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Abstract 

The current state of the art of (Quantitative) Structure-Activity Relationships ((Q)SARs) to predict 

environmental toxicity is assessed along with recommendations to develop these models further. 

The acute toxicity of compounds acting by the non-polar narcotic mechanism of action can be well 

predicted, however other approaches, including read-across, may be required for compounds acting 

by specific mechanisms of action. The chronic toxicity of compounds to environmental species is 

more difficult to predict from (Q)SARs, with robust data sets and more mechanistic information 

required. In addition, the toxicity of mixtures is little addressed by (Q)SAR approaches. 

Developments in environmental toxicology including Adverse Outcome Pathways (AOPs) and omics 

responses should be utilised to develop better, more mechanistically relevant, (Q)SAR models.  
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Introduction 

(Quantitative) Structure-Activity Relationships ((Q)SARs) have been developed for a number of 

environmental toxicities. The purpose of the (Q)SARs in this field has been to provide rapid 

assessment of the potential of a chemical to cause lethality or non-lethal adverse effects to 

environmental species, including both fauna (for which the models are best developed) and flora,1 as 

well as being able to predict physico-chemical and fate properties.2 The models have been 

developed as a response to different legislation across the globe (e.g. EU REACH, US TSCA etc) as 

well as to assist in the design of greener chemicals and reduction of animal testing.35 Whilst it is not 

intended as a comprehensive review, this perspectives paper brings together the state of the art of 

(Q)SARs for acute and chronic toxicities and makes recommendations for future work, in the context 

of ad a es i  hat is te ed st Ce tu  To i olog .6 It should e oted, i  this pape , Q “AR  
ith pa e theses a ou d the Q  efe s to all ua titati e a d ualitati e st u tu al ale t o  

grouping) approaches, whilst Q“AR  ithout pa e theses  efe s o l  to those t aditio al Q“AR 
models where some form of potency is estimated.  

 

(Q)SARs for Acute Toxicity 

The linkage between the properties of a molecule and potency in terms of acute toxicity, especially 

to aquatic species, has been appreciated for well over a century. Solubility was initially seen as a 

driver of acute toxicity7 with seminal work from Overton8 and Meyer9 developing the use (still very 

much applied to this day) of partitioning between polar and non-polar phases being a surrogate for 

uptake and distribution into an organism. As such, there is overwhelming evidence that the ability of 

small molecules, i.e. molecular weight less than 600Da molecules with a reasonable logarithm of the 

octanol-water partition coefficient (log P) value (e.g. between 0 and 5), to elicit lethality is due, in 

part at least, to their ability to reach the active site.10,11 If no specific mechanism of toxicity is 

present, then lethality is a function of the distribution of the molecule alone – with the site of action 

assumed to be in cellular (and other) membranes, although the precise mechanism of action is not 

fully understood.11-13  

To comprehend the reason for the good predictions of acute aquatic toxicity (for some chemicals), 

the experimental methodology must be considered. Experimental evaluation of acute toxicity 

implies the determination of a concentration that results in endpoints such as lethality, inhibition of 

growth as well as other effects. This concentration (e.g. the EC50 or LC50 etc) relies on the capability 

of the xenobiotic to be absorbed and / or transported to the site of action and the interaction of the 

xenobiotic at the site of action, in other words toxicokinetics and toxicodynamics. As aquatic toxicity 

tests will often reach an equilibrium state, toxicity is directly proportional to the uptake of a 

compound. Bringing toxicokinetics and toxicodynamics together, McFarland14 proposed the 

following generic model for toxicity: 

Log 1/C = a (penetration)  +  b (interaction)  + c                      (1) 

Where C is the concentration causing a measureable toxic potency (normally a EC50 or LC50), 

a and b are intercepts in the relationship, 

c is the constant.  
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Typically in the practical application of eq. (1), the penetration term is described by log P; interaction 

is described by a term relating to the (specific) interaction of the xenobiotic with biological 

molecules e.g. electrophilic toxicants are described by molecular orbital properties.  

The potency of compounds that are unreactive is thought to be driven by the ability to reach the site 

of action alone, thus the interaction term is negligible in eq (1). As a result, the toxicity of such 

compounds has been well described by log P for decades following the pioneering work of Hansch,15-

16 with perhaps the most widely applied QSAR that of Könemann.17 The relationship for non-reactive 

compounds holds across species within reasonable limits of solubility. Thus Könemann 

demonstrated an excellent relationship between acute toxicity and log P, 17 and this has been 

demonstrated for many other species18-19 and has allowed for the definition of the domain of non-

polar narcosis.20 Other approaches to predict toxicity have been put forward. Chemical activity has 

been proposed as a novel exposure parameter that describes the fraction of saturation and that 

quantifies the potential for partitioning and diffusive uptake, hence providing a means of estimating 

acute and chronic toxicity (providing a good value of aqueous solubility is available) as well as 

potentially assigning compounds to mechanisms / modes of action.21 The use of chemical activity as 

an overriding principle is undoubtedly founded in a good understanding of physical chemistry, 

however recent debate suggests that it requires further clarification and elucidation.22,23 

The toxicity of unreactive compounds has often, and perhaps confusingly, been termed narcosis by 

environmental toxicologists, and is also referred to as baseline toxicity. The term narcosis was coined 

with reference to the anaesthetic-like effects in vivo of these compounds i.e. a slowing down of 

physiological function, leading to a comatose state and ultimately death. It is also considered to be 

reversible, thus if an organism is placed in a clean test system it should recover.10,18 It is noted that 

the te  a osis  ith ega d to a ute to i it  does ause o fusio  to those o e fa ilia  ith 
the use of this term from a pharmacological or (mammalian) toxicological point of view. 

Thus, if a compound can be identified as being unreactive, or narcotic, acute toxicity to a variety of 

species can be predicted accurately from structure alone. As a result, there should be no need to 

perform acute toxicity tests for well characterised unreactive compounds. A number of schemes 

have been utilised to assign a chemical to a mechanism of action e.g. Verhaar,24 Russom25 and 

Barron26 etc. Whilst there is widespread use of these systems, there has been no concerted effort to 

evaluate them properly and only limited attempts to extend these approaches.27-28 As a result, there 

is a clear research need to extend these methods, with particular reference to classifying compounds 

as non-polar narcotics. It is of interest that the concept of a basal cytotoxicity mechanism is now 

being taken up in mammalian toxicity29 as well as being possible for rat and mouse acute lethality.30  

The classification of compounds as being narcotic is further complicated by the (strong) possibility of 

more than one mechanism of unreactive, reversible toxicity. There is evidence for the presence of a 

further significant mechanism, being termed polar narcosis or Class II.31-32 Whether this is a distinct 

mechanism of action has been a subject of some contention and debate with some authors 

considering it to be an artefact of the solvent system used to measure or calculate log P.33 Other 

narcotic mechanisms have also been proposed e.g. amine34 and ester narcosis.35 Whilst there is no 

agreement in whether these are truly distinct mechanisms, or simply an issue with regard to log P, it 

is possible to define the domains for high quality log P derived QSARs, thus enabling their use.   

There is also no clear or precise hypothesis for the mechanism of action of narcosis. It has long been 

des i ed as e a e pe tu atio , ho e e  this is a  u defi ed te . Na oti  o pou ds 
certainly accumulate within biological membranes, thus this should be considered as the site of 

action, but the exact cause of toxicity is largely undefined. It is well established that compounds will 
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accumulate in cellular membranes, it is also possible, although less acknowledged, that 

accumulation may occur within organelle membranes. There may, of course, be a number of effects 

at the membrane. Recent evidence suggests that interaction at the calcium receptor,36 or, with 

regard to mammalian toxicity, mitochondrial toxicity may be important.29,37 This is clearly an area 

where analysis of omics responses, 36 in addition to the Fish Acute Toxicity Syndromes,38 will play 

dividends.  

Whilst most industrial chemicals as thought to act by a narcotic mechanism of action,11,31 a number 

of compounds have specific toxic mechanisms of action, thus their potency is elevated above that of 

a narcotic response.19 Crudely speaking, these specific mechanisms of acute toxicity can be 

described as being electrophilic / nucleophilic (commonly termed reactive)39 or due to inhibition of 

specific enzymes e.g. inhibition of acetylcholinesterase, whilst acknowledging other mechanisms do 

exist e.g. redox cycling, formation of Reactive Oxygen Species. In order to create models for such 

toxicant using a generic approach such as eq (1), a further term is required to capture the specific 

nature of the toxicity. For instance, Cronin, Schultz and co-workers developed a series of QSARs for 

electrophilic toxicants where the electrophilic nature of the compounds was accounted for by 

molecular orbital properties;40-42 Bermudez-Saldana and Cronin developed QSARs for the toxicity of 

organophosphates to fish by including specific terms for the organophosphate group.43 In some 

circumstances, given the difficulty of obtaining reliable data sets, read-across may become a 

practical alternative to QSAR.44 In this context read-across is suitable where a small number of 

similar compounds are available, with data for at least one of them. Read-across circumvents, to 

some extent at least, the data requirements (i.e. high number of data) that may be needed to build a 

robust QSAR and is seen as being a solution to predicting complex toxicities, such as chronic, 

development and reproductive effects.45,46  

Overall, the prediction of acute toxicity has benefitted from the development of relevant databases, 

notable amongst these are the data compilations for the fathead minnow25 and Tetrahymena 

pyriformis.47 These are significant for at least three reasons: chemicals were rationally selected to 

cover well defined (where possible) mechanisms of action and broad chemical space, they were of 

high quality (albeit with caveats such as being non-guideline or GLP (those performed according to 

Good Laboratory Practice criteria) studies, based on nominal concentrations) and measurements 

made within the same laboratory. These datasets have allowed for numerous, sometimes successful, 

QSAR analyses.11 Whilst the current databases are of considerable use, it is noted that more, and 

better, information could be derived from ecotoxicity studies which could improve the quality of the 

data generated,48 especially if coupled to robust principles of ecotoxicity testing.49 

To progress the prediction of acute toxicity, clearer domains of narcotics are required, incorporating 

where possible further non-test evidence, whether it be in vitro, in chemico or other. This would 

assist in the definition of the chemical domains of narcosis as well as allowing for the development 

of robust QSARs. There is also a requirement to define the applicability domains of QSARs for 

specific toxicity better, as well as consideration of improved parameterisation of the specific aspect 

of the toxicity.  

 

(Q)SARs for Chronic Toxicity 

Chronic, or prolonged, toxicity tests are required to determine the effects of long-term, repeated 

exposure to substances. This is o e ealisti  of t pi al  e posu es to polluta ts, thus the out o es 
are very important for environmental risk assessment. These tests rely on exposing organisms to 
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increasing o e t atio s a d de i i g a No O se ed Effe t Co e t atio  NOEC  o  Lo est 
O se ed Effe t Co e t atio  LOEC  f o  the data. Fo  e i o e tal spe ies, the NOEC ould 
be chosen whereby there is no deviation from the viability of control population. As such, the 

reported NOEC does not represent the actual NOEC but rather is dependent on the concentrations 

tested. This must be borne in mind when modelling. In comparison to QSARs for acute toxicity, such 

models for chronic toxicity are restricted by the number and type of data and the subtlety and often 

unknown nature of the mechanisms of action. In addition, the practice of deriving a NOEC has in 

itself been seen as controversial, the elaboration of which is important for the development of 

QSARs for chronic toxicity.49,50  

There appear to be fewer chronic toxicity data available for modelling than for acute toxicity. In 

addition, as toxicity is evaluated only on the reduction of viability or other effect as compared to a 

control group, there is little, or no, information regarding mechanism of action. For some tests, e.g. 

reproduction, some mechanistic understanding may be implied, but commonly not organ level 

effects are recorded. Therefore, for chronic toxicity, much more reliance will need to be placed on 

molecular responses and a more detailed assessment of organ level effects. There is a clear 

opportunity here for data from high-throughput in vitro assays to provide further input for modelling 

and to support other prediction methods.  

Due to the paucity of chronic toxicity data and their inherent variability, there are few (reliable) 

Q“AR odels fo  this e dpoi t. P edi tio s a e a aila le fo  a u e  of spe ies f o  the U“ EPA’s 
ECOSAR software, although these QSARs are poorly described or evaluated. There appear to be 

possibilities to develop QSARs when the data are well reviewed and it is performed on a mechanistic 

basis e.g. Austin and Eadsforth found reasonable QSARs for the NOECs of a limited number 

u ea ti e  compounds which may, potentially, be considered to be acting by an unspecific 

mechanism(s) of action and NOEC may be related to critical body burden.52 Whilst successful for 

limited groups of compounds, the whole concept of QSAR development for chronic toxicity based on 

unspecific mechanisms of toxicity needs further, and more detailed, investigation to make it more 

broadly applicable.  

One area of chronic toxicity that has been significantly addressed through (Q)SAR modelling is the 

prediction of events that may lead to endocrine disruption. For instance, there are a number of 

(Q)SAR models that relate to oestrogen,53-54 androgen55 and thyroid56 binding. There are a number of 

in silico techniques that have been applied to these, and other, endpoints ranging from the 

development of 2-D alerts, QSAR models, to pharmacophores.54-57 In addition, knowledge of 

receptors and interactions can be modelled. Of particular interest is the ability to build homology 

models that may allow for extrapolation of effects from one species to another.58-59 There are 

several reasons for the proliferation of models for endocrine disruption, undoubtedly including the 

importance of this endpoint, the current lack of an in vivo test system and the relative abundance of 

data for receptor binding which are amenable to modelling. As such, it does demonstrate that given 

mechanistic understanding and suitable data, (Q)SAR modelling is possible for modes of toxicity.  

Thus, the development of QSARs for chronic toxicity is poorly developed in many areas, with 

exceptions such as (Q)SARs for endocrine disruption showing what may be possible. This would 

seem to be an area where mechanistic interpretation is crucial and where molecular biology, and 

even pharmacological, information may play a very important role to help understand the more 

complex and subtle mechanisms of action. There is also a role to develop robust databases of quality 

assured toxicological information.  
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AOPs, 21st Century Toxicology, Big Data, Species Extrapolation and Beyond 

The topic of Adverse Outcome Pathways (AOPs) has swamped toxicology since the first paper from 

Ankley et al.60 It is often forgotten that it was devised to formulate a framework for complex, subtle 

environmental effects with much work in AOPs being taken up by the mammalian toxicology 

community; for an up to date view of the coverage of AOPs the reader is referred to the AOP wiki.61 

However, the concept can prove to be a unifying metric for environmental toxicology, especially for 

non-lethal adverse effects. Here we have the possibility of identifying mechanisms and supporting 

grouping through molecular biology approaches.62-63 This can support mechanistic comprehension 

and the creation of (QSAR) models from knowledge of Molecular Initiating Events (MIEs).46 In 

addition, with regard to grouping and read-across, information from AOPs will enable better 

justification of the similarity and read-across hypotheses.64-66 Overall, information from AOPs will 

assist in the better development and utilisation of (Q)SARs, especially for chronic toxicity, by 

providing mechanistic knowledge on which to formulate models. However, whilst there has been 

p og ess i  de elopi g o eptual  f a e o ks of e ha isti  i fo atio  th ough the AOP 
paradigm, fundamental progress is still required in defining the AOP, or network of AOPs, that 

defines narcosis. Several starting points for this AOPs are available60,67 and they have been reviewed 

critically as to their progress and potential.68 The application of AOPs will need to be considered as a 

network, rather than the traditional linear depiction. The availability of knowledge, and potentially 

rapid measurement of (high-throughput in vitro) data may potentially allow for the rapid 

de elop e t of these et o ked -AOPs for environmental endpoints.  

The consideration of the perturbation of biochemical pathways is at the heart of what is often 

termed 21st Century Toxicology. This approach is, in part at least, closely entwined with the 

de elop e t of AOPs a d the a al sis of o pilatio s of ig data . The e is a g o i g ealth of 
esou es that fall i to the o e used te  of ig data . Fo  e ironmental endpoints these include 

ToxCast69 which provides information across a broad set of receptors to species specific resources 

through to compilation of information from high-throughput test systems to non-vertebrate 

organisms such as Caenorhabditis elegans.70 It is beyond the scope this article to provide insight into 

these new resources, rather their impact on the development of the QSARs can be considered. The 

information from such resources will undoubtedly support mechanistic classification to support the 

use of a particular QSAR to predict the effects of a compound (including the support of grouping to 

allow for read-across). In addition, they may provide data which can be modelled directly, 

knowledge of effects to species seldom considered before, e.g. C. elegans, will expand the 

applicability of models. It ee  e og ised, ho e e , that hilst fashio a le ig data  a e ot the 
panacea for all the problems in this field, with the demonstration of relevance and curation of data 

being fundamental; to this end a number of recommendations have been made recently regarding 

the use of such information.6 

We will never know how many species there are in the world, through the realms of fauna and flora. 

Additionally it is recognised that whilst environmental risk assessment aims to be protective of all 

species, it will never achieve that goal. The paradigm has, so far, been to select sentinel species 

representative of trophic levels with the aim of obtaining information on the most sensitive. QSAR 

models are typically for single species and, often, limited to a single life stage with measurements 

made under controlled laboratory conditions. There are limited opportunities to extrapolate to 

other species either directly, sometimes termed Quantitative Activity-Activity Relationships 

(QAARs)71 or through the incorporation of other descriptors to help account for inter-species 

differences (Quantitative Structure Activity-Activity Relationships (QSAARs)).72 These are simplistic 

approaches and based on nothing more than seeking correlations when comparable data are 
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available. However, understanding of the new technologies, big data resources and homology of 

receptors and physiology will make these extrapolations much more sophisticated. For instance, 

approaches are being made to understand species differences from the level of evolutionary biology. 

Whilst ambitious, with the growth, speed and reducing cost of genomic screening, this may provide 

valuable information supporting the modelling of MIEs etc.73 This all-encompassing consideration of 

evolutionary genomics may allow for the rational expansion of (Q)SAR models across species 

through the combined understanding of mechanistic effects and how these are impacted by inter-

species physiology and biochemical pathways.  

Thus, to develop read-across and (Q)SAR approaches better, consideration should be given how to 

incorporate information from AOPs and when and where this information can be applied. Strategies 

a e e ui ed to utilise the ig data  esou es to fa ilitate e ha istic understanding to underpin 

prediction of toxicity within and between species; issues such as adopting best practices and 

ensuring transparency and open access to data have already been recognised.6 

 

QSARs for Mixtures 

Regulatory toxicology has focussed on the assessment of single chemicals, hence the data that has 

been provided for modelling, and the necessity for that modelling, has also been for single 

chemicals. There are a small number of QSARs for mixtures.74-76 To increase uptake in this area and 

make the use of QSARs for mixture more widespread some investigation of the problem is required. 

The development of QSARs for mixtures will, in part, be driven by the endpoint. For quantitative 

endpoints e.g. acute lethality, there are well established principles of additivity etc. These may 

provide the basis for predictions of mixtures, but requires knowledge of mechanism of action. For 

instance, the toxicity of a mixture of chemicals known to act by non-polar narcosis can be predicted 

accurately, whereas adding in further mechanisms may mean the additivity is lost.76 Alternatively, 

for chronic toxicities, consideration of individual components of a mixture may be required, i.e. 

screening of single chemicals which an overall call on toxicity. There is a clear, and as yet largely 

unexplored potential, to link assessment of mixtures and the involvement of QSAR to AOPs whereby 

the MIEs, and also networked-AOPs, could be utilised to advantage. The overall concept could be 

linked to some form of ecological Threshold of Toxicological Concern (eco-TTC; the use of thresholds 

of exposure considered to not to cause harm), where only compounds at a significant concentration 

need to be considered.77-78  

To increase uptake of QSARs for mixtures, more fundamental knowledge is required about mixture 

toxicology, implying more data. Once these cornerstones are in place in silico models, including 

QSARs, can be developed from defined strategies. The understanding of the toxicology of mixtures 

should not imply in vivo testing, indeed the opposite, much could be derived from careful 

experiments using omics and other high-throughput technologies.  

 

Conclusions 

This article attempts to summarise briefly over 100 years of research and thinking particularly the 

past 50 years of concerted effort to understand and predict, from chemical structure, the effects of 

xenobiotics to environmental species. As such, it can only be cursory in nature, allowing for the 

identification of main trends and isolation of specific areas of progress and need for further work. It 

seems that more than ever, to create more robust in silico models and (Q)SARs in particular, we 
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need mechanistic understanding and we need to incorporate it into models wherever possible. To 

obtain this we need to harness the increasing data resources of test results and, in particular, the 

opportunities evolving from AOPs and the conversion of mechanistic information from omics into 

usable AOPs.  

At the current time we have accurate QSAR models for the acute aquatic toxicity of non-polar 

narcotic compounds – the key to utilising these models is the correct and full definition of the 

(applicability) domain of non-polar narcosis. For specific mechanisms of aquatic toxicity, we have 

increasing knowledge and it may be that read-across may be more applicable than QSAR alone; 

identification, definition and clarification of these specific mechanisms is needed, especially with 

regard to elucidation of the most sensitive species. Much work, starting with the development of 

robust databases and mechanistic interpretation is required to develop better QSARs for chronic 

toxicity, a broader range of representative species and for mixtures. The key to making progress in 

the development of QSARs for environmental effects is to embrace, harness and utilise correctly the 

new technologies and frameworks providing detailed mechanistic background and inspiration can be 

gained from the recent report of the National Academy of Sciences.6 In addition, correct use of QSAR 

predictions must be ensured either as standalone estimates or as part of more formal testing 

strategies.  
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