3-12:  Polarization-resolved intensities of VCSEL versus polarization angle, (a) 
subjected to XP feedback (block the YP feedback), (b) subjected to YP feedback (block 
the XP). 

 

However, when the ROOF is applied the polarization stabilization has changed 

dramatically depending on the sweep of ߠ௣ . PS occurs after 45o and 135o of  ߠ௣ , which 

is verified the theoretically predicted results reported in [39]. The polarization 

selectivity increase when applied the ROOF especially for the higher degrees of  ߠ௣  and 

after the PS of the VCSEL modes. 

 

3.6  Summary and Conclusions 
 

 

In this chapter in section 3.3.1, the experimental results demonstrated that the threshold 

current of VCSEL emission can be reduced under the orthogonal polarization OF. 

Under rotating the suppressed polarization mode (YP) by 90o and re-injected back to the 
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VCSEL, the laser threshold current �௧ℎ reduce to about 11.5%. In addition, when the 

VCSEL subjected to strong OF (-5.5 dB), two PS at higher value of the bias current �௕ 

were exhibited combining with the modes fluctuations.  

Another properties described in section 3.4 was the hysteresis properties of the 

polarization mode as a results of PS of the VCSEL which induced by VPOF. The 

hysteresis properties were experimentally investigated. It was demonstrated that VPOF 

induced HL and the feedback level can modify the hysteresis properties significantly. 

Hysteresis cycles were observed beyond 45o of  ߠ௣ with OF level greater than -8 dB.  

The result showed that the hysteresis width for the higher feedback level -6.4 dB is 

much narrow than that of the lower feedback level -8.3 dB. In addition, the result 

showed that  ߠ௣ௗ of the PS of the downward scan was more sensitive to the feedback 

level than  ߠ௣௨ of PS of the upward scan. These results were closely resembled 

theoretical demonstration in Ref [40].  

In section 3.5, polarization extinction ratio of the polarization modes of VCSEL was 

presented. The results showed that the orthogonal polarization OF forces the laser to 

emit in certain polarization mode. Whiles the parallel polarization OF enhanced the 

corresponding polarization mode of VCSEL. This led to increase PEX between the two 

orthogonal polarization modes.  The polarization selectivity increased with ROOF 

especially after the PS beyond 45o of ߠ௣. An external OF with the variable polarization 

angle can significantly alter the bi-stability properties of the PS in VCSELs. VPOF can 

provide a new method to obtain the controllable bi-stable PS in VCSELs, which is 

extremely useful for applications that use the optical bi-stability. 

Next chapter illustrated the PS properties with selective and preserved polarization OF 

with rotated ߠ௣. These properties are presented both experimental and numerical results. 
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Chapter 4  

Polarization Switching Properties of 

VCSEL under VPOF 

 

4.1   Introduction  
 

In chapter three the polarization properties of VCSEL including L-I curve 

characteristics with and without OF and hysteresis properties under VPOF were 

presented. In this chapter the influence of VPOF on the PS properties of VCSEL is 

investigated theoretically and experimentally in two configurations. In the next section 

(4.2), selective and preserved OF with rotated ߠ௣ have been considered. Selective OF is 

demonstrated in configuration A (CA), where only the parallel polarization mode (XP) 

to that of the light emitted by the solitary device is selected and re-injected into the 

VCSEL. While in preserved OF, which is demonstrated in the configuration B (CB), 

both the parallel and the orthogonal polarization modes (YP) are re-injected into the 

VCSEL.  

For CA, it is demonstrated that PS between the orthogonal polarization modes of 

VCSEL can occur for a fixed feedback level and a bias current with variable ߠ௣ of OF. 

However, In CB PS takes place only for certain values of  ߠ௣, particularly when 

intensities of the two polarization modes become comparable with each other. For both 

feedback configurations, the experimental results of the two polarization modes (XP 

and YP) of VCSEL are found to agree well with the numerical simulations and recent 

theoretical study reported in literature [39]. Under rotating VPOF VCSEL can exhibit 
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PS for a fixed bias current and OF. The VCSEL with a greater feedback level requires a 

smaller ߠ௣ to implement PS. For CB feedback, PS was not observed, nevertheless, the 

modes intensities were found to be close to each other at higher feedback levels, due to 

the comparable feedback strength between them.  

Following investigation of the PS properties with VPOF using selective and preserved 

OF are studied considering the intensity modulation parameters, frequency and 

amplitude, under VPOF in section 4.3. Elimination of PS of VCSEL is achieved under 

certain values of the modulation frequency and amplitude in presence of the OF. The 

bias current effect is also investigated in Section 4.3.2.5. It is shown that for a fixed OF 

level a smaller  ߠ௣ is required to ensure PS when the bias current is increased. 

 

4.2 Influence of VPOF Using Selective and Preserved Optical 
Feedback on the Polarization Properties of VCSEL 

 

In this section, to study PS properties of VCSEL subject to VPOF consideration is given 

for two different feedback configurations; termed CA and CB with selective and 

preserved OF respectively, as illustrated in Fig. 4-1. 

4.2.1 Experimental Arrangement 

 

A premium 850 nm single mode VCSEL (Avalon photonics UK Components Ltd) was 

used with a threshold current of about 3.9 mA at free running operation. The VCSEL 

was driven by DC source (7651 YOKOGAWA) and was temperature controlled with a 

thermoelectric temperature controller (TED 200) to within 0.01oC. With regards to CA, 

Fig. 4-1(a), a HWP1 was used to select the parallel polarization direction (XP), and an 

optical isolator (ISO) of > 40 dB attenuation was utilised to ensure that the beam from 
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the VCSEL passed though the OF loop in one direction, and was then re-injected back 

into the VCSEL. 

The HWP2 was used to rotate the polarization direction from 0o (maximum power 

passed through HWP2) to 90o, by rotating 5o of the HWP2 every time to obtain ߠ௣ value 

until 45o (equal 90o of ߠ௣). The OF strength was adjusted using NDF. The optical power 

meter (PM) was used to measure the feedback level as explained previously in 

Chapter 3.  

(a)

(b)

PD1

PD2

PD1

PD2

 

Figure 4-1: Experimental setups (a) Configuration A (CA) and (b) Configuration B 
(CB); BS: beam splitter. HWP: half wave plate. ISO: optical isolator. M: mirror. NDF: 
neutral density filter. PBS: polarized beam splitter. PD: photo detector. QWP: quarter 
wave plate. 
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The laser output power is measured using two optical detectors, PD1 and PD2 (Newport 

model AD-70xr, 6 GHz bandwidth), via HWP3 and PBS. BS1& BS2 directed the 

VCSEL output power to the measurement and OF loop, respectively. In contrast, with 

CB, see Fig. 4-1(b), a QWP was used to rotate both polarization modes (XP and YP) 

prior to re-injecting both of them back into the VCSEL via OF loop. 

4.2.2 Results and Discussions 

 

In this section for both configurations (CA and CB), two parameters have been 

considered; the OF level and variable of ߠ௣. These parameters effects on the PS 

properties of VCSEL are studied experimentally and then verified theoretically. 

Equations 2.18 until 2.28 that were presented in Chapter 2 are used to obtain the 

numerical based simulation results.  

4.2.2.1 Effect of the Feedback Levels 

 

First of all, in CA consideration has given to the polarization properties of VCSEL for 

different values of ߠ௣ subject to varying feedback levels from ~ -27 dB to -13 dB as 

shown in Fig. 4-2. The parallel polarization, (i.e., parallel to solitary VCSEL mode 

(XP)), is selected to re-inject back into the VCSEL. It should be noted that the 

maximum feedback level achieved in CA is about -13 dB due to losses associated with 

components etc., used in the experimental setup. The feedback level (ratio) was defined 

previously in Chapter 3, section 2.4.2, and the polarization resolved L-I characteristics 

of the free-running VCSEL under study were also presented in this section of Chapter 3. 

The bias current  �௕  was fixed at 5.8 mA for all the experiments whose results are 

contained in Figs. 4-2 to 4-6. In this way it was ensured that the YP mode was 

significantly suppressed relative to the XP mode. Fig. 4-2(a) shows that when ߠ௣ is zero 

the VCSEL emits a single XP mode over the entire range of the feedback level with 
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completely suppressed YP mode. This is because with ߠ௣= 0° the dominant mode (XP) 

obtains all the feedback light. When ߠ௣ = 45°, as shown in Fig. 4-2(b), the intensities of 

both modes has increased, but the XP mode remains the dominant mode. For this value 

of ߠ௣, the OF is shared equally between the XP and YP modes as theoretically 

demonstrated in [39]. 
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Figure 4-2:  Polarization-resolved intensities versus optical feedback for CA (XP-
optical feedback) for polarization angle fixed at (a) 0°, (b) 45°, (c) 75° and (d)90°. 

 

For ߠ௣ greater than 45°, as the feedback level increases the intensity of the XP mode 

decreases and the intensity of YP mode increase, see Fig. 4-2(c). In this case the XP 

loses the feedback light whiles the YP obtains the feedback light, thus resulting in PS as 

shown in Fig. 4-2(d). This is because, in contrast to the XP mode, the YP mode has 

experienced higher level of feedback with increased ߠ௣.   
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For CB feedback, the intensities of XP and YP mode versus the feedback level from 

about -18 dB to -6 dB are shown in Fig. 4-3. For ߠ௣ = 0° as in Fig. 4-3(a), VCSEL 

exhibits the dominant polarization mode (XP) and the same tendency as shown in 

Fig. 4-2(a). However, the YP mode emission is increased compared with that of the 

Fig. 4-2(a). This is because of the feedback alignment. The XP mode is the dominant 

mode and is subjected to strong feedback. Recalled that  �௕  was fixed at 5.8 mA to 

ensure that the YP mode was highly suppressed, therefore no light is reflected back into 

the YP mode, thus leading to zero feedback. 
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Figure 4-3: Polarization-resolved intensities versus optical feedback for CB (XP and 
YP optical feedback) for polarization angle fixed at (a) 0°, (b) 45°, (c) 75° and (d) 90°. 

 

In Fig. 4-3(b) both intensities of the XP and YP modes exhibit similar behaviour, 

gradually increasing in intensity with increasing feedback levels. This is because for ߠ௣= 45° both modes are subjected to the same feedback level. Furthermore, as ߠ௣ 
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increases the XP (YP) mode loses (obtains) more feedback light, therefore the 

comparable feedback strength achieved by the XP and YP modes leads to similar 

intensity profiles of both modes.   

Fig. 4-3(c-d) illustrates further the enhancement of the YP mode by ~6 μW when the 

feedback level increased by 5 dB, as well as the total intensity for ߠ௣= 75° and ߠ௣= 90°, 

whilst the XP mode intensity decreases slightly by ~3×10-3 mW when increasing the 

feedback level by ≈ -4.7 dB in the entire region. For the entire feedback level 

considered here, the XP mode is always the dominant polarization mode for all values 

of ߠ௣, and no PS is observed. Similar finding was demonstrated theoretically in [39], 

which is attributed to the gain of the YP mode being  less than the gain of the XP mode, 

(see Fig. 4-6). Next subsection will presented the second parameter effect on the PS 

properties, which is ߠ௣. 

4.2.2.2 Effects of Variable Polarization Angle 

 

Next we consider the effects of VPOF on the polarization properties of  VCSEL for a 

range of feedback levels of -15.6, -15, -14, -13 dB. In this case, both the feedback level 

and Ib are fixed and ߠ௣ is varied from 0° to 90°. For CA feedback, the polarization-

resolved intensities as a function of ߠ௣ are shown in Fig. 4-4 for different feedback 

levels. Fig. 4-4(a-d) shows that the XP (YP) mode decreases (increases) gradually 

with ߠ௣. Moreover, a larger feedback level, as shown in Fig. 4-4(c) and Fig. 4-4(d), lead 

to a PS whose position is dependent on the feedback level. The total emission intensity 

began to decreases at higher values of ߠ௣. The results illustrate that a smaller ߠ௣ is 

required to realize PS for a large feedback level. These experimental results confirm the 

results of previous theoretical analysis in [39], which predicted that for relatively larger 

feedback the OF effect and gain compete for the dominant effect.  
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Figure 4-4: Polarization-resolved intensities versus polarization angle for CA, (XP 
optical feedback) for a fixed feedback level at (a) -15.6, (b) -15, (c)-14 and (d) -13dB. 

 

Fig. 4-5 displays the polarization resolved output intensities as a function of ߠ௣ for the 

VCSEL subject to CB feedback. It can be observed from Figs. 4-5(a-d) that as ߠ௣ is 

increases in the range of 0° ≤ ߠ௣ ≤ 20°, the intensity of the XP mode decreases, whilst 

that of the YP mode increases. Further increase of ߠ௣ beyond 20° results in the decrease 

in the intensity of the XP mode and the total intensity, thus leading to PS occurring 

between the orthogonal modes. On the other hand the intensity of XP and YP modes 

becomes saturated after the PS point, see Fig. 4-5(c, d). The gain of the XP mode 

(dominant mode), at a relatively low optical feedback level (-12 dB to -11 dB) is higher 

than the gain of YP mode. 
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However, for larger feedback level the polarization properties are different compared 

with lower feedback level. For the feedback levels of -7.6 dB and -6 dB, the PS occurs 

between the two modes and their intensities become closer to each other. Furthermore, 

the location of the PS point is somewhat different and is located at about ߠ௣ = 76° in 

Fig. 4-5(c) and at about ߠ௣ = 74° in Fig. 4-5(d) for the feedback levels of -7.6 and -6 dB, 

respectively. This result illustrates that a VCSEL with larger feedback requires a smaller ߠ௣ to achieve PS, which attributed to the same reason above in Fig. 4-4 (The optical 

feedback and gain compete for the dominant effect). 
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Figure 4-5: Polarization-resolved intensities versus polarization angle for CB (XP and 
YP optical feedback) for optical feedback fixed at -12, -11,-7.5 and -6 dB in (a), (b), (c) 
and (d) respectively. 

 

Further explanation for Fig. 4-5 can be obtained via consideration of the feedback 

strength variation when ߠ௣ increase from 0° to 90° as depicted in Fig. 4-6. The feedback 
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strength of the two polarization modes of the VCSEL have a sinusoidal dependences 

on ߠ௣, where increasing of polarization angle leading to decrease (increase) in the 

feedback strength of XP (YP) mode. Here, at relatively smaller optical feedback levels 

of -12 and -11 dB the OF plays less important role than the gain of the XP mode, thus 

leading to the intensity of XP mode still being dominant as depicted in Figs 4-5(a, b). 

Fig. 4-6(b) shows that for strong feedback (-5.5 dB), when ߠ௣ increases, the feedback 

strength of both modes become closer to each other. This is because of the fact that the 

feedback strength of the XP mode and the YP mode becomes comparable [39], and the 

OF and the gain compete for the dominant effect. VCSEL polarization properties have 

been studied theoretically in [41] with variable polarization OF. It was show that PS can 

occur with the sweep of ߠ௣ from zero to 90o, which is barely affected by the frequency 

detuning of the polarization modes. 
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Figure 4-6: Feedback strength variation versus the polarization angle for CB (XP and 
YP optical feedback). 

Now we will show the numerical results corresponding to the above investigation of the 

PS properties using the experimental parameters and typical values of VCSELs [39, 52].  
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4.2.2.3 Numerical Results of CA Feedback  

 

Figure 4-7 shows the result of the numerical simulations of the average intensities of the 

XP and YP modes versus the feedback level in the CA feedback scheme. It can be 

observed that the numerical results are in agreement with the experimental results 

provided in Fig.4-2. Note that there is slight difference between the experimental and 

numerical results, which can be attributed to the feedback alignment issues. 
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Figure 4-7: Numerical results of the polarization-resolved intensities of the XP and YP 
mode with total output intensity as functions of the feedback level for ߠ௣ fixed at (a) 0°, 
(b) 45°, (c) 75° and (d) 90°,  for CA feedback. The circles (stars) line corresponds to the 
intensity of XP (YP) mode and the blue line is the total intensity. The curves for XP 
mode and total output in (a) are overlapped. 

 

When ߠ௣ = 0° the XP mode is dominant and the YP mode is suppressed. The two 

polarization modes exhibit the same tendency for the other ߠ௣ values, where the PS 

occurs at a similar value of  ߠ௣  in the practical results at almost the same feedback 
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level. Furthermore, for CA feedback, Fig. 4-8 shows the numerical results for 

polarization-resolved intensities as a function of ߠ௣ for the VCSEL subject to relatively 

low and high feedback levels from 17 ns-1 (-16 dB) to 24 ns-1 (-13 dB). It is shown that 

for the feedback coefficient k = 17 ns-1 the XP mode is the dominant mode and the YP 

mode is suppressed. When the feedback increases to the maximum feedback level of 24 

ns-1, PS occurs at ߠ௣  86o, which is the same as that observed in the experiment (see 

Fig 4-4). Based on the results obtained for CA feedback, there are good agreements 

between numerically predicted and experimental results.  
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Figure 4-8: Numerical results of the polarization-resolved intensities of the XP and YP 
mode as functions of ߠ௣ for the feedback level fixed at (a) 17, (b) 19, (c) 21 and (d) 24 
ns-1 for CA feedback. The other descriptions are the same as in Fig. 4-7. 

 

The typical and experimental values that were used in the simulation and Simulink 

models (in Chapter 6) are provided in Table 4-1[39, 80, 147, 151, 161]. 
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Table 4-1: Parameter values for VCSEL under study 

Parameters Values ݇௫,௬ (Polarization feedback coefficient) variable  ߚ௦௣ (Strength of the spontaneous emission) 10-5 ns-1 γ௫,௬ (Inverse of photon lifetime for XP &YP 

mode)  

7.692×1011 s-1 

�௫ (Feedback delay for XP mode) 6.4 ns �௬ (Feedback delay for YP mode) 2.6 ns �௢ (Difference between XP and YP gain 

coefficients) 

5×10-13 m3/s 

�௬ (Gain coefficient for  YP mode) 2×10-12 m3/s �� (Carrier density at transparency) 2.5×1024 m-3 ͳ/� (Inverse of carrier life time) 1×109 ns-1 λ (Wavelength of laser) 850 nm Δ ݂ (Frequency detuning of XP and YP 

modes) 

40 GHz 

ܴ௢ ( The phase reflectivity)  0.995 ݊௢ ( The reflective index) 3.5 ܴ௠ ( The external reflectivity) 10 F/10 � ( Laser cavity length) 2 μm ∝ (Line-width enhancement factor) 3.0 

 

4.2.2.4 Numerical Results of CB Feedback 

 

With reference to the experimental results in Fig 4-3, the numerical results for the 

intensity of the XP and YP modes as a function of the feedback level for CB feedback 

are presented in Fig. 4-9 for ߠ௣ of 0°, 45°, 75°, 90° similar to that used in the 

experiment. When ߠ௣= 0° the intensity of the XP and YP modes in Fig. 4-9(a) exhibit 

similar tendency to that of Fig. 4-3(a). The XP mode remains dominant for all ߠ௣ values 

for the entire region of the feedback. The two modes have comparable feedback strength 

at ߠ௣ of 45° and they become closer to each other, especially at higher values of ߠ௣ for a 

strong feedback coefficient (݇) of 55 ns-1 (equivalent to ~ -7 dB). For the whole range of 
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 ௣ beyond 45° the intensity of both modes become closer to each other with no PSߠ

being observed for the entire range of ߠ௣, which is similar to that of the experimental 

results.  

10 20 30 40
-0.1

0.0

0.1

0.2

0.3

In
te

n
s
it
ie

s
 (

a
u
)

XP Mode

YP Mode

10 20 30 40
-0.1

0.0

0.1

0.2

0.3

XP Mode

YP Mode

 Total 

10 20 30 40
-0.1

0.0

0.1

0.2

0.3

In
te

n
s
it
ie

s
 (

a
u
)

Feedback coefficient (k) 

XP Mode

YP Mode

 Total 

10 20 30 40
-0.1

0.0

0.1

0.2

0.3

Feedback coefficient (k) 

XP Mode

YP Mode

 Total 

(a) (b)

(d)(C)

0° 45°

75° 90°

(ns-1 ) (ns-1 )

 

Figure 4-9: Numerical results of the polarization-resolved intensities as functions of ߠ௣ 
for different polarization angles of (a) 0o, (b) 45o, (c) 75o and (d) 90o for CB feedback. 

 

Fig.4-10 presents the numerical simulations results of the polarization resolved 

intensities of the XP and YP of the VCSEL as a function of ߠ௣ for different feedback 

coefficient values of 20, 30, 45 and 55 ns-1 with CB feedback. In terms of the modes 

behaviours, the numerical simulations results are in line with the corresponding 

experimental results as in Fig. 4-5. However, the PS occurs at different points. In 

numerical simulation with the feedback coefficient of 55 ns-1 the PS occurs at ߠ௣ value 
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of about 68°, while in the experimental results it happen at about ߠ௣= 73° for a feedback 

level of -6 dB.  

In practical environments especially when the feedback level is strong, potentially error 

may occurs due to multiple reflected feedbacks reflected that needs considering.
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Figure 4-10: Numerical results of the polarization-resolved intensities as functions of ߠ௣ for different feedback level, of (a) 20, (b) 30, (c) 45 and (d) 55 ns-1 for CB feedback. 

 

4.3 Investigation of Polarization Switching of VCSEL Subject to 
Intensity Modulation and Optical Feedback 

 

Further investigations on the PS properties using another VCSEL with different 

characteristics than that used in section 4.2 carried out are outlined in this section. This 

study presents the results of an experimental investigation of the PS of VCSELs using 

the polarization-rotated OF mechanism. In particular, the experiment is performed by 
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changing the laser drive current, OF level, modulation signal parameters such as 

frequency and modulation-depth in order to assess their influences on the PS of 

VCSEL. Similar finding to that outlined in section 4.2 are established when assessing 

the parameter effects of the OF level and ߠ௣. To realize PS with increasing the level of 

OF smaller ߠ௣ should be used. Moreover, for a fixed OF level and increased bias current 

smaller ߠ௣ is also need to ensure PS.  However, to the best of our knowledge this is the 

first time for using modulation parameters to eliminate PS in VCSEL in presence of OF.  

Here, the PS properties is investigated by changing the OF level, varying the 

polarization angle by means of applying the modulation signal, and varying the bias 

current. The results give more insight and a controllable tool into PS dynamics of 

VCSEL with OF and modulation signal.  

4.3.1 Experimental Arrangement 

 

The experimental set up is shown in Fig. 4-11. A commercial 850 nm single mode 

VCSEL with a threshold current I th of ~1.5 mA at the free running operation was used. 

The VCSEL was driven by a DC source and temperature controlled using a 

thermoelectric temperature controller (TED 200) to within 0.01oC. An external signal 

generator (Tektronix AFG3252C 2 GS/s, 240 MHz) was used for intensity modulation 

(IM) of the laser source. The laser output beam was collimated using an objective lens 

prior to being applied to a BS. HWP and PBS were used to direct the orthogonal 

polarizations of the VCSEL to the two identical optical receivers (OR) for the 

measurements. The optical beam propagating in the x direction is reflected back using a 

mirror M with high reflectivity to the VCSEL via NDF, QWP and BS, thus providing 

the OF signal.   
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Figure 4-11: Experimental setups; VCSEL, Lens, BS: beam splitter. QWP: quarter 
wave plate. NDF: neutral density filter. M: mirror. HWP: half wave plate. PBS: 
polarized beam splitter. OS: optical sensor, Power meter. 

 

QWP was used to rotate the VCSEL polarization XP and YP modes, i.e., parallel and 

orthogonal, respectively. NDF was used to adjust the OF level. The switch shown in 

Fig. 4-11 symbolises IM state of the VCSEL.  

For this setup, the OF power level measured at the point “x” in Fig. 4-11 is normalized 

to the total output power measured at the point “xo”. Note that, ߠ௣ of 0° and 90° 

corresponds to XP and YP feedback signals, respectively. In this study the OF level is 

within the regimes IV and V, which previously introduced in Chapter 2. In these 

regimes it was reported that the laser operation was insensitive to the phase effects and 

other external optical perturbations [22]. Here we investigate the influence of VPOF on 

the PS properties when considering effects of the OF level with and without IM, and the 

bias current.  
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4.3.2 Results and Discussions 

 

Consideration has been given to preserve OF when rotating ߠ௣ with and without the 

modulation signal in order to examine their influences on the PS properties of VCSEL. 

First, Fig. 4-12 shows the polarization-resolved L–I curve characteristics of the free-

running VCSEL at a wavelength of 850 nm at the room temperature of 20° C with a 

threshold current of ~1.5 mA. VCSEL lases at the XP mode (square dots), which is the 

dominant mode over the entire range of the bias current �௕.  
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Figure 4-12: Polarization-resolved L-I curve of the free-running VCSEL- XP mode 
(black), YP mode (red) and total power (green). 

The YP mode (round dots), not fully suppressed display lower L-I characteristics than 

the XP mode. This L-I curve characteristic is different compared to previously reported 

data on VCSELs in terms of the entirely suppressed polarization mode as demonstrated 

in earlier sections of this thesis and compared with relevant studies in literature [28, 39, 

40, 57, 100]. This is because of the inherent structure of the commercial 850 nm 

VCSELs used in this work. However, similar tendency and polarization properties have 

been reported in previous works when using similar parameter for OF, VPOF and the 

injection current to investigate the polarization mode properties of VCSEL.  The L-I 

curve is linear within ~1.5 <  �௕  < 8.5 mA with no PS observed. The device was biased 
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at  �௕ of 5.2 mA for all figures except Fig. 4-17(a) where  �௕ of 3.2 mA was used for the 

purpose of comparison. 

4.3.2.1 Effects of Optical Feedback levels on VCSEL’s PS Properties  

 

First we investigate the effects of OF on the polarization properties of VCSEL. The 

polarization-resolved intensities of the VCSEL against ߠ௣ for range of OF levels for  �௕ of 5.2 mA are shown in Fig. 4-13. The result illustrates that the output power of the 

XP and YP modes are almost constant for ߠ௣ > 10° for an OF level of -17 dB. For OF 

levels of -10, -8 and -7 dB, the optical power for XP (YP) decreases (increases) with 

increasing ߠ௣ at rates of 2.3×10-3, 4.1×10-3 and 4.3×10-3 mW per degree, respectively 

for both polarization modes. As shown in Fig. 4-13(a) at the OF level of -17 dB, both 

XP and YP modes are emitted simultaneously with no PS. 
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Figure 4-13: Polarization-resolved intensities vs. the polarization angle at a bias 
current of 5.2 mA with no modulation for OF levels of -17 dB (a), -10 dB (b), -8 dB(c), 
and -7 dB (d). 
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This is because at low level of OF the XP mode gain is higher than the YP mode, this is 

because the XP mode is the dominant mode and get most the feedback light [39]. At 

higher OF levels the plots display linearly increasing and decreasing trends for XP and 

YP, respectively with PS, see Fig. 4-13(b, c, d). The position of PS depend on the OF 

level as predicted  in [39]. The PS positions observed are at ߠ௣ of 78o, 66o and 60° for 

OF levels of -10, -8 dB and -7 dB, respectively. Increasing ߠ௣ results in both XP and YP 

modes experiencing reduced and enhanced feedback light, respectively. The results 

demonstrate that PS can be achieved at smaller values of ߠ௣ when the OF level 

increases. In [39] it was shown that for ߠ௣ > 45° the OF level between the two 

polarization modes should be large enough to let the suppressed mode to be the 

dominant mode. Furthermore, PS can also take place when the net gain between the two 

orthogonally polarization modes of the laser is equal to zero [52].   

4.3.2.2 Effects of OF on VCSEL’s PS Properties with Intensity Modulation 

 

In this section we investigate PS properties of the VCSEL with IM. Polarization-

resolved intensities versus ߠ௣ for  �௕  = 5.2 mA, frequency fm of 12 MHz,  modulation-

depth Md of 55.5 % for OF levels of -17, -10, -8 and -7 dB are depicted in Fig. 4-14. 

The XP and YP profiles are almost similar to Fig. 4-13 for all OF levels except for 

lower rate of change of power of 3×10-4, 2×10-3, 2.1×10-3 and 3.3×10-3 mW per degree 

for OF levels of -17, -10, -8 and -7 dB, respectively. However, PS take place at lower 

values of ߠ௣ = 75° and 66° at OF values of -8 dB and -7 dB, respectively. This position 

differences can be attributed to the modulation power effect [147].  
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Figure 4-14: Polarization-resolved intensities versus the polarization angle at a bias 
current 5.2 mA with fm of 12 MHz and Md of 55.5% for OF levels of -17, -10, -8 and -7 
dB, respectively. 

 

4.3.2.3 Effects of Modulation-Depth 

 

Next, we investigate effects of Md on PS of VCSEL. Fig. 4-15 illustrates the optical 

output power of XP and YP modes as a function of șp for a range of Md. We have 

used �௕ , fm, and OF of 5.2 mA, 12 MHz and -7 dB, respectively. As shown in        

Fig.  4-15(a-d) the positions of PS depends on Md, increasing (i.e., to higher values 

of  ߠ௣) with Md. The rate of change of power for both polarization modes are 3.6×10-3, 

3.3×10-3, 2.6×10-3 and 2.1×10-3  mW per degree for Md  of 55.5 %, 68.26 %, 78 % and 

78.66 %, respectively.   
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Figure 4-15: Polarization-resolved intensities versus the polarization angle at a bias 
current of 5.2 mA with internal modulation, fm of 12 MHz and with Md of 55.5%, 
68.26%, 78% and 78.66%. The OF level is -7 dB. 

 

4.3.2.4 Effects of Frequency 

 

For the same conditions as in Fig.4-15 except for Md of 55.5 % and a range of 

frequencies fm of 500 KHz, 12 MHz, 100 MHz and 200 MHz, Fig. 4-16 displays 

polarization-resolved intensities versus ߠ௣ for Md of 55.5 % and a range of frequencies 

fm of 500 KHz, 12 MHz, 100 MHz and 200 MHz,  �௕  of 5.2 mA with IM and an OF 

level of -7 dB. PS is observed at ߠ௣ of 60°, 68° and 85° for fm of 500 KHz, 12 MHz and 

100 MHz, respectively. For fm ≥ 200 MHz, there is no PS, see Fig. 4-16(d). The total 

emission intensity began to decreases and increase for XP and YP modes, respectively, 

which in line with predicted results given in [148].  



79 
 

For both polarization modes the rate of change of power are 3.3×10-3, 3.5×10-3, 2.9×10-3 

and 2.2×10-3 mW per degree of 500 kHz, 12 MHz, 100 MHz and 200 MHz, respectively 

of fm, which are smaller to Fig. 4-15. Results show that there is no PS at fm ≥ 200 MHz. 

The results show that modulation parameters (fm and Md ) can lead to a significant 

change in PS properties, thus limiting effects of  OF on polarization of VCSEL. As a 

result of the experiment finding, the modulation signal can be used to control PS in 

VCSEL. Modulation signals have been used to suppressed the dynamic modes of 

semiconductor laser with OF, as reported in [108]. The feedback effect is strongly 

depending on the modulation frequency when the modulation amplitude is constant, as 

reported in [162]. 
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Figure 4-16: Polarization-resolved intensities versus polarization angle at a bias 
current of 5.2 mA with intensity modulation at fm of 500 KHz, 12, 100 and 200 MHz, 
respectively and Md of 55.5%. The OF level is -7 dB. 

 



80 
 

4.3.2.5 Effects of Changing Bias Current 

 

Fig. 4-17 displays polarization-resolved intensities versus ߠ௣ with an OF level of -7 dB 

and for  �௕  of 3.2 mA and 5.2 mA. Both XP and YP mode display similar tendency as in 

other sections. For  �௕  of 3.2 mA and 5.2 mA, PS is observed at ߠ௣ of 71° and 59°, 

respectively.  
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Figure 4-17: Polarization-resolved intensities versus the polarization angle for an OF 
level of -7 dB and bias currents of: (a) 3.2 mA, and (b) 5.2 mA. 

 

In Fig 4-17(a) for the two modes higher rate of change of power is observed for        ߠ௣ > 40°, where it is 2.4×10-3 mW/degree. While, in Fig. 4-17(b) the rate increases to    

4.9×10-3 mW/degree. For higher value of �b lower ߠ௣ is needed for PS as in line with 

theoretically predicted data reported in [163]. The results demonstrated that the bias 

current can affect the PS dynamic of VCSEL. 

 

4.4  Conclusions 
 

In this chapter PS proprieties of the polarization modes of VCSEL were theoretically 

and experimentally investigated. For first investigation the OF is implemented in two 



81 
 

feedback configurations, CA and CB under the effects of rotating ߠ௣  of OF. The two 

configurations CA and CB were engaged to rotate the selective and preserved OF, 

respectively. Additionally investigated were the PS properties of another VCSEL device 

with different characteristics in terms of the threshold current and polarization emission. 

Polarization properties were presented by considering the effects of OF level, OF 

combined with intensity modulation, and finally the bias current.  

For the first theoretical and experimental investigation VCSEL was subjected to VPOF. 

We showed that there a good relationship between the experimental and theoretical 

results. For CA feedback, the simulation results were agreed well with the experimental 

results. For CB feedback, the results were slightly different as showed in simulation 

results in Fig. 4-10, where the PS position was slightly changed. When the feedback 

level is strong, multiple feedbacks resulting from the setup may need to be taken into 

account.  

Slight differences were found between the theoretical published paper in Ref. [39] and 

the experimental results. Moreover, the experimental results were demonstrated our 

theoretical predictions that the larger ߠ௣ lead to the PS takes place and favours emitting 

the YP mode in CA feedback. For the feedback level applied in the experiment, ߠ௣ could further affect the feedback lights received by XP and YP modes in VCSEL. 

The experimental results demonstrated the recent theoretical analysis with VPOF [39], 

that when the feedback level was relatively small, the OF played a less important role 

than the gain effect. On the other hand, with regards to the relatively large feedback 

level, the feedback strength competed with gain for the dominant effect. In the CA 

feedback finding, when the difference between the feedback strengths of the two modes 

was great enough the OF assumed to be the dominant role.  
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For the second investigation in section 4.3, the effects of rotated  ߠ௣ of OF on the PS 

proprieties of VCSEL by considering effects of OF level, OF combined with intensity 

modulation, and the bias current were presented. It was shown that with the VPOF, 

similar to the first results obtained in section 4.2, PS was observed for a fixed bias 

current and OF. However, with modulation signal and OF, PS point shifted to higher 

polarization angles. Furthermore, a noticeable difference was observed for the rate of 

change of power for two polarization modes with and without modulation. Interestingly, 

it was shown that both the fm and Md limited the effect of OF on VCSEL and therefore 

the PS properties. The XP and YP modes experienced no PS when Md was increased, 

whereas PS was entirely suppressed for fm ≥ 200 MHz. However, the rate of change of 

power was lower for fm compared to Md.  Finally, the results showed that increasing the 

bias current led to PS taking place at lower values of ߠ௣.   
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Chapter 5  

Nonlinearity Behaviour and Relative 

Intensity Noise Investigation of 

VCSEL with VPOF 

 

5.1 Introduction  
 

In chapter 4, the results were presented for theoretical and experimental investigations 

of effects of the variable polarization angle of the feedback light on the polarization 

properties of VCSELs. In this chapter, experimental studies of the nonlinearity 

behaviours and the relative intensity noise of the polarization modes of VCSEL are 

provided.  

The dynamics of SLs with direct modulation have received a considerable attention by 

the researcher. However, only a limited number of studies have addressed the nonlinear 

dynamics of VCSELs with direct modulation [43, 134]. Nonlinear effect is a more 

important factor when laser is modulated [140]. VCSEL with direct modulation exhibit 

different nonlinear properties such as period doubling, period quadrupling, and chaos 

[134, 164]. These characteristics are investigated for a range of bias current and up to 4 

GHz of modulation frequency [136]. Modulation response of VCSEL have been studied 

in terms of polarization instability effects based on spin-flip model [165]. Theoretical 

and experimental investigations was reported in [140], demonstrating nonlinear 

distortion when the SL is driven near the threshold emission. The spectral properties of 
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laser are an important characteristic in the applications of communication systems. 

Temperature variation can caused additional irregular behaviour in the spectral 

distribution of the laser optical power, which has significant effect on the laser dynamic 

at a modulation frequency < 100 MHz [166].   

In Section 5.2, a novel method has been used to improve the linear dynamic range of 

VCSEL using the selective OF. More precisely, for the first time an experimental 

investigation is reported, which shows that the orthogonal optical feedback (OOF) can 

suppress the nonlinearity associated with the polarization modes of VCSEL. 

Furthermore, both temperature and injection current effects on the nonlinearity of the 

polarization modes of VCSEL are also considered in Section 5.2.4. The results obtained 

show that the nonlinear dynamic is observed as the temperature increases. 

In Section 5.3, the relative intensity noise (RIN) characteristics are provided with the 

influence of VPOF and the modulation signal. RIN is an important factor, which 

determines the achievable modulation bandwidth in communication systems. Therefore, 

it is important to understand the effects of RIN on each individual mode of VCSEL. 

Different studies have addressed the effects of RIN on individual modes of VCSEL, 

e.g., application of VCSEL in low noise image processing [133]. In [33] the effects of 

external OF on the RIN of VCSEL was investigated. At low OF levels of -45 to -35 dB 

the measured RIN of -135 dB/Hz was reported, while it is degraded of 20 dB/Hz at a 

high OF level of -10 dB. Moreover, lower RIN of -149 dB/Hz using VCSEL was 

outlined in [34]. A strong OF can led to a reduced RIN owing to the phase effect of the 

reflected light in the laser cavity, provided the light is from a pure single mode 

oscillation [30].  

The influence of VPOF on RIN of the polarization modes of VCSEL is experimentally 

investigated and presented in this work. It is shown that the RIN level in the range of 
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−133 to −152 dB/Hz is achieved under -5.5 dB of OF, which is highly depending on 

rotating ߠ௣. More investigations are carried out on the RIN with modulation signal in 

section 5.3.2. A minimum RIN of -156 dB/Hz is obtained for the dominant polarization 

mode of the VCSEL over the entire range of ߠ௣. For both investigations, the RIN level 

of the dominant mode of VCSEL has a lower values and it’s highly depending on the 

rotating ߠ௣. Furthermore introducing the modulation signal to the VCSEL results in the 

increased level of RIN with and without OF, especially at lower frequency range.    

 

5.2 Suppressing the Nonlinearity of Free Running VCSEL using 
Selective-Optical Feedback   

 

In this work, experimental results are reported on the effects of selective OF to reduce 

the nonlinearity of the orthogonal polarization modes of VCSEL when subjected to the 

modulation signal. Parallel and orthogonal optical feedback (POF and OOF), to that of 

the standalone VCSEL, are employed with variable range of OF and �௕ to investigate 

the nonlinearity of the XP and YP mode. The POF can enhance the harmonics distortion 

(HD) of the parallel mode of standalone VCSEL, while this mode is entirely supressed 

when using OOF. Over a wide range of temperature and  �௕, the nonlinearity behavior of 

the VCSEL are studied with results showing a dramatic change with the temperature 

variation of the laser.  

5.2.1 Experimental Arrangement and Discussion  

 

To investigate the effect of selective OF on the VCSEL properties, the following 

experimental set-up is employed and depicted in Fig. 5-1. A commercial 850 nm 

VCSEL (Oxidation process) is used in the experiments, which over a range of �௕ has a 
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linear output power. The VCSEL is driven by a low-noise current source (Newport, 

505B) and is temperature controlled using a thermoelectric temperature controller (TED 

200C) to within 0.01o C. The VCSEL is subjected to current modulation using an 

external signal generator (Tektronix, 2 GS/s, 240 MHz). The laser output beam is first 

collimated using an objective lens (Aspheric Lens, f = 4.51 mm, AR: 600-1050 nm), 

before being detected by OR (Newport, 1 GHz), after passing through a linear polarizer 

((P), with N-BK7 Protective Windows, 600-1100 nm), which is used to select the 

polarization direction of the polarization modes. A 50/50 BS (50:50 UVFS, Coating: 

700 - 1100 nm) is used to split the laser beam in two parts, one part is directed to a T-

shaped external cavity, which consist of two mirrors (M1, M2). The other part of the 

light is directed to OR and then stored in a digital oscilloscope (Agilent, 6 GHz) and 

Network analyser (NA) (Agilent, 13.5 GHz), for further signal processing. HWP (Zero-

order half-wave plate) and PBS (Polarizing beam splitter cube, 620 - 1000 nm) are used 

to direct the orthogonal polarizations modes to M1 and M2. Each branch of the T-

shaped is returning light back into its own polarization of the VCSEL. The feedback 

level adjusted using a neutral density filter ((NDF) OD: 0-2.0, ARC: 650 - 1050 nm). 

M1 is used for POF (OOF) for the XP (YP) mode and vice versa for M2. For the XP 

mode, POF and OOF measurements are carried out by blocking M2 and M1, 

respectively. The VCSEL optical power is measured using an optical power meter 

(Anritsu, ML9001A). Each of OF branch of the T-shaped is 29 cm length.  The 

standalone VCSEL lases with two orthogonal polarization modes with high XP mode 

emission compared with YP mode emission over the entire range (0-10 mA) of �௕. The 

maximum output power of the VCSEL is 1.9 mW at  �௕ of 10 mA. The polarization-

resolved L-I characteristics of the free running VCSEL is shown in Fig. 5-2, at a room 

temperature of 20oC. It has apparent from the L-I cure that   �௧ℎ is 1.5 mA. 
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Figure 5-1: Experimental setup to measure power spectrum of the VCSEL, BS: beam 
splitter. HWP: half wave plate. M: mirror. NDF: neutral density filter. PBS: polarized 
beam splitter. P: linear polarizer. OR: optical receiver. NT: network analyzer.  
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Figure 5-2: Polarization-resolved L-I curve of the standalone VCSEL. Square black and 
dot red lines correspond to XP and YP mode respectively. The triangle green line refers 
to the total output power. 

The VCSEL starts lasing with the XP mode, which is dominant over the range of �௕ although the YP mode starts lasing after fraction of mA, the modes power increasing 

equally with increasing �௕ but the YP mode has lower power emission.  
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After characterising the L-I curve of free running VCSEL, a sinusoidal modulation 

signal is applied. The modulation frequency is 1 MHz with 68% of modulation depth. 

The results obtain at  �௕  of 3.6 mA and 5.6 mA to demonstrate the finding results over 

ranges of  �௕ .  
5.2.2 Harmonics Distortion of VCSEL under Selective-Optical Feedback  

 

To study the XP and YP modes nonlinearities of VCSEL, the output power spectra and 

the harmonics measurement are presented under the polarization-selective OF. In case 

of the POF feedback and for the XP mode measurement, the OOF light is blocked and 

the electrical harmonics is measured at   �௕  of 3.6 mA, as depicted in Fig. 5-3. For free 

running device, the XP and YP modes spectra are shown in Fig. 5-3(a) and Fig. 5-3(d), 

respectively. The first harmonic (fundamental (F)), and the 2nd harmonic are clearly 

visible with different peaks level for both XP and YP modes. The HD arises from the 

nonlinearity characteristics of the L-I curve of the device. Furthermore, the spatial hole-

burning, which arises due to the carrier recombination in the lasing process, also 

contributes to the output power intensity profile of the VCSEL [139, 150, 167]. 

For the XP mode measurements, as shown in Fig. 5-3(a, b, c), the high-order 

nonlinearities are dominant when the POF feedback of -9.9 dB is applied, see             

Fig 5-3(b). The HD is increased to about 4 dB compared with that of the free running 

dynamic. However, when the OOF of -9.9 dB is applied, as showed in Fig. 5-3(c), the 

2nd harmonic is entirely suppressed and HD is reduced to ~13 dB compared with that of 

the free running device. For the YP mode measurements, as shown in Fig. 5-3(d, e, f), 

the nonlinear behaviour is dominant when the POF of -10.5 dB is applied. The 2nd 

harmonic is enhanced and HD is increased to about 3dB when the POF is applied, as we 

can see in Fig. 5-3(e). However, when -9.9 dB of the OOF is applied as shown in        
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Figure 5-3: Electric power spectra of the XP and YP mode with different levels of 
optical feedback, (a) and (b) XP and YP mode, respectively at free running VCSEL, (b) 
and (e) at POF for XP and YP mode, respectively, (c) and (f) at OOF for XP and YP 
mode, respectively at bias current of 3.6 mA. 

 

Fig. 5-3(f), the 2nd harmonic power is entirely suppressed and HD is reduced to about 

11 dB compared to that of the free running operation, see Fig. 5-3(c). It can be notice 

that the harmonic components have reduced to the noise floor level of -100 dBm. 

Nonlinearity of the polarization mode can be enhanced (suppressed) by similar 

(orthogonal) feedback light, as reported in [106]. The harmonics dynamics in the 

spectrum of the VCSEL with selective-optical feedback could be attributed to the mode 
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competition, where a certain polarization mode of the optical feedback leads to 

enhancement of a similar intensity mode and suppressed the other (orthogonal)  mode of 

the solitary VCSEL [168].  

Further measurements at   �௕  of 5.6 mA are showed in Fig 5-4. The VCSEL is subjected 

to similar condition of the modulation parameters of previous case of  �௕ = 3.6 mA. For 

the XP mode measurements, the spectrum is illustrated in Fig. 5-4(a, b, c). Obviously, 

we can see the harmonics components increase when the POF of -9.9 dB is applied. The 

HD increases to about 8.5 dB compared with that of Fig. 5-4(a). Here at   �௕  of 5.6 mA 

with POF feedback, the 3rd harmonic appears and HD increases to about 5 dB compared 

to free running. However, when the OOF of -10.4 dB is applied, as seen in Fig. 5-4 (c), 

the 2nd and 3rd harmonics are entirely suppressed and reach the noise floor. HD reduces 

to about 9 dB compared with that of the free running device.  

For the YP mode measurements, as shown in Fig. 5-4(d, e, f), with POF of -10.4 dB, the 

peak power of the 2nd harmonic is increased compared with that of the free running 

operation, where HD  is increased to about 5.6 dB. However, when the OOF of -9.8 dB 

is applied as we can see in Fig. 5-4(f), the 2nd harmonic is completely suppressed and 

HD is reduced to about 4.5 dB. In case of YP measurements HD due to the 3rd 

harmonics is almost supressed and does not appear in entire spectrum of the laser mode. 

The dynamic range of the VCSEL is improved and the modulation bandwidth is 

increased by utilizing the OOF. The nonlinearity behaviours of the polarization modes 

of VCSEL is increased with a similar polarization mode of the OF. The results show 

that the HD strongly depends on the polarization direction of the OF, where the POF 

leads to increase in harmonics of the similar polarization mode of the VCSEL. While 

the OOF leads to entirely supressed harmonics power of the orthogonal mode of 
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the laser, thus resulting in reduced nonlinearity characteristics in the output power of the 

laser mode. 
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Figure 5-4: Electric power spectra of the XP and YP mode with different levels of 
optical feedback, (a) and (b) XP and YP mode, respectively at free running VCSEL, (b) 
and (e) at POF for XP and YP mode, respectively, (c) and (f) at OOF for XP and YP 
mode, respectively at bias current of 5.6 mA. 

 

Further measurements have been carried out for higher modulation frequency up to   

240 MHz. For the XP mode with POF, OOF is blocked; the frequency spectrum for   �௕  
of 3.6 mA is measured as shown in Fig. 5-5(a, b, c). From the frequency spectrum of the 
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XP mode at the free running condition, see Fig. 5-5(a), the 2nd, 3rd and 4th HDs are ~21, 

~24, and ~32 dB, respectively.  With POF of -8.2 dB the 2nd, 3rd and 4th HDs has 

increased by ~2, ~11 and ~9 dB, respectively as shown in Fig. 5-5(b) when compared to 

Fig 5-5(a). However, with OOF of -8.9 dB the harmonic components is reduced to the 

noise floor level of -100 dBm, see Fig. 5-5(c). 
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Figure 5-5: Left, the frequency spectrum of the XP mode of VCSEL for: (a) free 
running, (b) POF of -8.2 dB, and (c) OOF of -8.9 dB. Right, the frequency spectrum of 
the YP mode of VCSEL for: (d) free running, (e) POF of -8.8 dB, and (f) OOF of -32.6 
dB at a bias current of 3.6 mA. 
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Fig. 5-5(d, e, f) depicts the harmonics spectra of the YP mode measurements. From the 

spectrum of the YP mode at the free running condition, see Fig. 5-5(d), there is 

nonlinearity with HDs of ~14, ~20 and ~23 dB for the 2nd, 3rd and 4th harmonics, 

respectively. With POF of -8.8 dB, the nonlinearity of the YP mode is dominant with 

HDs of ~10, ~23 and ~40 dB for the 2nd, 3rd and 4th harmonics, respectively. The 

nonlinearity enhance compared with that of the fee running operation, see Fig. 5-5(e). 

However, as OOF applied, all harmonic components have suppressed to the noise floor 

level, see Fig. 5-5(f). 

 

5.2.3 Frequency Response of VCSEL  

 

The frequency response of the polarization modes of VCSEL under POF and OOF are 

depicted in Fig. 5-6 as well as the free running response. From the frequency response 

of the XP mode with the OOF as we can see in Fig. 5-6(a), the maximum 3-dB 

modulation bandwidth can be observed of the solitary VCSEL is ~ 1.3 GHz. This 

bandwidth is enhanced by 40 MHz with strong OF (-7.6 dB), while it is similar to that 

of free running when the OF decrease to -25.6 dB.  

The frequency response of the YP mode is depicted in Fig. 5-6(b) with the OOF of -20 

dB and -8.7 dB. With the latter, the modulation bandwidth is enhanced by ~140 MHz 

compared with that of the free running VCSEL. However, the bandwidth measurements 

are limited due to the instruments limitations, OR and the laser circuit bandwidth (up to 

1 GHz), see           Fig. 5-6(a). 
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Figure 5-6: (color lines), (a) frequency response of the XP mode,(b)YP mode at free 
running VCSEL (soled black), -8.7 dB OF (dashed red) and -20 dB (dashed green) with 
bias current of 3.6 mA. The inset figure displays enlarge scale until frequency of 
~1.2 GHz. 

 

Fig. 5-7 depicts the total frequency response of the VCSEL when subjected to selective 

OF at   �௕ of 3.6 mA and 20 ͦ C, at free running (black squares), -7.7 dB POF (red dots) 
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and -8.4 dB OOF (green tringles). The standalone VCSEL has a 3-dB modulation 

bandwidth of ~1.3 GHz of the total power (XP and YP modes) which enhances with the 

OOF by 60 MHz as suppressed the nonlinearity of the VCSEL as show in Fig. 5-7. For 

the same reason above (instruments limitation), laser bandwidth measurements are 

limited.    
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Figure 5-7: (color lines), frequency response of the total power of VCSEL at free 
running VCSEL, (black squares), -7.7 dB XP OF (red dots) and -8.4 dB YP OF (green 
tringles) with bias current of 3.6 mA. The inset figure displays enlarge scale until 
Frequency of 1.2 GHz. 

 

The effect of temperature variation on the VCSEL nonlinearity has been investigated for 

different values of  �௕  (2 �௧ℎ , 2.4  �௧ℎ , 3.74  �௧ℎ  and 4.4  �௧ℎ  ), the measurements results 

are presented in the next section. 

5.2.4 Temperature Effects on the Linearity of VCSEL  

 

As we mentioned above,   �௕  and the operating temperature can lead to further 

nonlinearity in SLs devices [140]. Therefore, power spectra of the dominant mode (XP) 
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of the VCSEL for different values of  �௕  and the temperature are also investigated. The 

electrical power spectra of the XP at the free running VCSEL with different   �௕  and 

temperature have been considered. The results of the XP mode with  �௕  of 3, 3.6 and 5.6 

mA are depicted in Fig.5-8. First of all, the 2nd and 3rd harmonic levels are almost 

constant for the temperature range of 5o to 20o. For   �௕  of 3 mA and 3.6 mA, as 

temperature increases the 2nd (3rd) harmonic increases (decreases), which leads to 

increased HD of the XP mode.  At   �௕  of 5.6 mA the 2nd and 3rd harmonics slightly 

increases with the temperature. The 2nd and 3rd harmonics dynamic are different where 

the 2nd harmonics power is almost increased with  �௕ , while the 3rd harmonic 

dramatically decreases.   

0 10 20 30 40 50 60 70

-90

-85

-80

-75

-70
2

nd
 H at 5.6 mA

2
nd

 H at 3.6 mA

3
rd
 H at 5.6 mA

 3
rd
 H at 3.6 mA

3
rd
 H at 3mA

2
nd

 H at 3mA

P
o
w

e
r 

(d
B

m
)

Temperature (degrees)

 

Figure 5-8: (color lines) the electrical power spectrum as a function of temperature of 
the 2nd   (square) and 3rd (star) harmonic of the dominant mode (XP) at the modulation 
frequency of 1 MHz and modulation depth of 68% without optical feedback and 
depending on bias current. The black, blue and red lines indicate to 3 mA, 3.6 mA and 
5.6 mA, respectively.   

 

The nonlinear dynamic of the polarization modes of VCSEL has been investigated with 

different values of   �௕  and temperature, which in general the 2nd (3rd) harmonic 
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increases (decreases) with both   �௕  and temperature. At 3.6 mA of   �௕ , the 2nd (3rd) 

harmonic increased (decreased) by ~12 dB when the temperature increased from 0o to 

70o, whilst the 2nd  (3rd) harmonic increased (decreased) by ~10 dB when 

the  �௕ increased from 3 mA to 5.6 mA. As a conclusion thus far, the experiment results 

showed how the harmonics peaks varies with the temperature and  �௕  which leads to 

changes in the nonlinearity characteristics of VCSEL. This changes were due to  the 

relaxation oscillation and the gain saturation caused by a number of carriers, spatial hole 

burning and the leakage current  [140, 166].  

 

5.3 Relative Intensity Noise Characteristics  
 

Although the RIN characteristics of VCSEL have been studied intensively, however, the 

RIN of the polarization modes of VCSELs with VPOF and modulation signal has not 

been reported yet. Two VCSELs devices, with different characteristics, with VPOF 

have been used to investigate the RIN properties of the polarization modes under 

rotation ߠ௣ of OF.  

In the next section, RIN properties of two orthogonal polarization modes of VCSEL are 

investigated using a VCSEL with a similar L-I characteristic to that used in Section 

3.4.2.    

 

5.4 Relative Intensity Noise Characteristics under VPOF 
 

The influence of VPOF on the RIN of VCSEL is experimentally investigated based on 

characteristic details outlined in Chapter 3 (section 3.4.2). 
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5.4.1 Experimental Setup  

 

The experimental setup for the RIN measurements is depicted in Fig. 5-9. To be able to 

measure the mode intensity and provide an OF, a BS was used to direct the VCSEL 

output to mirror in order to reflect back the light into the VCSEL and to two PDs ( New 

Focus nanosecond photo detector, model No. 1621) via PBS. The outputs of PD1 and 

PD2 were captured via a digital oscilloscope (LC564A, 1 GHz, vertical sensitivity 2 

mV/div) for further processing.  

A HWP and the PBS were employed to adjust the two orthogonally polarized modes 

(XP - the dominant mode, and YP - the suppressed mode) and enable them to be 

separately detected using two identical photo-detectors.  

 

Figure 5-9: Experimental setup to measure RIN of VCSEL polarization modes subjected 
to VPOF; BS: beam splitter. QWP: quarter wave plate. NDF: neutral density filter. M: 
mirror. HWP: half wave plate. PBS: polarized beam splitter. PD: photo-detector 
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A QWP was used to rotate the XP and YP modes and re-inject them into the VCSEL. 

The QWP was used to rotate ߠ௣ from 0° to 90°. The external cavity length is around 40 

cm. The OF strength was adjusted using NDF positioned between M and QWP, see Fig. 

5-9. An optical power meter was used to measure the optical level of the feedback 

signal at the other side of the BS (dashed line in Fig. 5-9).  

5.4.2 Results and Discussions 

 

From the L–I curve of the free-running VCSEL, (Chapter 3, section 3.4.2), no 

polarization switching was observed. Particular consideration has been given to 

preserving the polarization of the OF with rotated ߠ௣ and their influences on the 

polarization-resolved RIN of VCSEL. The device was biased under a fixed feedback 

level of -5.5 dB and a fixed �௕ of 6 mA to make sure that the only XP mode is emitted. 

The RIN is defined as [56]: 

ܴ�� = ሺ  ௉೚ሺ௧ሻ− �೚ሺ�ሻ̅̅ ̅̅ ̅̅ ̅̅ ̅ ሻ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2 ௉೚ሺ௧ሻ̅̅ ̅̅ ̅̅ ̅̅ 2                                 (5.1) 

where �௢  ሺݐሻ is the output power and �௢  ሺݐሻ ̅̅ ̅̅ ̅̅ ̅̅ is the average output power of the VCSEL. 

The RIN is averaged over 1 GHz. Time-dependent samples were recorded to calculate 

the RIN, using 2 × 105 samples for each time trace. The polarization-resolved RIN of 

the VCSEL subject to a strong OF with VPOF are shown in Fig. 5-10. For ߠ௣ of 0° 

(defined as the XP mode), the XP mode is the dominant and the YP mode is suppressed. 

The RIN of the XP mode is 15 dB below that of the YP mode at ߠ௣= 0°, which 

indicated that the two polarization modes are well separated at this angle.  

The XP mode gain is usually higher than that of the YP mode. This is because XP is the 

dominant mode. The RIN of the XP mode continues to be lower than that of the YP 

mode for ߠ௣ in the range of 0° to ~ 45°. In this range the XP mode has more optical 
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feedback than the YP mode [39]. However, for angles greater than 45°, the RIN of the 

YP mode is lower by ~4 dB than that of the XP mode. This is because of the gain 

switching as a result of the polarization switching between the orthogonal polarization 

mode for ߠ௣> 45°, and the YP mode becomes the dominant mode, see Fig. 5-11. For ߠ௣  

= 45°, the RIN of the XP and YP mode is identical and are approximately equal to 

−135.6 dB.  
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Figure 5-10: Polarization-resolved RIN as a function of polarization angle for XP and 
YP modes, with the VCSEL subject to −η.η dB optical feedback level 

 

As ߠ௣ increases from 75° to 90°, no substantial changes in the RIN of the two modes 

were observed and remaining constant for higher values of ߠ௣, with the RIN of YP 

mode 3.7 dB below that of the XP mode. In general, the RIN of the XP mode increases 

considerably when ߠ௣ increases from 0° to 90°, while the RIN of the YP mode increases 

slightly until ߠ௣ = 45°, and then decreases. 

Fig. 5-11 demonstrates the polarization mode intensities as a function of the time for an 

OF of −5.5 dB. It can be observed that for ߠ௣ = 0°, the XP mode has a higher intensity 
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than the YP mode; this is because it is the dominant mode and has a higher gain. 

Furthermore, the two intensity modes are widely spaced compared with other ߠ௣ values 

(45°, 75°, and 90°). The results show that rotating ߠ௣  could significantly change the 

noise and instabilities of the VCSEL modes.  

 

Figure 5-11: Intensity profile of the XP (black) and YP (red) polarization modes of 
VCSEL with a feedback strength of −η.η dB, for ߠ௣ of (a) 0°, (b) 45°, (c) 75° and (d) 
90°. 

 

For ߠ௣= 45°, the intensity of the XP and YP modes are almost the same. This is because 

the XP mode progressively loses light feedback with increasing ߠ௣, while the YP mode 

obtains more feedback [39].  As ߠ௣ increase the XP (YP) mode intensity decrease 

(increase) as shown in Fig. 5-11(c and d). Furthermore, it can be seen from Fig. 5-10 

(a) (b) 

(c) (d) 
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that the RIN of the XP becomes higher than that of the YP mode for ߠp > 45° due to the 

PS effects. In addition, the RIN level of the two modes is relatively constant at these ߠ௣ 

values. For the dominant polarization mode (i.e., XP) the RIN is a minimum at ߠ௣= 0o, 

while it is a minimum at 90o for the suppressed polarization mode (YP). Furthermore, 

for a higher OF level (-5.5 dB) RIN of the XP mode increases rapidly with ߠ௣, whereas 

for the YP mode the RIN is low for angles > 45°due to PS occurs between the XP and 

YP mode. In addition, when ߠ௣ increase a number of spectral lines appear in spectrum 

profile, thus representing complex dynamics behaviour of the VCSEL induced by 

VPOF. 

The frequency spectrum of the XP (black) and YP (red) mode of the VCSEL with a 

feedback strength of -5.5 dB, for ߠ௣ of  0° (a) ,45° (b), 75°(c) and 90°(d) are displayed 

in Fig. 5-12. Fig. 5-12 a (̅ܽ,), b (ܾ̅ ), c (ܿ ̅) and d (݀ ̅) represent the XP (YP) mode for ߠ௣ of 

0°,45°,75° and 90°, respectively. For the XP mode at ߠ௣= 0° there are no spectral peaks, 

see Fig. 5-12 (a). This indicates that the relaxation oscillations of the laser are damped 

due to the OF strength. For higher values of ߠ௣, where the OF level decreases, a number 

of spectral lines are observed, particularly for the YP mode, see Fig. 5-12 (b, c and d),  

which are in line with the data reported in [30]. 

 Fig. 5-13 displays the power spectrums of the XP and YP modes corresponding to   

Fig. 5-12 for the low frequency range up to 50 MHz. Compared to Fig. 5-12 the noise 

level is higher by ≈ -1 dBm for both the XP and YP modes and for all values of the 

rotating phase angle. The increase in the relaxation oscillation peak amplitude by up to -

3 dB indicates that the external OF affects the damping of the relaxation oscillations. 

With a strong OF level, the VCSEL output power becomes chaotic, which depends on 

the feedback level and the length of the external cavity [7]. A detailed study of the 

chaotic behaviour will be discussed in the next chapter. 
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Figure 5-12: The output spectrum of the XP and YP polarization modes of VCSEL with 
a  feedback strength of −η.η dB, for XP mode at  ߠ௣ of (a)  0°,(b) 45°, (c) 75°        
and (d )90° and  for YP mode at  ߠ௣ of (a¯ )  0°,(b¯ ) 45°, (c¯ ) 75° and (d ¯ ) 90° 

 

(a) (c) 

(d) (b) 

(ā ) 

(b¯ ) 

(c )̄ 

(d¯ ) 
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Figure 5-13: Display the Power in the frequency domain corresponding to Fig 5-11 for 
low frequency scale up to 50 MHz, for XP mode at  ߠ௣ of (a)  0°,(b) 45°, (c), 75° and 
(d ) 90° and  for YP mode at  ߠ௣ of (a¯ )  0°,(b¯ ) 45°, (c¯ ), 75° and (d ¯ )90°. 

 

5.5 Relative Intensity Noise Characteristics Subject to Modulation 
Signal with VPOF 

 

The influence of VPOF with the modulation signal on the RIN of a VCSEL was also 

experimentally investigated. The VCSEL has a different L-I curve characteristics (will 

explain later) than this used in previous section (5.3.1). A minimum RIN level of -156 

(d) 

(a) (c) 

(b) 

(ā ) 

(b¯ ) 

(c )̄ 

(d¯ ) 



105 
 

dB/Hz with OF at the dominant mode is degraded to -139 dB/Hz under modulation 

signal. Preservation of the polarization OF with rotated ߠ௣ is considered and its 

influences on the polarization-resolved RIN of the polarization modes of VCSEL is 

presented. 

5.5.1 Experimental Setup  

The experimental setup is showed in Fig. 5-14. A similar detail for the setup was 

provided in section 5.3.1 except that, we are used here an arbitrary vector signal  

 

Figure 5-14: (a) Laboratory snapshot and (b) scheme of the experimental setup of RIN 
measurement of the VCSEL subjected to rotated OF and modulation signal. BS: non-
polarizing beam splitter; M: feedback mirror; OR: optical receiver. QWP: quarter 
wave plate. P: polarizer.  
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generator (Tektronix, 2 GS/s, 240 MHz) to generate the modulation signal. The 

modulation signal is applied only if the switch is active, as depicted in the figure. 

Additionally, a linear polarizer (P) was used to select the polarization mode instead of 

the PBS and then only one OR (Newport, model No. 1601, 1 GHz) need in this setup. 

OF with XP and XP modes correspond to θp  of 0° and 90°, respectively. The external 

cavity length from the VCSEL output to M was 29 cm. Finally, the electrical output 

power of the PD is stored by an electrical signal analyzer (Agilent MXA, N9020A 26.5 

GHz) for further processing. 

5.5.2 Results and Discussions 

 

Similar details for the L-I curve of VCSEL were given in Chapter 4 (section 4.3.2). The 

VCSEL was biased under a fixed feedback level of −7 dB and  �b of 5.6 mA. The RIN is 

calculated using equation (5.1). Firstly, the polarization-resolved RIN of the VCSEL 

subject to OF with a rotated ߠp are shown in Fig. 5-15. For ߠ௣ of 0° the XP mode (the 

dominant mode), display lower RIN compared to the YP mode. The RIN profile for the 

XP mode is around -156 dB/Hz over the entirely range of ߠ௣. This is due to the higher 

level of OF obtained by the XP mode because it is dominant mode. In the best case 

scenario, between 0 < ߠ௣ < 60° the RIN for the XP mode is 1-2 dB lower than the YP 

mode.  

The RIN of the YP mode decreases reaching a minimum level below -155 dB/Hz and 

then increasing beyond ߠ௣ > 45°. This is because of progressively reduced level of OF 

with the XP mode when increasing ߠp, while the YP mode gaining higher level of 

OF [39]. At ߠ௣ ≥ 90° the RIN level difference between the XP and YP modes is about 

5 dB/Hz. 
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Figure 5-15: Polarization-resolved RIN of the VCSEL modes as a function of 
polarization angle subject to −7 dB OF level. 

 

Similarly, Fig. 5-16 shows the measured RIN of the VCSEL modes against ߠ௣ for the 

modulation frequency of 40.5 MHz and a modulation-depth of 68%. Note that for both 

modes the RIN levels are higher, by average RIN values of 16 and 20 dB for the XP and 

YP modes, respectively, compared to the case with no modulation as in Fig. 5-15, 

which can be attributed to modulation effects. Analogous to the previous case with no 

modulation, the RIN of the XP mode is lower than that of the YP mode over the whole 

range of ߠ௣ by 5 dB/Hz. Moreover, Fig. 5-16 indicates that a rotating ߠ௣ could 

significantly change the noise level of the YP mode compared with the XP mode of the 

VCSEL. In this case, the minimum RIN of -156 dB/Hz with OF at dominant mode was 

degraded to -139 dB/Hz under modulation signal.  

In Fig. 5-17 the polarization modes output powers in the frequency domain are 

displayed for the case of free running operation, -7 dB of OF, and 10 MHz of 

modulation frequency with and without OF. The results indicated that the output power 

of the XP mode is higher by ~2 – 3 dBm than the YP mode for all cases depicted in Fig. 
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5-17. In this case, the output power of the two modes is higher with OF and modulation 

frequency. The higher output contributed to improve the RIN level for both modes, as 

shown in Fig. 5-16. 

 

Figure 5-16: Polarization-resolved RIN of the VCSEL modes as a function of θp subject 
to −7 dB OF level and 40.η MHz modulation signal. 

 

A lower output power of around -77 dB for both XP and YP modes over a wide range 

of the frequency is achieved for the case with OF at 0o and no modulation signal. 

Moreover, at low frequency range between 0 to ~12 MHz the harmonic frequencies for 

the case with the modulation frequency and OF lead to increased level of interference in 

both polarization modes. The power levels at the free running and at 10 MHz (without 

OF) cases are lower compared with the case of 10MHz with OF, for the frequency range 

of 12 MHz to 70 MHz for both XP and YP modes. The optical power increases with the 

case of applying modulation signal, which translates to the noise level increment in the 

output power of the VCSEL. For frequencies below  12 MHz, the power level rapidly 

increased for all the cases, as shown at Fig. 5-17.  
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Figure 5-17: (colour lines), the output power of the XP mode (a) and YP mode (b) in 
frequency domain, at free running (Black), 0° OF (Red), 10 MHz signal modulation 
without OF (Green) and 0° OF with 10 MHz signal modulation (Blue). 

 

However, the modulation signal in VCSEL results in an increment of RIN for both 

cases with and without OF. The modulation current gives energy to the modes oscillator 

and enhances the fluctuation [162]. Therefore, introducing the modulation signal in the 

VCSEL, results in the increased level of RIN with and without OF especially at the low 

frequency range of the spectrum. 
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5.6 Conclusions 
 

In this chapter, the first experimental demonstration of the effects of selective-optical 

feedback on the nonlinear behaviour of the polarization properties of VCSEL was 

presented in Section 5.2. This investigation was carried out by observing the spectrum 

of the signal in the electrical domain. The results showed that the irregular dynamics of 

the polarization mode are drastically modified by using selective-optical feedback. It 

was demonstrated that the power peaks of the spectrum are strongly dependent on the 

type of the polarization that is being pumped back into the VCSEL. For 1 MHz 

modulation frequency at 3.6 mA of  �௕ , the HD decreased by 11dB compared to that of 

standalone VCSEL and the spectrum peaks (2nd and 3rd) were entirely suppressed.  

For 240 MHz modulation frequency, the 2nd, 3rd, 4th harmonics were completely 

suppressed and reached the noise floor when using the orthogonal optical feedback 

(OOF). The HD enhanced by ~2, ~11 and ~9 dB, for the 2nd, 3rd and 4th  harmonics, 

respectively when using the parallel (counterpart) polarization feedback (POF). In 

addition, it was shown that the HD is also influenced by variation of the operating 

temperature and bias current, which measured with 1 MHz, where in general the 2nd 

(3rd) harmonic increased (decreased) as the temperature and bias current increase. For 

instance at   �௕  of 3.6 mA , the 2nd (3rd) harmonic increased (decreased) by ~12 dB when 

the temperature increased from 0o to 70o, whilst the 2nd  (3rd) harmonic increased 

(decreased) by ~10 dB when the  �௕ increased from 3 mA to 5.6 mA. 

In Section 5.3, two VCSELs exhibit different properties under rotated ߠ௣ of OF were 

used experimentally with /without modulation signal to describe the RIN characteristics. 

The results demonstrated that the VPOF can considerably affect the RIN properties of 

the VCSEL. For the first VCSEL, which had PS under VPOF, the RIN of the dominant 
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mode (XP) was a minimum at ߠ௣= 0o and for the supressed mode (YP) it was a 

minimum at ߠ௣= 90o. For the angles greater than 45° the RIN of the YP mode was lower 

than that of the XP mode due to the PS between the VCSEL modes. The relaxation 

oscillations were damped at higher feedback levels. At a higher ߠ௣ a number of 

spectrum peaks were observed. The XP and YP modes have a similar RIN value at the 

PS position of this VCSEL. The noise level at lower frequencies from 0 to 50 MHz was 

greater than that of the higher frequencies by ~ 2- 3dBm, where the noise is distributed 

more consistently across the spectrum. In addition, the XP and YP modes experienced 

more feedback at ߠ௣of 0° and 90°, respectively, which led to the one mode being 

dominant over the other at these angles of ߠ௣. 

In Section 5.5 for the second investigation of the RIN with the second VCSEL, which 

has different characteristic under VPOF than this of the previous section, where no PS 

occurred with rotated ߠ௣. It was showed that a rotating ߠ௣ of the OF does not affect the 

RIN characteristics of the dominant mode of the VCSEL. Whiles the RIN level of the 

YP mode progressively changed with increasing ߠ௣. However, the RIN level with 

modulation signal drastically changed for both XP and YP modes. In case of OF 

without modulation, the RIN (around -156 dB/Hz) of the XP mode was lower than this 

of the YP mode.  

With OF and modulation signal, RIN levels of the XP and YP mode was higher than the 

case with no modulation by ~16 and ~20 dB, respectively. This behavior can be 

attributed to the power effect of the modulation signal. The difference in the RIN level 

of the XP mode with/without modulation is about 17 dB, while for the YP mode is 19 

dB. Furthermore, the power spectra of the VCSEL showed OF with modulation signal 

could lead to further fluctuations in the power spectrum, which can significant degrade 

the noise level of the VCSEL. 
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Next chapter will provided chaotic dynamics of VCSEL with VPOF. In this chapter 

more attention has been given to chaos synchronization of the polarization modes of 

VCSEL. 
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Chapter 6  

VCSEL Chaos and Synchronization 

Dynamics with Optical Feedback 

 

6.1  Introduction 
 

Chaotic systems with a number of unique features including noise-like shape with a 

broadband spectra, lower power implementations, and nonlinearity, have become 

appealing for modern secure communications applications. In such systems, a message 

is encoded into a noise like signal generated by laser source with chaotic behaviour [15, 

79]. In the recent years, chaos synchronization has become a hot topic due to their 

potential applications in optical communication systems where security is paramount. 

Synchronization of chaos has attracted increasing attention especially in coupled 

VCSEL configurations based on polarization-rotated optical feedback and optical 

injection [10, 11, 169]. One of the important applications of a synchronized chaotic 

system is a mechanism used for encrypted communications. It is a very interesting step 

forward for controlling the chaotic dynamic in optical lasers through both 

synchronization phenomena and polarization-rotated optical feedback. 

 In VCSELs, detailed characteristics of chaos synchronization given in [13] showed that 

the anti-phase chaotic synchronization can be achieved between orthogonal polarization 

modes of the two mutually  coupled VCSELs. The anti-phase correlation of a 

semiconductor laser is experimentally observed in [161] when the chaotic oscillation of 

the polarization modes is lower than the relaxation oscillation frequency. Enhance 
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chaotic signal has been achieved numerically based on two VCSELs as a master and 

slave laser subjected to optical feedback and optical injection, respectively. This 

proposed system reported in [10] based on two VCSELs shows high quality polarization 

resolved chaos signal between the slave and master  signal. On the other hand, solitary 

VCSEL can exhibits strong anti-phase dynamics between own orthogonal polarization 

modes due to a nonlinear coupling of the orthogonal modes  [170]. 

In this chapter in section 6.2 the impacts of the rotating polarization-preserved optical 

feedback on the chaotic synchronization dynamics of the VCSEL are investigated 

experimentally. A high level of preserve optical feedback is considered in this study, 

where the chaotic regime of VCSEL appears with high OF level [120, 171]. It is shown 

that high-quality anti-phase polarization-resolved chaos synchronization is achieved 

between the XP and YP modes at higher degree of ߠ௣. The quality of the chaotic 

synchronization increases with increase ߠ௣. The high correlation coefficient value of 

0.99 obtained with a zero time delay has been reported theoretically in [42] but not 

confirmed experimentally yet. To the best of our knowledge, this is the first 

experimental report on how the anti-phase chaotic synchronization changes with the 

rotated polarization angle of the OF.  

A numerical and analytical investigations in [172] has shown that basic Hopf 

bifurcations of the  polarization modes of SL lead to sustained relaxation oscillation 

frequency of the laser. The bifurcation regimes always coexist close to square-wave 

switching and involve both relaxation oscillation and square-wave dynamics. Square 

wave switching has been theoretically reported in SL with polarization rotated OF in 

[172] and in VCSEL [102, 173]. In a theoretical study, square polarization dynamic has 

also been excited in VCSEL with perfect anti phase oscillations of the polarization 

modes, which greatly enhanced by small levels of polarization selective OF [174]. 
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VCSEL itself can exhibit fast PS and polarization mode hopping under the influence of 

OF [151, 159, 175]. However, a free running laser diode can generate a low dimension 

chaotic oscillation and a small bandwidth without external perturbation [176].  

Furthermore,  the results show that different chaotic pattern can be achieved with the 

rotated-polarization OF as predicted in [35]. In SL diodes, the anti-phase correlation is 

experimentally observed when the chaotic oscillation is lower than the relaxation 

oscillation frequency of the polarization modes [161]. Solitary VCSELs can exhibits 

strong anti-phase dynamics between own orthogonal polarization modes [14], which 

could improve the quality of the chaotic synchronization of VCSEL. 

In Section 6.5, a complex dynamics with high dimension chaotic mode hopping have 

been demonstrated with strong OF and a rotating polarization angle. Non-symmetrical 

switching and Irregular Square like dynamics are demonstrated with VPOF.  

Simulation results, which are presented in section 6.6 shows that similar trends of the 

chaotic dynamics and polarization resolved mode hopping, can be observed with VPOF. 

  

6.2 Chaos Synchronization in VCSEL Based on Rotate Polarization-
Preserved Optical Feedback 

 

VPOF lead to chaotic dynamics in the polarization modes of VCSEL, which could be 

exploited in optical communications for security reasons. In this investigation, the 

influence of the rotating polarization-preserved optical feedback (RPPOF) on the chaos 

synchronization of a VCSEL is investigated experimentally. The two VCSELs’ 

polarization modes, XP and YP, are gradually rotated and re-injected back into the 

VCSEL. It is shown that high-quality anti-phase polarization-resolved chaos 

synchronization can be achieved at higher values of  ߠ௣. The anti-phase dynamics 
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synchronization of the orthogonal polarization modes is evaluated using correlation 

coefficient (C) function. The maximum value of C obtained is about -0.99 with a zero 

time delay over a wide range of ߠ௣ beyond 65°. A clear relationship is found between C 

and ߠ௣. VCSEL under VPOF can be a good candidate as a chaos synchronization source 

for secure communication systems.  

6.2.1  Experimental Setup  

 

To investigate the influences of RPPOF on the chaotic dynamics properties of the 

VCSEL, the following experimental set-up is employed as showed in Fig. 6-1. A 

commercial single mode 852 nm VCSEL is used with a linear optical L-I characteristic 

over a range of �௕ . 

 

Figure 6-1: Experimental setup for chaotic dynamics measurements of the VCSEL, BS: 
beam splitter. HWP: half wave plate. M: mirror. NDF: neutral density filter. PBS: 
polarized beam splitter. P: linear polarizer. OR: optical receiver.  
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The VCSEL is driven by the laser diode driver module (Newport, 505B) and is 

temperature controlled using a thermoelectric temperature controller (TED 200C) to 

within 0.01° C. The external cavity is 26 cm long, which corresponds to a feedback 

time of 1.7 ns. The solitary VCSEL lases’ in the fundamental mode with two orthogonal 

polarization modes of XP and YP for the entire �௕  range of 0-2 mA. The maximum 

measured output power of the VCSEL is 0.95 mW at  �௕  of 2 mA. The rest of the setup 

details are found in section 4.31 in Chapter 4. 

6.2.2  Results and Discussions  

 

The polarization-resolved L-I characteristics of free running VCSEL is shown in Fig. 6-

2, at a room temperature of 20° C. It can be seen that the XP mode begins to oscillate 

at  �௕  of  0.5 mA, which is the dominant mode.  
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Figure 6-2: polarization-resolved L-I curve of the solitary VCSEL. Square black and 
dot red lines correspond to XP and YP modes, respectively. The triangle green line is 
referring to the total output power. 

 

No PS is observed over  �௕ range. The power of the XP mode increase linearly and the 

YP mode is entirely suppressed. In the following discussions, we set  �௕  at 1.2 mA, 
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which is used in all the measurement campaign, where only the XP mode is oscillated. 

The standalone VCSEL’s polarization modes, XP and YP, display quite different mode 

oscillation compared to the case when they subject to RPPOF. Fig. 6-3(a) shows the 

polarization-resolved time series of the XP mode (upper, black) and the YP mode 

(lower, red) of the standalone VCSEL at fixed  �௕  of 1.2 mA. The XP mode displays 

higher intensity levels compare with the YP mode.  

6.2.3 Correlation Function  

 

The correlation coefficient measurements can be used to evaluate the synchronization 

statues of the two systems. The correlation coefficient, �௫,௬ for the XP and YP modes 

for evaluating the anti-phase chaotic synchronizations given by [177]: 

�௫,௬ = <[�ೣሺ௧ሻ−<�ೣሺ௧ሻ>][�೤ሺ௧ሻ−<�೤ሺ௧ሻ>]>√<[�ೣሺ௧ሻ−<�ೣሺ௧ሻ>]2 [�೤ሺ௧ሻ−<�೤ሺ௧ሻ>]2>                            (6. 1) 

where �௫ሺݐሻ and �௬ሺݐሻ are the intensity outputs of the XP and YP modes, respectively; 

the terms < . > is mean value.  

 

Figure 6-3: (a) Polarization-resolved time series of the VCSEL modes (XP (black) and 
YP (red)) at free running, (b) the corresponding correlation profile.   
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The corresponding correlation plot, which display in Fig. 6-3(b) confirmed that no 

chaotic synchronization is existed between the two polarizations modes. 

6.2.4 Influence of RPPOF on Chaotic Dynamics of the Polarization Modes 

 

After introducing the free running characteristics, the RPPOF effects on the chaotic 

dynamic of VCSEL are discussed.  It should be noted that, when  ߠ௣ = 0° this 

corresponds to pure XP feedback and when  ߠ௣= 90° this corresponds to pure YP 

feedback. The polarization-resolved intensities of the XP and YP modes as a function of 

polarizer angle are shown in Fig. 6-4 at a fixed level of OF (-7.4 dB).  
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Figure 6-4: Polarization-resolved intensities as functions of  ߠ௣ under  �௕  of 1.2 mA and 
optical feedback level of -7.4 dB. 

 

The XP mode is dominant and the YP mode is suppressed for a range of  ߠ௣  ~65° with 

slight hump at 20°. At  ߠ௣ = ~65 the VCSEL show abrupt PS happen between the XP 

and YP mode. Once  ߠ௣  ~70°, the XP mode is entirely suppressed with low output 

power of 0.004mW, while the YP mode becomes dominant with high output power of 
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0.32 mW. In this work, for a comprehensive of discussion of the polarization dynamics 

of VCSEL with VPOF, we covered a range of ߠ௣ from 0° to 90°. 

  Next, Figure 6-5 shows the time series of the polarization modes and corresponding 

correlation plots under OF level of -7.4 dB. For a range of  ߠ௣  45°, Fig. 5(a and b), it 

can be recognized that the XP mode exhibit high intensity signal compared with the YP 

mode and no synchronization between the oscillation modes is observed. As  ߠ௣ increase from 0° to 45°, the scatters points that appear in the figures distribute in one 

direction in the correlation plots, which is referring to the XP and YP modes initiate into 

the synchronization oscillation. However, the C at this range of  ߠ௣ is low of about 0.3, 

which is explained later in the next section.  The XP and YP modes intensities are 

almost in a fixed level of the output power with no fluctuation are observed between 

them over the time series range see Fig 6-5(a).  

However, as  ߠ௣ increases beyond ~45° the polarization dynamics show interesting 

results. High fluctuation and fast PS occur between the XP and YP modes. The 

corresponding correlation plots at  ߠ௣ of 67.5°,74° and 90° display a perfect anti-phase 

chaotic synchronization between the XP and YP modes. The maximum absolute value 

of C obtained beyond 65°  is 0.99 with time shift of the anti- phase dynamics is zero. 

The laser modes dynamics could follow the instantaneous gain change between the two 

laser modes fluctuation nearby the PS point [178]. Dynamic fluctuations of VCSEL 

polarisation modes close to the PS point have been reported in literature from 1997 

[104]. It can be attributed the anti-phase chaotic synchronization to the gain fluctuation 

close to the PS position between the orthogonal polarization modes of the VCSEL. 

Furthermore, mode competition could increase the anti-correlated oscillation of the 

VCSELs’ modes [169]. On the other hand, when  ߠ௣ > 45° the XP mode loss the OF 
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while the YP mode experience more OF, which cause PS and then lead to the YP mode 

becomes a dominant [39].  

(a) (b)
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(c) (d)

 

Figure 6-5: (a) and (c) Polarization-resolved time series of the polarization modes of 
the VCSEL , XP (black) and YP (red) at  bias current of 1.2 mA and -7.4 dB feedback 
level,(a)  for  ߠ௣ of 10°,30°,45°,(c) for  ߠ௣ 67.5°,74° and 90°,  (b) and (d) corresponding 
correlation plots  for (a) and (c) respectively. 

 

The absolute values of �௫,௬ between the two modes are presented in Fig. 6-6.  It has 

been used of 2×104 sample values to calculate each value of �௫,௬ and evaluate the anti-

phase correlation profile. Over the range of  ߠ௣ between 0° to ~ 60°, �௫,௬ has relatively 

lower values and thus lower anti-phase synchronization between the XP and YP mode. 
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However, when  ߠ௣  increase beyond 60°  �௫,௬ value display a higher value of 0.99 over 

a wide range of  ߠ௣ .These results of �௫,௬ at higher angles of  ߠ௣  clearly show high 

quality anti-phase chaotic synchronization between the orthogonal polarizations modes 

of the VCSEL.  
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Figure 6-6: The absolute value of the correlation coefficient (Cx,y) of the two 
polarization modes (XP) and (YP) as a function of polarizer angle. 

 

6.3  Influence of Optical Feedback Level on the Chaotic 
Synchronization  

 

In the last section, characteristics of chaos synchronization of VCSEL subjected to 

RPPOF are described. For more investigation purpose, chaos synchronization dynamics 

of the VCSEL subjected to variable level of OF are provided in this section.  First,         

Fig. 6-7 displays the polarization-resolved intensities of XP and YP mode as a function 

of OF levels, from low feedback level of about -27 dB to high feedback level of about    

-7.4 dB. For the OF range from -27 dB to -8 dB, as shown in Fig. 6-7, the XP mode is 

the dominant mode with almost constant intensity level, while the YP mode is entirely 

suppressed. When the OF level increases beyond ~ -8 dB the VCSEL polarization 
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modes exhibit abrupt PS, where the YP became the dominant mode with high intensity 

level, while the XP mode completely suppressed with a low intensity level.   
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Figure 6-7: Polarization-resolved intensities as functions of optical feedback level 
under  �௕  of 1.2 mA  

 

Next we observe the temporal waveform of the XP and YP modes with varying the OF 

levels from -27 dB to -7.4 dB. Fig. 6-8 gives the time trace of the XP and YP modes 

intensities subjected to -27 dB, -10.9 dB, -8 dB and -7.4 dB as we can see from column 

(a), while column (b) displays the corresponding correlation profiles. At a low feedback 

level of -27 dB, the XP and YP modes intensities are almost constants with high and 

low output power emissions, respectively. It can be clearly seen from correlation plot of 

-27 dB that the XP and YP modes are not in synchronization dynamic.  

 As the OF level increase the PS occurs and strong fluctuation is observed between the 

two polarization modes. The wider scattering points that appear in the correlation plots 

of -10.9 dB and   -8 dB are indicated to the orthogonal polarization modes start to 

synchronized dynamics.  
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Figure 6-8: (a), Polarization-resolved time series of the VCSEL modes, XP (black) and 
YP (red), at bias current of 1.2 mA for OF level  of -27,-10.9,-8 and -7.4 dB , (b) the 
corresponding correlation plots for (a). 

 



126 
 

A perfect synchronization is achieved at strong OF at the level of -7.4 dB, see the 

corresponding correlation plot.  

 

Figure 6-9: The correlation coefficient (C୶,୷) plots of the two polarization mode (XP) 
and (YP) mode as function of optical feedback level, (a) for  ߠ௣ of 0°, 30°and 45°, (b) 
for  ߠ௣ of 70°, 80° and 90°.    
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The quality of the ant-phase synchronization of the VCSEL with variable levels of the 

OF are evaluated by calculating  �௫,௬. First, Fig. 6-9 displays the �௫,௬  values as a 

function of the OF levels from -30 dB to -7.4 dB, for a range of ߠ௣. For the angles of 0°, 

30° and 45°, a lower values of �௫,௬  have achieved, while the maximum values are 

obtained beyond 45° with almost high OF levels. Fig. 6-9(b) show the �௫,௬ 

measurements at  ߠ௣  of 70°, 80° and 90° from low to high levels of OF. At  ߠ௣ = 70° the �௫,௬ values is almost zero until -14.5 dB, after that a maximum value of -0.99 is 

achieved over a wide range of the feedback levels. As  ߠ௣ increase the probability of 

achieving high quality of ant-phase chaotic synchronization increases and can be 

obtained at lower values of the feedback level. 

 Since the frequency detuning and phase difference of the external cavity of the OF 

affect the synchronization dynamics of the XP and YP modes [179], low quality of the 

synchronization is displayed at higher angles of  ߠ௣  and higher levels of OF. The results 

reveal that the chaotic synchronization have improved with  close to the PS positions of 

the VCSELs’ modes where the high quality of the anti-phase chaotic synchronization is 

achieved nearby the PS [180]. 

 

6.4 Selective-Optical Feedback Effects on the Chaos 
Synchronization  

 

Next, the influence of the rotating parallel-polarization optical feedback (Parallel-POF) 

is considered for this investigation. VCSEL with similar characteristic of that used in 

pervious section (section 6.2) is used her to study the chaotic synchronization properties 

of parallel polarization OF with rotating ߠ௣. It has shown that the high-quality anti-

phase polarization-resolved chaos synchronization is achieved in VCSEL at a strong 
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level of OF with rotating  ߠ௣. The quality of the chaotic synchronization increases as  ߠ௣ 

increase. 

6.4.1 Experimental Setup  

 

To investigate the effect of the rotated parallel-POF on the chaotic dynamics of the 

VCSEL, we employ the following experimental set-up as depicted in Fig. 6-10. Similar 

VCSEL characteristics were provided in section (6.2.2) have been used in the 

experiment. Here, two polarization beam splitters (PBS1 and PBS2) are used to 

implement the parallel-POF and direct the orthogonal polarizations modes to the two 

identical optical receivers (OR), respectively. The external cavity is 27 cm long, which 

corresponds to a feedback time of 1.8 ns. The rests of details are described in section 

(6.2.1) in this chapter.  

 

Figure 6-10: Experimental setup of selective-optical feedback for chaotic dynamics 
measurements of the VCSEL. 
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6.4.2 Anti-Phase Chaos Synchronization  

 

Fig. 6-11 show the polarization-resolved  time series of the XP mode (upper, black) and 

the YP mode (lower, red) of the VCSEL at  �௕  of 1.5 mA with an OF level of -7 dB, 

which is used in all the measurement campaign.  ߠ௣ is set at different values using QWP 

to rotate the OF signal. The OF level is defined as a ratio of the reflected power, 

measured at BS to the total optical power of the VCSEL measured directly after the 

objective lens in Fig. 6-10. The intensity of the XP and YP modes of the free running 

VCSEL is shown in Fig. 6-11(a), where the XP mode displays higher intensity levels 

compare with the YP mode. No anti-phase chaotic synchronization is observed, as 

confirmed in Fig. 6-12(a) between the two polarizations modes with no OF. The 

dynamics of the two modes at free running are much smoother compared to that of OF. 

 However, when the VCSEL subjected to parallel-POF the results reveal high quality 

anti-phase chaotic oscillation synchronization over a wide range of  ߠ௣ from 0o to 90o. 

Fig. 6-11(b, c, d) show the temporal waveform of the XP and YP at 0o, 45o and 90o. At  ߠ௣ of 90o the time trace of the XP has been shifted up by 0.1 (a.u) for clarity. As  ߠ௣ 

increase the XP and YP modes display strong fluctuation and show close similarity to 

each other. However, the XP intensity decreases as  ߠ௣ increase while the YP intensity 

increase. This is because for  ߠ௣ of 40o to 90o the XP and YP modes experience reduced 

and increased OF, respectively [39].  

Furthermore, under parallel-POF the quality of the anti-phase chaotic synchronization 

increases as  ߠ௣ increases, particularly beyond 30o. The corresponding correlation 

profile of the two chaotic oscillations of the XP and YP modes are presented in Fig. 6-

12. Fig. 6-12(a) shows the correlation plot of the VCSEL at the free running operation, 

clearly displaying that there is no anti-phase dynamics synchronization between the 
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orthogonal modes. However, a high anti-phase chaotic synchronisation can be achieved 

when applied Parallel-POF as depicted in the correlation plots in Fig. 6-12(b, c, d), with 

high-degree achievement when  ߠ௣ = 90o, see Table 6-1.  

 

Figure 6-11: Polarization-resolved time series of the VCSEL modes (XP (red) and YP 
(black)) at a bias current of 1.5 mA, -7 dB of feedback level at (a) free running, (b) 0o, 
(c) 45o and (d) 90o of ߠ௣. 

 

The absolute values of C୶,୷ between the two modes are presented in Table 6-1.  Note 

that �௫,௬ decreases at lower values of  ߠ௣ (i.e. 0 o to 30o) and then increases for  ߠ௣ > 30o 

with the maximum value of 0.982 observed at ߠ௣ of 90o. We have used 4×106 sample 

values to calculate �௫,௬  and evaluate the anti-phase correlation profile.  
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Table 6-1: Relationship between polarization angle and correlation coefficient 

  ௣ߠ 

(degrees) 

0o 10o 20o 30o 40o 45o 

�௫,௬ 
(Absolute 
values) 

0.966 0.959 0.955 0.963 0.971 0.975 

 ௣ߠ 
(degrees) 

50o 60o 70o 80o 90o  

�௫,௬ 
(Absolute 
values) 

0.977 0.978 0.980 0.981 0.982  

 

 

Figure 6-12:  Corresponding correlation plots between the XP and YP modes for the 
same  ߠ௣in Fig. 6-11.  
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6.5 Complex Polarization Dynamics of VCSEL under Rotated 
Polarization Optical Feedback 

 

Further investigation for the chaotic dynamics of the orthogonal polarization modes of 

VCSEL with VPOF are described in this section. The VCSEL subjected to VPOF with 

feedback level of -7.4 dB at a fixed  �௕  of 1.2 mA. Fig. 6-13 presents measured 

dynamics of the polarization-resolved output power in VCSEL, where the polarization 

angle plays a role as rotating the polarization state to re-inject to the laser.  

 

Figure 6-13: Polarization-resolved time series of the VCSEL modes (XP (black) and YP 
(red)) with rotated polarization angle of optical feedback. VCSEL driven by constant 
injection current of 1.2 mA and subjected to fix optical feedback of -7.4 dB, the device 
can exhibit chaotic mode hopping between two polarized modes.  
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Similarity mode hopping is observed between the two polarizations modes combined 

with high chaotic dimension oscillation. The results displayed in Fig. 6-13(a, b, c, d) are 

for the XP and YP polarization modes, in black and red line respectively, with a range 

of ߠ௣ of 67.5o, 72o, 74o and 90o. Obviously can be seen that the mode hopping coexist 

between the polarization modes over a wide range of  ߠ௣  beyond 45o. The modes 

instability appears due to gain competition between co-existing polarization modes 

[181]. Furthermore, the results show that the VPOF can provide a rich dynamics and 

patterns compared with the conventional OF as reported in literature [35].Similar mode 

hopping have been found at fee running VCSEL, however with low dimension chaotic 

oscillation [170]. 
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Figure 6-14: Polarization-resolved output power–time trace showing chaotic 
polarization dynamics at constant injection currents of 1.2 mA and optical feedback of  
-7.4 dB over a time series scale of 2 micro second. 
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The oscillation in the orthogonally polarisations modes are in anti-phase dynamic. In 

Fig. 6-14 the polarization-resolved output power are presented with zooming the time 

trace to 2 micro second to show the chaotic polarization oscillation at  ߠ௣ = 90o. At this 

short time trace the YP mode is the dominant mode with high output power as display 

in the figure. From zero to 2 micro second, the time trace show that the XP and YP 

modes are in chaotic oscillation.  

The underlying physics of the orthogonally polarization modes fluctuation is a nonlinear 

coupling mechanisms between the two polarization modes due to the effects of the 

external polarization feedback [181, 182]. 

 

6.6 Simulation Results for VCSEL under Optical Feedback  
 

Set equations (2.18 to 2.28) that were implemented in Chapter 2 section 2.12.4 are 

modelled in a Simulink model to obtain polarization properties of VCSEL under VPOF. 

The Lang-Kobayashi model have been considered to analyse VCSEL properties [33], 

which shows highly accurate analysis for SLs with OF [39, 183]. The Simulink model is 

used to confirm the experiment results presented in section 6.4.1. The delay time � of 

the OF is equivalent to the light round trip of the external cavity, which is set to 1.8 ns. 

The parameters used in the Simulink model in all experiments are identical, and 

provided in Table 4-1 except for the followings: feedback coefficient ݇, time delay �, 

polarization angle ߠ௣, injection current  �, wavelength  λ and the angular frequency ω. 

These are the actual parameters value of the experiment setup. 
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6.6.1 Simulation Results and Discussion  

 

Many theoretical parameters such as gain �, feedback strength ݇,  ߠ௣ and delay time � can play a role in the obtained results of the Simulink. First, the numerical results 

show the XP and YP modes gain and the carrier density profile with OF (݇ =1.60×1011 

ns-1) and �௕ of 1.5 mA, see Fig. 6-15. Fig.6-15(a) shows the carrier density of VCSEL in 

the time domain with strong OF. It is obvious from this figure that the laser reaches the 

threshold point at about 1.2 ns, where the gain and the internal loss are equal.  

In Fig.6-15(b), the XP and YP gains, which increase with the time until the threshold 

point where VCSEL start lasing and then becoming almost constant. The lasing 

threshold is determined by the difference between the gain and internal loss of the laser 

[184, 185]. The gain trends of the two modes are following the carrier density or the 

gain is a function of the carrier density [186, 187]. From equation (2.7), the threshold 

gain is depending on the parameters of the laser cavity such as �  the cavity length and  ܴ  the mirror reflectivity. Clearly can be seen that the theoretical gain of XP mode is 

higher than that of the YP mode. This indicates that XP is being lasing at a higher 

intensity level than that of the YP mode. The gain of polarization modes is a linear 

dependence on the carrier density below the threshold following which it is saturated 

[186].  

Next, the polarization resolved waveforms of both XP and YP modes are presented in 

Fig.6-16 for a short time period of 17 ns. The simulation was run over a time period that 

was several orders of magnitude longer than the delay time of the OF(i.e., at 1.8 ns) to 

clearly display the oscillatory behaviour of the XP and YP modes in this region. For the 

convenience of discussion the intensities of the XP and YP modes are normalized to the 

first component on each plot for the all simulation measurements.  
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(b) 

Figure 6-15: Numerical results of VCSEL under optical feedback to evolution the 
carrier density and gain; (a) the carrier density profile, (b) gain of the XP mode (blue) 
and gain of the YP (red).  
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It is observed that the two polarization modes oscillation with a delay time � = 1.8 ns, 

which is because of the feedback delay associated with the external cavity length. The 

intensity of XP mode is higher than the intensity of YP mode because of the XP mode is 

the dominant mode as show from Fig. 6-16.
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Figure 6-16: Tim series of the XP and YP modes for 1 ns,(a) intensity of the XP mode, 
(b) intensity of the YP mode. 
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In Fig. 6-17, for a weak OF where the feedback coefficient ݇ = 1.188×1010 ns-1, which 

is about -30 dB, the results show poor chaotic dynamics synchronization between the 

orthogonal polarization modes, XP and YP modes. Fig. 6-17(a) and (b) display the 

intensity of the XP and YP modes, respectively in the time domain. The intensity of 

both modes is almost steady and no chaotic synchronization is observed, as the 

trajectory attractor and the correlation plots show in Figs. 6-17(c) and (d), respectively. 

The feedback coefficient strength plays a role and significantly changes the dynamics of 

the polarization modes as the next results demonstrate. At higher values of ݇ the output 

power of the VCSEL becomes chaotic and agrees with the experiment finding that was 

presented in section 6.5 when a strong OF at 90o of ߠ௣was applied. 
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Figure 6-17:  (a) and (b) the polarization intensity for the XP and YP modes, 
respectively with the feedback coefficient ݇ of 1.18×1010 at  ߠ௣=90, (c) and (d) the 
trajectory attractor and correlation plot of the polarization modes, respectively.  
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For ݇ =1.60×1011 ns-1, which is equivalent to -7.4 dB similar to the that used in the 

experiment in section 6-5 of this chapter, the chaotic dynamics are clearly observed, 

which is in line with the experiment observations. Fig 6-18 demonstrated the chaotic 

dynamics in both modes oscillation of the XP and YP with a strong OF level at ߠ௣= 90o. 

Obviously VCSEL lases in random jumps between the XP and YP modes as observed 

in the experiment. Figs. 6-18 (a) and (b) show the polarization resolved intensity of the 

XP and YP modes, respectively. The polarization OF induces polarization mode 

hopping in the output modes intensities of the VCSEL. 
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Figure 6-18: (a) and (b) the polarization mode hopping intensity for the XP and YP 
modes, respectively with optical feedback of 1.60×1011 at  ߠ௣=90o, (c) and (d) the 
trajectory attractor and correlation plot of the polarization modes, respectively.  

 

The trajectory attractor in Fig. 6-18 (c) and the correlation plot in       Fig. 6-18(d) show 

that the polarization modes are in a good synchronization dynamic. Fig 6-18(d) shows 

the in-phase synchronization dynamics, which is the inverse of the experiment results, 
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because of in the numerical model the absolute values were used to display the results. 

The polarization modes chaotic dynamics of VCSEL are highly dependent on the OF 

level and variable angle of  ߠ௣ as demonstrated in sections 6.2, 6.3 and 6.4.              

Figs. 6-19(a) and (b) display the polarization intensity modes of the XP and YP modes 

respectively, with the trajectory attractor in Fig. 6-19(c) and the correlation plot in Fig. 

6-19(d). For a strong value of ݇ of 1.60×1011 ns-1 at  ߠ௣= 0o the VCSEL emit only the 

XP mode with very fast oscillation while the YP mode is entirely suppressed.  
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Figure 6-19: (a) and (b) the polarization intensity of the XP and YP modes respectively 
with a feedback coefficient of 1.60×1011 at  ߠ௣=0o, (c) and (d) the trajectory attractor 
and correlation plot of the polarization modes, respectively.  

 

This is because of the YP mode gets zero feedback at zero angle of ߠ௣. The results 

obtained from the Simulink model are consistent with the experimental results of the 

chaos synchronization of VCSEL with VPOF that were presented in this chapter. In the 

Simulink model, chaotic dynamics appear with the XP mode oscillation at a higher level 
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of OF equivalent to the experiment feedback level of -7.4 dB. However, the YP mode 

oscillation is completely supressed and therefore no correlation dynamic appear 

between the XP and YP modes as show in Fig 6-19(d). These behaviours are depending 

on the rotating of ߠ௣, where a good correlation between the two modes is obtained at a 

higher value of  ߠ௣ (i.e., 90o) similar to the experiment finding. 

6.6.2  Simulink Blocks Diagrams  

 

The main block diagram of the Simulink model of the laser diode is shown in Fig. 6-20. 

The model permits to study the VCSEL properties with the OF for a range of ߠ௣. The 

model is described by the rate equations (2.18) - (2.23), which describe the carrier 

density, photon density and optical phase of the laser with OF effect. No noise is 

considered in the simulation model, and all the parameters adopted are given in      

Table 4-1. In the simulation model the parameters of the feedback strength and ߠ௣ from 

the main block, Kd and THETA as shown in the main block diagram can be changed 

externally. Each block contains dynamics of the VSCEL, which describes each elements 

of the rate equations, namely Ex(t), Phi_x(t), N(t), Ey(t), Gx(t), Phi_y(t) and Gy(t) as 

described by Equations (2.18) - (2.23). 

 More precisely, the following blocks diagrams in Figs. 6.21 to 6.27 describing every 

elements of the rate equations in order to analyze the system dynamics along the 

propagation direction of the polarization modes using the Simulink model. The 

Simulink blocks enable to construct the equations describing the polarization properties 

of VCSEL. Figs. 6.21 and 6.24 show the dynamic model of the electric field of the XP 

and YP modes, respectively. The temporal electric field for the XP and YP modes in the 

laser cavity are showed in Figs. 6-16(a,c), 6-17(a,c), 6-18(a,c) and 6-19(a,c).  

The carrier density distribution and analysis of the dynamic system inside the VCSEL 

cavity in the time domains is shown in Fig. 6.15(a). The block diagram in Fig. 6.23 
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depicts the carrier density calculation based on Equation 2.22. The Simulink blocks 

parameters are interconnected mathematically to represent the whole systems dynamics. 

The gain effect of the both polarization modes, which is inserted in the main Simulink 

program (yellow blocks for the XP and YP modes), is determined from Equation 2.3 

combined with Equations 2.18 and 2.19. 

 

Figure 6-20: The main Simulink block diagram of the VCSEL with the optical feedback. 
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The procedure of calculating the gain quantities of the polarization modes of the 

VCSEL are shows in Simulink blocks in Figs 6-25 and 6-27 for the XP and YP modes, 

respectively and the gain profile is displayed in Fig. 6-15.  

The phase effect for both XP and YP modes are simulated using Equations 2.20 and 

2.21 and the schematic blocks diagrams in Figs 6.22 and 6.26, respectively. The model 

is realized using Simulink together with MATLAB, which are connected by Workspace 

blocks as shown in the main diagram in order to obtain and plot the measured data in a 

chart form for each parameter. 

 

 

Figure 6-21: Simulink block diagram to determine the electric field of the XP mode.  
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Figure 6-22: Simulink block diagram to determine the phase of the XP mode.  

 

Figure 6-23: Simulink block diagram to determine the carrier density.  
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Figure 6-24: Simulink block diagram to determine the electric field of the YP mode.  

 

 

Figure 6-25: Simulink block diagram to determine the gain of the XP mode.  
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Figure 6-26: Simulink block diagram to determine the phase of the YP mode.  

 

 

Figure 6-27: Simulink block diagram to determine the gain of the YP mode.  

 



147 
 

6.7 Conclusions  
 

The possibility of high-quality anti-phase chaotic synchronization between the two 

polarization modes of VCSEL under rotated-polarization preserved OF (RPPOF) have 

been experimentally demonstrated when varying the OF level. The time series of the XP 

and YP modes showed a good anti-phase chaotic oscillation for different values of  ߠ௣.  

The anti-phase chaotic synchronization gradually increased with  ߠ௣. With rotating  ߠ௣ 

the VCSEL showed abrupt PS at 65o, which led to suppressed the dominant mode (XP) 

with 0.004 mW output power and the YP mode was dominant with high output power 

of 0.32 mW. A perfect anti-phase synchronization dynamic was possible with a wide 

range of   ߠ௣ > 65o. A perfect chaotic synchronization dynamic with higher values of 

correlation coefficient �௫,௬ of -0.99 was observed at  ߠ௣= 90o under high level of     

OF (-7.4 dB). Furthermore, with increased  ߠ௣ the probability of achieving high quality 

of ant-phase chaotic synchronization was increased and it was obtained at lower value 

of the feedback level. 

 The chaotic synchronization dynamics of VCSEL under selective OF with rotating  ߠ௣ 

were also experimentally demonstrated. With parallel-POF and under a high level of OF 

(-7 dB), the time series of the XP and YP modes showed a good anti-phase chaotic 

oscillation for different ߠ௣. When  ߠ௣  increased from 0o to 30o �௫,௬ was slightly 

reduced, while it increased for  ߠ௣ in the range of 30o - 90o reaching the highest value of 

0.982 at  ߠ௣= 90o with a zero time delay between the polarization modes. For both 

investigations, RPPOF and Parallel-POF, a perfect anti-phase synchronization was 

obtained over a wide range of the OF levels and  ߠ௣ beyond 65o and 45o, respectively. 

The strong anti-phase dynamics in VCSEL could be increase the anti-phase 

synchronization of the chaos. A clear relationship is found between �௫,௬ and ߠ௣, where 
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the �௫,௬ values increased with increased ߠ௣. The OF and  ߠ௣ play a significant role in the 

chaos synchronization of VCSEL. As a result, VCSEL with VPOF can be used as a 

chaotic light source for the synchronization of communication systems.  

Furthermore, a complex dynamics between the XP and YP modes were existed with 

high feedback levels of -7.4 dB and VPOF. Fast PS and mode hopping were observed 

between the polarizations modes. This can be found over a wide range of  ߠ௣  beyond 45 

o, which attributed to the mode competition inside the cavity of the VCSEL.  

The Simulink model was established to investigate the polarization dynamics of 

VCSEL. The time period of the Simulink was several orders longer than 1.8 ns, which 

is the magnitude of the feedback delay, to clearly display the oscillatory behaviour of 

the XP and YP in this region. The trajectory attractor and correlation function were 

employed to verify the experiment results of chaotic and synchronization dynamics. 

Similar finding of the experimental measurements were demonstrated numerically, 

where the chaotic dynamics of the XP and YP modes were observed with VPOF under 

high OF level. The chaotic dynamic synchronization and polarization mode hopping 

also clearly observed between the VCSEL polarization modes with VPOF at the same 

OF level of the experiment (-7.4 dB). The numerical measurements were in good 

agreement with the experimental finding to describe the polarization dynamics of 

VCSEL under VPOF. 
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Chapter 7  

Conclusions and Future Work 

7.1 Conclusions   
 

This thesis focused on the polarization properties of VCSEL subject to optical feedback 

(OF) mechanism for FSO communications. Considerable emphasis has been given to 

the influence of variable polarization optical feedback (VPOF) of the external cavity 

semiconductor laser on the polarization modes properties of VCSEL. The experimental 

and theoretical works devoted to study and expand understanding of the flowing 

aspects; L-I characteristics, PS, RIN and hysteresis loop of the polarization modes. 

Further investigations were carried out focusing on the following aspects of the 

polarization modes properties; PS properties, RIN, nonlinearity behaviours and chaotic 

dynamics with the modulation signal and VPOF effects. On the other hand, with the 

view of practical deployment of VCSEL in FSO, chaotic dynamics Synchronization of 

polarization modes of VCSEL received more attention in this work. In this thesis, it was 

shown that variable polarization angle (ߠ௣) of OF, which used as an experimentally 

adjustable parameter, leads to control the polarization modes properties and created a 

complex dynamics in VCSEL.  

In Chapter 3, it was illustrated that the threshold current �௧ℎ of VCSEL can be reduced 

by 11.5% under the orthogonal polarization OF. VPOF significantly affected the bi-

stability properties of the polarization modes, where the OF level greater than -8 dB 

induced hysteresis cycles beyond  ߠ௣ of 45o. The hysteresis width reduced from 11.6o 

and 11.7o for the XP and YP modes to 10.4o and 10.2o, respectively when the OF level 

increased from -8.3 dB to -6.4 dB.  Furthermore, the results showed that the orthogonal 
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polarization OF imposed the laser to emit in a certain polarization mode and increased 

the polarization selectivity of the VCSEL. While the parallel polarization OF enhanced 

the corresponding polarization mode of the VCSEL.  

In Chapter 4, PS proprieties of two different VCSELs devices were theoretically and 

experimentally investigated. It was found that the PS occurred at higher values of ߠ௣    

(> 45o) and the laser favoured emitting of the suppressed polarization mode. Moreover, 

PS was observed between the VCSEL polarization modes for a fixed �௕ of 3.2, 5.2 and 

5.8 mA and strong feedback level with VPOF. While with the modulation signal and 

OF, the PS point shifted to higher ߠ௣ values compared with no modulation signal. 

Interestingly, it was shown that both the frequency modulation fm (200 MHz) and 

modulation depth Md (78.66%) limited the effect of the OF on the PS properties of 

VCSEL.  The PS position dropped back to lower values of  ߠ௣when the �௕ increased 

from 3.2 mA to 5.2 mA.  

In Chapter 5, a novel OF method based on T-shaped polarization OF was proposed to 

suppress the nonlinear behaviours of the polarization modes of VCSEL with the 

modulation signal. The irregular dynamics of the polarization modes with the 

modulation signal fm  of    240 and 100 MHz were drastically modified using orthogonal 

OF (OOF). For the OOF, the HD decreased by 23, 20 and 12 dB for the 2nd, 3rd and 4th 

harmonics, respectively and the spectrum peaks of the polarization modes were 

completely suppressed to the noise floor. However, when using the counterpart 

(parallel) polarization feedback (POF) the HD and the spectrum peaks of the 2nd, 3rd and 

4th harmonics enhanced by 2,11 and 9 dB, respectively . In addition, it was shown that 

HD is also influenced by variation of the operating temperature and  �௕.The RIN 

characteristics were also depending on the polarization instability of VCSEL, where the 

relaxation oscillations were damped at higher feedback levels. Furthermore, the RIN 
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levels were higher for the XP and YP mode with the OF and modulation signal by 17 

dB and 19 dB, respectively than the case with no modulation signal.  

In Chapter 6 of this work, obtained high-quality anti-phase chaos synchronization, 

which was coincided with zero time delay an optimal operating condition was identified 

in order to, of the polarization modes. The anti-phase chaotic synchronization gradually 

increased with  ߠ௣. A high level of the anti-phase synchronization dynamic was possible 

with a wide range of the OF levels more than - 18 dB for the angle of  ߠ௣ > 65o.  

As far as we know this is the first experimental work reported with high quality of the 

anti-phase chaotic synchronization with �௫,௬  of -0.99 and zero time delay between two 

signals oscillations of the VCSEL polarizations modes.  Finally, Numerical model using 

Simulink was developed for the polarization resolved of VCSEL with VPOF using 

Lang-Kobayashi model of the external cavity semiconductor lasers. The numerical 

results have essentially verified the experiments findings of the PS position with the 

VPOF and the chaotic synchronization of the polarization modes of VCSEL at 90o of  ߠ௣ under strong OF. 

 

7.1  Future Work 

  

This thesis reveals interesting lines of research for future work. The central interest are 

the nonlinearity improvement of the laser with OF and chaos generation using VCSEL 

with high quality synchronization dynamics.  

The nonlinearity investigations were limited to 240 MHz frequency modulation due to 

experiment limitation. This work can be expanded to several GHz of the frequency 

modulation. 
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One further line of the research was hysteresis properties of VCSEL under VPOF. This 

investigation can be extended to use the following parameters; time delay and sweep 

rate of the polarization angle of OF to study their impacts on the hysteresis width.  

Finally, chaos synchronization investigations of the VCSELs’ polarization modes can 

be extended to include factors such as frequency detuning, optical phase effects, and 

coupling factor.   

In this work, only the transmitter side of the communication system was investigated. 

VCSEL as an optical transmitter was investigated in the experimental work and the 

theoretical model. VPOF technique can be applied in the Simulink model for both 

transmitter (VCSEL1) and receiver sides (VCSEL2) to achieved chaotic 

synchronization signals for secure FSO systems.  
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