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Although learning and development reflect changes situated in an
individual brain, most discussions of behavioral change are based
on the evidence of group averages. Our reliance on group-
averaged data creates a dilemma. On the one hand, we need to use
traditional inferential statistics. On the other hand, group averages
are highly ambiguous when we need to understand change in the
individual; the average pattern of change may characterize all,
some, or none of the individuals in the group. Here we present a
new method for statistically characterizing developmental change
in each individual child we study. Using false-belief tasks, fifty-
two children in two cohorts were repeatedly tested for varying
lengths of time between 3 and 5 years of age. Using a novel
Bayesian change point analysis, we determined both the presence
and—just as importantly—the absence of change in individual longi-
tudinal cumulative records. Whenever the analysis supports a
change conclusion, it identifies in that child’s record the most likely
point at which change occurred. Results show striking variability in
patterns of change and stability across individual children. We then
group the individuals by their various patterns of change or no
change. The resulting patterns provide scarce support for sudden
changes in competence and shed new light on the concepts of
‘‘passing” and ‘‘failing” in developmental studies.
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1. Introduction

Change is a ubiquitous yet recalcitrant problem for psychology. We would like to understand pro-
cesses of change in many different areas from changes due to therapeutic or pedagogical interventions
to natural changes wrought by learning and development. Yet all too often we are limited to compar-
ing ‘before and after snapshots’ and filling the gap with speculation, or worse, with unexamined
assumption.

Developmental change in children is often studied by comparing performance in cross-sectional
time slices (between subjects) or by repeated longitudinal testing of the same individuals over lengthy
periods. In either case, the study of change has relied on group data and this methodological constraint
has served to forge theories of groups rather than of individuals (Estes, 1956). Group data are used
because of the necessity of drawing statistical conclusions based on sufficiently large samples. Unfor-
tunately, however, there is no such thing as a group brain. There are only individual brains wherein
developmental and learning changes occur.

As Estes (1956) pointed out long ago, we cannot derive valid generalizations about the course of
change in individuals from the course of change in a group average. The context for Estes’ remarks
were the many studies of learning in rats and other animals that show the familiar smooth, gradually
incrementing learning curves predicted by associative learning theory that reflect the gradual
strengthening of responses from baseline to asymptote as a function of number of learning trials.
The problem with this picture, Estes pointed out, is that the gradual learning curve required by asso-
ciative theory is seen only in the group curve averaged across many individuals. The curves of individ-
ual animals, by contrast, showed that learning was not gradual but occurred with sudden change.
More recently, Gallistel, Fairhurst, & Balsam (2006) confirmed and quantified the abruptness of onset
of conditioned learning in individual animals.

The first obstacle to understanding processes of developmental and many other kinds of change is
that we typically lack even basic facts about what change looks like in the locus of change, the indi-
vidual. We begin by confronting the fact, long recognized, but seldom addressed, that group-averaged
data tells us almost nothing about variable developmental profiles of the individuals who make up the
studied group. We then describe a method whereby repeated measures collected longitudinally from
the same individual are combined with a newmethod of analysis, which we call, Bayesian change-point
analysis. Each child in a cohort is repeatedly tested on a task in order to derive a cumulative record for
that child of their performance over the period of testing. Cumulative records are ideal because each
point in the record is a summary of past performance up to and including that point, while any change
in performance produces a change in the slope of the curve. We then use a recently developed statis-
tical method to discover and identify any point of change there may be in the record, which we call,
Bayesian change-point analysis (Gallistel et al., 2004; Papachristos & Gallistel, 2006). The method of
analysis is Bayesian; this has the important advantage of allowing us to demonstrate statistically
not only points of change but also patterns of no change (Gallistel, 2009). This analysis yields an infer-
ential statistic, the Bayes Factor, for a given individual’s record without the need for group averaging.
The Bayes Factor reflects the relative fit of a model to the individual’s profile. Using the Bayes Factor as
our guide, we are able to test the relative fit of two contrasting developmental models: either a change
occurred in the individual’s performance, or a change did not occur in the individual’s performance. In
other words, we can quantify our confidence that change occurred for an individual record. Just as
importantly, for a given individual’s record, the Bayes Factor will quantify our confidence that change
did not occur, allowing us to distinguish both change and no-change from the case where an individ-
ual’s record was simply uninformative. Additionally, this analysis will identify the point or points in
the record where, with maximum likelihood, change or changes actually occurred.

Finally, to assess the replicability and generalizability of the methods and findings, we present two
cohorts of single-case studies, from the US and the UK. By collecting a cohort of such single-case stud-
ies, we can derive unambiguous group descriptions based upon well-characterized individual cases
without obscuring any individual differences. Here we apply these methods to the classic theory of
mind shift in preschoolers. We reveal for the first time what performance looks like when this shift
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occurs, as well as when it does not occur and when, after lengthy periods of testing, performance
records remain uninformative on this question. We then draw some tentative conclusions about
the underlying processes of change. Our larger hope is that the methods presented here can supple-
ment and add to existing methods of longitudinal data analysis in development.

We illustrate the single-case method in the domain of theory of mind development, using the
much-studied ‘‘Sally and Anne” false belief task (Baron-Cohen, Leslie, & Frith, 1985). Representing peo-
ple’s thoughts and feelings, even when they are different from one’s own, and using these represen-
tations of people’s mental states to explain and predict people’s actions, constitutes what is
referred to as theory of mind (Premack & Woodruff, 1978). A case in point is the much-studied devel-
opmental change that takes place around the fourth birthday in untutored typically developing
preschoolers in their ability to report correctly on the different perspective of another person who
has a false belief. Despite nearly 40 years of intensive study, the causes and the processes underlying
this change remain controversial and largely obscure (Gopnik & Wellman, 2012; Mahy, Moses, &
Pfeifer, 2014). Furthermore, change in this area of cognitive development is not reserved for the period
around the fourth birthday. A recent wave of findings shows that children much younger than three
years—toddlers and even preverbal infants—can succeed when the tasks and behavioral measures are
non-verbal (Wang & Leslie, 2016; Onishi & Baillargeon, 2005); moreover, development continues into
adolescence (Devine & Hughes, 2013; Friedman & Leslie, 2004a, 2004b).

It may seem surprising to choose to study variability in a domain where change appears to occur on
such a reliable time-scale. In theory of mind research, many group studies have shown that a mere 20–
30% of typically developing three-year-olds are able to report a person’s false belief when the person
does not witness everything the child witnesses (Wimmer & Perner, 1983; see Wellman, Cross, &
Watson, 2001, for a meta-analysis). We say that three-year-olds typically fail to attribute a false belief
to the other person because most three-year-olds fail such a test. It is said that by the age of five, most
children typically pass the false belief attribution task because group data show a high rate of perspec-
tive taking among five-year-olds, most averages approximating 80%. This cross-sectional result
demonstrating a shift around the age of four has been replicated in many different cultural and
socio-economic environments (e.g., Hughes & Cutting, 1999; Pears & Moses, 2003; Sabbagh, Xu,
Carlson, Moses, & Lee, 2006). To put forward an account of theory of mind development implies that
we can explain how children move from consistently failing to consistently passing such tests.

It is an empirical question how representative the group averages are of individual children (e.g.,
Carpenter, Call, & Tomasello, 2002; Nesselroad, Gerstorf, Hardy, & Ram, 2007). Without stopping to
think about it one might assume that group profiles are representative of the underlying profiles of
the individuals who make up the group. Actually, group rates of passing give us little information
about individual rates of passing. For example, suppose we regularly find that 80% of five-year-olds
pass a given task. Does that mean 80% of five-year-olds always pass, all will pass 80% of the time, half
pass all the time and half pass 60% of the time, or 60% pass all the time and 40% pass 50% of the time, or
any one of indefinitely many other patterns equally consistent with the group averages? We simply
cannot tell from group data. If there is variability within an individual’s record, is the observed vari-
ability due to low sensitivity in the instrument of measure (i.e., low reliability) or is it due to inherent
cognitive vacillation? Indeed, the two may be confounded unless we are careful with our interpreta-
tions (Willett, 1989).

For developmentalists, the difference between an individual passing and failing is of paramount
importance. Indeed, one aim of developmental research is to describe and explain how change occurs.
What is the form of the transition between the failing and the passing states? Is it ‘‘sudden insight” or
‘‘gradual change” or something else? Do all children present the same profile of change from failing to
passing? How can we characterize variability within and between individuals? These are the types of
developmental questions that Bayesian change point analysis can answer.

1.1. Variability in theory of mind development

1.1.1. Inter-individual variability
Research in cognitive development tends to favor the dominant profile of behavior at the expense

of a better understanding of inter-individual variability. We should question the implicit axiom that a
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picture of the group stands for a portrait of the individual. For example, one cannot conclude that
smoothly decreasing reaction times in group data indicate that any given individual’s reaction times
are smoothly decreasing (e.g. Atance, Bernstein, & Meltzoff, 2010; Gallistel, Fairhurst, & Balsam,
2006). In an effort to characterize the developmental trajectory of theory of mind, Wellman and Liu
(2004) applied a scalar model to group data to establish a suite of concepts, which children succes-
sively learn to explicitly manipulate. They gave children explicit mental and emotional state attribu-
tion tasks and found that they first became adept at attributing desires then types of beliefs followed
by distinguishing real from apparent emotions. Still, the authors noted that approximately one in five
children presented a developmental progression that was not consistent with the majority sequence.
Most of these children were in the younger range of their sample. Similarly, Flynn (2006) derived a
ranking of theory of mind tasks by difficulty based on group scores. When she examined individual
children’s performance on each task, however, less than one third of the individual children fit the
sequence suggested by looking at group averages. That such a substantial number of individual
records do not follow the trajectory implied by group data underscores the need to consider inter-
individual variability as a source of information about conceptual development. Examining variability
between individuals can inform our understanding of the cognitive mechanisms we wish to explain.
1.1.2. Intra-individual variability
The quest for generalization about the nature of cognitive change has also traditionally diverted

attention from the complexity of conceptual development within individuals. Variability within indi-
viduals can be captured by testing them on more than one occasion with the same measure or at the
same time with different measures. Regarding the classic theory of mind false belief task, the few
studies that test individual children multiple times suggest that performance is often variable
(Amsterlaw & Wellman, 2006; Flynn, 2006; Flynn, O’Malley, & Wood, 2004; Hughes et al., 2000;
Mayes, Klin, Tercyak, Cicchetti, & Cohen, 1996). For example, Flynn (2006) examined children’s perfor-
mance on classic theory of mind tasks over a period of six months. She found very few cases where
individuals simply went from failing 100% of the time to passing 100% of the time, with half of the
improvements amounting to just one point on a scale of zero to seven. This reinforces the idea that
intra-individual variability is pervasive and worthy of attention.

Furthermore, several lines of evidence show that different types of knowledge co-exist within an
individual and develop separately (Church & Goldin-Meadow, 1986; Howe, Taylor Tavares, &
Devine, 2014; Piaget, 1954; Zelazo, Frye, & Rapus, 1996). That is, variability in conceptual develop-
ment within an individual can be recorded from one time point to the next, but also concurrently
on different measures (e.g., tasks requiring explicit, implicit, verbal, visual, motor responses). Next
we review evidence that calls into question the notion of general, unitary conceptual development
at the level of the individual. Then, having established that inter- and intra-individual variability
are more of a rule than an exception, we propose a newmethod to capture and quantify the variability
that has hitherto been difficult to study.
1.1.3. Individual conceptual development
Research on infants’ theory of mind has established an early tacit sensitivity to the mental states of

others through looking time measures (Onishi & Baillargeon, 2005; for a review see Baillargeon, Scott,
& He, 2010). During the preschool years children fail the explicit false belief attribution task, whereas
measures of implicit knowledge and confidence levels point to a degree of understanding of the con-
cepts at play (Ruffman, Garnham, Import, & Connolly, 2001). Thus, although group data from explicit
measures may tell us that children below the age of four typically fail an explicit mental state attribu-
tion task, performance by the same individuals can be very different on implicit measures. Likewise,
although group data indicate older children and adults typically pass explicit belief attribution tasks
under most circumstances, there is more to the story than a sudden insight after which the conceptual
content is mastered once and for all. Of course, cognitive development in theory of mind does not stop
in early childhood. Implicit and explicit attribution of mental states continue to be measured distinctly
one from another even in adulthood (e.g., Cohen & German, 2009; Keysar, Barr, Balin, & Brauner, 2000;
Wang & Leslie, 2016).
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Although longitudinal work suggests some degree of continuity between infants’ tacit understand-
ing and preschoolers’ explicit attribution of mental states (Wellman, Lopez-Duran, LaBounty, &
Hamilton, 2008), dissociations between response modalities are well documented in theory of mind
and other domains of reasoning like physics and math (Clements & Perner, 1994; Goldin-Meadow,
Alibali, & Church, 1993; Hood, Cole-Davies, & Dias, 2003; Howe, Tavares, & Devine, 2012). A child
may fail on one measure, while passing on another. Hence when talking about conceptual develop-
ment, it is not meaningful to speak in broad terms about ‘‘failing” or ‘‘passing” theory of mind tasks
and the challenge we face is more than simply describing how one moves from one state to another.
In reality states of knowledge are much more complex. Appropriate methods of data collection and
analysis can help us to render a truly mechanistic developmental picture.

Thus far we have drawn on the literature to illustrate how conceptual development in theory of
mind is not likely to be simple and monotonic. Even if development were monotonic for any given
capacity under study, cross-sectional group averages are statistical artifacts that do not reflect individ-
ual growth trajectories. Indeed, cross-sectional group data give a schematic idea of the relative rates of
passing in groups, but they cannot tell us about the individual’s pathway through development. How
can we go beyond the methodological limitations that constrain the theoretical frameworks we
adopt?
1.2. How to study variability in developmental change

Intra-individual variability has been particularly difficult to study. How do we tell when an individ-
ual child has undergone developmental change? Equally important, how do we determine if a child
has not undergone change? Showing no change is equivalent to proving the null hypothesis, some-
thing which standard significance testing cannot do. The method we introduce here solves these prob-
lems, allowing us to determine for each individual child when the evidence says a change in
performance did or did not occur. Our method requires a rich set of longitudinal data from individuals,
which can then be subjected to non-traditional statistical analyses. In the next sections we outline the
intensive behavior sampling approach, known as the microgenetic method, which relies on a longitu-
dinal research design. Then we summarize existing statistical techniques for analyzing change. Finally,
we introduce the novel Bayesian change point algorithm adapted here from the animal learning
literature.
1.2.1. Intensive data sampling throughout a period of change
Experimental work in child development has largely relied on group data to examine developmen-

tal change. In neuropsychology, in contrast, single case studies are standard practice. Despite being
controversial, it is nevertheless recognized that the observation and analysis of individuals can inform
the plausibility of general models (Caramazza, 1986; Glymour, 1994; Shallice & Evans, 1978). In psy-
chophysical studies, too, (multiple) single case studies with repeated measures are the norm. In devel-
opmental psychology, Siegler has been an influential proponent of collecting data on individual
children’s performance throughout a developmental period (Siegler, 2007). He has consistently
reminded us that change is not monotonic, nor uni-dimensional. He and his colleagues have been able
to demonstrate this with experiments that are designed to accommodate individual variability. Cru-
cially, rather than each child contributing only one data point to a study, Siegler’s microgenetic
method samples a child’s behavior repeatedly throughout a transitional period, often uncovering
wave-like patterns of task solutions. In various tasks, such as addition and categorization, children’s
capacities seem to ebb and flow before they settle (Siegler, 1987; Siegler & Svetina, 2002). Similar
intra-individual variability has been found in motor development, indicating that the non-
monotonic function is a more general characteristic of development, which extends beyond cognitive
development (Adolph, Robinson, Young, & Gill-Alvarez, 2008). However, despite the richness of a
microgenetic dataset, these studies use traditional inferential statistics based on group averages, such
as ANOVA, or those noted below. Traditional group-based statistics do not exploit the strengths of
intensive data sampling at the individual level (see Cheshire, Muldoon, Francis, Lewis, & Ball, 2007
within a special issue on the microgenetic method).
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1.2.2. Analyzing individual profiles of development
In the case of theory of mind development, the few microgenetic studies that have been conducted

have all been limited by available statistical analyses (Amsterlaw & Wellman, 2006; Flynn, 2006;
Flynn et al., 2004). Even when figures show individual profiles, group statistics are used to draw con-
clusions about individual change (e.g., Amsterlaw & Wellman, 2006, p. 158). The dissonance between
individual profiles and group-level analyses is more apparent in microgenetic research than in other
longitudinal or cross-sectional designs. For example, Flynn et al. (2004) selected 21 preschool children
who initially failed most of their tasks then tested them once per month for six months. Although as
an averaged group they showed steady improvement, there were several different individual profiles,
including nine children (43%) who began to pass the tasks, only to fail again later. Is such variability
just statistical noise and thus meaningless or is it real and meaningful?

Traditional statistical techniques tend to highlight invariant features across individuals, at the
expense of examining variability. Developmental questions have been addressed using statistical tech-
niques such as backwards trial graphing (Opfer & Siegler, 2004), survival analysis (Singer & Willett,
1991), fuzzy sets (Van Dijk & Van Geert, 2007), linear and non-linear growth curve modeling
(Grimm, Ram, & Hamagami, 2011; Jordan, Hanich, & Kaplan, 2003; Willett, 1989), non-normal random
effects modeling (Agresti, 2000 in Cheshire et al., 2007), stability coefficients (Hoffman, Jacobs, &
Gerras, 1992) and change scores (Ferrer & McArdle, 2010). Some of these methods to some degree
address individual variability (e.g. growth curve modeling), but most statistical methods used by
developmental psychologists ultimately rely on group datasets. Even statistical analyses that capture
more richness in the data than frequently used group analyses sometimes highlight information about
invariance over information about variance. For example, Rasch analysis is employed to identify the
best fitting invariant sequence of development (Boom, Wouters, & Keller, 2007; Lamb, Vallett, &
Annetta, 2014; Young et al., 2011). Individual and measurement variance are part of the input for
Rasch modeling, but individual profiles are not the objective of the output. Instead, the analysis deliv-
ers one ordered sequence of items that represents, on average, the collection of sequences displayed
by a set of individuals. Therefore Rasch analysis does not reveal variability within individual children’s
records. In general, analytic techniques that look more closely at intra- or inter-individual variability
have been under-used.

At least part of the reason for the reliance on group data is a concern for the power of induction
based on traditional null hypothesis significance tests (tNHST). Where the methods are available,
we join a growing number of researchers in supplementing tNHST with the use of Bayesian
approaches (e.g., Dienes, 2011; Kruschke, 2010). To make our case, we next outline our reasons for
adopting a Bayesian change-point analysis.

1.3. Quantifying individuals’ developmental change: Bayesian change point analysis

The Bayesian change-point analysis employed here differs from traditional techniques in develop-
mental research in two main ways. First, it focuses on change at the level of the individual. The
approach has its roots in the animal learning literature, where, as in child development, learning is
typically assumed to follow the smoothly rising curve of averaged group data. However, work with
pigeons and mice has revealed that this curve can be an artifact of averaging over individuals who
show abrupt changes on earlier or later trials (Gallistel et al., 2004; Papachristos & Gallistel, 2006).
Because learning, like development, takes place in the individual brain, understanding of the acquisi-
tion process should be based on individual, not group, curves.

The second main difference between the Bayesian change point analysis and traditional techniques
in developmental research is that, as the name suggests, it uses Bayesian statistics, rather than tNHST.
In contrast to tNHST, Bayesian change point analysis provides a tool for evaluating the strength of the
evidence in favor of various models of change in the probability of obtaining a value in a chronological
record (Dienes, 2011; Lee & Wagenmakers, 2005; Salsburg, 2001). That is, we can assess the fit of a
model of change, alongside the fit of a model of no change, in the record of performance. A major rea-
son for computing Bayes Factors rather than p values is that Bayes Factors may be against or in favor of
a null hypothesis. Unlike p values, they can tell us how strongly the data favor the conclusion that
there was no change. In the demonstration we provide here, this translates as modeling changes in
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the probability of a child passing the theory of mind task. Of course it could apply to modeling changes
in a patient’s heart rate over the course of pharmaceutical treatment, or changes in population density
in bird ecology, or any other developmental question where data are plotted against time.

For the analysis, we use an algorithm that runs as MatLab code (for more information see Appendix
A) to automatically evaluate the individual records of performance. The algorithm generates output to
reflect the mathematical evaluations of model fit, and the researcher then interprets this output, much
like traditional software packages for social science research. Interpretations are based around the so-
called Bayes Factor, which gives information about the relative fit of models for a given set of data. The
Bayes Factor, unlike the traditional p-value, is not subjected to a strict threshold above which results
should be disregarded. Instead, the Bayes Factor more closely reflects human decision making, as it is a
ratio of likelihoods. For instance, one model may be favored 3:1 over another model, which means
that, given only the evidence of the data, one model is three times more likely than the other. It is
up to the researcher to decide what conclusions to draw based upon this likelihood ratio. Conventions
in Bayesian statistics in psychology generally suggest that a 3:1 ratio implies substantial evidence in
favor of one model, a 10:1 ratio implies strong evidence, and so on (see Wetzels et al., 2011, for
discussion).

Beyond the Bayes Factor, visual inspection of the cumulative records of performance, along with
examination of the parameter estimates the algorithm returns (e.g. the point in the record where per-
formance changed), are also useful to gauge the qualitative nature of the models of the data. Thus, the
analytic strategy involves first, asking whether there is evidence in each individual record for a model
of change or no change in the probability of passing the task at hand. Then, we can turn to the question
of what kind of model provides the best fit (change or no change), and, if there are any points where
the probability of passing does change, when these occur in the record, and what the probability of
passing before and after this point was.

Finally, a note on what our Bayesian approach is not. It is not an attempt to model children’s cog-
nitive processes per se. The distinction between a psychological model and a mathematical model is of
capital importance and is discussed in greater detail by others (see for example Bowers & Davis, 2011;
Kruschke, 2010). Recent Bayesian approaches to the study of child development have suggested that
children’s reasoning itself may embody Bayesian principles (e.g., Bonawitz, Van Schijndel, Friel, &
Schulz, 2012; Goodman, Ullman, & Tenenbaum, 2011; Gopnik & Wellman, 2012; Griffiths, Vul, &
Sanborn, 2012; Tenenbaum, Kemp, Griffiths, & Goodman, 2011; see also special issue of Cognition,
vol. 120, 2011). While we remain open minded on this point, our present Bayesian modeling is purely
descriptive and agnostic as to the cognitive processing mechanisms that give rise to the data we
observe.
1.4. Bayesian change point analysis of the ‘preschool shift’ in theory of mind

To assess the feasibility of applying the Bayesian change point analysis to human development, we
repeatedly tested preschool children on standard belief attribution tasks, deriving a cumulative record
of each child’s performance over the course of the study.
2. Method

2.1. Participants

We aimed our recruitment at the transitional phase of theory of mind development based on pre-
vious cross-sectional and longitudinal data. Our final sample consisted of 52 children from the US and
the UK (32 girls, 20 boys; mean age at start: 47.3 months, sd: 6.3, range: 34–62). Although in theory
the trials could be separated by any length of time, in practice it is difficult to interpret a learning
curve with widely varying inter-session intervals. Given that the developmental time-course of the
processes under investigation is largely unknown, a decision was made to only include children whose
trials were not spaced more than six weeks apart. Ten additional children missed more than two con-
secutive sessions and were thus excluded from our analyses. Although the minimum number of trials



Table 1
Mean (standard deviation) for two cohorts of potential improvers and for initial passers.

N Start age (in months) Number of trials Overall probability of passing

Cohort 1 US 23 47.2 (6.7) 21.1 (8.8) 32.1 (29.3)
Cohort 2 UK 20 45.5 (5) 20.3 (6.9) 58.5 (32.5)
Initial passers 9 52.7 (4.8) 19.9 (7) 91.2 (10.2)
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for change point analysis is not well established, we also excluded five additional children who com-
pleted less than five testing sessions (see Table 1 for final sample demographics). Because this was the
first use of this type of analysis with humans, the criterion for a minimum number of data points was
unknown. For this reason, and unlike previous microgenetic investigations of theory of mind, we set
out to test children for as long as possible, without limiting the duration of or the number of sessions
in the study. Individuals in the final sample completed 21 trials on average (sd = 7.6). Testing sessions
occurred approximately monthly (mean interval between sessions = 28 days, sd = 11). All participants
had written consent from guardians prior to the beginning of the project and gave verbal assent prior
to taking part in each session.
2.2. Materials

We used classic true and false belief attribution tasks (Baron-Cohen et al., 1985; Hogrefe, Wimmer,
& Perner, 1986). A major concern in longitudinal research is measuring the same construct repeatedly,
which can lead to practice effects interfering with the natural course of development. In this age group
the false belief transfer task and the false belief contents task have been shown to be of equivalent
difficulty (Wellman et al., 2001). We therefore used these interchangeably to increase the number
of trials without jeopardizing the validity of the measurements. In addition, specific materials changed
for each task and for each session so that children were not able to build a stimulus-response associ-
ation for the tasks.
2.3. Procedure

Every testing session for both cohorts was conducted by the same female experimenter and took
place either in a quiet room of the preschool, in a laboratory setting or in the child’s home. Each ses-
sion lasted about 15 min. Twenty-two children completed one trial of false belief unexpected transfer
(Baron-Cohen et al., 1985) and one trial of false belief unexpected contents (Hogrefe et al., 1986) in
each session. Twenty-five children completed two trials of false belief unexpected transfer in each ses-
sion and one trial of false belief unexpected contents in alternate sessions. Five children completed
two trials of false belief unexpected transfer and two trials of true belief expected transfer in each
session.

In the transfer tasks a character (e.g., Sally) put an object in a hiding location before leaving the
scene. Then, either (a) Sally returned to see the object being transferred to another location (expected
transfer leads to character’s true belief about the location of the object), or (b) Sally returned after the
object had been transferred to another hiding location (unexpected transfer leads to character’s false
belief about the location of the object). The critical test question required the child to predict where
Sally would look for the object upon her return, or where she would think the object is. For false belief
scenarios children received one point if they responded Sally thought the object was still in its original
location, or if they predicted she would look there upon her return. All other responses were scored as
zero. Scores were reversed for the true belief scenario (see Appendix B for details of scenarios).

In the unexpected contents task, children were shown a container and then discovered that it con-
tained an unexpected object. They were then asked to predict what another person would think is
inside, having never seen the contents. They received one point if they said another person would
think the container concealed the expected rather than actual object. All other responses were scored
as zero.
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Each task also included two control (reality and memory) questions. The order of tasks, test ques-
tions and control questions was counterbalanced across sessions. No feedback was given. At the end of
each session, children received three stickers.

3. Results

3.1. Data treatment: Bayesian change point algorithm

The algorithm runs as Matlab code (Math Works, 2000; for more information see Appendix A). The
algorithm proceeds for each record separately by a process of elimination, evaluating models in turn
and producing as output the model of the data garnering the strongest evidence. In our illustrative
example, we were atheoretical with respect to model selection (i.e., we did not specify a particular
model to test), as no theory of theory of mind development makes a strong prediction about the shape
of developmental change. Therefore, a preliminary analysis checked to see whether any of the data
sequences of individual performance could be best represented by a model in which there was more
than one change in the probability of a correct answer. In none of the records was this the case, mean-
ing that all of our individual records could be modeled with one change or no change in the probability
of passing.

3.2. Bayes Factors

We computed the Bayes Factor (BF) for the contrast between a model of no change in the record of
performance and a model with one change in the record of performance, given even prior odds of a
change in a record of that length. The Bayes Factor is the ratio of the marginal likelihoods. It is also
the factor by which the data change the prior odds in favor of one model or another. When BF = 1,
the odds are equal in favor of both the null and alternative hypothesis, in other words, the data are
equally likely under a model of the data implying no change (null) or change (alternative) in perfor-
mance. By convention, when 1 < BF < 3, we say that the evidence favoring one model over another is
weak; when 3 < BF < 10, we say the evidence is substantial and when 10 < BF, we say the evidence is
strong (Wetzels et al., 2011; Jeffreys, 1961). Researchers are invited to make their own judgments
about the strength of the evidence they require to draw conclusions (unlike classic p-values which
have evolved with cut-off points for ‘significant’ findings). We see this as an advantage because people
have an intuitive grasp of ‘‘the odds favoring one hypothesis over another,” so there is less need for
artificial stipulations. As Gallistel (2009:445) puts it,

‘‘Telling the research community what odds are required to decide in favor of a hypothesis is a bit
like telling the betting community what odds are required to make a safe bet. The odds are what
they are.”
3.3. Weight of the evidence

Another way to convey the extent to which the data favor one model over another is by the com-
mon log of the Bayes Factor, also called the weight of the evidence. Equivalent weights of opposite sign
represent equivalent changes in the odds in opposite directions. A 0.5 change in weight either way
represents a 3-fold change in the odds. The hypotheses we contrasted for each individual, were (a) that
the probability of their passing changed in the course of testing, versus (b) that the probability of their
passing did not change. One can see in Fig. 1 the weight of the evidence supporting a change versus a
no-change model for each individual record. If the bar in Fig. 1 extends above 0, the odds in favor of a
change are better than even; if below, worse than even (that is, the odds are against a change). The
solid lines at �0.5 and 0.5 indicate likelihood or odds of 3.16:1 that the evidence supports the hypoth-
esis that there was no change or supports the hypothesis that there was a change, respectively. We use
these odds as Bayesian decision criteria, very roughly, as equivalent to the 5% alpha level of tNHST
(Gallistel, 2009). Thus, a bar extending below the �0.5 line indicates at least substantial evidence in



Fig. 1. Weight of the evidence in favor of change (positive) or no change (negative) for each participant’s cumulative record.
Records appear from left to right, from youngest (34 months, weight of evidence = 0) to oldest starting age (62 months). Dotted
lines show weight of evidence equivalent to BF = 3.16. (A) US participants’ false belief records; the rightmost five records reflect
true belief tasks. (B) UK participants’ false belief records.
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favor of the no-change hypothesis, while a bar extending above the 0.5 line indicates at least substan-
tial evidence for a change. In between these lines, the evidence in favor of one hypothesis over the
other is only weakly informative.

It is important to bear in mind that results are deliberately situated at the individual rather than
group level. The aim is to examine individual records and attempt to draw conclusions about the best
model (change or no change) for each child studied, that is, for each of the 52 cumulative records of
the number of correct responses in the false belief task and the five cumulative records of the number
of correct responses in the true belief task. Fig. 1 shows each individual’s Bayes Factor and associated
weight of evidence in favor of change or no-change.

Having examined model fit (change or no change), our analytic strategy next focuses on the visual
inspection of the individual cumulative records. Individual cumulative records provide a more
detailed view of performance. In each record the x-axis represents successive trials and the y-axis rep-
resents the cumulative successes. Because children received and passed different numbers of trials in
each session and overall, the axes differ between participants (see Section 2 for procedural details).
Each time the child passed a trial, their cumulative record increased by one. Each time they failed,
the cumulative record increased by zero. Thus, if the child performed consistently, the cumulative
record would have a constant slope. Any change in the probability (p) of passing would imply a change
of slope in the cumulative record. By convention, when the Bayes Factor is greater than 1 (i.e. the evi-
dence favors one model over another), a change point is indicated by a vertical line at the estimated
change point. The line is dashed if the Bayes Factor is less than 3 (weak evidence); it is solid when the
Bayes Factor is greater than 3 (substantial evidence). When there is evidence of a change, the before
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and after estimates of p are given (p1 and p2). Otherwise the estimate of the stationary (unchanging) p
is given. These stationary p’s range from 0 to greater than .9, reflecting a wide range of performance
across the cohort.

3.4. True belief control task

We first examined children’s cumulative records of performance in the true belief task (Fig. 2).
Visual inspection of the records reveals consistently high rates of passing in this control condition.
However, the strength of the evidence allowing us to draw conclusions was weak in all cases save
one (TB6), where there was substantial evidence in favor of a model of no change. The absence of evi-
dence one way or the other when performance is near the upper limit is a ceiling effect: The no-change
and the +change descriptions must be roughly equally likely in records of 30 trials or less, because it
takes many trials for evidence of an improvement to accumulate once it has occurred.

3.5. False belief task

The following sections examine in further detail the records of false belief performance. The distri-
bution of records reflected varying levels of overall performance throughout the course of testing
(Fig. 3; see also Appendix C).

3.5.1. Initial passers
Nine children passed the first three trials (Table 1 and Fig. 4). These children were considered unli-

kely candidates for exhibiting the developmental change under investigation. Hence we present them
as a separate category of ‘initial passers’ at the start of testing, in contrast with ‘potential improvers’
who failed at least one of the first three trials.

3.5.2. Potential improvers
The remaining 43 children who failed at least one of the first three trials (‘potential improvers’)

were then considered (see Table 1 for descriptive statistics of the two cohorts of potential improvers).
We examined the records of performance for each type of model of the data according to the

evidence resulting from the Bayesian change point analysis, and sorted the individual records into cat-
egories: substantial evidence of change or no-change (weight of the evidence >0.5, equivalent to
Fig. 2. Cumulative records of performance in the true belief task (n = 5 from US cohort). X-axis: number of trials; Y-axis:
number of successes.



Fig. 3. Frequency of individual records of performance (y-axis) from the two cohorts as a function of the overall probability of
passing the false belief task (x-axis) throughout the period of testing.

Fig. 4. Cumulative records of performance for initial-passer profiles at the start of testing (n = 4 US; n = 5 UK). X-axis: number of
trials; Y-axis: number of successes. Note that initial-passer profiles were defined as those children who passed the first three
consecutive trials.
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3 < BF), weak evidence of change or no-change (weight of the evidence >0 and <.5, equivalent to
BF < 3; nomenclature based on Jeffreys, 1961). A final category was constituted of two records where
the weight of the evidence was close to 0 (BF close to 1, indicating data equally favor both models),
barring any conclusions from being drawn.

Children from both the New Jersey and the Bristol cohorts were spread across these categories. Of
43 cumulative records of performance, about one third provided conclusive evidence for a model of
change or no change in the probability of passing (see Tables 2a and 2b). The remaining two thirds
provided only weak evidence one way or the other. Reasons for this are explored in Section 4.



Table 2a
Distribution of individual records of improvers from US cohort (n = 23), according to the evidence for change or no change.

Substantial evidence for Weak evidence for Uninformative

Change No change Change No change

Percentage of improvers (frequency) 21.7 (5) 17.4 (4) 8.7 (2) 47.8 (11) 4.3 (1)
Mean start age (in months) 49.4 44.8 44 48.8 34
Number of trials 22.4 29 16 18.6 22
Overall rate of passing (in %) 44.3 0.7 43.2 38 9.1
Bayes factor in favor of each model (range) 4.63–1811.5 3.57–4.76 2.12–2.83 1.19–2.56 1.01
Putative change point trial (mean) 12.4 – 7.5 – –

Table 2b
Distribution of individual records of improvers from UK cohort, according to the evidence for change or no change.

Substantial evidence for Weak evidence for Uninformative

Change No change Change No change

Percentage of improvers (frequency) 20 (4) 0 35 (7) 40 (8) 5 (1)
Mean start age (in months) 42.3 – 47.3 43.4 54
Number of trials 25 – 17 20 26
Overall rate of passing (in %) 41.2 – 48.2 72.9 84.6
Bayes factor in favor of each model (range) 3.59–10,679 – 1.17–2.22 1.12–1.7 .99
Putative change point trial (mean) 14.8 – 8 – –
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Regarding the shape and rate of change, the diversity of profiles is striking, and has never been
quantified before at the level of the individual. Among records with substantial evidence for change,
three records present a pattern akin to ‘sudden insight’ (FB31, FB5, and FB 16, plus maybe FB14 and
FB39; Fig. 5). The rest show other patterns, including change from 12% to 50% passing (FB44) and
change from 40% to 100% (FB22). Similar diversity of change patterns can be observed in the records
presenting only weak evidence for change.

Where there is substantial evidence for a no change model, we only observed records with floor
performance (Fig. 6; recall that profiles presenting ceiling performance at the start of testing were
deemed ‘initial passers’ and thus not included in subsequent considerations).

In many ways the 19 records presenting weak evidence for a model with no change in performance
are the most interesting (Fig. 8). In this group we observe 10 records (53% of this category) with stably
unstable performance between 10% and 90% overall passing rate. The fact that children can perform so
inconsistently over several months could not be revealed with group-based analyses.

3.5.3. Strength of the evidence
It is methodologically informative to compare records with substantial versus weak evidence for

change (Figs. 5 and 7) and for no change (Figs. 6 and 8). Whereas there are equal numbers of records
in the change groups garnering substantial and weak evidence, there is a much larger number of
records in the no change group garnering weak evidence, compared to substantial evidence. We return
to some mathematical reasons for why this should be so in Section 4 (see Fig. 9).

The overall number of trials is greater for records garnering substantial evidence (whether for or
against change). However, at the level of the group there was no appreciable correlation between
number of trials and strength of the evidence (Kendall’s tau (43) = �.093). One indicative difference
between these records is that the putative change point for profiles with merely weak evidence for
change occurs much earlier compared to the profiles with substantial evidence for change (see
Table 2). This suggests that a lengthy baseline of consistent performance may be desirable in order
to detect changes in the probability of passing a task.

3.5.4. Age as a factor in predicting developmental change
Age did not predict which category of model children’s records fell into. Profiles with substantial

evidence for change correspond to young three-year-olds all the way through to four-and-half-



Fig. 5. Substantial evidence for a model of change (n = 5 US; n = 4 UK). X-axis: number of trials; Y-axis: number of successes.

Fig. 6. Substantial evidence for a model of no change (n = 4 US). X-axis: number of trials; Y-axis: number of successes.

S.T. Baker et al. / Cognitive Psychology 91 (2016) 124–149 137
year-olds at the start of testing (Fig. 5). Although the mean age at the stipulated change point is
50 months, this varied widely from child to child (sd = 6 months). Records with substantial evidence
for no change (Fig. 6) also correspond to children of varying ages (range = 39–47 months at start).
These profiles all represent floor performance throughout several months of testing.
4. Discussion

4.1. Variability in developmental profiles

We began by pointing out the ambiguities inherent in traditional group averaged measures of the
age of ‘success’ on the false belief task. We illustrated how the Bayesian change point analysis may be



Fig. 7. Weak evidence for a model of change (n = 2 US; n = 7 UK). X-axis: number of trials; Y-axis: number of successes.
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used to address some theoretical and methodological concerns with traditional studies. Our results
from multiple single case studies in two countries underline these hazards. There is no single answer
to the question, what do the traditional group averages mean? Some individuals maintain consistent
passing and some maintain consistent failing over long periods; some individuals show ‘sudden’
change while many individuals pass through long periods of variable performance. If one really wishes
to characterize developmental patterns, one must begin by accurately characterizing individual cases.
Take, for example, participants FB5 and FB24 (Figs. 5 and 8). Their overall mean probabilities of pass-
ing the false belief task are almost identical, around 50% passing rate, traditionally regarded as ‘chance’
responding. Yet Bayesian analysis of the individual cumulative records reveals two radically different
developmental profiles, one showing ‘sudden’ change from floor to ceiling, the other a kind of ‘stable
instability’. Our results and analyses provide some insight into the individual profiles behind group
averages in the theory of mind literature. It is important to bear in mind that, unlike traditional sig-
nificance testing, a Bayesian analysis allowed us to evaluate a hypothesis of no change as well as a
hypothesis of change (Gallistel, 2009).
4.2. On the shape and rate of change

We found a striking variety of developmental patterns (c.f. Siegler, 1987). When considering
records of performance in both false belief and true belief tasks, 14 records show substantial evidence
either for change (nine children) or for no change (five children). Even when the evidence is weak, we
are able to quantify the balance of evidence favoring change or no change in nearly every case (see
Table 3).



Fig. 8. Weak evidence for a model of no change (n = 11 US; n = 8 UK). X-axis: number of trials; Y-axis: number of successes.
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4.2.1. Sudden change
A handful of records reflected a pattern of ‘sudden insight’ on the child’s part, where performance

changed dramatically from floor to ceiling. However other patterns of ‘sudden’ change were also
observed, which did not demonstrate ‘sudden insight’. When ‘sudden’ changes do occur they are often



Fig. 9. Neutral (uninformative) evidence with respect to models of change or no change (n = 1 US; n = 1 UK). X-axis: number of
trials; Y-axis: number of successes.

Table 3
Percentage of individual records showing evidence for change, no change, or uninformative evidence across US and UK cohorts.

Substantial evidence for Weak evidence for Uninformative

Change No change Change No change

21% 9% 21% 44% 5%
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to asymptotic passing, but they can also occur to much lower levels, or from an intermediate level to
ceiling performance.
4.2.2. Vacillations
A striking finding here is that, regardless of whether change was observed at any point throughout

our period of observation, many children showed ‘stably unstable’ performance (mean probability of
passing somewhere between 10% and 90% over several months with no significant change). Many of
our participants went through a prolonged period of unstable performance, sometimes failing and
sometimes passing. These fluctuations are reminiscent of findings from the animal learning literature.
When Gallistel and colleagues used a similar change-point analysis of individual behavior in condi-
tioned learning in animals, they found that onset of the conditioned response was sudden, and not
gradual, with great individual variability in both latency of onset and in the asymptotic levels to which
responding rose. The traditional smooth learning curve is thus simply an artifact of group averaging
(Gallistel et al., 2004; Papachristos & Gallistel, 2006).

Both intra- and inter-individual variability in long-term performance has also been found in chil-
dren’s theory of mind performance. Flynn et al.’s (2004) microgenetic study showed that children’s
performance during a transitional period of development is likely to progress non-monotonically.
Flynn (2006) tested preschool children repeatedly for five months on several theory-of-mind tasks.
The majority of children’s performance varied from one month to the next. Thirty-seven percent of
changes from one session to the next were improvements, while 24% of changes were regressions.
In motor development, Adolph et al. (2008) have shown that changing the sampling of performance
from monthly to daily measurements drastically altered the number of records showing variability,
with only 9% of monthly records showing variability while 84% of daily records were variable.

These ‘stably unstable’ records, along with the ‘sudden change’ records that did not show ‘sudden
insight’, illustrate the fact that performance at the level of an individual child is not binary and we can-
not always categorize a child in terms of ‘‘failing” or ‘‘passing”. At the same time, we know from other
work that individual differences in theory of mind can be stable over time (Wellman et al., 2008).
These individual differences predict other important abilities in a child’s development, such as their
responsiveness to feedback from teachers in a school setting (Lecce, Caputi, & Hughes, 2011). One
challenge that the present findings pose is how we explain the apparent stability, as well as the vari-
ability, of individual differences over time. Methods such as the Bayesian change point analysis of indi-
vidual records can help in this endeavor.
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4.2.3. Decreases
In addition to non-monotonic increases in the probability of passing we observed two records of

false belief attribution where the probability of passing actually decreased, although the evidence
for real change in those records was weak in both cases (FB52 and FB43). In any event, such findings
highlight the importance of examining individual records with methods that allow us to measure
small, but real, changes in performance. Discovering and describing the inter-individual variability
that exists can only serve to enhance our understanding of the mechanisms driving developmental
change. Knowing that even one child’s developmental profile follows a certain pattern tells us that
the pattern is not impossible, and such a fact has implications for the constraints we build into our
theories of developmental change. We made the decision to continue to test even the initial passers,
who were at ceiling at the beginning of their participation, so as not to pass up the opportunity to
observe rare regressions. It is noteworthy that nearly all initial passers continued to demonstrate high
levels of passing throughout the entire testing period. However, one child (FB52) presented with a
regression in performance, from 91% to 67%. Even if such occurrences are rare, with future studies,
the slow accumulation of even rarities can be quantified—another advantage of multiple single-case
studies.

Our findings show that variability is common and can last for periods up to a year or more! The
degree of individual variability in asymptotic passing levels on the false belief task remains to be
determined, along with what ‘passing’ really means for individual children. Answering this important
question will require quantitatively analyzing individual records gathered over very long periods of
time.

4.3. Some issues arising from the study of variability in development

Despite our attempts to vary task details, repeatedly testing the same child on the same underlying
task may have altered that child’s performance profile. However, we never provided feedback. Also
false belief and true belief ‘‘situations” occur naturally at some unknown rate in the environment out-
side of testing and our testing sessions may not have added significantly to those learning opportuni-
ties. Moreover, we replicated our method and obtained strikingly similar results in the New Jersey and
Bristol cohorts. Moreover, the coarse grain of our data conforms to the general pattern that has
emerged over numerous cross-sectional studies (see Wellman et al.’s (2001) meta-analysis). Our par-
ticipants were approximately equally likely to pass or fail around their fourth birthday with lower and
higher probabilities of passing at lower and higher ages, respectively, showing the classic pattern.
Finally, the five children we tested on the true belief control task showed reassuringly consistent high
levels of passing throughout. All of these features lead us to believe that the ‘instability’ we observed is
real.

4.3.1. Premises of the Bayesian change point algorithm
There is no assumption of linearity underlying the Bayesian change point analysis, making it appro-

priate for modeling any developmental process (similar to non-linear growth curves; Grimm et al.,
2011; Van Geert, 1998). Indeed several of our participants showed a ‘sudden’ developmental change
(which we distinguish from ‘sudden insight’, moving swiftly from consistently failing to consistently
passing a task). Gallistel et al. (2004) rigorously defined the question of what ‘sudden change’ means
with respect to conditioned learning in animals. In the present study, ‘sudden change’ simply means
on or between the trial indicated and the previous trial. There is no assumption of fixed intervals
between responses underlying the Bayesian change point analysis. Because the interval between trials
varied in our exploratory study (with an upper limit of 6 weeks), ‘sudden’ has no precise chronological
meaning. The length or variability in length of inter-session periods does not affect the statistical test,
but the reader should be aware that ‘sudden’ is relative to session and not time (for a discussion of
time as a variable in developmental research, see Ram, Gerstorf, Fauth, Zarit, & Malmberg, 2010). Map-
ping model parameters to developmental processes is a crucial consideration (Ferrer & McArdle,
2010). When developmental change does occur in an individual child, does it occur instantaneously
from one ‘processing cycle’ to the next or gradually over a period of seconds, minutes, hours, days,
. . .? No doubt, this is a very difficult question to probe experimentally in children; but, for us, the
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exciting thing is that Bayesian change-point analysis begins to make exploration of this question
possible.
4.3.2. Evaluating the strength of the evidence for each model of the cumulative records
Only two cases presented nearly neutral evidence with respect to potential models of the data. The

rest of the cases could be interpreted as conforming either to a model of change or a model of no
change. The strength of the evidence garnered in each individual case is the primary currency of Baye-
sian change point analysis. As such, the factors affecting it deserve particular attention. We found
more records with substantial evidence for change than with substantial evidence for no change (akin
to the null hypothesis in traditional terms). It is harder to get substantial evidence for the null, rather
than for the alternative to the null, because small samples and ‘‘noise” limit the possible strength of
the evidence for the null, but not the possible strength of the evidence against it. We now discuss
the reasons why this is the case.

Consider first the effect of sample size. Suppose we want to compare the relative likelihoods of two
hypotheses about a coin: (1) It’s a fair coin (the null); (2) It’s a biased coin with a true probability of
heads that is somewhere between .5 and 1 (the alternative to the null). We flip it 10 times and get 5
heads. This is, of course, exactly what the first hypothesis predicts. But how strongly does this result
favor the first hypothesis over the second? Not very strongly because this result is also highly likely if
the true p is .6 (in which case, of course, the second hypothesis is correct, because .6 is somewhere
between .5 and 1). Thus, even when one gets exactly the outcome predicted by the null, the evidence
in favor of the null cannot be very strong if the sample size is small. Contrast this with the case where
we get 10 heads in 10 flips. The evidence against the null is now very strong, even though the sample
size remains 10, because this outcome is very unlikely if p = .5 but very likely if p > .9 (another case in
which the alternative hypothesis is true).

A similar point arises with regard to variability. With samples of modest size (say, between 5 and
25), it is possible to obtain very strong evidence against the null but not in favor of it, under reasonable
assumptions about the alternative. Suppose that we are measuring, say, heights and our sample size is
10 French men and 10 English men and that the means of the two samples are identical (which, of
course, almost never happens). Again, this is exactly what the null hypothesis – that the average
height of French and English men is the same – predicts. Suppose that the alternative hypothesis is
that the average height of French men is greater than that of English men by possibly as much as
5 cm. Now suppose that the pooled within-sample variance is 1 mm. In other words, all 20 men have
the same height to within less than 1 mm! Under these low-variance conditions, the evidence would
strongly favor the null. Now, suppose, more realistically, that the pooled within-sample variance is on
the order of 25 cm. With the small sample size and the large variance, the evidence in favor of the null
cannot be considered strong. But the evidence against the null can be. Suppose that the mean for the
English men is 170 cm, whereas that for the French is 190. A difference in sample means this big is
much more likely if the true difference is 10 cm (upper limit imposed by our formulation of the alter-
native) than if the true difference is 0.

The extent to which the length of the baseline and the intensity of data sampling will affect the
evidence in support of a model remains an empirical question. The answer may well depend on the
domain under investigation, with differing implications for, say, motor or cognitive development
(Adolph et al., 2008; see also Van Geert & Van Dijk, 2002). In theory of mind, using the explicit false
belief attribution task, sampling more frequently than once per month seems desirable, and starting
the sampling before the third birthday would seem prudent. These desiderata will of course be bal-
anced by practical considerations, but at least we begin to outline the characteristics of a study that
could shed further light on the shape and rate of preschoolers’ cognitive development at the individual
level.
4.4. Future work using Bayesian change-point analysis

The change-point algorithm not only gives us a statistically principled way to determine whether
or not an individual’s cumulative record contains evidence of a change in performance, it also locates
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the best estimate of the point of change in that record. Thus, we can pinpoint when in the sequence of
trials for that individual change is most likely to have taken place. Although in this initial study, we
were not able to exploit this feature, in future it would be possible to study more than one type of task
and to relate change points in multiple task records within an individual participant to establish lead-
lag relationships (Ferrer & McArdle, 2010). This would give a new way to examine precursors and
inter-task correlations across time at the level of the individual. For example, theoretical models that
advocate that competences must follow a particular developmental sequence before later compe-
tences emerge, would benefit greatly from change-point analysis that establishes performance at
the individual level. Here we have studied natural development in a task that is not formally
instructed. But there are a number of other contexts, for example, educational and clinical treatment
studies, where change point analysis of individual subjects linked to various pedagogical or therapeu-
tic interventions could be crucial.

4.5. On modeling cognitive developmental processes like theory of mind

Our principal aim here was not to contrast the different theoretical approaches to theory of mind
development but simply to illustrate how the Bayesian change-point analysis might be used through
an initial study with children. However, it does seem to us that one upshot of these data is that the
traditional notion of passing and failing the false belief task (and perhaps other developmental tasks)
has limited value. Rather we suggest it is better to think in terms of the probability of passing: what
changes with development is the probability of passing the false belief task, and it changes in different
ways in different children at different times. Perhaps this fits better with a complex of performance
systems whose interactions fluctuate daily but which become gradually better integrated, rather than
with a single change in an underlying competence. From a practical point of view, a single trial
recorded as a binary response does not reveal much about underlying states. The aggregation of such
measures informs us only about the ‘aggregated child’; unfortunately, it is not the aggregated child
who represents and processes information and it is not the aggregated child who develops. In this
vein, we gain new insight into the longstanding notion of the ‘‘chance performance” level in the false
belief task (e.g., Devine & Hughes, 2014; Wellman et al., 2001; Wimmer & Perner, 1983; see also
Carpenter et al., 2002 for insightful discussion). It appears that typically children develop through a
range of probabilities, including those usually described as ‘‘chance levels” (see Fig. 3). Indeed, there
may be a case for regarding the middle probability range as a distinguishable state (see individual
curves for FB change subjects 21, 44, 28, 7, 29, and 43, and for FB no change subjects 15, 17, 20,
and 24). In a study of toddlers’ and adults’ anticipatory eye-gaze in implicit tasks, Wang and Leslie
(2016) show three distinct patterns of response. Perhaps it is time to stop regarding intermediate
probabilities as without definite cause, or ‘‘chance”, and start treating them as studiable in their
own right.

One picture of theory of mind development that has been popular is ‘‘sudden insight” or some
other one-time change from a conceptual-deficit state to a conceptually competent state. A variety
of routes for such change have been proposed (e.g., Apperly & Butterfill, 2009; Carlson & Moses,
2001; Gopnik & Wellman, 2012; Perner, 1991; Perner & Roessler, 2012; Wellman et al., 2001). We
found such dramatic changes in individual theory of mind only in a small minority (around 12%) of
preschoolers. These children indeed showed a sudden shift from floor to ceiling performance between
one testing session and another. Clearly, such cases are of interest even if not typical, as are those even
rarer individuals who show regression in performance.

Instead, we believe that our findings fit most straightforwardly with a performance systems
account in which sufficient processing resources (e.g., inhibitory executive function) are required to
express underlying competence (e.g., Leslie, German, & Polizzi, 2005; Leslie & Polizzi, 1998; see also
Mahy et al., 2014). The present results show that, whereas these resources will tend to increase over
the very long term, they can fluctuate at shorter time scales. Thus, performance typically shows nei-
ther a gradual and steady improvement nor sudden insight. Such instability in performance can occur
at varying levels and persist over fairly long periods, for example, up to a year or more. More recent
versions of ‘‘theory-theory” (Gopnik & Wellman, 2012) have adopted a Bayesian computational
account, in which the child randomly accesses and tests multiple hypotheses about belief, gradually
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revising and replacing their initial hypotheses. The move to a computational account is welcome, but
each hypothesis in such a model adds an additional parameter, allowing it to fit more complex curves
only at the expense of increasing model complexity. A challenge for future modeling is to optimize fit
while minimizing complexity.

It may be that none of the existing theories of theory of mind development are actually supported
by our series of single case studies, simply because none of the current approaches actually make
unqualified predictions about the shape, rate and variety of developmental change in the individual.
Existing theories instead aim to characterize the starting or later ‘steady’ states in the child’s cognitive
system but largely leave open the question of what the transitions between these states look like. We
do not think this is necessarily a bad thing because these two questions may even be somewhat
orthogonal. The method we describe here gives for the first time a glimpse of the shape(s) of develop-
mental change as this occurs in the individual, and provides the first data for quantitative models of
these processes (Greenwald, 2011).

Finally, the methods we describe here are not limited to studies of developmental change but are
applicable more widely to situations where changes in individuals undergoing extended therapies,
experimental interventions, or education programs are the center of interest. The researcher, clinician,
or pedagogue will be able to determine on an individual by individual basis whether or not the inter-
vention actually produced change in behavior and, if so, when in the time series that change occurred.
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Appendix A

Further technical information about the Bayesian change point analysis
What Bayesian model selection does that NHST does not do is adjudicate the trade-off between

adequacy and simplicity among alternative descriptions of the data (Gallistel, 2009; MacKay, 2003).
If we assume that a binary sequence was generated by a Bernoulli process with an unchanging p
parameter, then we can describe it adequately simply by estimating that p. If we assume that it
was generated by a Bernoulli process whose p parameter made a step change at some point during
the sequence, then we can describe it adequately by estimating three parameters, the p before the
change, the p after the change, and the change point, cp. If we assume that it was generated by a Ber-
noulli process whose p parameter changed twice, then we can adequately describe it by estimating 5
parameters: p1, p2, p3, cp1, and cp2, and so on. The challenge is to decide what are the best descriptions
of our experimentally obtained binary sequences, D = [d1, d2, . . .,dn]. A more complex description, one
involving more parameter estimates, will always describe the data more precisely than a simpler one,
as may be seen by considering the limiting case in which there are n � 1 change points in the descrip-
tion of a sequence of length n. Estimating the p values is particularly simple in this case, because the
estimate of pi is 1 just in case di is 1 and the estimate of pi is 0 just in case di is 0. The problem with this
‘‘model” (or summary description) of the data is that it does not summarize; it uses more parameters
to describe the data than there are data to describe.

In Bayesian model selection, one chooses the model (that is, the summary of the data) with the
greatest marginal likelihood. The marginal likelihood of any summary description is the integral of
the product of the prior probability distribution for that description and the likelihood function.
Among the charms of the basic Bayesian computation is that the marginal likelihood of a description
is proportional to how well it describes the data and inversely proportional to an exponential function
of its complexity, where its complexity is measured by the number of parameters that must be esti-
mated from the data if one adopts that description. There is no subjectivity in this; the beliefs of the
experimenter are irrelevant. The preference accorded a simpler but adequate description follows
directly from the fact that a possible description of the data is represented by a prior distribution
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whose dimensionality equals the number of parameters to be estimated. This prior distribution spec-
ifies the uncertainty about the values of those parameters before the data are examined. Regardless of
its dimensionality, a prior distribution always contains a unit mass of prior probability. The greater the
dimensionality of the parameter space that supports the distribution, the more diffusely that unit
mass must be spread around, because the volume of the parameter space in which it must be spread
grows exponentially with the dimensionality of that space. A diffuse but widely spread prior probabil-
ity density is an advantage when the data are such that only a more complex description can do them
justice, but it is a handicap when the data allow of a simpler description that is as good or almost as
good. In that case, much of the prior probability for the more complex description is out in portions of
the parameter space where the likelihood function is essentially 0. When the likelihood function mul-
tiplies the prior probability distribution, that prior probability is nullified, resulting in a reduced mar-
ginal likelihood for the more complex description. The marginal likelihood measure favors the
description that puts more prior probability where there is high likelihood (see Gallistel, 2009 for gra-
phic illustration and further explanation).

Appendix B

Sample scenarios for the false belief tasks

B.1. False belief-unexpected transfer

The direction of transfer of the object, left to right or right to left, was counterbalanced. There were
always three possible locations so that there were two ‘incorrect’ options on every trial.

‘‘Steve and Corrie are playing here in their room. In their room there is a basket and atoybox. Now
Steve is going for a walk. He leaves his ball here in the basket and goes outside. He can’t see us any-
more. While Steve is outside, look what happens! Corrie takes the ball from here, and he puts it in
here. Now Steve didn’t see that happen, did he? No. Well, Steve is coming back soon, and I have
some questions for you.”
‘‘Where is the ball now?” (Reality control question)
‘‘Where did Steve put the ball, in the beginning of the story?” (Memory control question)
‘‘Where does Steve think the ball is?” (Think test question)
‘‘Does Steve know where the ball is?” (Know test question)

Other scenarios included, e.g., Dino leaves a fish in one of three coloured boxes while going to
school; Annabelle leaves a plant in one of three pieces of furniture while riding her bike.

B.2. False belief-unexpected contents

‘‘I have something I want to show you.” (Show a crayon box)
‘‘What do you think is inside?” (control question)
(Open box to reveal unexpected contents – a sock)
‘‘Now, if we show this box to Billy in your class, what will Billy think is inside?”
(Third person think test question)
‘‘When I first showed it to you, what did you think was inside?” (First person think test question)

Other scenarios included, e.g., a spoon in a soup box; a small toy cow in an egg carton.

Appendix C

Detailed individual data is presented in the table that follows: age at first test (in months), profile
number corresponding to the individual cumulative records of performance, and Bayes factor corre-
sponding to each cumulative record, by cohort. Note that BF’s for initial passers are represented in
bold; also shown is Weight of Evidence (log10(BF)), positive values support Change, negative support
No Change.
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Age at first test
 Profile
 Bayes factor
 Weight of evidence
US cohort (1)

34
 FB01
 1.01
 0.00

36
 FB02
 0.47
 �0.33

39
 FB03
 0.25
 �0.60

39
 FB04
 0.39
 �0.41

40
 FB05
 1459.70
 3.16

42
 FB06
 0.56
 �0.25

42
 FB07
 2.12
 0.33

46
 FB08
 0.28
 �0.55

46
 FB09
 2.83
 0.45

47
 FB10
 0.21
 �0.68

47
 FB11
 0.26
 �0.59

47
 FB12
 0.73
 �0.14

48
 FB13
 0.49
 �0.31

49
 FB14
 1811.50
 3.26

50
 FB15
 0.78
 �0.11

51
 FB16
 6.80
 0.83

51
 FB17
 0.84
 �0.08

51
 FB18
 0.41
 �0.39

51
 FB19
 0.41
 �0.39

52
 FB20
 0.84
 �0.08

53
 FB21
 9.32
 0.97

54
 FB22
 4.63
 0.67

55
 FB23
 0.86
 �0.07

56
 FB24
 0.84
 �0.08

58
 FB25
 0.45
 �0.35

58
 FB26
 0.79
 �0.10

62
 FB27
 0.53
 �0.28
Mean
 48.30
 122.53

sd
 7.00
 438.84
UK cohort (2)

36
 FB28
 4.44
 0.65

38
 FB29
 2.22
 0.35

40
 FB30
 0.60
 �0.22

40
 FB31
 10679.00
 4.03

42
 FB32
 0.69
 �0.16

42
 FB33
 0.59
 �0.23

43
 FB34
 0.63
 �0.20

43
 FB35
 0.83
 �0.08

44
 FB36
 0.63
 �0.20

44
 FB37
 0.44
 �0.36

44
 FB38
 1.29
 0.11

45
 FB39
 4.88
 0.69

45
 FB40
 1.76
 0.25

46
 FB41
 0.71
 �0.15

47
 FB42
 0.89
 �0.05

48
 FB43
 1.55
 0.19

48
 FB44
 3.59
 0.56
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Appendix C (continued)
Age at first test
 Profile
 Bayes factor
 Weight of evidence
49
 FB45
 1.26
 0.10

51
 FB46
 0.27
 �0.57

51
 FB47
 0.30
 �0.52

53
 FB48
 1.17
 0.07

54
 FB49
 1.26
 0.10

54
 FB50
 0.99
 0.00

54
 FB51
 0.67
 �0.17

55
 FB52
 1.01
 0.00
Mean 46.24 428.47

sd
 5.36
 2135.53
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