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Abstract

We study the effect of diabetic deficiencies on the production of an oscillatory ultra-
dian regime using a deterministic nonlinear model which incorporates two physiolog-
ical delays. It is shown that insulin resistance impairs the production of oscillations
by dampening the ultradian cycles. Four strategies for restoring healthy regulation
are explored. Through the introduction of an instantaneous glucose-dependent insulin
response, explicit conditions for the existence of periodic solutions in the linearised
model are formulated, significantly reducing the complexity of identifying an oscilla-
tory regime. The model is thus shown to be suitable for representing the effect of
diabetes on the oscillatory regulation and for investigating pathways to reinstating a
physiological healthy regime.

Keywords: Diabetes, Impaired ultradian rhythms, Four healthy regulation strategies,
Delay differential equations, Stability analysis.

1. Introduction

Diabetes Mellitus is an illness which impairs the regulation of glucose and insulin
blood levels. There are two main types: Type 1 diabetes (T1DM), which is an autoim-
mune disorder where the body destroys the β-cells in the pancreas, almost completely
removing the body's ability to secrete insulin [23], and type 2 diabetes (T2DM), where
the muscle cells start to become insulin resistant, hindering the body's ability to utilise
glucose correctly [23]. It can be the cause of many other long term problems, such as,
retinopathy, cardiovascular disease, nephropathy and neuropathy [5], and is expected
to be the 7th leading cause of death by the year 2030 [20].

Within this regulation, both rapid (period ≈ 6-15 minutes) and ultradian (period
≈ 80-180 minutes) oscillations of insulin have been observed [29], along with glucose
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oscillations (period ≈ 80-150 minutes) that are tightly coupled to the insulin oscillations
of similar period [30]. This work solely focuses on the modelling of these ultradian
oscillations, which were first discovered in [10] and have been observed during fasting,
meal ingestion, continuous enteral nutrition, and under a constant glucose infusion [33]
(the condition upon which we will perform our analysis). For a review of ultradian
oscillations, readers are directed to [26, 33]. In [17, 35, 37] mathematical analysis of
the dynamics of models taking into account physiological time delays suggested that
the delayed feedback loop between glucose and insulin can account for the ultradian
rhythms within the system, without the technical need for an internal pulsatile insulin
pacemaker.

As was highlighted in [24], insulin resistance leads to a lack of control of the ul-
tradian rhythms in the glucose-insulin system, with the main effect of dampening the
oscillations. This suggests that they may be crucial in the maintenance of normal glu-
cose homoeostasis [36]. Therefore, we adopt the presence and the accurate tuning of
ultradian rhythms as a criterion for healthy glucose regulation, and ask the following
question:

What is the effect of reduced insulin production and/or sensitivity on the ul-
tradian rhythms in an individual and what mechanisms can be used to restore
the ultradian oscillatory regime to an acceptable physiological behaviour?

To answer this question, we propose a mathematical model which is adapted from
the work of Sturis et al.[35] and then developed by several authors [7, 11, 16, 17, 39].
Our focus then shifts to the mathematical description of the impact of deficiencies in
the glucose-insulin regulatory system on: (i) the production of an accurate oscillatory
regulation and (ii) the maintenance of a physiologically acceptable average blood glucose
level. We then devise four strategies in an attempt to restore objectives (i) and (ii).

Of the previous glucose-insulin models, one of particular note is a two-delay model
of Kissler et al.[14], featuring Michaelis-Menten dynamics for quantifying the insulin
degradation, which is used to investigate personalised treatment options for diabetics,
while maintaining oscillations. For reviews of many more of the key models relating to
the glucose-insulin system, see [19] and [25].

In view of the recent clinical debate regarding the potential role of hyperinsulimia
in aggravating insulin resistance [27], it appears of crucial importance to identify mech-
anisms which allow to keep both glucose and insulin levels within a physiologically
acceptable range. Over the years, there has been much speculation that reducing in-
sulin degradation may be used to treat T2DM [6, 21], and in Maianti et al. [18], it
was shown that acute inhibition of insulin degradation enzyme (IDE) in mice led to
substantially improved glucose tolerance. Hence it was hypothesized that IDE could
be used as a therapeutic strategy to treat T2DM. However, in the usage of previous
models, the insulin degradation rate has often been assumed to be constant even for
varying diabetic states. Therefore, we note that when dealing with insulin therapies
relating to insulin resistance, it is important to adjust insulin degradation in order to
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avoid too high levels, and so we look to use insulin degradation to stabilise the glu-
cose levels as one of our strategies, and as a bifurcation parameter to reintroduce an
oscillatory regime as another.

In healthy subjects, experiments in isolated pancreatic islets have shown that insulin
is secreted (in response to elevated blood glucose) in two phases: a rapid initial release
of preformed insulin, which only lasts a few minutes [1, 3, 22], followed by a more
sustained component, in which synthesis and release of the hormone is increased [1, 3].
In T2DM, it is well known that this initial release is reduced [32] (for a more in-depth
look at the dynamics of insulin secretion, see [31]). By looking at this rapid response
as an instantaneous glucose-dependent insulin release, we investigate the effect this has
on the existence of periodic solutions in the linearised model.

In summary, the purpose of this paper is to understand the effect of diabetic pa-
rameters on the onset of the oscillatory regime and design four strategies for restoring
healthy regulation. The work is divided as follows. The model is presented in Section
2. In Section 3, local stability analysis is used to study the effect of insulin resistance
on the location and generation of the oscillations. Section 4 is devoted to strategies
which can be used to restore glucose levels or oscillations. In Section 5, we formulate
new conditions for the presence of periodic solutions in the linearised system where an
instantaneous glucose-dependent insulin secretion is taken into account. Physiological
implications are then discussed, along with final remarks and perspectives.

2. The two-delay model

The model proposed (based on the framework represented in Figure 1) is given by
the following system of differential delay equations with two delays

Ġ = Gin − f2(G)− βf3(G)f4(I) + γf5(I(t− τ2)), (1)

İ = Iin + αf1(G(t− τ1))− di(α, β)I,

Here G(t) and I(t) represent plasma glucose and plasma insulin concentrations in mg/dl
and mU/l respectively.
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Figure 1: Flow diagram for model (1).

The relevant features of the model can be summarised as follows.

αf1(G(t− τ1)) : Insulin production. A delay τ1 is present in this process. It accounts
for the time lag, in minutes, between when high glucose levels trigger the produc-
tion of insulin within the pancreas and when it becomes available [17]. Clinical
experiments have provided a time range of [5, 20] minutes for this reaction. The
parameter α modulates this secretion, with low levels being typical of T1DM.

f2(G) : Insulin-independent glucose utilisation, mainly by the brain.

βf3(G)f4(I) : Insulin-dependent glucose utilisation, by the muscles. Values of β < 1
indicate a reduced capacity of utilising insulin to degrade glucose, also called
insulin resistance, which is seen in T2DM.
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γf5(I(t− τ2)) : Glucose production by the liver. The delay in this reaction, denoted
by τ2, denotes the time between hepatic glucose production and insulin stimulation
and is typically between 20 and 50 minutes [17]. This production is controlled by
the parameter γ, to account for the effect of biguanide medications which act by
lowering it to keep glucose levels low [12].

di(α, β) : Combined rate of degradation of insulin, especially by the liver and kidneys.
In Section 4, we consider it as a combination of natural (for example, exercise [38])
and artificial (for example, through use of Rosiglitazone [13]) mechanisms, and
as a function of α and β to investigate how it can be used to compensate for the
effects of a reduced insulin secretion (α) and/or an increased insulin resistance
(β) on an appropriate oscillatory regime.

Typically f3 is taken as a linear function of G, while the functions f1, f2, f4 and f5
are chosen as sigmoidal functions. Here, we represent these functions in terms of Hill
functions,

f1 =
Rm(G/Vg)

h1

(G/Vg)h1 + k1)h1
, f2 =

Ub(G/Vg)
h2

(G/Vg)h2 + kh22
, f3 = C3

G

Vg
,

f4 = U0 + (Um − U0)
[(1/Vi + 1/(Eti))I]h4

[(1/Vi + 1/(Eti))I]h4 + kh44
, f5 = Rp

(I/Vp)
h5

(I/Vp)h5 + kh55
,

as defined by [11]. This gives the advantage of introducing new parameters in the model
which bear physiological meaning (a list of which can be found in Tables 1 and 2), and
hence allows for more adequate modelling of the underlying physiological dynamics of
the glucose-insulin system [11]. These values were selected in [11] to ensure the system
produces an oscillatory regime in a physiologically suitable range for a non-diabetic
patient. The functions are all strictly positive and f1, f2, f4 are increasing while f5 is
decreasing. Here the parameters α and β play a crucial role in modelling the capacity
of an individual to produce insulin or use it to degrade glucose, respectively. Values of
α = β = γ = 1 represent an optimal non-diabetic patient. Therefore, a value of α < 1
represents a reduced insulin production capability, which is seen in T1DM [23] (as well
as after the onset of T2DM [27]). A value greater than 1 implies an increased insulin
production capacity, observed in the very early stages of T2DM (although the reason
for its occurrence is debated [27]). Likewise, if β is smaller than 1, this indicates a
reduced insulin-dependent glucose utilisation which is typical of insulin resistance and
related to both T1DM and T2DM [8]. A value greater than 1 represents an increased
sensitivity to insulin, which can pose the risk of hypoglycaemia in T1DM. Finally,
values of γ < 1 represent a reduced glucose hepatic production which can result from
the usage of drugs such as Metformin [12], while γ = 1 corresponds to a typical non-
diabetic production. For these reasons, the coefficients α, β and γ are named the
diabetic parameters throughout this paper.

Our previous analysis focused on system (1) for an optimal non-diabetic patient
(α = β = γ = 1 and Iin = 0) [11]. The constant value of Gin is typically between 1 -
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Hill coefficient Value Hill coefficient Value

h1 2 k1 5830
h2 1.8 k2 103.5
h4 1.5 k4 80
h5 -8.5 k5 26.72

Table 1: Values used for the Hill coefficients hi, ki, taken from [11].

Constant Value Units Constant Value Units

Rm 210 min Vi 11 l
Vg 10 l E 0.2 l/min
Ub 72 mg/min ti 100 min
C3 1000 mg/l Rg 180 mg/min
U0 40 mg/min Vp 3 l
Um 940 mg/min Gin 1.35 mg/dl min

Table 2: Parameters used in model (1). They were originally determined by fitting the functions f1 -
f5 to published clinical experiments of individual subsystems (see [35] and references therein).

3 mg/dl min, a range where ultradian oscillations have been observed [33]. The joint
role of the physiological delays in producing oscillations in the healthy case has already
been highlighted [11, 16, 35]. Indeed, for any τ1 > 0, there exists a τ2 such that the
system undergoes a supercritical Hopf bifurcation at the point (τ1, τ2). This situation
is illustrated in Figure 2, where the threshold curve corresponds to the points where
the system possesses a pair of pure imaginary eigenvalues.

3. Local stability analysis and the effect of insulin resistance on ultradian
oscillations

In this section, we investigate the effect of the diabetic parameter β on the steady
state (G∗, I∗) of model (1), which is governed by the following system of algebraic
equations

Gin − f2(G∗)− βf3(G∗)f4(I∗) + γf5(I
∗) = 0, (2)

Iin + αf1(G
∗)− di(α, β)I∗ = 0. (3)

To match physiological values, the values for the steady state should fit the ranges
90 < G∗ < 120 and 25 < I∗ < 40 respectively [35]. Given the assumptions on the
functions and the parameters of the model, it can be shown that this system has a
unique solution (see e.g. [2]). The dependence upon β can be made more explicit in the
following way. Differentiating implicitly equations (2) and (3) with respect to β leads
to the following expressions

−f ′2(G∗)G∗β − f3(G∗)f4(I∗)− β
(
f ′3(G

∗)f4(I
∗)G∗β + f3(G

∗)f ′4(I
∗)I∗β

)
+ γf ′5(I

∗)I∗β = 0,

αf ′1(G
∗)G∗β − di(α, β)βI

∗ − di(α, β)I∗β = 0,
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Figure 2: Curve of Hopf bifurcations in the optimal non-diabetic case α = β = γ = 1, with di = 0.06
and Gin = 1.35 mg/dl.

where the β subscript stands for the derivative. In matrix form, these can be written
as (

−A −(B + C)
D −di(α, β)

)(
G∗β
I∗β

)
=

(
f3(G

∗)f4(I
∗)

di(α, β)βI
∗

)
, (4)

where we have introduced the following positive β-dependent quantities

A = f ′2(G
∗) + βf ′3(G

∗)f4(I
∗), B = βf3(G

∗)f ′4(I
∗), C = −γf ′5(I∗), D = αf ′1(G

∗),

with the prime ′ standing for the derivative. The dependence of these functions on β is
illustrated in Figure 3.

Hence (
G∗β
I∗β

)
=

1

∆

(
di(α, β)βI

∗(B + C)− di(α, β)f3(G
∗)f4(I

∗)
−Df3(G∗)f4(I∗)− Adi(α, β)β

)
, (5)

with

∆ = Adi(α, β) +D(B + C) > 0.

The location of the steady state of the system is linked to the level of insulin resis-
tance and the clearance rate. Assuming no correlation between insulin degradation and
insulin resistance, i.e. assuming di is constant, the effect of reduced insulin regulation
capacity on the steady state (G∗, I∗) of system (1) is depicted in Figure 4. This picture
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Figure 3: Graphs of the functions A(β), B(β), C(β), D(β) for parameter values from Tables 1 and 2,
with di = 0.06 and Iin = 0.

is already instructive. As expected, reducing insulin production (α < 1) leads to lower
insulin and higher glucose levels. However, it is important to note that introducing in-
sulin resistance (or equivalently decreasing β) leads to both higher glucose and insulin
levels. An investigation of strategies for improving these by altering di(α, β) will be
performed in Section 4.

We now look at the effect of β on the production of oscillations. The linearisation
of system (1) about (G∗, I∗) is given by(

u̇
v̇

)
=

(
−A −B
0 −di(α, β)

)(
u(t)
v(t)

)
+

(
0 0
D 0

)(
u(t− τ1)
v(t− τ1)

)
+

(
0 −C
0 0

)(
u(t− τ2)
v(t− τ2)

)
,

(6)
A complex exponential solution eλt of system (6) exists if and only if λ satisfies the
following characteristic quasipolynomial

(λ+ A)(λ+ di(α, β)) +D
[
Be−λτ1 + Ce−λ(τ1+τ2)

]
= 0, (7)

where it is important to note that A,B,C,D are functions of β. We now show that the
characteristic equation (7) implies that the introduction of insulin resistance leads to
the loss of oscillations, that is we wish to prove that if we set λ = η + iφ, where η and
φ are assumed to depend on β, then

dη

dβ

∣∣∣
β=1

> 0.

Splitting the real and imaginary parts of (7) and differentiating with respect to β, we
get expressions of the type

dφ

dβ
c =

dη

dβ
a+ b,

dφ

dβ
a = −dη

dβ
c− d, (8)
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Figure 4: Effect on the steady state of reducing (left) insulin production and (right) insulin-dependent
glucose utilisation, for di = 0.06. The glucose and insulin steady states are represented by the blue
and red curves, respectively.

where we introduced the following definitions

a = 2η + A+ di − τ1e−ητ1BD cosφτ1 − (τ1 + τ2) e
−η(τ1+τ2)CD cosφ (τ1 + τ2),

b = Aβη + d′iη + (diA)β + e−ητ1 cosφτ1 (BD)β + e−η(τ1+τ2) cosφ (τ1 + τ2) (CD)β ,

c = 2φ+ τ1 sinφτ1BDe
−ητ1 + (τ1 + τ2) sinφ (τ1 + τ2)CDe

−η(τ1+τ2),

d = φ (Aβ + d′i)− e−ητ1 sinφτ1 (BD)β − e
−η(τ1+τ2) sinφ (τ1 + τ2) (CD)β .

(9)

Rearranging equations (8) and eliminating dφ
dβ

leads to an explicit expression for dη
dβ

of
the form

dη

dβ
= −ab+ cd

a2 + c2
(10)

We then obtain the following:

Proposition 1. Let λ(β) = η(β) + iφ(β) be a solution of the characteristic equation
(7). Then dη

dβ
> 0 if and only if ab+ cd < 0, with a, b, c, d as defined in (9).

We now assume that an oscillatory regulation takes place when β = 1, which is
when the system is in normal regulation. We consider the case on the threshold curve,
that is λ|β=1 = (η + iφ)|β=1 = iω, where ω > 0 satisfies a transcendental equation.
Indeed, setting λ = iω in (7) and separating the real and imaginary parts leads to the
following equation

cos (τ2ω) =
(ω2 + A2)(ω2 + d2i )−D2(B2 + C2)

2BCD2
, (11)
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where ω can be seen as a function of τ1 through the following transcendental equation

(ω2+A2)(ω2+d2i )+D2(B2−C2)+2BD
(
(Adi − ω2) cos(τ1ω)− ω(A+ di) sin(τ1ω)

)
= 0.
(12)

It can be seen from Figure 5 that dη
dβ
|β=1 > 0 when τ1 is within a physiological range,

between 5 and 20 minutes. This implies that η decreases when β decreases from 1 or,
in other words, that the oscillations are lost as β decreases from 1. The overall effect
of β on the production of oscillations can then be seen in Figure 6. As an example, the
distribution of eigenvalues λ in the prototypical case τ1 = 6 and τ2 = 36 is depicted in
Figure 7, for cases with (β = 1) and without (β = 0.8) oscillations.

Figure 5: The derivative dη
dβ as a function of τ1, with parameter values from Tables 1 and 2, with

di = 0.06, Iin = 0 and β = 1. Typical values for τ1 are to be chosen between 5 and 20 minutes.

Figure 6: Effect of insulin resistance on the curve of Hopf bifurcations in the (τ1, τ2) space.
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Figure 7: Eigenvalues of the linearised system for τ1 = 6, τ2 = 36 and di = 0.06, when β = 1 (left)
and β = 0.8 (right).

4. Strategies for stabilising glucose levels and restoring oscillations

We now investigate strategies allowing the stabilisation of the basal glucose level
and/or the restoration of oscillations using the insulin degradation or insulin infusion
as a bifurcation parameter. As stated in Section 2, di(α, β) is viewed as a combination
of natural and artificial processes which regulate the clearance of insulin. Indeed, un-
der the assumption that the insulin degradation rate is adjusted in a continuous way,
proportionally to the insulin levels, this effect can be incorporated into di(α, β). Our
analysis for the stabilisation processes makes use of equations (2) and (3) for the steady
state (G∗, I∗), as given in Section 3. In the optimal non-diabetic case α = β = γ = 1,
the current choice of parameters from Tables 1 and 2 gives a value of G∗ ≈ 97.87 mg/dl,
which we use as the reference value.

The effect of this stabilisation mechanism on the generation of an oscillatory regime
is also investigated as follows. It is known that for all values of A, B, C, D, di(α, β), and
any fixed τ1, there exists a τ ∗2 (τ1) such that the characteristic equation (7) undergoes
a supercritical Hopf bifurcation in the (τ1, τ2) space [16]. If we then suppose that an
individual has fixed secretion time delays (here we use τ1 = 6 and τ2 = 36), then for
a fixed pair (α,β) one can compute the point of Hopf bifurcation τ ∗2 (6) using formulas
(11) and (12). Since every τ2 > τ ∗2 (6) will lead to an oscillatory regime (see Figure
2), this provides an easy way to verify whether the pair (α,β) is oscillatory, and hence
allows to decide whether specific values of α and β for a given individual (with fixed τ1
and τ2) lead to an oscillatory regime.

4.1. Using insulin injections to stabilise the glucose level G∗

In current practice, insulin injections are used in the treatment plan for all Type 1
diabetics, as well as for some with T2DM [5] (although the use of insulin therapy in the
initial treatment for T2DM is debated [27]). We assume here that a continuous insulin
infusion may allow to stabilise the basal glucose level. Indeed, since the steady state
(G∗, I∗) satisfies equations (2) and (3), it is easily computed that in order to keep G∗
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constant, for fixed Gin, α, β, γ, one can solve equation (2) to obtain I∗ while equation
(3) gives

Iin = di(α, β)I∗ − αf1(G∗). (13)

Using the algorithm detailed above, we determine whether each (α,β), with Iin as
defined by (13) and di = 0.06, leads to an oscillatory regime. The result is shown in
Figure 8. For physiological accuracy, only values of (α,β) where Iin > 0 were considered.
It can be seen that insulin injections are indeed able to stabilise the basal glucose level
for a vast range of diabetic states. However, in the case when γ = 1, oscillations are
only restored for a small range of α, β. This range was further reduced when γ was
decreased.

Figure 8: Oscillatory region (in red) in the α, β domain for di = 0.06 with Iin as defined by (13) with
γ = 0.7 (left) and γ = 1 (right). The white region represents values of (α, β) where the resulting value
of Iin is negative.

4.2. Reducing hepatic glucose production to stabilise the glucose level G∗

Inhibiting hepatic glucose production can also be seen as a mechanism for reducing
glucose levels, as employed by several medications occurring in the treatment of T2DM
[12]. Let us consider a situation where insulin resistance is present, β < 1, and inves-
tigate under which circumstances the reduction of hepatic glucose allows to keep the
value of G∗ constant. Assuming di and Iin are fixed, (2) and (3) can be rearranged to
obtain the stabilising value of γ,

γ =
Gin − f2(G∗)− βf3(G∗)f4( Iin+αf1(G

∗))
di

)

f5(
Iin+αf1(G∗))

di
)

. (14)

It can be seen in (14) that there is a linear relationship between β and γ in compensating
insulin resistance by reducing hepatic glucose production. Applying the algorithm
described previously, one can assess whether the resulting choice leads to an oscillatory
regime. The result is illustrated in Figure 9.
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Figure 9: Value of γ that allows to stabilise G∗ = 97.87 mg/dl (left, for α = 1) and the resulting
oscillatory region (in red, right) in the α, β domain for γ defined by (14), with di = 0.06, Iin = 0. The
white region corresponds to negative values of γ.

4.3. Altering insulin degradation to stabilise the glucose level G∗

As mentioned in Section 4.1, since the steady state (G∗, I∗) satisfies equations (2)
and (3), it can be easily computed that

Gin − f2(G∗)− βf3(G∗)f4(I∗) + γf5(I
∗) = 0, (15)

I∗ =
Iin + αf1(G

∗)

di(α, β)
. (16)

Using (15) and (16), with fixed α, we can determine the function di(α, β) which
stabilises the glucose basal level to 97.87 mg/dl and the resulting insulin basal level,
I∗. These can be seen in Figure 10.

Figure 10: Clearance rate which allows to stabilise G∗ = 97.87mg/dl and the resulting I∗ when
di(1, 1) = 0.06 and Iin = 0.
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The graphs clearly show that in the case of moderate insulin resistance (β ∈ [0.6, 1]),
it is possible to keep both the glucose and insulin basal levels relatively unchanged by
altering the insulin clearance rate.

It is readily seen that this strategy can be applied in the case of limited insulin
resistance.

Figure 11: Oscillatory region (in red) in the α, β domain for di = 0.06 (left) and di(α, β) defined by
(15), with Iin = 0.

4.4. Reintroducing oscillations

The final strategy is to focus primarily on the reintroduction of an oscillatory regime.
To this end, we use di as a bifurcation parameter to assess whether altering insulin
clearance may be used for this purpose. However, a Hopf bifurcation has only been
shown to occur in the (τ1, τ2) space, and so we use the algorithm outlined previously in
order to determine whether the system oscillates for a given (α, β, di), and hence obtain
the oscillatory region in the (α, β, di) space (shown in Figure 12) . We also verify that
the resulting fasting glucose levels fall within an acceptable physiological range. It can
be seen from Figure 12 that changing di is considerably more effective for restoring
oscillations for large variations of α than β. Indeed, for values of β < 0.9, di cannot be
used to restore the oscillatory regime of the system and keep the fasting glucose levels
within an acceptable range.

5. Instantaneous insulin response and periodic solutions in the linear system

In this section, we derive explicit conditions for the existence of sinusoidal solutions
for linear systems with two delays

ẋ(t) = a1x(t) + a2y(t) + a3y(t− τ2), ẏ(t) = a4x(t) + a5y(t) + a6x(t− τ1). (17)

The purpose of this derivation is twofold. On one hand, contrary to the case a4 = 0
where the solution of a transcendental equation is required, we show that conditions
can be formulated when a4 6= 0 by investigating the roots of a cubic polynomial. On
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Figure 12: Oscillating regions in the α, β, di domain. The solid sections represent the values of di
for which both oscillations occur, and the fasting glucose levels lie within an acceptable range (70-109
mg/dl).

the other hand, in the context of model (1), the introduction of the coefficient a4
would correspond to an instantaneous glucose-dependent insulin secretion. Hence our
conditions provide a qualitative description of the effect of such an insulin contribution.

We assume here that a3, a6 6= 0 to ensure the dependence upon the two delays is
preserved and postulate the form of the solution as

x(t) = A1 cos(ωt) + A2 sin(ωt), y(t) = B1 cos(ωt) +B2 sin(ωt). (18)

Given that the system is linear, we impose that x(t) and y(t) are normalised such that
A2

1 + A2
2 = 1, B2

1 +B2
2 = r2, r > 0. Hence we set

A1 = cosφ, A2 = sinφ, B1 = r cos θ, B2 = r sin θ. (19)

Substituting (18) into (17), one obtains the following system

cos(τ2ω) = − 1

a3r
[a2r + a1 cos z + ω sin z] , sin(τ2ω) =

1

a3r
[a1 sin z − ω cos z] ,

cos(τ1ω) = − 1

a6
[a4 + a5 cos z − rω sin z] , sin(τ1ω) = − r

a6
[a5 sin z + ω cos z] ,

(20)

given that a3, a6 6= 0, with z = θ − φ. These lead to the following conditions

ω2 + 2a2r (ω sin z + a1 cos z) + a21 + r2(a22 − a23) = 0, (21)

r2ω2 + 2a4r (a5 cos z − ω sin z) + r2a25 + a24 − a26 = 0, (22)

Here we focus exclusively on the generic case where a2, a4, a1 + a5 6= 0. Conditions
when a2 = a4 = 0 have been discussed, for example in [28] using degree theory. We do
not make use of a rational transformation to bring the transcendental equation into a
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polynomial problem (as done, for example in [9, 34]). In the generic case, one can solve
(21) and (22) for sin z and cos z and upon using that cos2 z + sin2 z = 1, we obtain a
cubic polynomial for ρ = ω2,

b3ρ
3 + b2ρ

2 + b1ρ+ b0 = 0, (23)

with

b0 =
(
a21a4a5 − a1a2a24 − a1a2a25r2 + a1a2a

2
6 + a22a4a5r

2 − a23a4a5r2
)2
,

b1 = a41a
2
4 − 2a31a2a4a5r

2 + 2a21a
2
2a

2
5r

4 − 2a21a
2
2a

2
6r

2 + 2a21a2a
3
4 + 2a21a2a4a

2
5r

2

−2a21a2a4a
2
6 − 2a21a

2
3a

2
4r

2 + 2a21a
2
4a

2
5 − 2a1a

3
2a4a5r

4 − 8a1a
2
2a

2
4a5r

2 + 2a1a2a
2
3a4a5r

4

−2a1a2a
3
4a5 − 2a1a2a4a

3
5r

2 + 2a1a2a4a5a
2
6 + a42a

2
4r

4 + 2a32a
3
4r

2 + 2a32a4a
2
5r

4

−2a32a4a
2
6r

2 − 2a22a
2
3a

2
4r

4 + a22a
4
4 − 2a22a

2
4a

2
6 + a22a

4
5r

4 − 2a22a
2
5a

2
6r

2 + a22a
4
6

−2a2a
2
3a

3
4r

2 − 2a2a
2
3a4a

2
5r

4 + 2a2a
2
3a4a

2
6r

2 + a43a
2
4r

4 − 2a23a
2
4a

2
5r

2,

b2 = a21a
2
2r

4 + 2a21a2a4r
2 + 2a21a

2
4 − 2a1a2a4a5r

2 + 2a32a4r
4

+4a22a
2
4r

2 + 2a22a
2
5r

4 − 2a22a
2
6r

2 − 2a2a
2
3a4r

4 + 2a2,

b3 =
(
a2r

2 + a4
)2
.

The polynomial (23) always possesses at least one real root for ρ. We now investigate
conditions which ensure that it possesses at least one positive root and discard the case
b0 = 0, which would lead to a constant solution. Assuming a factorisation of the form

b3(ρ−ρ1)(ρ−ρ2)(ρ−ρ3) = b3
[
ρ3 − (ρ1 + ρ2 + ρ3)ρ

2 + (ρ1ρ2 + ρ1ρ2 + ρ2ρ3)ρ− ρ1ρ2ρ3
]
,

the fact that b0 and b3 are positive implies that the product of roots ρ1ρ2ρ3 is negative.
Hence, the polynomial either has 1 or 3 negative roots. Moreover, if two roots are
complex, say ρ3 = ρ2, then

ρ1ρ2ρ3 = ρ1ρ2ρ̄2 = ρ1|ρ2|2 < 0⇒ ρ1 < 0

and the polynomial has no positive root. Hence, for the polynomial to have at least one
positive root, its three roots must be real, or equivalently the discriminant of (23) must
be positive. As a consequence, the only choice is to have 1 negative root and 2 positive
ones. According to Descartes’ rule of signs, the series of coefficients of polynomial (23)
must exhibit exactly two sign changes, while the series obtained upon setting x→ −x
must have exactly one sign change. This leads to the following proposition.

Proposition 2. In the generic case a2, a4, a1 + a5 6= 0, system (17) possesses at least
one sinusoidal solution if the discriminant of (23),

∆ = 18b0b1b2b3 − 4b32b0 + b21b
2
2 − 4b3b

3
1 − 27b20b

2
3

is positive and either i) b2 < 0 or ii) b2 > 0 and b1 < 0 or iii) b1 = 0 or b2 = 0 holds.
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Moreover, values of z can be obtained directly by eliminating ω from (21) and (22),

8a2a4(a1 + a5)r
3
(
a2r

2 + a4
)
η3

−4r2
[
a2r

4
(
a21a2 − a22a4 − a2a25 + a23a4

)
+r2

(
a22a

2
6 + a23a

2
4 − a21a2a4 − 2a1a2a4a5 − 2a22a

2
4 − a2a4a25

)
−a4

(
a21a4 + a2a

2
4 − a2a26 − a4a25

) ]
η2

−4r
[
a1a2(a

2
2 − a23)r6 +

(
a31a2 + 2a1a

2
2a4 − a1a2a25 + a22a4a5 + a23a4a5

)
r4(

a4a
3
5 − a21a4a5 + a1a2a

2
4 + a1a2a

2
6 + 2a2a

2
4a5
)
r2 + a4a5(a

2
4 − a26)

]
η

−
[
(a22 − a23)2r8 + 2

(
a21a

2
2 − a21a23 + 2a32a4 + a22a

2
5 − 2a2a

2
3a4 + a23a

2
5

)
r6

(a41 + 4a21a2a4 − 2a21a
2
5 + 6a22a

2
4 − 2a22a

2
6 + 4a2a4a

2
5 − 2a23a

2
4 − 2a23a

2
6 + a45)r

4

+2
(
a21a

2
4 + a21a

2
6 + 2a2a

3
4 − 2a2a4a

2
6 + a24a

2
5 − a25a26

)
r2 + (a24 − a26)2

]
= 0, (24)

where η = cos z. Using equations (21) and (22) one can then obtain the points in the
positive (τ1, τ2) domain where sinusoidal solutions of the form (18) exist. We now give
an example using as starting point the linearisation of system (1) in which we introduce
the coefficient a4.

Example 1. Physiological parameters for system (1) in the non-diabetic case α = β =
γ = 1 were obtained in [11]. Note that in that case a4 = 0 and here we assume that
a4 is sufficiently small and represents a first-order approximation of an instantaneous
glucose-dependent insulin release. The corresponding values are given by

a1 = −0.010, a2 = −0.855, a3 = −2.457, a5 = 0.06, a6 = 0.001. (25)

Following the procedure just highlighted, it can be seen (Figure 13) that for each value of
−1 ≤ a4 ≤ 1, there exists a small range on r for which the conditions of Proposition 2
are satisfied. For example, for a1 = 0.00001, the range of 0.0145619 ≤ r ≤ 0.0170074 is
determined numerically with corresponding ω’s within [0.0253264, 0.0471886]. For each
value of r, values of ω and z are obtained from (23) and (24). For each trio (r, ω, z),
equations (20) are then used to obtain the resulting values for τ1 and τ2. Because of
the periodicity of these equations, we report here only the minimal positive values of the
delays.

Increasing a4 has a crucial effect of the production of sinusoidal solutions (Figure
14). The lower branch of the graph for a4 = 0.00001 gives an approximation to the
transcendental curve of Hopf bifurcations which was presented in Figure 2. The graph
in Figure 14 shows that this curve is part of a closed loop in this space. For comparison,
increasing a4 and repeating the analysis shows that it deforms this loop by shrinking it
progressively, here represented for a4 = 0.1. We observe numerically that values of a4
larger than around 39.02 cannot lead to an oscillatory solution. However, in the context
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Figure 13: Values of r which satisfy the conditions of Proposition 2 for a4 ∈ [−1, 1].

of glucose-insulin regulation, it is reasonable to expect that a value above the delayed
insulin production or the degradation rate will break the ability of the system to generate
oscillations.

Figure 14: Existence of oscillatory solutions in the (τ1, τ2) domain for a4 = 0.00001 (left) and a4 = 0.1
(right). Given the periodicity of equations (20), only the curves which provide the minimal values for
τ2 are reported.

6. Discussion and Conclusions

The theoretical and numerical results obtained in Sections 3 to 5 have highlighted
the effect of diabetic deficiencies on the cyclic regulation of glucose in the ultradian
regime. The regulatory negative feedback loop, which is modelled by taking into ac-
count production times for pancreatic insulin and hepatic glucose, provides an impor-
tant mechanism for investigating this regulation. On one hand, the model predicts a
dampening of the oscillations in the case of a reduced capacity to utilise insulin to de-
grade glucose. This behaviour was observed in clinical trials involving constant glucose
infusions in type 2 diabetic patients [24]. Note that a similar effect of insulin resistance
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was also noted on the production of fast oscillations [15] (see also e.g. [22] for a general
review of the effect of diabetes on β-cell activity). On the other hand, the usage of the
current model has permitted the recovery of healthy regulation through the original
objectives: (i) the production an oscillatory regime while (ii) stabilising the average
glucose levels within a physiologically acceptable range.

Here we have highlighted the importance of considering variable insulin degradation
rates as these have an important effect of the production of an oscillatory regime. By
considering the insulin clearance term as a combination of both natural and external
mechanisms for the degradation of insulin and combining its effect with other param-
eters such as insulin sensitivity, pancreatic secretion and hepatic glucose production,
four strategies have been investigated in Section 4. We have shown that it is generally
possible to individually alter these parameters, either positively or negatively, to sta-
bilise average glucose levels. These alterations take into account current therapeutical
pathways, such as insulin infusions and drugs that inhibit hepatic glucose production
such as Metformin, which typically only focus on reducing glucose levels. The effect
of this manipulation on the generation of oscillations has been investigated. We then
established regions in the space of diabetic parameters α and β where both objectives
can be achieved. In several cases, it would be worth considering combinations of these
strategies in order to deliver an optimal treatment which combines the benefits of hav-
ing an oscillatory regime within an acceptable range. Splitting the insulin contribution
into dynamically linked compartments accounting for plasma and remote insulin with
individual transfer and degradation rates, as done in [40], may as well lead to more
precise recovery pathways. Such a study is currently under way.

However, at this stage, the qualitative contribution of the strategies described in
Section 4 should be considered more important than specific numerical values. One
reason for this is that insufficient exhaustive characterisations of the ultradian oscilla-
tory regulation of diabetically-impaired systems are available. Nevertheless, the model
appears to be sufficiently robust for qualitatively establishing the effect of diabetic pa-
rameters. For instance, adding a 5% white noise to the diabetic parameters does not
incur very large variations in the period and amplitude of the oscillatory regime, as
shown in Figure 15. Two approaches could be employed in order to strengthen the
current proposed pathways and provide a more quantitative framework. Firstly, appro-
priately designed clinical trials aiming at evaluating variations in oscillatory patterns
in subjects at various diabetic states under glucose infusions would be of great value.
Secondly, new multiscale simulations taking into account dynamics at the β-cell secre-
tion level as performed in [4] in the case of decreased insulin sensitivity could lead to a
further assessment of the current model against clinical observations.

Moreover, we have shown that taking into account an instantaneous glucose-dependent
insulin production, through the introduction of an additional coefficient, enables us to
characterise the existence of sinusoidal solutions by investigating roots of a cubic polyno-
mial. This provides an additional mean for investigating the curve of Hopf bifurcations,
which separates asymptotically stable and oscillatory regimes in system (1), without
relying on a transcendental equation. It is numerically evidenced to be part of a closed
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Figure 15: Ultradian oscillations with a 5% noise on α and β around α = β = 1. The middle
band represents the associated variability of G∗. A similar effect can be observed on insulin patterns.
Simulation performed with 500 repetitions.

loop in the (τ1, τ2) domain.
Finally, in view of the recent efforts for the development of an artificial pancreas,

these result open the way for more in-depth analysis of the underlying mechanisms
which are most responsible for generating the oscillations. The presence of periodic
solutions in the (τ1, τ2) can be detected using Proposition 2 and these could be used
for further investigation of the mechanisms involved in the oscillatory regulation. In
particular, combining strategies discussed in Section 4 may provide additional pathways
for reintroducing a physiologically appropriate cyclic regulation and devise new regimes
for personalised treatment.
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