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HIGHLIGHTS 

 In a hot bed of alumina sand, fluidised by air, paraffin wax burns like a plastic 

 When wax is fed on top of a bed, at least half its carbon-content ends up as soot 

 If wax is fed low down such a bed, no soot is produced – only CO or CO2 

 If glycerol enters low down a bed, it burns to CO or CO2, without soot appearing 

 Bubbles of fuel and air burn in a bed > 800
o
C, but explode above a cooler bed 

 

ABSTRACT 

Two fuels were burned in electrically heated beds of alumina sand, fluidised by air. The 

fuels were: (i) paraffin wax, which is a solid containing 100% volatile matter and (ii) 

glycerol, a liquid, whose potential as a fuel needs assessing. The bubbling fluidised beds 

were held in the range 400 - 900
o
C. Pieces of paraffin wax burned like a plastic, so when 

fed on top of a bed, the wax floated and generated clouds of soot. Soon, it then sank into 

the bed. When the sand was below ~ 800
o
C, combustion occurred noisily in exploding 
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bubbles leaving the bed. In beds hotter than ~ 800
o
C, combustion proceeded in bubbles 

fairly low in the bed and was controlled by the mixing of hydrocarbon vapours (from the 

wax) with the fluidising air. If wax were fed half way up a bed, bubbles of hydrocarbon 

vapours were quickly produced; they ascended and mixed with the fluidising air. In a bed 

below 800
o
C, combustion mainly occurred noisily in bubbles just after leaving the bed, 

but in a hotter bed, there was quieter burning in smaller bubbles, before they reached the 

top of the bed. Glycerol behaved similarly, when fed into the middle of a bed. Thus 

bubbles of glycerol vapour were formed; they mixed with air ascending the bed as either 

bubbles or percolating between particles. Again bubbles exploded noisily at the top of a 

bed below 800
o
C. With the bed above 800

o
C, glycerol burned inside smaller bubbles 

below the bed’s upper surface. No soot was observed when burning glycerol in such a hot 

bed, yielding CO and CO2 as the only products of combustion. It appears that burning 

glycerol cleanly in a hot fluidised bed is a feasible proposition.  

1.   Introduction 

Fluidised beds, because of the rapidity of both heat and mass transfer inside them, 

make efficient and particularly compact combustors of solids, such as coal [1, 2], biomass 

[3, 4] and municipal waste [5 – 7]. By comparison they have not been used for burning 

liquid fuels. One exception is that Stubington and Davidson [8] burned kerosene in a 

fluidised bed of sand. They fed liquid kerosene through a cooled tube to the bottom of a 

hot bed fluidised by air and found a plume of hydrocarbon vapour rising upwards from 

where the fuel entered the sand. It was clear that combustion was controlled by the 

mixing of fluidising air with this column of vapour ascending from the fuel’s point of 

entry. Quite strikingly, mixing was often slow enough for the plume of kerosene vapour 

to penetrate unburned into the freeboard above the bed. As for other studies of liquid 

fuels, only heavy fuel oils, some of them extremely heavy, have been burned in fluidised 

beds, usually of silica sand [9 – 17]. 

Glycerol is a potential liquid fuel, which is produced in quantities exceeding the 

demand for it. Glycerol arises as a by-product in the manufacture of biodiesel fuels by the 

transesterification of triacylgycerides (fats, vegetable oils or lipids) into methyl esters of 
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fatty acids. This process involves the triglyceride reacting with methanol (usually base-

catalysed using NaOH or KOH) to yield biodiesel (CH3COOR) and glycerol in: 

CH2OOCR                  CH2OH   

│        │ 

CHOOCR    +  3 CH3OH      3 CH3COOR      +   CHOH   (Glycerol) 

│        │ 

CH2OOCR                  CH2OH 

It is noteworthy that for every tonne of biodiesel manufactured, 100 kg of glycerol are 

produced. Crude glycerol (usually called glycerine) contains methanol, water and soaps 

[18], because of a parallel, side-reaction between the triacylglycerine and the hydroxide 

catalyst.  Normally glycerol poses problems as a fuel.  It has a calorific value of only ~ 18 

MJ/kg, compared to 43 and 44.4 MJ/kg for kerosene and gasoline, respectively.  Even so, 

glycerine does have economic value as a fuel. Difficulties with burning it in a 

conventional manner include its high auto-ignition temperature (~ 370C, compared with 

220C for octane) and its relatively high viscosity: at 20C its dynamic viscosity is 1400 

times that of water.  This makes glycerol very difficult to atomise in a conventional 

burner. Another concern, when burning glycerine in an industrial burner, is the 

production of highly toxic acrolein and related pollutants [19]. 

This study is apparently the first one burning pure glycerol in a fluidised bed; the 

fluidised particles were alumina sand (density 3450 kg/m
3
). Only batch additions of the 

liquid were investigated. Apart from visual observations, measurements were made of the 

temperature in the bed and the concentrations of O2, CO and CO2 in the gas leaving the 

reactor. Comparisons were made with the combustion of paraffin wax, i.e. a solid 

containing 100% volatile matter, whose burning is likely to bear similarities to that of a 

liquid like glycerol. 

2. Apparatus 

The fluidised bed has been described [20], so only salient details are given here. The 

sand was contained in a stainless steel tube (length 1.13 m, i.d. 78 mm). At the bottom 

was a stainless steel distributor, perforated with 37 evenly spaced holes (i.d. 0.4 mm), 
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through which air flowed from the wind-box below. The alumina sand (sieved dry to 355 

– 425 m) rested on the distributor to a depth of 103 mm, when the sand was not 

fluidised. Air was fed to the bed from the laboratory’s supply of compressed air; its 

flowrate was controlled by a needle-valve and measured with a calibrated rotameter. The 

steel tube housing the bed was surrounded by electric heating coils and then fire-bricks to 

provide thermal insulation. 

A type K thermocouple, in the middle of the fluidised particles, was connected to a 

controller capable of maintaining the bed at a pre-set temperature up to ~ 950C.  

Typically the flowrate of air through the bed was ~ 0.2 litre/s, measured at room 

temperature and atmospheric pressure; this corresponds to a superficial velocity in the 

bed of U = 0.169 m/s at 900C.  The minimum value of U for incipient fluidisation at 

900C was estimated using the correlation of Wen and Yu [21] to be Umf  = 0.066 m/s, so 

U/Umf  = 2.6.  This corresponds to a bubbling fluidised bed, as was seen to be the case 

from visual observations of the top of the bed. The value of U/Umf was kept between 2.0 

and 3.1 in the experiments described below. 

The off-gases from the bed were sampled through a stainless steel tube (i.d. 4.57 mm; 

o.d. 6.35 mm).  The sample passed continuously first through a drying tube containing 

fresh, anhydrous CaCl2 to remove moisture and then through a train of instruments to 

measure the concentrations of O2 (using a paramagnetic sensor) and of CO and CO2 with 

infra-red analysers.  In addition, it was possible to measure the concentration of CH4 in 

the off-gases. Such sampling was driven by a pump; the flow rate entering the sampling 

train was ~ 0.5 litre/min, as measured at laboratory conditions. All concentrations were 

recorded by a data logger at a frequency of 5 Hz.  The measuring instruments were 

calibrated using a gas of known composition containing O2 or CO and CO2 in N2. 

Two fuels were burned. Weighed particles of paraffin wax (a heavy alkane of C20 – 

C25, melting point ~ 55C, boiling point ~ 390C, density ~ 900 kg/m
3
) were dropped 

from a glass dish onto the top of the glowing hot fluidised bed of alumina particles. 

Alternatively, a known mass of wax was inserted into a hollow, cylindrical, stainless steel 

capsule (tube’s length 30 mm, i.d. 12.7 mm, o.d. 16 mm), sealed with two stainless steel 

end-caps. The capsule was attached to the end of a stainless steel chain and rapidly 
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dropped into the hot bed. The length of the chain controlled how far down the bed the 

capsule settled. Of course, the capsule was rapidly heated, so the wax boiled and blew off 

the end-caps, which were tied to the capsule with loose, stainless steel wire, so that the 

capsule and its end-caps were easily retrieved after an experiment. In this way a known 

mass of wax was added to a bed at a fixed temperature and at a particular height above 

the bed’s distributor. The other fuel studied was vegetable glycerine, which is almost 

pure glycerol (melting point 17C, boiling point 290C, auto-ignition temperature 425C, 

density 1,260 kg/m
3
 at 20C). Samples of glycerol were put into the hot bed at a known 

height using the capsule and chain. Again, the capsule’s end-caps were blown off, 

enabling the glycerol to escape into the hot bed.  Adding the capsule, its contents and the 

chain, to a bed temporarily cooled the fluidised particles by ~ 20C. Afterwards, the 

bed’s temperature recovered in less than 1 min. 

      3.  Results and Discussion 

      3.1 Combustion of paraffin wax dropped onto the top of a hot bed 

Some continuously measured concentrations of O2, CO and CO2 in the off-gas from a 

bed at 900C are shown in Fig. 1, for two consecutive batches (each 0.2 g) of paraffin 

wax simply dropped on top of the red-hot, fluidised sand. Any of the mole fractions of 

CO and CO2 shown in Fig. 1, when multiplied by the total molar flow rate of gas passing 

through the bed, yields the rate of production (in mol/s) of the particular gas inside the 

bed. Also, the area under a peak of CO or CO2, when multiplied by the total molar flow 

rate of the fluidising gas, gives the total number of moles of that gas produced by burning 

the known mass of paraffin wax. Such a measurement is not affected by the detectors for 

the gases having a finite response time. Areas under peaks were derived by numerical 

integration using the trapezium rule. For O2, the number of moles, which have reacted, 

was derived from the “missing area” associated with the drop in its mole fraction seen in 

Fig. 1. That the minimum in [O2] in Fig. 1 occurs slightly after the maxima in [CO] and 

[CO2] shows that the O2 detector is slightly slower than those for CO and CO2. Also, it is 

clear from their rise-times, that the mole fractions of CO and CO2 were being measured 

with response times less than ~ 4 s. Fig. 1 enables the burn-out time to be estimated for 

the wax added to the bed. In this case in Fig. 1, the burn-out time looks to be as long as  
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45 s. Interestingly, the burn-out time did not vary significantly with the temperature of 

the bed over the range 400 to 900
o
C, when the burn-out time was consistently 42  5 s for 

0.1 g of wax dropped on top of a bed. Fig. 1 shows that, except for the final stages of 

burning, the rate of production of CO in this case exceeds that for CO2. However, this is 

not always the case; in fact, it will be seen below that there are situations, where more 

CO2 appears than CO. Both the rates of production of CO and CO2 rise to maxima and 

then fall steadily. Likewise, the rate of consumption of O2 grows to a maximum value 

and subsequently falls to zero. Of course, these measurements in Fig. 1 refer to a mixture 

of the gas, which left the bed as bubbles (i.e. the bubble phase), and that which ended up 

percolating between the particles of alumina (i.e. the particulate phase). 

FIGURE 1 HEREABOUTS 

The visual observations are described first. Upon dropping a pellet of paraffin wax 

onto the top of a hot bed, clouds of soot left the bed.  Next, a yellow (i.e. sooting) flame 

was sometimes seen emerging from the bed. These flames were tallest for the hottest bed 

at 900C and were shorter in length, when less wax was added. Some flames were as 

long as 1 m. In addition, bubbles of gas were sometimes seen (from above the bed) to 

produce a flame on leaving the bed and also make a fairly loud “popping” noise, which 

was really a sequence of several ‘pops’. Such noisy flames were present, when the bed 

was at 400 - 600C. When a sooty diffusion flame was seen initially, the “popping noises” 

followed afterwards. Fewer, quieter, “popping” sounds were heard at 800
o
C and hardly 

any at 900C.  

3.2 Ignition of bubbles 

These loud noises have been reported before [22–27]. The nature of these explosions 

is not clear, but there is evidence that sand particles inhibit combustion by providing 

surfaces, on which free radicals recombine [2227]. Thus, inside a bed, combustion 

usually occurs only in bubbles, which grow in diameter by coalescing with one another 

[28], whilst ascending the bed. Bubbles rise with a velocity Ub = 0.71(gDe) m/s, where g 

is the acceleration due to gravity and De is the bubble’s equivalent diameter [29]. The 

bubbles leaving a bed were seen to have a diameter, De  10 mm, so their rise velocity 
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was then  0.22 m/s at the top of the bed. This should be compared with the interstitial 

velocity of the gas percolating between the particles; this is Ui = Umf / , where  is the 

voidage fraction in the particulate phase. The value of  is close to 0.4 [29], so the 

interstitial velocity Ui = 0.066/0.4 = 0.165 m/s, at 900
o
C: this makes Ui slightly less than 

Ub. In that case, inside such a bubble, just before it leaves a bed, there is a small, 

horizontal toroidal ring [29], within which gas merely circulates in a vertical direction, 

without escaping. The gas inside the toroid is well-stirred. Through the rest of the bubble, 

gas rushes vertically into the particulate phase ahead [29] of the bubble. The fraction of a 

bubble occupied by the toroidal, recirculating region, is larger in a bigger bubble [29] and 

vice versa.  

In general, a gaseous mixture of fuel and oxidant, when stagnant, ignites only after a 

certain induction time, called the ignition delay, characteristic of chain reactions leading 

to an explosion [30, 31]. The ignition delay is very sensitive to the temperature [30, 31], 

being smaller at higher temperatures and pressures; it varies as Aexp(B/T), where A is a 

function of the concentrations of the gaseous fuel and oxidant, B is a constant and T is 

absolute temperature. For example, a mixture of a C7 hydrocarbon in air at 800
o
C has an 

ignition delay of  1 – 5 ms [30]. In a fluidised bed, the ignition of a bubble is different, 

in that the ignition delay is usually prolonged by the flow of gas straight through the 

bubble, i.e. the through-flow [29]. This is because the through-flow removes enthalpy and 

intermediate species (free radicals), which otherwise would sustain the chain reactions of 

combustion [30, 31]. The question arises as to when does a bubble of an explosive 

mixture ignite in a fluidised bed? The answer depends on the temperature: (i) First, 

consider a hot bed above 850
o
C, so the ignition delay is brief. Then small bubbles will 

ignite low down such a hot bed, if the residence time of gas moving upwards through a 

bubble and along its vertical axis is longer than the relevant ignition delay [32]. In this 

case, only bubbles larger than a certain size can ignite in such a hot bed. Moreover, the 

critical size for an exploding bubble will be smaller at higher temperatures. (ii) Next, with 

a bed at 700 – 850
o
C, a bubble containing hydrocarbons and air can ignite, while rising 

up the bed, provided the bubble has become large enough for the toroid (of confined gas 

inside it) to become a significant fraction of a bubble. This occurs when the bubble has 



 

8 
 

become so big that Ub is comparable to Ui. In this case, there is a second requirement that 

the bubble exists undisturbed, before its next collision with another bubble, for longer 

than the relevant ignition delay. Thus, again ignition occurs when the bubble reaches a 

critical size, which is larger at smaller temperatures. (iii) At the lowest temperatures in 

this study (400-700
o
C), the ignition delay is so long that bubbles do not become large 

enough to ignite inside one of these shallow beds. In that case, bubbles only ignite on 

leaving the bed and do so noisily, because the bubbles have become bigger than  10 mm. 

That these bubbles lose their through-flow and also decelerate on disengaging from the 

bed actually helps their ignition and probably accounts for the noisy combustion observed 

above beds below 800
o
C. These general considerations, of when a bubble of hydrocarbon 

vapours and air ignites, are considered further below. 

It is also worth noting that U (the velocity of the gas above the bed) is ~ 0.169 m/s at 

900
o
C. However, at 800

o
C the value of U is only a little smaller than this value for 900

o
C, 

and is also less than the burning velocity [30, 31] of a mixture of air and hydrocarbons 

[33] at 800
o
C. The consequence of this is that a flame usually moves downwards through 

the freeboard and “sits” stably on top of the fluidised particles, instead of being blown out 

of the tube housing the bed. Of course, inside a fluidised bed, gas velocities are higher 

than above the bed, because of the presence of solid particles; the result is that a flame in 

the particulate phase is blown out of the bed and ends up sitting on top of the sand. 

3.3 Burning of paraffin wax continued 

That a sooty diffusion flame was usually seen straight after adding paraffin wax 

indicates that hydrocarbon vapours are at first produced so rapidly that they do not mix 

much with the fluidising air. Instead, the cloud of hot hydrocarbons forms soot very 

rapidly [33] in an atmosphere almost devoid of oxygen. However, the subsequent 

“popping” sounds indicated that the hydrocarbon vapours were mixing, at least to a slight 

extent, with the fluidising air. As to what happens to the paraffin wax, these “popping” 

noises do suggest that, after an interval, “blobs” of molten paraffin wax had descended 

lower in the fluidised bed. This would result in hydrocarbon vapours from the 

evaporating wax having more time to mix in the bed with the fluidising air. Bubbles of 

air mixed with vapour from the wax then ignited explosively on leaving the top of the bed. 
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This is reminiscent of the burning of polymer pellets, when dropped on a hot fluidised 

bed of sand [34]. In that case, the polymer pellets melted and also acquired sand on top of 

them [35], causing them to sink. The noises suggested that bubbles of a mixture of 

hydrocarbon vapours and air were not igniting inside the bed, but did so, explosively, 

when the bubbles disengaged from the bed. This is in line with the bubbles rising up a 

bed below  800
o
C being too small to ignite [22]. 

FIGURE 2 HEREABOUTS 

Fig. 2 shows burn-out times for single and multiple particles of different masses of 

paraffin wax dropped on top of beds at 400 – 900
o
C. For this, small pieces of wax were 

heated beforehand to form a melt. As the melt later cooled, it was rolled and shaped to 

form one larger, round particle. Fig. 2 shows a surprising trend of the burn-out time 

increasing with the bed’s temperature. This possibly unexpected result could derive from 

the fact that to maintain U/Umf constant at close to 2.6, U was smaller at higher 

temperatures, because Umf is smaller for a hotter bed. The result is that mass transfer from 

an evaporating ‘blob’ of wax (molten on its exterior) is reduced by lowering both Umf and 

U. The burn-out times in Fig. 2 appear to be usually the same for one pellet and for 

several of the same total mass. This is possibly not true at the highest temperature of 

900C, where single, large particles, quite counter-intuitively, can burn quicker than 

several smaller ones. Here it is worth noting that the burn-out time of a pellet of a 

polymer in a fluidised bed is the same [34] for polymer fed as one pellet and as many 

smaller ones of the same total mass. Interestingly, polymer pellets were actually observed 

[34] to sink into a fluidised bed of hot quartz sand immediately after landing. Finally, it is 

clear from Fig. 2 that the burn-out time increases with the mass of wax being burned. 

However, the increase is not as much as expected from models for a shrinking core or for 

a burning, spherical liquid droplet [36]; these models predict that the burn-out time 

depends on the square of the particle’s initial diameter, i.e. its mass raised to the power 

2/3. 

FIGURE 3 HEREABOUTS 

Fig. 3 is a plot of the fraction of the carbon in the paraffin wax (assumed to contain 

only carbon and hydrogen in the atomic ratio CH2), which was detected as a gaseous 
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oxide, i.e. either CO or CO2, in the off-gases from beds at different temperatures. Also in 

Fig. 3, the mass of wax added was varied. Several points emerge from Fig. 3. First, much 

less than half the carbon in the paraffin wax was oxidised to either CO or CO2. At most, 

35% of the carbon was oxidised at 900C. This is in line with observations of clouds of 

soot leaving the fluidised bed. For soot to form in this situation, the wax must melt and 

boil rapidly, producing a stream of hydrocarbon vapours, which heat up without mixing 

much or being oxidized by the fluidising air. Secondly, Fig. 3 shows that the fractional 

conversion of the wax’s carbon to CO and CO2 increased with the temperature of the bed. 

Finally, the fraction of the wax undergoing oxidation increased, when more wax was 

added. This is probably connected to the burn-out time also increasing, when more wax 

was burned, as seen in Fig. 2. 

These observations so far are, in line with a pellet of wax melting very quickly 

(melting point ~ 55C) on first being dropped on top of a hot fluidised bed. There the wax 

particle will continue to heat up. It is important to evaluate the ratio of (i) the internal 

resistance to heat transfer inside a solid sphere to (ii) the external resistance to heat 

transfer from the bed to the hot sphere; this ratio is the Biot number, Bi = hd/6 [37]. 

Assuming the external heat transfer coefficient h = 500 W m
-2

 K
-1

 [38] for a sphere of 

diameter d = 7.5 mm (weighing ~ 0.2 g for a sphere of paraffin wax), and the thermal 

conductivity, , of the solid wax is 0.28 W m
-1

 K
-1

 [39], yields Bi ~ 2.2. This is just large 

enough for internal heat conduction and temperature gradients inside the waxen sphere to 

control its rate of heating. Thus there would be little difference in temperature between 

the wax’s exterior and the bed [37]. Such a conclusion is firmer for particles larger than 

7.5 mm. However, vaporisation inevitably begins quickly, so that a wax particle becomes 

surrounded by a gaseous envelope of hydrocarbon vapour, ensuring that there are 

temperature gradients around the evaporating particle, as well as within it. The process of 

evaporation takes several seconds, just as a similarly sized sphere of solid CO2 takes ~ 8 s 

to evaporate in a fluidised bed at room temperature [40].   

This picture of a near-spherical particle of wax at first floating on top of a hot 

fluidised bed and generating soot is soon modified by the fact that fluidised particles are 

continuously ejected a little distance into the freeboard and then land on top of the wax. 
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This means that, very quickly, alumina particles accumulate on top of the sticky blob of 

wax and a cushion of fluidising air forms beneath the wax [35]. Evaporation ensures that 

around a wax particle there is a cloud of hydrocarbon vapour, which reduces both heat 

and mass transfer and consequently the rate of evaporation.  Also, alumina particles 

become embedded in the wax particle, so it sinks into the fluidised bed. The hydrocarbon 

vapours now have more chance of mixing with the fluidising air and consequently of 

burning to produce CO and CO2, rather than soot. Larger wax particles sink for longer 

times before completely evaporating, implying that bigger particles descend deeper; thus 

more of their carbon-content ends up as CO or CO2, because within the bed there is better 

mixing of hydrocarbon vapours with the fluidising air. At this stage, as to why the burn-

out times in Fig. 2 are similar for large and smaller particles of the same total mass could 

be a consequence of small sticky blobs of melting wax coalescing soon after landing on 

top of a hot bed. As for why Fig. 3 implies that less soot is produced in a hotter bed, 

perhaps a particle of wax floats for a shorter time in a hotter bed and then sinks deeper 

down such a hot bed.   

FIGURE 4 HEREABOUTS 

Fig. 1 showed that the ratio [CO]/[CO2] was highest immediately after adding wax to 

a bed, but subsequently fell. The ratio is a crude indicator of how fuel-rich is a particular 

mixture of combustible gases. Fig. 4 shows plots of average values of this molar ratio for 

different amounts of wax added to beds at 400 to 900C. Clearly, there is a trend to have 

more CO in the off-gases than CO2, when more wax was added to the bed, but its 

variation with temperature is complex. Fig. 2 shows that increasing the temperature gave 

longer burn-out times, because wax sinks deepest into the hottest bed. This implies that 

[CO]/[CO2] might decrease at higher temperatures, because then more air contacts the 

hydrocarbon vapours. However, increasing the temperature, as mentioned above, meant 

lowering U slightly to maintain U/Umf constant. This decrease in the flow of air would 

tend to favour the production of CO over CO2. As for other contributing factors, the 

effect of temperature on transport properties is not likely to be a major factor for Fig. 4, 

but radiative heating of a burning particle will be most important at 900C. If heat 

transfer alone controlled the rate of evaporation, the rate of production of fuel vapour and 
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also the ratio, [gasified fuel]/[O2], in the bed would increase with temperature, leading to 

higher [CO]/[CO2]. If, however, evaporation were mass-transfer controlled, raising the 

temperature of the bed would mean that both U and Umf, and consequently also the 

convection of hydrocarbon vapours into the bed, were reduced. Such a lowered rate of 

evaporation would probably lead to a smaller [CO]/[CO2]. All this means that the rise of 

[CO]/[CO2] in Fig. 4 with temperature looks to be a consequence of enhanced heat 

transfer, as well as U and Umf being reduced. The final drops at 900
o
C in Fig. 4 have to be 

explained by the burn-out time increasing with the bed’s temperature. 

In summary, it looks as if a piece of paraffin wax does float briefly after being 

dropped on top of a hot fluidised bed. The subsequent rate of evaporation is high enough 

to produce clouds of soot. However, the sticky wax, molten on its exterior, soon sinks, 

because it is weighed down by ejected sand falling on top of it. The result is that boiling 

of the sunken particle of wax produces hydrocarbon vapour, which appears as bubbles 

inside the bed. These bubbles rise up the bed and mix with air either percolating through 

the alumina particles or ascending as bubbles. There is also the fact that combustion of 

mixtures of hydrocarbons and air is suppressed in the particulate phase. Normally such 

burning does not occur below ~ 800C [22], but it can occur explosively, when the 

largest bubbles of the mixture leave the top of the bed [24], thereby emitting a loud and 

repeated “popping” noise. There are thus many stages for the combustion of the 

hydrocarbon vapours; perhaps the slowest process is the mixing (with air) of 

hydrocarbons in a plume of bubbles rising from a sinking particle of wax. Finally, it 

appears from Fig. 2 that the burn-out time is independent of whether wax is added as one 

particle or several smaller ones. It is likely that, soon after falling on to a hot bed, the 

small sticky particles collide and coalesce, before the resulting wax pellets have sand 

embedded in them. Then these big pieces of wax descend as a single entity into the bed. 

3.4 Combustion of paraffin wax inserted into the middle of the bed 

Paraffin wax was added to the middle of the bed at 80 mm above the distributor using 

the capsule and chain, described in Section 2. Thus a weighed amount of wax was 

injected into the bed at a selected height above the distributor. The bed was at 500, 650, 

800 or 900
o
C; U/Umf was held constant at 2.4. No soot was observed, when wax was 
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added this way. However, “popping” noises were again heard, but small blue flames (i.e. 

non-sooting) were also seen above the beds at 500 and 650
o
C. There were fewer 

“popping” sounds from beds at 800 or 900
o
C. In these experiments, the wax must heat up 

rapidly, melt and then evaporate. The rise in pressure within the capsule would soon blow 

off the capsule’s end-caps. Evaporation of the molten wax might be aided by its liquid 

pouring from the capsule into the bed. 

FIGURE 5 HEREABOUTS 

Fig. 5 shows the mole fractions, [CO] and [CO2], after adding two successive batches 

of 0.1 g of paraffin wax to the middle of a bed at 800C with U/Umf  = 2.4. The traces are 

similar in shape to those in Fig. 1, for paraffin wax added to the top of the bed; again the 

burn-out time is  45 s. This similarity of burn-out times suggests that the wax might 

have entered the bed from the capsule, almost entirely as a solid. It was, however, 

observed that no soot was produced. Popping noises, similar to those heard for the 

combustion of wax dropped on top of a bed, were heard for a period of time. Also, small, 

blue (i.e. non-sooting) flames were seen leaving the bed, when at 500 - 650C. The 

absence of soot indicates good mixing of the fuel’s vapour with the fluidising air. It is 

worth noting that the ratio, [CO]/[CO2], changes dramatically with time: thus, towards 

the end of burn-out, [CO] drops to become much smaller than [CO2]. This effect is much 

more pronounced than in Fig.1. 

FIGURE 6 HEREABOUTS 

Fig. 6 gives plots of the burn-out times, measured when 0.10 g of paraffin wax was 

injected into the middle of the bed at different temperatures, with U/Umf  = 2.4. There is a 

modest increase of burn-out time with the temperature of the bed. This is probably on 

account of the flow-rate of gas through the bed, i.e. both U and Umf, decreasing at higher 

temperatures. Such a trend, as discussed above, reduces the rates of both heat and mass 

transfer. Interestingly, these burn-out times in Fig. 6 exceed those in Fig. 2 for the same 

amount of paraffin wax (0.1 g) dropped onto the top of a hot bed, except at the highest 

temperature of 900
o
C, when they are similar. For Fig. 6 the wax was initially inside the 

capsule, so there would have been heat transfer from the capsule to the wax, followed by 
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mass transfer of vaporised wax from the capsule to the bed. Both these transfer processes 

prolong burning, but their effects are clearly less conspicuous at 900
o
C. 

FIGURE 7 HEREABOUTS 

Fig. 7 shows the results of measuring the areas under the plots of [O2], [CO] and 

[CO2] like those in Fig. 5, for the same mass of wax added from the capsule. The 

outcome is shown in Fig. 7 as the fraction of the carbon, which subsequently was 

detected as CO and CO2. For these experiments, some problems were encountered from 

the zero of the detectors for CO and CO2 drifting. This was coped with partly by using 

the measurements for [O2], together with measurements of the ratio [CO]/[CO2]. The 

striking feature of Fig. 7 is that all the carbon was converted to CO and CO2, when 

paraffin wax was added from the capsule to the middle of the bed. This is in contrast to 

Fig. 3, where soot was produced and the yield of the oxides of carbon depended on the 

mass of wax burned and the temperature. Fig. 7 is in line with the accompanying 

observations of a blue flame and no soot being detected. As already noted, the burn-out 

times in Fig. 6 were consistently fairly long; this is likely to facilitate mixing of air and 

the hydrocarbon vapours from the evaporating wax. That many “popping” sounds were 

heard from beds at 500 or 650C, but with fewer at 800 or 900C, agrees with the 

observations of wax burning on top of a bed. Thus it appears that bubbles containing both 

air and hydrocarbon vapour might burn low inside a bed at 900C, or even at 800
o
C, but 

only above the bed at lower temperatures. The lack of soot after injecting wax into the 

middle of the bed indicates that when wax was dropped onto the bed, soot was primarily 

formed whilst the wax floated and burned on top of the hot sand. 

FIGURE 8 HEREABOUTS 

Fig. 8 shows the ratio of the overall molar yields of CO and CO2, measured in the off-

gases for the conditions of Fig. 7. Clearly the values are much lower than in Fig. 4, for 

wax added to the top of the bed, when some values of the ratio exceeded unity. In Fig. 8, 

values fall monotonically to zero at 900
o
C. That these values in Fig. 8 are smaller than in 

Fig. 4 indicates that mixing of fuel vapour and fluidising air was much improved by 

injecting the wax within the bed. That [CO]/[CO2] now falls with increasing temperature 
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in Fig. 8 could be a consequence of molten wax particles leaving the capsule and then 

falling deeper down a hotter bed, giving more time for hydrocarbon vapours to mix with 

fluidizing air. In this context, Figs 2 and 6 show the burn-out time being longer in a hotter 

bed.  

3.5 Combustion of glycerol inserted batchwise into the middle of a hot bed 

Different masses of glycerol were added from the capsule into the middle of the bed, 

at 80 mm above the distributor, at 500, 650, 800 and 900
o
C. For these investigations, 

liquid glycerol was pipetted into the capsule. The value of U/Umf  was kept constant at 2.4. 

The “popping” noises were again heard in beds at 500 and 650
o
C, but there were fewer 

such noises at 800 and 900
o
C. No flames were seen for less glycerol added, but a wide, 

steady, blue (i.e. non-sooting) flame was observed rising  50 mm above the bed for the 

highest quantity (0.50 g) added. This indicates that with 0.5 g added, glycerol vapours 

were burning as a flame either sitting on top of the bed or extending above it. The same 

could have been true for the vapours from paraffin wax sometimes burning either on top 

of or just above the bed. When the capsule was withdrawn, both end caps were seen to 

have blown off. The volume of vapour formed when burning 0.3 g of glycerol in a bed at 

500
o
C and atmospheric pressure is estimated to be 0.21 litres. The internal diameter of 

the capsule was 12.7 mm, so bubbles of diameter  10 mm might be expected to form, 

giving some 420 bubbles at 500
o
C. Air percolating through the fluidised particles would 

mix with these hydrocarbon bubbles [30], leading eventually to combustion. 

FIGURE 9 HEREABOUTS 

Fig. 9, for glycerol, is analogous to Figs 1 and 5 for paraffin wax, in that it shows 

plots of the mole fractions, [CO], [CO2] and [O2], versus time when two batches of  0.3 g 

of glycerol were added consecutively from the capsule to the middle of the fluidised bed 

at 800
o
C with U/Umf  = 2.4. Fig. 9 shows that the burn-out time is  50 s for this amount 

of glycerol added to the middle of the bed. This is fairly similar to the burn-out time of  

45 s noted in Fig. 5 for paraffin wax, also added to the middle of the bed at 800
o
C. This 

similarity might be a reflection of almost identical rates: (i) of heat transfer to the 

liquefied wax and liquid glycerol, inside the capsule, (ii) at which the fuel leaves the 



 

16 
 

capsule and (iii) of mixing of the ascending bubbles of the fuel-vapour with the fluidising 

air. 

FIGURE 10 HEREABOUTS 

Burn-out times for glycerol added to the middle of the bed are collected in Fig. 10 for 

different temperatures and quantities of glycerol added, but only for U/Umf  = 2.4. The 

times range from ~ 40 s to ~ 60 s. Burn-out times are slightly longer in a hotter bed; this 

is not a major effect, just like the gradual rise in Fig. 6 for paraffin wax added to the 

middle of the bed. More definite is the burn-out time lengthening with the mass of 

glycerol added. This might suggest that it takes time for the glycerol to leave the capsule, 

either as vapour or as liquid pouring into the bed. Maybe the liquid first boils and vapour 

leaves the capsule, whilst simultaneously being replaced with air. The glycerol vapour 

will, to some extent, be pyrolysed and enter the bed as many bubbles, as noted above. 

These bubbles of a complex mixture of hydrocarbons will then rise up the bed and mix 

with the fluidising air. The time for a bubble to rise to the top of a bed is no more than 1 s. 

FIGURE 11 HEREABOUTS 

Fig. 11 shows the fraction of the carbon (added as glycerol to the middle or  

bottom of the bed), which is detected as CO or CO2 in the gas leaving the bed. That some 

values in Fig. 11 indicate a conversion slightly greater than 100% can be attributed to 

drift in the zero for the detectors, as noted in Fig. 7. The conclusion from Fig. 11 is 

simple and striking: all the carbon was oxidised to CO or CO2, even when added to the 

middle of the bed. This means that mixing of the hydrocarbon vapours with fluidising air 

was good, although it must be recognised that glycerol contains equimolar amounts of 

carbon and oxygen. Thus there is enough oxygen in a molecule of glycerol to burn the 

carbon to CO, without soot being formed. 

FIGURE 12 HEREABOUTS 

Fig. 12 shows the molar ratio [CO]/[CO2] in the off-gas, when different quantities of 

glycerol were burned in beds at various temperatures. There is little difference between 

the results for 800
o
C and 900

o
C. In these two hotter beds, the ratio [CO]/[CO2] rises from 

zero to ~ 0.2 for 0.5 g of fuel added to the middle of the bed, when there is five times 
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more CO2 produced than CO. Thus, combustion to CO2 is almost complete, given that 

Fig. 11 showed that CO and CO2 were the only products containing carbon. It is 

understandable that adding more glycerol to a hot bed, fluidised by air, resulted in 

combustion becoming more fuel-rich, thereby increasing the ratio [CO]/[CO2]. The curve 

in Fig. 12 for 500
o
C is totally different from the others; adding more glycerol leads to 

relatively less CO, with the ratio falling from unity to the same value as for the other 

temperatures. This indicates that combustion is quite different with small amounts of 

glycerol added at 500
o
C. One would expect combustion at 500

o
C to occur noisily in 

bubbles after leaving the bed. It might be that at 500
o
C adding more glycerol results in 

better mixing of glycerol with the fluidising air. This might have happened if adding the 

least amount of glycerol at 500
o
C caused it all to evaporate and blow off the capsule’s 

end-caps before the capsule had sunk far down the bed. In that case, adding more 

glycerol might enable the capsule to sink deeper in the bed. Alternatively, it could be that 

after ignition, the oxidation of CO to CO2 is really slow at 500
o
C. It is known [31] that 

the burning of CO in O2 is accelerated by the presence of hydrogenous species, which 

here originate in the fuel, glycerol. This leads to the rate of oxidation of CO to CO2 being 

non-linear in the initial concentration of glycerol.  

FIGURE 13 HEREABOUTS 

Fig. 13 deals with these factors in a different way. Again, it displays plots of 

[CO]/[CO2], this time when 0.3 g of glycerol was added from the capsule, either in the 

middle of the fluidised bed (80 mm above the distributor) or at the distributor. Fig. 13 

shows that more CO was detected, when the glycerol was released in the middle of the 

bed, giving less time for the fuel and fluidising air to mix, whilst they rose up the bed. 

The observations in Figs 12 and 13 are consistent with bubbles igniting on leaving the 

bed at 500
o
C. In this situation, the complex kinetics [31] of the oxidation of CO might 

well be important. Otherwise, there is not a big difference between the observations at 

650, 800 and 900
o
C. This confirms the previously noticed weak influence of temperature 

on the mixing of fuel and air. Fig. 13 might be compared with Fig. 8 for paraffin wax 

added to the middle of the bed. Figure 8 shows the ratio [CO]/[CO2] decreasing in hotter 

beds; also, the ratio looks to be slightly higher for glycerol than for paraffin wax. 
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As a final experiment, glycerol was dropped onto the top of a hot bed of alumina sand 

fluidised by air. This produced considerably less soot than when paraffin wax containing 

a comparable amount of carbon was dropped onto the same bed. This must at least partly 

derive from a molecule of glycerol having a C/O ratio (on an atomic basis) of unity, so 

there is enough oxygen in glycerol to oxidise all its carbon to carbon monoxide. The 

rough criterion that C/O must exceed unity [33] for a particular mixture to produce soot 

seems to be satisfactory here. 

4. Conclusions     

Of the combustion situations explored above, the most complex was that involving 

one or more pieces of paraffin wax thrown onto the top of a hot, electrically heated bed 

fluidised by air. The hydrocarbon vapours from the wax were, of course, very fuel-rich 

and so initially produced a lot of soot, whilst the wax bounced around, floating on top of 

the fluidised particles of alumina. Fig. 3 shows the fraction of the carbon in the wax 

ending up as soot could be as high as 90 %, but that fell to ~ 65 % for a large piece added 

to a hot bed at 900
o
C. In this latter case, the large piece of wax acquired embedded inert 

particles and then fell deep into the bed. In that case, seen in Fig. 2, the burn-out time was 

longest and lasted for ~ 1 min. Another striking feature was that the burn-out time for 

several small particles of wax added simultaneously was the same as for one large piece 

of the same total mass. This was attributed to wax particles coalescing very soon after 

landing on top of a bed, i.e. when they were “sticky” and not yet covered with particles of 

alumina. Unexpectedly, the burn-out time for a piece of wax was longer in a hotter bed, 

but of the same U/Umf.  This was attributed to Umf , and therefore also U, falling with 

temperature and consequently reducing heat and mass transfer between a wax particle 

and the hot bed. In addition, larger pieces of wax had more time to sink deeper into the 

bed, so the hydrocarbon vapours emitted had a better chance of mixing with the fluidising 

air and also of burning to CO or CO2.  

It is clear that bubbles of a mixture of hydrocarbon vapour and air have to reach a 

critical size, which depends on the temperature, in order to ignite. In a bed below 800
o
C, 

these sizes were not attained, so mixtures then burned noisily in bubbles when leaving the 

top of a bed. There, at the very top of a bed, the bubbles were largest and the particulate 

phase had a greater voidage than in the bulk of the bed, so the velocity of the gas 
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percolating between the particles was decreasing, as also was the velocity of the gas 

rising inside bubbles. This deceleration thus aids combustion, but the large volume of 

these exploding bubbles is an important factor generating the noise associated with their 

ignition. That these bubbles can explode well above a bed might indicate that bubbles 

decelerate gradually on leaving the bed, but actually retain their composition until 

igniting in the freeboard. In beds hotter than 800
o
C, combustion can occur relatively 

quietly inside smaller bubbles lower within a bed. 

The combustion of paraffin wax, added to the middle of the fluidised bed, produced 

no soot, because bubbles of hydrocarbon vapours had time to mix with the fluidising air. 

Combustion in a bed below 800
o
C was again inhibited by either the bubbles being too 

small or the ignition delay too long, so burning was noisy and in bubbles disengaging 

from the top of the bed. In hotter beds, combustion proceeded more quietly below the top 

of the bed. This study has cast light on possible mechanisms for the ignition of 

inflammable bubbles in a fluidised bed. 

Glycerol added to the middle of the bed burned in a very similar way to paraffin wax 

added to the same position. In this case, the glycerol evaporated and its vapour entered 

the bubble phase. There was mixing with air from the particulate phase, so that bubbles 

of glycerol and air either ignited at the very top of the bed, if the temperature was below 

800
o
C or deeper down the bed in smaller bubbles, if the bed was hotter than 800

o
C. The 

production of soot did not seem to be a problem in this case, possibly because glycerol 

contains equimolar quantities of carbon and oxygen. It is accordingly clear that glycerol 

can be burned usefully in a fluidised bed, without soot being produced, provided the bed 

is hotter than 800
o
C. The continuous feeding of glycerol to one of these beds is currently 

under investigation, together with the characteristics of such combustion. 
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Fig. 1. Plots of the mole fractions of O2, CO and CO2 in the off-gases versus time, as 

measured after two consecutive additions of 0.20 g of paraffin wax onto the top of a 

bed of alumina, when fluidised at 900
o
C by air with U/Umf  = 2.6.  
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Fig. 2. Burn-out times measured in beds of different temperatures, but all with U/Umf 

= 2.6. Also the mass of wax was 0.20, 0.10 or 0.05 g, added as either a single sphere 

or several smaller particles, dropped on top of the bed.  
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Fig. 3. The measured fraction of the carbon in a sample of paraffin wax, subsequently 

detected as CO or CO2 in the off-gases. The mass of added wax was varied, as shown, 

as also was the temperature, but with U/Umf  = 2.6. The error bars represent one 

standard deviation. 
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Fig. 4. Plots of the ratio of the total molar yields of CO and CO2, in beds of different 

temperatures, for various amounts of wax added on top of the bed. Error bars denote 

one standard deviation. 
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Fig. 5. Plots of the measured mole fractions of O2, CO and CO2 against time, when two 

consecutive batches of 0.10 g of paraffin wax were added from the capsule to the middle 

of the bed at 800
o
C with U/Umf = 2.4  
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Fig. 6. Burn-out times measured for 0.10 g of paraffin wax added from the capsule to 

the middle of the bed in the range 500 to 900
o
C with U/Umf = 2.4.  

 

 

 

 

 

 

 

20

30

40

50

400 600 800 1000

B
u

rn
 -

 o
u

t 
T

im
e 

/ 
s 

Temperature of bed / °C 



 

30 
 

 

 

 

 

Fig. 7. Conversions of the carbon in paraffin wax to both CO and CO2, when 0.10 g of 

the wax was added from the capsule to the middle of the bed at different temperatures 

with U/Umf  = 2.4.  
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Fig. 8. Ratio of the total molar yields of CO and CO2 in the off-gases after 0.10 g of 

paraffin wax had been added to the middle of the bed at different temperatures.. 
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Fig. 9. Plots of the mole fractions of O2, CO and CO2 after two consecutive additions 

of 0.30 g of glycerol from the steel capsule to the middle of the bed at 800
o
C with 

U/Umf = 2.4. 
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Fig. 10. Burn-out times for different masses of glycerol added to beds of different 

temperatures, all with U/Umf  = 2.4. 
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Fig. 11. The fraction of the carbon in the glycerol burned to CO or CO2 after 0.30 g 

were added to the middle or bottom of the fluidised bed with U/Umf  = 2.4 at different 

temperatures. 
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Fig. 12. Plots of the molar ratio of the total yields of CO and CO2 after adding 

different masses of glycerol from the capsule to the middle of the fluidised bed at 

U/Umf  = 2.4. 
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Fig. 13. Ratio of total molar yields of CO and CO2 in the off-gas, after 0.30 g of 

glycerol was added to the bed at different temperatures, with U/Umf = 2.4. The 

glycerol was added from the steel capsule, either at the bottom or middle of the bed. 

The error bars represent one standard deviation. 
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