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DPCM: A method for modelling and analysing design process

 changes based on the Applied Signposting Model 

Research on changes in design has focused on changes in the product domain. 

However, because the product's design process may change as well, this article 

suggests a comprehensive method to support modelling and analysing changes in 

the process domain (DPCs). After developing the concept for the Design Process 

Change Method (DPCM) based on requirements derived from literature and 

industrial practice, the DPCM is detailed and computationally implemented using 

the framework of the Applied Signposting Model. The DPCM enables design 

teams to conduct various useful analyses, which enhance the understanding of 

DPC effects on process performance, support process execution through 

suggesting reactions to DPCs, and support process planning through identifying 

and prioritising the ‘right’ DPCs. The method’s application is demonstrated 

based on the fan sub-system preliminary design process of Rolls-Royce PLC. 

Keywords: process modelling; process change; iteration; process simulation; 

Design Process Change Method (DPCM) 

1. Introduction 

Product development (PD) is a key function in industrial organisations and crucial for 

their commercial success. Fierce competition has put pressure on companies to develop 

cheaper products of higher quality in less time and to fulfil rapidly changing customer 

needs. Also, decreasing technology life cycles and an increasing technological diversity 

have amplified the pace and complexity of PD. This has drawn much attention to the 

management of design processes, which encompass a spectrum of activities at the core 

of PD and aim at creating recipes for the production of products. 

Both the dynamic and complex environment of PD as well as the inherently 

uncertain nature of innovative design processes lead to an industrial reality in which 
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engineering changes (EC), loosely defined as changes in released engineering 

documentation, are very common. Consequently, since the late 90’s many tools for 

engineering change management (ECM) have been developed (see Hamraz et al. 2013a 

for examples). However, not only are ECs likely to occur, i.e. changes in the product 

domain, but also changes in the process domain, for example delays in activities, 

unplanned iterations or the addition of new activities to the process plan. In fact, 

whenever an EC arises, the process plan may need to be amended since inputs of 

activities change (Chua and Hossain 2012). Because such design process changes 

(DPCs) can propagate leading to rework and indirectly affecting numerous activities 

and deliverables in the process, it can be particularly difficult to predict their overall 

impacts on key process performance metrics like process duration and development cost 

(Shapiro, Sommer, and Clarkson 2015). However, the impacts of DPCs can be 

considerable: In a study of 448 technological projects, Dvir and Lechler (2004) found 

that the only distinguishing factor between successful and failed technological projects, 

independent of their innovativeness, was the amount of goal and plan changes during 

project execution. Karniel and Reich (2013, p. 208) also acknowledged the relevance of 

DPCs and observed that so far “the typical practice has been reactively following 

changes… rather than proactively planning through analysis of potential changes.” 

The numerous existing activity-network based modelling tools that support the 

management of design processes usually assume that sufficient knowledge exists a-

priori to plan the design process and execute it accordingly. However, this assumption 

often proves inadequate leading Karniel and Reich (2013) to the conclusion that 

managerial issues associated with DPCs are insufficiently addressed by existing 

methods. This is also supported by a prior study of the authors, who found only 27 

existing methods that account for DPCs. Since all these methods comprise different 
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features and offer varying degrees of support the authors recognised the need for the 

systematic development of a new comprehensive support method, which helps design 

teams account for the impacts of DPCs on design process performance during process 

planning and execution (Shapiro, Sommer, and Clarkson 2015). 

This article describes the systematic development of such a support method, 

which is called the Design Process Change Method (DPCM) hereafter. This method will 

be based on the Applied Signposting Model (ASM; Wynn, Eckert, and Clarkson 2006), 

an activity-network-based framework for design process modelling. The rest of this 

article is organised as follows: Section 2 provides an overview on DPCs and existing 

support methods; Section 3 explains the research method; Section 4 examines the 

conceptual design of the DPCM; Section 5 elaborates on the method’s detail design; 

Section 6 describes the application of the DPCM to the fan sub-system preliminary 

design process at Rolls-Royce PLC; Section 7 discusses the method’s practical 

usefulness as well as the key assumptions made and directions for future research; 

Section 8 summarises and concludes the article. 
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2. Design Process Changes 

 

Figure 1. Major DPC types shown in an idealised design process model. Adapted from 

Shapiro, Sommer, and Clarkson 2015.  

 

This section summarises major DPC characteristics, including their reasons, 

types, and consequences, as well as features of existing support methods. It is based on 

a recent literature survey by the authors, who define DPCs as “changes and/or 

modifications… to planned design activities (involved resources, tools, etc.), their 

resultant deliverables (drawings, documents, prototypes and generally descriptions of 

the technical artefact) or the relationships between design activities and  deliverables 

(process structure)” (Shapiro, Sommer, and Clarkson 2015). 

This definition emphasises three fundamental types of DPCs (see Figure 1), i.e. 

changes in activities, deliverables and structural changes, and is also consistent with 

most activity network-based design process models, which view processes as discrete 

activities interconnected through deliverables. Changes in activities refer to changes in 

their attributes, including durations, their iterative behaviour and resource requirements. 

Changes in deliverables comprise enhancements, corrections and scope changes in 

already produced activity inputs or outputs. As such they are similar to ECs which 
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denote changes of released product descriptions, but only presume that a product 

description has been created and not necessarily released. Lastly, structural changes 

describe all DPCs that affect the process scheme, including adding or removing 

activities or deliverables as well as changing the process execution sequence, i.e. 

activity order or degree of concurrency. Structural changes immediately affect at least 

one activity and one deliverable in the process. If, for example, a new activity is added 

to the process, it might require existent deliverables as inputs and will necessarily 

produce a new output or change an existing output. 

The existing DPC literature mostly discusses DPCs that originate from ECs 

(Chua and Hossain 2012; Li and Moon 2012; Wynn et al. 2014) and thus, are triggered 

by product-related reasons. When ECs occur, deliverables, which are inputs (and 

outputs) of design activities, need to be altered and lead to rework of the respective 

activities. However, as the design process involves the cooperation of people across 

multiple organisations there are many other reasons which do not necessarily originate 

from the product. For example, DPCs may come from process improvements suggested 

by project-team members or new managers, or originate from designers' lack of 

competence or too optimistic plans. Another major reason for DPCs is a shortage in 

available resources during process execution, including manpower, information, 

facilities and funding (Dvir and Lechler 2004). Lastly, DPCs can be caused by other 

DPCs as they can propagate throughout the design process. For example, an activity 

requiring rework because of a change in its input might result in a changed output, 

which serves as an input to subsequent activities that consequently might also require 

rework, and so on (Ouertani 2008). 

The various DPC types can affect process duration (Karniel and Reich 2013), 

effort (Cronemyr, Öhrwall Rönnbäck, and Eppinger 2001) and potentially even product 
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quality (Li and Moon 2012), although only very few publications mention effects on the 

latter. A major effect of all DPC types is that they can cause iteration (Chua and 

Hossain 2012). This and propagation make it difficult to predict DPC effects on process 

performance. 

As the few existing methods for modelling and analysing DPCs are often 

inspired by EC-propagation methods in the product domain, they have analogous goals 

(Hamraz, Caldwell, and Clarkson 2013; Shapiro, Sommer, and Clarkson 2015), i.e. to 

support design teams to 

(1) Gain understanding of DPC effects on design process performance; 

(2) Improve process execution by reacting to and implementing DPCs efficiently; 

(3) Improve process planning by prioritising optional DPCs effectively based on 

costs/benefits. 

However, compared to the rich literature on ECM there is a lack of comprehensive 

methods to support management of DPCs (Karniel and Reich 2013). In fact, the authors' 

literature survey (Shapiro, Sommer, and Clarkson 2015) identified only 27 methods 

among which 18 solely examine effects of deliverable changes (e.g., Wynn, Caldwell, 

and Clarkson 2014; Ouertani 2008). Among the other nine methods there are none 

which cover all three major DPC types. Also, the reviewed methods offer highly 

varying features: Some methods, for example, can help identifying activities affected by 

a DPC (Ahmad, Wynn, and Clarkson 2013), while other methods additionally suggest 

an activity sequence for DPC implementation (Khoo, Chen, and Jiao 2003). 

Furthermore, other methods consider the implementation of specific DPCs (Chua and 

Hossain 2012), while some assume stochastic DPC arrival rates (Li and Moon 2012). 
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One common feature among most methods (although treated differently) is that some 

sort of change propagation is represented.  

Overall, the many possible reasons for DPCs, their potentially severe impacts 

and the lack of a comprehensive support indicate the need for a novel method for 

modelling and analysing DPCs (Shapiro, Sommer, and Clarkson 2015). 

3. Research method 

To address the need of developing a comprehensive method for modelling and 

analysing DPCs, as identified in Section 2, this research follows a systematic procedure 

analogously to actual engineering design processes (Cross and Roozenburg 1992), i.e. 

deriving requirements, developing alternative concepts, selecting and elaborating a 

concept, detailing and implementing as well as evaluating and refining the method. 

While the method's conceptual design is described in Shapiro and Clarkson 2016, this 

article focusses primarily on the method’s detail design and evaluation. Nevertheless, a 

comprehensive summary of the method’s conceptual design is provided in Section 4. 

The research thus, started with a requirements analysis to define the specific 

needs that the DPCM should fulfil. Subsequently, a morphological chart was developed 

to convert the derived functional requirements into alternative concept ideas. A 

selection among these concept ideas was then made to form a broad overall concept for 

the DPCM. The authors then described the method’s fundamental elements and their 

interrelations and defined a set of analyses to improve process understanding, planning 

and execution, which will be enabled through such a support method. The rationale for 

choices in the method’s conceptual design  (e.g., requirements, alternative concept 

ideas, a single broad concept etc.) was based on three sources: first, the authors' 

literature survey on DPCs (Shapiro, Sommer, and Clarkson 2015) and other key 
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engineering design literature; second, the authors' literature-based exploratory study of a 

high-speed machining device's design process (Shapiro et al. 2015); third, the study of 

the fan sub-system preliminary design process at Rolls-Royce PLC (see Section 6). 

The authors then converted the conceptual descriptions of method elements and 

their relationships into detailed definitions and quantifiable functions, which can be 

specified in practice and implemented computationally. Also the detailed 

implementation of the previously discussed analysis set was specified. Finally, the 

developed DPCM was applied to the fan sub-system preliminary design process, which 

was studied over a time period of seven months: At the beginning, six semi-structured 

interviews were conducted with three design engineers and their manager to review an 

existing process flowchart and gain understanding of the design process. Then, the first 

data collection workshop was carried out, which was composed of hourly time slots 

with each of five design engineers and the manager with the aim of collecting 

fundamental data about activity durations (probability distributions), resource 

requirements and iteration-likelihoods to build an ASM model of the design process. 

The model was used to run basic process simulations that produced frequency 

distributions of the overall process duration and effort, the latter being measured in 

person-days. These results were then reported back to the design team, who verified 

their plausibility based on the team’s experience with numerous past executions of this 

design process for different jet engine models. Overall, the accuracy of the data 

collected in the first workshop could be thus, positively confirmed.  Subsequently, the 

second workshop was held over half a day with two design engineers to collect 

additional data for the application of the DPCM, for example, effort level boundaries, 

confidence mappings and multiplicative factors for iteration-likelihoods (see Section 5 

for explanations of these variables). Afterwards, the DPCM’s analyses could be 
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conducted and produced advanced results as reported in Section 6.  Finally, these 

advanced results were discussed in two meetings with the design team, who confirmed 

their plausibility and practical usefulness (see Section 7.1).   

4. Conceptual design of the DPCM 

This section describes the DPCM’s conceptual design, including the method’s 

fundamental elements, relationships and potential applications. Although, the major 

procedure and assumptions underlying the conceptual design as well as its results are 

discussed in the following, the interested reader is also referred to Shapiro and Clarkson 

2016, which examines the method’s conceptual design in even greater detail.  

To begin with, Table 1 summarises the identified functional requirements for a 

comprehensive DPC support method, some selected sources per requirement and broad 

conceptual ideas how the DPCM is intended to fulfil these. As no literature was found 

covering an explicit discussion of requirements for such a method, the functional 

requirements were derived based on the features of the methods described in Section 2 

and based on an exploratory case study (Shapiro et al. 2015). Moreover, some general 

requirements for method inputs, application and outputs were taken from the very 

comprehensive, requirements-based development of an ECM tool by Hamraz et al. 

(2013) and transferred from the product- into the process-domain. This approach thus 

resulted in a list of functional and general method requirements (please contact the first 

author for the full list), of which only the functional requirements are presented in Table 

1 due to their predominant importance for the conceptual design of the DPCM. 
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Table 1: Conceptual ideas to fulfil the identified functional method requirements. 

Functional requirement Conceptual idea to fulfil the requirement 

1. Activity-based  
modelling of evolutionary 
design processes 
(Khoo, Chen, and Jiao 
2003; Wynn, Caldwell, and 
Clarkson 2014) 

Theoretically, the DPCM could be based on various 
activity-network-based frameworks. The ASM (Wynn, 
Eckert, and Clarkson 2006) is suggested because it allows 
capturing complex interrelations between activities and 
deliverables, which is key for the analysis of DPCs. Also, it 
was specifically developed for modelling design processes 
and thus, contains many design-focused features so that it is 
convenient to use. 

2. Modelling iteration 
(Chalupnik et al. 2007; Li 
and Moon 2012) 

As DPCs can affect the level of uncertainty in the process 
and may trigger iterations, which substantially impact 
process performance (Eppinger 1991), it is suggested to 
model the occurrence of iterations dependent on uncertainty 
(see, e.g., Lévárdy and Browning 2009). 

3. Modelling changes in 
activities 
(Cronemyr, Öhrwall 
Rönnbäck, and Eppinger 
2001; Khoo, Chen, and 
Jiao 2003) 

It is suggested to represent changes in activities as changes 
in the associated effort (Lukas et al. 2007), which implicitly 
considers both changes in activity durations and in their 
resource requirements, and increases the flexibility of 
modelling real-world processes. 

4. Modelling changes in 
deliverables 
(Chua and Hossain 2012; 
Wynn, Caldwell, and 
Clarkson 2014) 

Based on the existing literature (see, e.g., Chua and Hossain 
2012), it is suggested to account for specific changes in 
deliverables by capturing their potential of causing 
iterations.  

5. Modelling structural 
changes 
(Karniel and Reich 2013) 

It is suggested to adapt process plans manually in order to 
represent structural changes because rule-based automatic 
adaptation of plans adds significant complexity to the 
method and also does not work for every change case 
(Karniel and Reich 2013). The DPCM’s user will thus 
decide, e.g., whether a new activity can be added without 
adding new deliverables. 

6. Modelling propagating 
DPC effects 
(Ahmad, Wynn, and 
Clarkson 2013; Ouertani 
2008) 

It is suggested to consider DPC propagation between 
activities and deliverables (Wynn, Caldwell, and Clarkson 
2014) in order to equally capture the lower-level effects of 
changes in activities, deliverables and structural changes, 
i.e. activity-deliverable relationships. Moreover, in order to 
limit the complexity of modelling, the method concept is 
restricted to the process domain so that change propagation 
to elements of the product domain, such as components, is 
not considered. 
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7. Identifying critical 
DPCs, reactions and DPC-
based process 
improvements 
(Chalupnik et al. 2007; 
Cronemyr, Öhrwall 
Rönnbäck, and Eppinger 
2001) 

To increase the practical usefulness the identification and 
comparison of multiple alternative candidates for critical 
DPCs, reactions and process improvements (Browning and 
Eppinger 2002), rather than the identification of a single 
theoretical worst or best case, should be supported. 
 

8. Analysing DPC impacts 
(Chua and Hossain 2012; 
Lukas et al. 2007) 

Process simulations are suggested to assess DPC impacts 
because closed-form analysis is often not possible for 
complex, stochastic networks (Shapiro et al. 2015). 

 

The method’s concept integrates the described conceptual ideas to fulfil these 

functional requirements and is introduced in the following sections. 

4.1. Fundamental method 

The fundamental idea of the concept is that if a DPC occurs it can be modelled by either 

adapting the effort invested into design activities or the confidence that designers have 

into deliverables or both (see Figure 2, modelling DPCs corresponds to requirements 3-

5 in Table 1). In addition to these direct effects on singular process elements, there are 

indirect effects on the iterative behaviour, as it is driven by confidence (or uncertainty, 

see Table 1, requirement 2), which are represented as follows: The likelihood that an 

activity triggers iteration depends on the confidence into the deliverables that it 

consumes. Moreover, the confidence of a downstream deliverable is determined by both 

the effort invested into the upstream process and the confidence into the upstream 

deliverables used to create the downstream deliverable. Hence, these two relationships 

establish a propagation network, in which the confidence into upstream deliverables and 

the upstream effort determine the confidence into downstream deliverables and thus, the 

likelihood of iterations of downstream activities, which in turn lead to additional 

upstream effort and so on. DPCs are propagated through this network and affect both 

process duration and effort.  
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This concept can be implemented in ASM, which also supports process analysis 

through Monte-Carlo simulations (see Table 1, requirements 1 and 8). Moreover, ASM 

allows the definition of process variables so that change effects can be captured for sub-

processes and the holistic process (see Table 1, requirement 6). Finally, the propagation 

network described above can be examined to suggest alternative DPC reactions and 

process improvement options (see Table 1, requirement 7). 

 

Figure 2. Overall concept for the suggested DPCM. 

4.2. Fundamental method elements  

The concept is based on two fundamental elements: activities and deliverables (see 

Figure 2). 

Activities are constituent parts of a process, i.e. sub-processes, which can be 

defined as “packages of work to be done to produce results” (Browning et al. 2006, 

p.117). They consume inputs and resources, like time, money, people, tools and 

facilities. Sim and Duffy (2003) suggest a formalism for a generic design activity, 

which views the activity as converting a design goal and the design agent’s imperfect 

knowledge into additional knowledge, which may or may not represent a solution to the 

goal. If the activity does not produce such a solution, a new potentially more 

manageable goal emerges that prompts alternative actions, which eventually will bring 

the design-agent closer to a design solution. Sim and Duffy also classify design 
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activities into three major types: definition activities, which reformulate the design 

problem so that it becomes easier to find design solutions, evaluation activities, which 

assess potential design solutions, and management activities, which co-ordinate other 

activities towards a progress in the design solution. 

The element of the proposed concept, which is referred to as activity (see Figure 

2), is closely aligned with Sim and Duffy's definition and types. The concept 

particularly relies on two properties of this element: the effort associated with activities 

and their potential to trigger iterations. In this context, effort comprises the overall cost 

including knowledge, resources, tools and time that are invested into design activities to 

transform input into output deliverables and to evolve the design. Furthermore, based on 

the examined formalism for a generic activity, activities of every major type may trigger 

iterations.  

Given the concept is based on ASM, it assumes that the design can be 

represented as the generation and refinement of deliverables through activities (see 

Figure 2). Such a deliverable can be quantitative or qualitative and can describe any 

characteristic of the product, for example, a parameter like the geometry of a fan blade, 

a data file like the fan blade's mesh used for stress analysis, or a report like the stress 

analysis' report (Wynn, Eckert, and Clarkson 2006). Further examples for such 

deliverables are CAD drawings, bills of material, simulation data or calculation results 

(Ouertani 2008). 

A key characteristic of deliverables utilised by the proposed concept is 

confidence. Clarkson and Hamilton (2000) based their Signposting modelling 

framework on the evolution of parameter confidence, which they defined as follows: 

“To be confident in a parameter means that the parameter is detailed, accurate, robust, 

well understood, physically realistic and, in the case of a performance parameter, meets 

14 
 



pre-defined performance requirements.” This definition of confidence also fits the 

proposed concept, although one important difference exists: While Signposting grounds 

on the ‘absolute’ change in confidence caused by the execution of a certain activity 

(e.g., the confidence into the geometry of an aerofoil increases after a stress analysis 

compared to the situation before the stress analysis), the proposed method grounds on a 

‘relative’ deliverable confidence, which is compared to a usual confidence in this 

deliverable in similar designs and at a similar design stage (e.g., the confidence into the 

geometry of an aerofoil is higher than usual after a stress analysis, which was executed 

with a finer mesh than usual). A relative comparison of deliverable confidence to 

similar past designs is possible since the proposed method targets mature, evolutionary 

design processes (see Table 1, requirement 1). 

The reason for the use of relative confidence is the proposed dependency of 

iterative behaviour on deliverable confidence, elaborated in the following section. A 

relative understanding of confidence allows the same sub-process to produce different 

levels of confidence in an output, which impacts the iterative behaviour downstream. 

4.3. Fundamental relationships between method elements  

The first fundamental relationship underlying the proposed method concept is a 

dependency between the confidence into an activity’s inputs and its likelihood to trigger 

iterations (see Figure 2), i.e. 

Iteration – likelihood = f(ConfidenceInputs)  (1) 

It is discussed in the engineering design literature from various perspectives (Lévárdy 

and Browning 2009; Suss and Thomson 2012; Wynn, Grebici, and Clarkson 2011). 

Intuitively this relationship is negative, i.e. iteration-likelihoods tend to decrease for 

high confidence levels in inputs. For example, if a designer has a high confidence into 
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the geometry and the material of a blade it is less likely that a stress analysis activity, 

which consumes these inputs, will fail and result in the blade’s redesign. Inherently the 

designer’s a-priori assessment may be inaccurate and thus, a certain likelihood exists 

that once executed the stress analysis will trigger iteration. 

The influence of input confidence on the iteration-likelihood depends on the 

specific activity. In fact, there are also activities where iteration-likelihood and input 

confidence are independent. For example, exploring the design space may be an 

iterative activity, which is repeated until a certain scheduled duration expires 

independently from the designer’s confidence into identified solutions or requirements. 

Consequently, the method should be flexible enough to capture different specifications 

of this relationship. It is noteworthy that this relationship can be only implemented for 

explicitly captured possibilities of iteration. The modeller thus, needs to carefully 

choose the model's level of granularity so that relevant iterations are not obscured.  

The second fundamental relationship underlying the proposed method concept is 

a dependency between the confidence into an activity’s inputs, the effort invested into 

the activity and the confidence into the activity’s resulting output (see Figure 2), i.e. 

ConfidenceOutput = f(Effort, ConfidenceInputs) (2) 

This relationship has also been discussed by multiple authors in the engineering design 

literature (Lévárdy et al. 2003; MacCallum and Duffy 1987; Wynn, Grebici, and 

Clarkson 2011). Intuitively it is positive, i.e. the confidence into a design activity’s 

output tends to increase with the effort invested into the activity and with an increasing 

confidence into its inputs. For example, a design team that has a high confidence into 

the design requirements on hand and spends a substantial time with the generation of 

alternative concepts, should have a higher confidence into the resulting set of concepts 
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than the same design team if it was not sure about the feasibility of certain requirements 

and had less time for the concept generation. 

Once again, the influence of effort and input confidence on output confidence 

depends on the specific activity and output. In fact there may be activities that have 

multiple outputs, of which each is differently affected by the activity's effort and inputs. 

For example there may be cases where only a sub-set of inputs influences a certain 

output, or where the output confidence is independent from the effort. The latter case 

can be well envisioned for certain computational activities, which require a standardised 

effort so that changes in this effort are infeasible. Thus, the method should be flexible 

enough to capture such different specifications of this second relationship. 

It is noteworthy that an additional network of interactions is introduced through 

the second relationship, as now activities do not only depend on each other in terms of 

information precedence constraints but also in terms of confidence levels of their inputs 

and outputs. Moreover, in their basic form the two relationships have an important 

interplay: If, for example, a DPC led to insufficient effort devoted to the process 

upstream, this could result in a lower output confidence, which would increase the 

likelihood that iterations are triggered downstream. In turn, such iterations would result 

in an increase in upstream effort so that output confidence would increase and the 

likelihood of further iterations would decrease. Therefore, in the proposed concept 

iterations function as a control mechanism for the confidence into the design – an 

intuitive and intended effect. 

4.4. Possibilities of method application  

According to the goals of existing DPC support methods (see Section 2), the DPCM is 

intended to help design teams gain understanding and improve process execution and 
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planning based on the examination of DPC effects. Accordingly, the method should 

offer a tool box with analysis possibilities, which address each of these points. The 

following analysis tool box, which is based on the method elements and relationships 

established in the previous sections, is envisioned as part of the method (see Figure 3): 

The analysis to gain understanding comprises the preventive identification of 

potentially critical DPCs by examining the impacts of confidence decreases in external 

process inputs or reductions in activity effort (Figure 3, analysis 1) on process duration 

and effort. The analysis thus, supports risk identification, which is a particularly 

challenging area within project risk management (Kloss-Grote and Moss 2008). 

Moreover, this analysis can be also extended to actual DPCs, which are likely to 

comprise a mixture of input confidence and activity effort changes. 

The analysis to improve process execution encompasses the examination of 

mitigating reactions to reductions in input confidence and/or activity effort (Figure 3, 

analysis 2) so that an increase of process duration and effort is minimised or avoided. 

 

Figure 3. Types of analysis supported by the DPCM. 

 

Lastly, three types of analysis to improve process planning, based on identifying 

and prioritising the ‘right’ DPCs, are suggested. The first type examines combinations 

of confidence increases in specific external inputs and effort investments into specific 
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activities to reduce unwanted iterations and rework and consequently overall process 

duration and effort (Figure 3, analysis 3a). The second type identifies activities, which 

should be executed as lean as possible, as additional effort does not increase their output 

confidence, to reduce overall process effort and duration (Figure 3, analysis 3b). The 

third type assesses combinations of confidence increases in specific external inputs and 

effort investments into specific activities to increase the confidence into process outputs 

(Figure 3, analysis 3c), and therefore, addresses the quality dimension of design process 

performance.  

Overall, the suggested method is thus, envisioned to be used for the 

investigation of various ‘what if?’ scenarios during design process planning and 

execution. 

5. Detail design of the DPCM  

This section examines the DPCM’s detail design and implementation in ASM, and 

specifies the method’s elements, their relationships and the method’s application. 

5.1. Specification of method elements 

The detailed specification of activities and deliverables, which are the DPCM’s two 

fundamental elements (see Section 4.2), is discussed hereafter. 

5.1.1. Activities 

To recapitulate, the method focusses on two properties of activities: the consumed effort 

and the potential to trigger iterations (see Section 4.2).  

The DPCM differentiates between three discrete effort levels per activity, i.e. 

low/medium/high (abbreviated l/m/h hereafter), based on a relative comparison to the 

usual effort of an equivalent activity in similar, past projects. Consequently, two effort 
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level boundaries, which separate medium from low and high from medium effort, need 

to be defined by the responsible design team per activity. In practice, this presumes the 

approximation of activity effort through, for example, costs for human labour and the 

use of equipment or simply the activity’s total-execution time multiplied with the 

number of human resources, measured in person-days. 

The design team only needs to define such effort level boundaries for activities, 

the output confidence of which depends on the invested effort (according to so-called 

confidence mappings, which are specifications of the second fundamental relationship, 

see Section 5.2.2). The boundaries should be then specified in such a way, so that a 

low/high activity effort can be expected to considerably decrease/increase the 

confidence into the activity’s respective outputs. Moreover, as the DPCM builds upon a 

simulation model of the examined design process, which contains various uncertainties 

(e.g., probabilistic activity durations and iteration), process simulations of the baseline 

process before changes can be used to produce frequency distributions of the chosen 

(cumulative) effort proxy per activity. These frequency distributions can support design 

teams in defining effort level boundaries, as, for example, the first and fourth quartile of 

observations per activity could be attributed to low and high effort levels respectively.  

Figure 4 shows a screenshot of the implementation of effort levels in ASM. The 

variable eA1, which is being edited in the screenshot, is used to assign an effort level to 

the activity A1 during simulations: If the activity’s effort, approximated through the 

activity’s total-execution time multiplied with the number of required designers (hrA1), 

is smaller/larger than the predefined effort boundary emA1/ehA1 the effort is recorded 

as l/h; if the effort is between emA1 and ehA1 the effort is recorded as m. 
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Figure 4. Implementation of effort levels and confidence in ASM. 

 

The DPCM’s second relevant property of activities, the causation of iterations, is 

modelled in ASM through specific constructs, which can be used to represent activities 

that trigger a single or multiple alternative iteration-loops. The conditions to trigger 

iteration-loops, can be specified through functions and variables. For example, the 

outcome of the function rand(), which produces a random variable generated from a 

uniform distribution between 0 and 1, can be compared to a variable, which denotes a 

pre-specified iteration-likelihood, to represent probabilistic iterations (see Figure 5). 

21 
 



 

Figure 5. Implementation of iterations in ASM. 

5.1.2. Deliverables 

Deliverables are the DPCM’s second fundamental element (see Section 4.2) and 

particularly the confidence into deliverables is in the method’s focus. Similarly to 

activity effort, the method differentiates between three discrete confidence levels per 

deliverable, i.e. low/medium/high (abbreviated l/m/h hereafter), based on a relative 

comparison to the usual confidence into the deliverable in similar, past design projects 

and at an equivalent design stage. Applying the DPCM, confidence levels of internal 

deliverables, which are produced within the examined process, are automatically 

calculated based on so-called confidence mappings, which are specifications of the 

second fundamental relationship (see Section 5.2.2). Contrary to internal deliverables, 

external process inputs come from customers, other upstream or past sub-processes and 

thus, are not under the direct influence of the examined design process. Per definition if 
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there is no reason to assume a higher or lower confidence into an external input 

compared to similar designs at an equivalent design stage, a medium confidence level is 

appropriate.  Consequently, confidence levels only need to be specified by the 

responsible design team for specific external inputs if concrete instances of the design 

process with changes of the confidence into these inputs are analysed. A low/high 

confidence level is then assigned to an external input if it can be expected to 

considerably decrease/increase the confidence into one of its dependent outputs. 

As the DPCM’s fundamental relationships (see Section 5.2) are used to calculate 

output-confidence levels and iteration-likelihoods based on input-confidence levels, a 

consolidated input confidence level needs to be determined for activities with multiple 

inputs. Based on the case study experience (see Section 6), two alternative consolidation 

rules, which should be agreed upon with the responsible design team, are suggested for 

such activities: 

(1) Determine the single input with the greatest effect on the confidence into the 

output, i.e. the ‘major input’ of the activity, and assume its confidence level as 

the overall consolidated input confidence level. 

(2) Assume the lowest confidence level of all inputs, which influence the 

confidence into the output, as the overall consolidated input confidence level. 

The second consolidation rule is based on the cautious assumption that uncertainties in 

multiple inputs rather add up and do not cancel each other out. Thus, it is both more 

conservative and parsimonious with regard to data collection than determining a 

weighted average of multiple input confidence levels. 

Figure 4 also shows the implementation of confidence levels in ASM for an 

activity with multiple inputs. The independent variables cD1 and cD2 denote the 
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confidence levels of the individual inputs and can be adapted by the modeller to 

represent changes. The dependent variable cD1D2 determines the consolidated input 

confidence using a function, which determines the minimum of two values. Thus, 

cD1D2 consolidates the input confidence according to the second rule outlined above. 

5.2. Specification of relationships between method elements 

Two fundamental relationships are underlying the DPCM (see Section 4.3): First, a 

dependency between the confidence into an activity’s inputs and its likelihood to trigger 

iterations and second, a dependency between the confidence into an activity’s inputs, 

the effort invested into the activity and the confidence into the activity’s resulting 

output. The quantitative formalisation of these relationships and their implementation in 

ASM is discussed in the following. 

5.2.1. Input confidence and iterations 

To implement the first fundamental relationship in the DPCM, first, an iteration-

likelihood ij
* is estimated for every activity j, which has the potential to trigger 

iterations, based on the experience of the responsible design team. Then, the design 

team is asked to specify a multiplicative factor aj,c, with aj,c ≥ 0, for the iteration-

likelihood for each possible confidence level c of the activity’s consolidated inputs. The 

iteration-likelihood of activity j is then modelled as follows: 

ij,c = Min(aj,c x ij, 1) for c ϵ {l, m, h}     (3) 

Here the Min()-function is introduced to avoid ij,c>1. Thus, the multiplicative factors 

denote a change in the iteration-likelihood depending on the level of input confidence. 

If aj,l > aj,m > aj,h there is a negative relationship between iteration-likelihood and input 

confidence, which is the typical case (see Section 4.3). If aj,l < aj,m < aj,h this relationship 
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is positive – a rather theoretic case that was not observed in the case study (see Section 

6). Lastly, if aj,l = aj,m = aj,h then the iteration-likelihood of the examined activity and its 

input confidence are independent. Equation (3) is based on ij, which is a calibrated 

iteration-likelihood for the activity, rather than on the specified iteration-likelihood ij
*. 

If the equation was based on ij
* and the process simulations resulted in certain ratios of 

simulation runs with l/m/h input confidence for the iterative activity depending on the 

upstream process, it would be purely by chance if these ratios were such, that ij
* would 

be replicated overall. Thus, after the definition of aj,c for c ϵ {l, m, h} an ij needs to be 

found so that the simulation model is calibrated to produce the specified iteration-

likelihood ij
* on average. Alternatively, ij could also be specified directly together with 

the multiplicative factors by the responsible design team. Then, the resulting ij
* can be 

derived from simulations and its plausibility should be verified. 

The discussed relationship can be implemented in ASM by specifying a 

condition in the iterative activity`s properties that changes a variable, which describes 

its iteration-likelihood, depending on the level of input confidence (see Section 5.1). To 

calibrate the model, it is suggested to run multiple simulation sets with different values 

for ij and to converge iteratively to its right value so that the pre-specified ij
* is produced 

on average. This requires measuring the resulting average iteration-likelihood for each 

simulation set and comparing it to ij
* of the targeted activity j. Usually, if the resulting 

average iteration-likelihood is too low/high, a higher/lower value of ij should be tested 

in the next simulation set. Implementing this procedure in ASM requires the definition 

of two counting variables per iterative activity to count the number of activity 

executions with and without iterations respectively. The average iteration-likelihood can 

then be calculated as the number of activity executions with iteration divided through 

the sum of executions with and without iterations. If multiple iterative activities are 
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present in the process, this calibration procedure should start with the most downstream 

iterative activity and then proceed one-by-one to activities further upstream, as 

downstream iterations affect the effort and number of activity repetitions in the 

upstream process (Shapiro et al. 2015). Moreover, for activities that can trigger multiple 

alternative iteration-loops the iteration-likelihoods should be calibrated for all possible 

loops.  

5.2.2. Input confidence, activity effort and output confidence 

To implement the DPCM’s second fundamental relationship a mapping of input 

confidence and activity effort to output confidence, called confidence mapping 

hereafter, needs to be elicited for every activity output in the examined design process. 

Figure 6 shows three typical mapping possibilities for an activity each represented by a 

different table. The inside of each table denotes the resulting confidence level of the 

activity’s output for every possible combination of input confidence and activity effort, 

as shown at the outside of each table. In table a), for example, a medium level of input 

confidence and a high level of activity effort result in a medium level of output 

confidence. Thus, while in table a) output confidence depends purely on input 

confidence (valid, e.g., for certain standardised computational activities ), in table b) 

output confidence depends purely on activity effort (a rather theoretical case) and in 

table c) output confidence depends on both input confidence and activity effort. The 

elicitation of such a mapping relies on the experience of the responsible design team. As 

these mappings need to be consistent with the definition of the respective effort and 

confidence levels (see Section 5.1), it is important to specify the effort and confidence 

levels with this application in mind. 
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Figure 6. Characteristic confidence mappings for an activity with a single input and 

output. 

 

Figure 7 shows a screenshot of the implementation of such a mapping in ASM. 

To determine D2’s confidence a dummy activity, which has a symbolic duration of 1 

second and is called ConfD2, is created. The mapping is defined in the dummy 

activity’s properties through nested if()-statements, where the variable cD2 denotes the 

resulting output confidence that depends on the input confidence cD1 and the activity 

effort eA1, so that the example corresponds to mapping c) in Figure 6. The confidence 

mapping needs to be implemented in a separate dummy activity because ASM does not 

understand the correct execution order of first defining and then operating on variables 

in the same properties tab. This circumstance thus, requires a doubling of the activities 

on the process map. To maintain readability of the model it is suggested to group each 

activity and the respective dummy into a sub-process (yellow frame in Figure 7). Such 

sub-processes can be collapsed so that dummy activities are not visible if not required. 
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Figure 7. Implementation of confidence mappings in ASM. 

5.3. Discussion of model building 

This section discusses the DPCM model building as described throughout the 

specification of method elements and relationships in Sections 5.1 and 5.2. First, the 

effort for collecting the required data and incorporating it in a DPCM model is 

examined, before possibilities to verify the model’s accuracy are discussed. 

Provided that a process flowchart, which shows the activities, deliverables and 

the process flow of the examined design process, exists or has been developed, there are 

two types of input data required to apply the DPCM: 
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(1) Basic process modelling data, comprising a duration (probability distribution), 

resource requirements (human, computational and other resources) and an 

iteration-likelihood (if applicable) for each activity; If other effort proxies than 

the total-execution time of activities multiplied with the number of utilised 

resources are available and relevant, these should be also specified through 

probability distributions per activity; 

(2) DPCM-specific data, comprising effort level boundaries, input confidence 

consolidation rules, confidence mappings, multiplicative factors for iteration-

likelihoods, and adapted effort and confidence levels for specific change cases. 

In the reported fan sub-system case study the basic data was collected during a 

six-hours workshop (see Section 3), of which approximately four hours were spent on 

the examined core part of the process with 27 activities (see Figure 9). Additionally, the 

relevant DPCM-specific data was collected during another half-day workshop. 

Moreover, building the basic ASM model after the first workshop took approximately 

five days and enriching it with the DPCM-specific data after the second workshop 

required another two days. Although this model building effort depends on the specific 

process, it can be expected to be approximately proportional to the number of activities 

in the underlying process flowchart. Also, it is noteworthy that the developed model can 

be reused for applications of the DPCM to future executions of the examined design 

process, unless the complete process is restructured or the methods and tools utilised are 

altered substantially. Furthermore, the first type of data is useful for design process 

management irrespective of the DPCM, as it is provides fundamental information for 

process planning and scheduling. 

The accuracy of the developed model should be ensured in a number of ways. 

First, all data should be collected with at least two design team members providing an 
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opinion and jointly agreeing on a value, which reduces the subjectivity of results 

compared to interviewing a single person. Second, the basic process modelling data 

should be verified through running process simulations of the basic ASM model to 

produce frequency distributions of the overall process duration and effort. The 

plausibility of these process performance measures should then be assessed based on the 

team’s experience with past executions of the examined or similar design processes. 

Lastly, as the ASM model that is enriched with DPCM-specific data is calibrated to 

replicate the baseline process performance (see Section 5.2.1), the accuracy of the 

DPCM-specific data only needs to be verified for the representation of changes. This 

could be done by examining and comparing the effects of DPCs in past design 

processes to predictions of the DPCM, which presumes that past design processes were 

documented accordingly, including a differentiation between direct and indirect change 

effects and a record of initiated reactions to DPCs. As this is rarely the case and also 

because of the DPCM’s intended applicability to hypothetical changes, like the 

identification of potentially critical DPCs or process improvements (see Section 4.4), it 

is rather suggested that the plausibility of respective results is discussed with the design 

team. The team should then be able to assess whether the activities and deliverables 

identified as potentially critical or relevant for improvements are reasonable based on its 

expertise and experience. 

While it is acknowledged that the described procedure does not ensure an 

entirely objective evaluation of the model’s accuracy and the related accuracy of 

analysis results – a fundamental difficulty that is also well-known in the evaluation of 

EC-propagation methods (Hamraz 2013) – the listed steps are deemed adequate to 

ensure useful results, which can be confidently utilised by the design team according to 

the authors’ case study experience.  
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5.4. Specification of method application 

Due to space constraints it is not possible to discuss the detailed implementation of all 

analysis types enabled through the DPCM (see Section 4.4). However, as all of these 

analyses can be realised through a similar sensitivity study procedure, first this 

procedure is explained hereafter. Then, because of its complexity and noteworthy 

application results, analysis 3a (see Figure 3), which supports process planning by 

reducing unnecessary iterations, is detailed.  

5.4.1. Sensitivity study procedure underlying the DPCM’s analyses 

The sensitivity study procedure underlying most of the DPCM’s analyses is similar to 

one suggested earlier by the authors (Shapiro et al. 2015). It is based on comparing the 

design process effort and duration as well as the effort and duration of singular activities 

before and after a change or improvement. Two particularly important measures for this 

procedure are an activity’s total-execution time tn, which is defined as its cumulative 

duration over all repetitions during the process (due to rework), and an activity’s total 

effort ten, which is quantified as costs or can be approximated through the activity’s 

total-execution time multiplied with the number of designers required for its execution, 

as described in Section 5.1.1.  

The sensitivity study procedure can then be summarised as follows: 

(1) Run a first set of Monte-Carlo simulations on a DPCM model of the design 

process of interest. This set simulates the baseline case with initial deliverable 

confidence and activity effort levels before any change or improvement. The 

model requires the definition of variables to measure 1) the total-execution time 

tn and 2) the effort ten for each activity n=1, …, N as well as 3) the process effort 

TE and 4) the process duration D. 
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(2) Obtain estimates for 1) the expected total-execution time E(tn) and 2) the 

expected effort E(ten ) for each activity n=1, …, N as well as for 3) the expected 

process effort E(TE ) and 4) the expected process duration E(D). This requires 

calculating 1) the average total-execution time and 2) the average effort for each 

activity as well as 3) the average process effort and 4) the average process 

duration over all simulations respectively. 

(3) Model a process change or improvement (i.e. change confidence levels of 

deliverables and/or effort levels of activities) and run a set of Monte-Carlo 

simulations of the adapted design process. Repeat this for every of the M change 

or improvement constellations of interest, so that M simulation sets are run 

overall. 

(4) For each of the M simulation sets repeat step 2 thus, resulting in estimates for 

1) E(tn,m), 2) E(ten,m), 3) E(TEm) and 4) E(Dm) with m=1, …, M. 

(5) For each of the M simulation sets calculate estimates for relative changes in 

1) the expected total-execution time and 2) the expected effort per activity as 

well as in 3) the expected process effort and 4) the expected process duration, 

i.e. 1) ∆e(tn,m) , 2) ∆e(ten,m), 3) ∆e(TEm) and 4) ∆e(Dm)  for m=1, …, M. 

The highest absolute values of ∆e(TEm) and ∆e(Dm) indicate the most critical 

changes or most effective improvements and the design manager might need to trade-

off these two process performance dimensions, i.e. effort and duration, when assessing 

the criticality or effectiveness of changes. Moreover, the measurement of ∆e(tn,m) and 

∆e(ten,m) enables identifying the activities, which are affected the most by each change 

or improvement. 

The required simulation sets for different change and improvement 

constellations can be carried out in ASM, which includes a functionality for simulation 
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experiments that allows to define a different value for each independent variable per 

simulation set. As confidence levels of external process inputs are described by 

independent variables (see Section 5.1.2), they are straight-forward to control. However, 

because activities accumulate effort during the process, activity effort levels cannot be 

directly described by independent variables. Instead, the DPCM compares the 

accumulated effort per activity to its defined boundaries and calculates effort levels 

accordingly (see Section 5.1.1). Thus, an independent control variable and additional 

conditions need to be defined so that the required effort level is reached per activity 

execution, as demonstrated in Figure 8: Given a certain number of human resources 

(hrA1) involved in the activity A1, the variable econA1 controls the activity’s duration 

to produce a required effort level. It is important that the control variable’s value is reset 

after activity completion if an activity is not meant to be repeated with a certain effort 

level in case of rework. 

 

Figure 8. Use of variables to control the effort levels of activities during simulations in 

ASM.  
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5.4.2. Support of process planning through reduction of iterations 

This analysis (3a in Figure 3) examines the impacts of combinations of input confidence 

and activity effort increases on the iterative behaviour of the design process. 

Fundamentally, a design process could be improved through the investment of effort 

into the right activities within the process or within upstream sub-processes that create 

relevant process inputs. By doing so confidence levels of internal deliverables are 

increased and unnecessary iterations are reduced, so that the overall process effort and 

duration may be decreased, although more effort is invested into certain areas.  

Although one-at-a-time increases in deliverable confidence or activity effort 

levels could be easily examined, such improvements may not be effective as depending 

on their specific confidence mappings (see Section 5.2.2) activities may require certain 

confidence and effort level combinations to produce high confidence outputs to reduce 

downstream iteration. Thus, before applying the sensitivity study procedure described 

above, sensible improvement combinations need to be identified: If the baseline case 

before changes is analysed for a design process it is, per definition, sensible to assume 

medium confidence levels of external process inputs (see Section 5.1.2). Improvement 

combinations will thus, contain medium and high confidence levels of external inputs. 

Contrary, even if the baseline case is considered effort levels could be low for the first-

time execution of activities, because effort accumulates during the process as activities 

are reworked until it reaches medium levels on average. Hence, improvement 

combinations will contain activity effort increases to medium or high levels, but only 

for the first-time execution of activities. As effort accumulates, the positive effect of an 

effort increase in an activity’s first-time execution on its output confidence is sustained 

if rework occurs. Moreover, there are usually external inputs and activities, which are 

irrelevant and can be neglected for this analysis, as they do not affect the confidence 
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levels of internal deliverables, which may affect relevant downstream iterations. Such 

deliverables and activities can be easily excluded based on the process structure and the 

collected confidence consolidation rules and confidence mappings.  

Overall, the improvement combinations will thus, increase confidence levels of 

relevant external inputs to high and effort levels of relevant activities to medium or 

high. However, as not all inputs and activities will be improved at the same time, the 

combinations will contain lc=2 confidence and le=3 effort levels. Even for a relatively 

small design process model with i=10 relevant external inputs and a=20 relevant design 

activities this would result in lc
i x le

a = 210 x 320 ≈ 3.6 x 1012 possible combinations if a 

full-factorial design of experiments (DoE) was applied. As evaluating such a large 

number of improvement combinations through simulations is computationally not 

feasible, a sub-set of these combinations needs to be selected. Such a selection can 

either be automated by applying more parsimonious DoE schemes or conducted 

manually by applying a decision-tree analysis of the most promising improvement 

combinations. 

Various DoE schemes are available, which differ in the number of combinations 

that are tested and which are applicable in different situations depending on the 

characteristics of the factors (here: external inputs and activities) and the response 

surface (here: process duration and effort). Based on a comparison of common 

experimental designs conducted by Sanchez and Wan (2012), random Latin hypercube 

designs or 512-design point nearly orthogonal and balanced mixed designs (512 NOB; 

Vieira et al. 2011), which are both general-purpose designs applicable to models with a 

large number of interacting factors with different numbers of levels, are suitable to 

identify improvement combinations of increases in input confidence and activity effort. 

Contrary to 512 NOB, which prescribes 512 design points, i.e. improvement 
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combinations, random Latin hypercube designs allow the specification of the number of 

design points to be examined. More design points increase the chance of identifying 

improvement combinations with greater reductions in process effort and duration, but 

also increase the computational effort for simulations. DoEs can be automated through 

widely available tools and thus, are convenient to identify improvement combinations.  

Alternatively, a selection of promising improvement combinations can be 

conducted manually through decision-tree analysis, but requires a good understanding 

of the DPCM. This analysis begins downstream at the activity that triggers a critical 

iteration. Usually, its iteration-likelihood decreases for a high confidence level of its 

input (see Section 4.3). Consequently, the user examines the upstream activity, which 

produces this input (its own output), and analyses the conditions to generate a high 

confidence level output based on the confidence mapping (see Section 5.2.2). The user 

could, for example, find that the upstream activity requires a 1) medium input 

confidence and high effort level or 2) high input confidence and medium effort level or 

3) high levels of both input confidence and effort to produce an output of high 

confidence. Then, the user would continue to examine the conditions of the activity 

further upstream to produce the first upstream activity’s input according to the required 

confidence levels and so on. Thus, going backward through the process the user will 

identify multiple improvement combinations of increases in deliverable confidence and 

activity effort, which are effective as they result in the input confidence level that 

minimises the downstream activity’s iteration-likelihood. The number of these effective 

combinations can be further reduced through filtering out non-efficient improvement 

combinations, which produce the required confidence levels in internal deliverables but 

use higher effort and/or higher confidence levels than necessary. In the above example 

option 3) is non-efficient as option 1) requires a lower input confidence level and option 
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2) requires a lower activity effort level, but all three options lead to the same output 

confidence. Moreover, it is suggested to avoid improvement combinations which result 

in low confidence levels of internal deliverables, as these could be inputs to other 

iterative activities and potentially trigger different iterations. 

While the suggested DoE schemes can be applied to identify improvement 

combinations based on process models with overall up to 300 factors (Sanchez and Wan 

2012), i.e. sum of relevant external inputs and activities, the decision-tree analysis is 

only feasible for relatively small design process models. In fact, producing the decision-

tree for reducing iterations in an activity of the process examined in the case study (see 

Section 6.2) took approximately three hours, examining a model with 18 factors. 

Although the effort to build such decision-trees depends on the specific design process 

at hand, it can be expected to grow exponentially with the size of the examined process 

model. Models with >35 factors should thus, be analysed using DoEs as building 

corresponding decision-trees could already take longer than a working day.  

Once promising improvement combinations are identified a simulation 

experiment, which corresponds to the procedure described in Section 5.4.1, needs to be 

defined and executed, where each simulation set corresponds to an improvement 

combination of certain input confidence and activity efforts levels. Then, the impacts of 

the improvement combinations on overall process effort and duration are compared and 

the most effective combinations should be assessed for their practical feasibility before 

being selected for implementation.  

6. Application of the DPCM 

The DPCM was applied to the fan sub-system preliminary design process for civil 

engines at Rolls-Royce PLC. The following sections first elaborate on the case study’s 
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background and subsequently present the application results. Although, each analysis 

type discussed in Section 4.4 was applied to the fan sub-system design, the reported 

results focus on the analysis to support process planning through reduction of iterations 

as detailed in Section 5.4.2. This focus is chosen due to this article’s space constraints 

and also because of the particularly interesting results of this analysis. 

6.1. Case study background 

The fan sub-system preliminary design process aims at submitting a bid that contains 

the weight, the cost and the aerodynamic efficiency of a mechanically acceptable fan 

sub-system to the whole system design team, which is responsible for the preliminary 

design of the overall jet engine. This design process is illustrated using its ASM model 

(see Figure 9), which shows design activities as green rectangles, verification activities 

as yellow rectangles, deliverables as white ellipses, feed-forward dependencies as black 

arrows and feed-back dependencies (iterations) as red arrows.  

The process begins with the generation of different concepts for the fan blade 

based on functional requirements, which correspond to input P1D1 in Figure 9, from the 

whole system design team. Subsequently, one of the resulting concepts is selected to 

produce the blade geometry, which is then subject to aero-thermal design activities. 

These are followed by mechanical design activities, which comprise stress and impact 

analyses of different fidelities as well as a manufacturing assessment. Once the last of 

these analyses, i.e. activities V22 and V23 in Figure 9, are successfully completed, 

weights, costs and aerodynamic efficiencies of the fan components are calculated and 

submitted as a bid to the whole system design team. It is noteworthy, that the 

calculation of these bid attributes is not shown in Figure 9, as the respective activities 

were not in the focus of the analyses presented hereafter. This is because all of the 
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major changes and iterations usually occur in the illustrated core part of the process, i.e. 

before the calculation of bid attributes.  

 

Figure 9. ASM model of the fan sub-system preliminary design process. 
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Although the descriptions of activities and deliverables are replaced through 

numbers and letters in Figure 9 to maintain confidentiality, the following characteristics 

should be emphasised to increase the reader’s understanding of the examined process: 

(1) The process comprises design and verification activities in the areas of concept 

generation, aerothermal and mechanical design; 

(2) Most of the activities are conducted by a single designer over a duration of a 

couple of hours to a couple of days, utilising different types of desktop software; 

(3) Some activities have significant waiting times as they require shared resources, 

for example high-performance computers; 

(4) Many verification activities have high likelihoods to trigger long iteration-loops; 

(5) Overall, the process takes several months, involving more than ten designers 

from different departments. 

While being sufficiently complex due to the described characteristics the process 

is also well understood as at least parts of it are conducted regularly for different 

designs. It is thus, particularly suitable for the application of a novel method such as the 

DPCM. 

Initial interviews and ASM process simulations after the first data collection 

workshop (see Section 3) led to the identification of some key drivers of process 

performance, including the occupation of designers with parallel projects, waiting times 

for shared resources, concurrent execution of process parts and iterations triggered 

through verification activities. The design team’s large interest in the latter, i.e. 

exploring the sources of iterations and possibilities to reduce these, was a strong 

motivation for the DPCM’s development and the analysis presented hereafter. 
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6.2. Analysis results 

Initial simulations of the fan sub-system preliminary design process showed that 

iteration triggered by the activities V22 and V10 (see Figure 9) are particularly critical 

for the process, causing together approximately 40% of the overall process duration. 

Thus, possibilities to reduce the iterations of these activities were examined based on 

the procedure described in Section 5.4.2. 

For this, the baseline scenario before changes and improvements was simulated 

with 50,000 and each of the identified improvement combinations, discussed hereafter, 

was simulated with 20,000 process runs. Moreover, activity effort was approximated 

through the activity’s total-execution time multiplied with the number of designers 

required for its execution and was thus, measured in person-days.  

The choice of the number of simulation runs is a trade-off between simulation 

time, which is proportional to the number of runs, and accuracy, which depends on the 

uncertainty present in the underlying simulation model. This uncertainty comes from 

the probability distributions of activity durations and effort as well as the possibility of 

iterations, and can be quantified by the variance of simulation results. For the examined 

design process and the chosen number of simulation runs the required simulation time 

was approximately four hours for the baseline scenario and 1.5 hours for each of the 

improvement combinations on a 3.6 GHZ desktop computer. The respective analysis 

results, presented in the following, are considered to be reasonably accurate: The 95%-

confidence intervals for the overall process duration and effort range less than 

±0.3% around the average values of simulation results for the baseline scenario and 

less than ±0.5% for each of the improvement combinations, due to the smaller number 

of process runs utilised for the latter. To reduce these errors even further the number of 

simulation runs can be increased. However, for such Monte-Carlo simulations the errors 
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are of order 𝑛𝑛−0.5. Thus, if the simulation runs are increased by a factor of 100 the 

errors will only decrease by a factor of 10. Overall, due to the high uncertainty present 

in the examined design process, the moderate simulation time and the relatively 

accurate results, it can be inferred that the developed method is also appropriate for 

design processes with even greater uncertainties. 

To identify combinations of confidence and activity effort increases, which 

could reduce iterations in each of the two activities V22 and V10, the manual decision-

tree analysis (see Section 5.4.2) was conducted. This resulted in 20 different 

improvement combinations targeting V22, of which 16 combinations produced a high 

consolidated confidence level of V22`s inputs and four combinations produced a 

medium confidence level. Moreover, nine improvement combinations targeting V10 

were identified, eight producing a high consolidated confidence level in its inputs and 

one producing a medium confidence level. The combinations resulting in a medium 

confidence level were included to examine potential improvements, which do not rely 

on confidence increases in external inputs and thus, are realisable purely from within 

the fan sub-system preliminary design process. 

Figure 10 provides a summary of the improvement combinations for V22, 

indicating which activities should be executed with additional effort and which external 

inputs should be increased in confidence as well as showing their average simulated 

effects. Although all combinations considerably decrease V22’s iteration-likelihood, 

some are predicted to be more effective than others. 

For example, combination #20 is predicted to decrease V22’s iteration-

likelihood, but also to decrease the overall process performance and thus, the additional 

effort invested may not pay off. Combination #1 is predicted to exhibit the strongest 

impact, reducing both overall process duration and effort by approximately 20%.  
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Figure 10. Effects of improvement combinations to reduce iterations of V22; 

improvement combinations ordered by increasing expected process duration. 

However, it relies heavily on confidence increases in external process inputs, which are 

not controllable from within the process. To account for this, combinations that lead to 

greater improvements than others, but rely on a smaller or equal number of high 

confidence external inputs are marked in grey and called efficient combinations (the 

combinations #2/#3 and #5/#6 are marked because the simulated effects of these 

combinations are comparable). The best performing combination that does not rely on 

confidence increases in external inputs, is #9, resulting in expected process duration and 

effort reductions of more than 10% purely through adding effort into the right activities. 

It is noteworthy that the improvement effects of the combinations are not purely due to 

less iterations in V22. As V22 is among the last activities in the design process (see 

Figure 9) multiple other iterative activities further upstream are benefiting from the 

propagating confidence increase induced into the process by the combinations. 

The manually identified improvement combinations to reduce iterations in V22 

were also compared to combinations that were automatically generated through the two 
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DoE schemes introduced in Section 5.4.2, i.e. NOB 512 with 512 design points and 

random Latin hypercube with 100 design points, the most effective combinations of 

both of which resulted in estimated process duration reductions of 16%. Although these 

schemes examined a higher number of combinations and consequently required more 

computational effort, their suggested combinations thus, resulted in smaller predicted 

improvements in process performance compared to the combinations identified through 

decision-tree analysis (16% versus 21% reduction in process duration comparing the 

best cases). Even though, the results of the DoE schemes are, compared to the decision-

tree analysis, somewhat less effective, their advantage is that they neither require a 

detailed method understanding nor a time-consuming manual investigation of the design 

process (see Section 5.4.2). In industrial practice the identification of potential 

improvement combinations for larger design process models should be thus rather 

carried out using automated DoE schemes. 

The improvement combinations to reduce iterations of V10 were analysed 

similarly and the most effective combination is predicted to improve overall process 

duration and effort by up to 18%. As for V22 efficient improvement combinations were 

selected based on the number of required external inputs with an increased confidence. 

Then, to identify opportunities that enhance process performance even further, each of 

the efficient improvement combinations for V22 was combined with each of the 

efficient ones for V10, resulting in 22 joint improvement combinations, where each 

joint combination is comprised of the highest confidence and effort level of each 

deliverable and activity that is included in one of the two separate combinations. As 

expected, the joint improvement combinations could reduce overall process duration 

and effort even more by up to 29% (see Figure 11). Remarkably, combination #22 is the 

only one, which does not rely on confidence increases in external inputs and may be 
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implemented purely through adding effort within the fan sub-system preliminary design 

process. 

 

Figure 11. Effects of joint improvement combinations to reduce iteration-likelihoods of 

V10 and V22; improvement combinations ordered by increasing expected process 

duration. 

 

To increase the results’ practical insights, also the effects on individual activities 

can be examined. The heat-map in Figure 12 illustrates these effects for the 22 joint 

improvement combinations as expected percentage changes in each activity’s effort, 

where green/red signifies decreases/increases in an activity’s effort. The values for the 

total process in the last line are the same as in Figure 11 and indicate that all 

combinations lead to decreases in overall effort. Nevertheless, additional effort 

investments are required in certain activities in almost every improvement combination, 
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particularly in D6, V9 and V21. Contrary, there are many activities like V16, D5 and 

D7, which require significantly less effort than originally throughout the improvement 

combinations. Thus, the figure provides a useful tool for design process management, 

showing information on the changed effort and resourcing requirements per activity for 

any given improvement combination.  

 

Figure 12. Effects of joint improvement combinations to reduce iterations of V10 and 

V22 on individual activities; improvement combinations ordered by increasing expected 

process duration. 

 

Having conducted this analysis, the design manager has yet to decide which 

improvement combination to choose for implementation. One of the first considerations 

to make an educated choice is trading-off effort and duration reductions (Shapiro et al. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ∅
D1 -20 -19 -19 -19 -19 -16 -16 -16 -16 -15 -16 -16 -16 -13 -15 -16 -12 -14 -12 -13 -13 -9 -16
D2 -14 -14 -13 -13 -14 -7 -5 -5 -4 -4 -6 -5 -5 3 -4 -4 3 2 4 2 3 11 -5
D3 -46 -46 -45 -46 -46 -40 -37 -37 -37 -37 -38 -37 -37 -30 -37 -37 -29 -31 -29 -31 -30 -22 -37
D4 -43 -43 -42 -42 -42 -39 -34 -33 -33 -34 -39 -34 -33 -30 -34 -33 -30 -30 -30 -31 -30 -26 -35
D5 -53 -53 -52 -52 -53 -47 -51 -51 -50 -50 -46 -51 -51 -44 -50 -50 -44 -45 -44 -45 -45 -38 -49
D6 61 -10 62 -10 61 -5 63 63 63 63 67 62 63 68 63 63 69 68 69 68 68 74 54
D7 -44 -48 -46 -47 -47 -41 -41 -42 -41 -42 -39 -45 -45 -35 -45 -45 -37 -39 -38 -39 -38 -30 -42
D8 -25 -28 -26 -25 -27 -23 -21 -21 -22 -21 -14 -21 -21 -9 -21 -21 -16 -19 -16 -19 -8 -4 -20

D39 -7 -13 -47 -12 -12 -5 -41 -41 -4 -4 -39 -46 -46 -33 -9 -9 -38 -3 -37 -3 -38 -30 -23
V1 -48 -49 -47 -48 -48 -42 -39 -39 -39 -39 -40 -39 -39 -32 -39 -39 -31 -33 -31 -33 -32 -24 -39
V2 -5 -5 -5 -5 -5 -1 6 6 6 6 0 6 7 11 7 7 11 11 12 10 11 16 4
V3 -44 -45 -44 -44 -44 -38 -41 -41 -41 -41 -36 -43 -42 -34 -42 -42 -35 -36 -35 -36 -35 -27 -40
V4 -43 -44 -43 -43 -43 -38 -41 -41 -41 -41 -36 -42 -41 -35 -41 -41 -35 -36 -35 -36 -35 -29 -40
V5 -43 13 13 13 13 18 -41 -41 -41 -41 20 14 15 -35 15 15 21 20 21 20 21 27 0
V6 -43 -44 -42 -43 -43 -36 -40 -40 -40 -40 -34 -41 -41 -32 -40 -40 -32 -34 -32 -33 -33 -24 -38
V7 -10 -10 -9 -9 -10 -10 -9 -9 -9 -8 -4 -9 -9 -4 -9 -8 -8 -9 -8 -9 -4 -3 -8
V9 36 -14 -15 37 -14 -7 37 37 39 39 -7 38 38 45 40 40 -5 -4 -5 -4 46 3 19
V10 -34 -35 -34 -34 -34 -27 -32 -32 -32 -32 -25 -33 -33 -24 -32 -32 -23 -24 -23 -24 -25 -15 -30
V14 -44 -45 -44 -44 -44 -38 -36 -36 -36 -36 -37 -36 -36 -29 -36 -35 -29 -30 -28 -30 -29 -22 -36
V15 -48 -48 -47 -48 -48 -44 -38 -38 -38 -38 -43 -38 -38 -34 -38 -37 -33 -34 -33 -34 -34 -30 -40
V16 -53 -53 -52 -53 -53 -49 -52 -52 -52 -52 -48 -52 -52 -47 -51 -51 -47 -48 -47 -48 -47 -43 -50
V17 -23 -23 -23 -23 -23 -20 -22 -22 -21 -22 -19 -22 -22 -18 -22 -22 -18 -19 -18 -19 -18 -15 -21
V18 -20 -19 -16 -18 -43 -10 -14 -14 -42 -41 -6 -14 -14 -5 -40 -40 -4 -33 -4 -32 -5 5 -21
V19 -42 -44 -40 -41 -40 -37 -38 -38 -38 -37 -30 -38 -38 -28 -36 -36 -28 -29 -28 -29 -29 -19 -36
V21 -20 -19 29 -20 31 -20 32 32 30 30 -9 33 33 -6 30 30 26 29 27 29 -6 -8 15
V22 -20 -20 -20 -20 -20 -21 -19 -19 -18 -18 -9 -20 -20 -9 -18 -18 -17 -18 -17 -18 -10 -7 -18
V23 -30 -31 -27 -29 -29 -31 -21 -21 -23 -23 -15 -20 -20 -9 -21 -22 -22 -26 -22 -26 -8 -10 -23

Total
process -25 -27 -26 -23 -25 -21 -23 -23 -22 -22 -20 -21 -21 -18 -19 -19 -17 -17 -17 -17 -15 -12 -21

Affected
activity

n

Relative change in expected effort per activity for each improvement combination
∆e(ten,m), in percent
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2015). For example, the joint improvement combination #1 comes with a greater 

reduction in duration but smaller reduction in effort compared to #2 (see Figure 11). 

Also, the suggested improvement combinations are predicted (i.e. theoretical). Each 

promising combination should be assessed regarding its practical feasibility, as it might 

not be possible or too expensive in the current situation of the organisation to increase 

the confidence levels of certain external inputs or to increase the effort investment into 

certain activities. 

The design team decided to consider an improvement combination similar to the 

joint combination #8 in the next execution of the preliminary fan sub-system 

preliminary design process. This requires increasing the confidence into the inputs of 

activities V5, V10 and V22 through providing the responsible designers with 

standardised guidance and also through additional research, as well as increasing the 

effort for activities D6, V9 and V21, which is also shown in Figure 12. These changes 

are expected to reduce both process effort and duration by up to 23% (see combination 

#8 in Figure 11). 

7. Discussion 

7.1. Practical usefulness of DPCM 

To recapitulate, the DPCM was intended to help design teams (see Sections 2 and 4.4): 

(1) Gain understanding of DPC effects on design process performance; 

(2) Improve process execution by reacting to and implementing DPCs efficiently; 

(3) Improve process planning by prioritising optional DPCs effectively based on 

costs/benefits.  

47 
 



The identification and comparison of change combinations to reduce iterations 

presented in the fan sub-system preliminary design process, which led to the suggestion 

of improvements of the overall process duration and effort of up to 23%, was clearly 

focused on the third goal, i.e. to improve process planning. However, implicitly this 

example also verified the method’s usefulness to fulfil the first goal, as the effects of 

various changes on the overall process (see Figure 11) and also on single activities (see 

Figure 12) were examined. In addition to the presented analysis, which corresponds to 

analysis 3a in Section 4.4, each of the other suggested analysis types was applied to the 

fan sub-system preliminary design process, with the following results: 

(1) To gain understanding of DPC effects a criticality analysis of one-at-a-time 

decreases of deliverable confidence and activity effort levels was carried out, 

leading to the identification of critical inputs and activities, each of which could 

increase process duration by up to 4% and effort by up to 5% (see Section 4.4, 

analysis 1); 

(2) To improve process execution, efficient reactions to these critical changes were 

identified, some of which could potentially even overcompensate the negative 

change effects and improve the overall process performance (see Section 4.4, 

analysis 2); 

(3) In addition to the presented improvement combinations to reduce iterations, 

process planning was also supported by suggesting effort reductions in activities 

where additional effort would not result in higher levels of output confidence 

based on their confidence mappings (see Section 4.4, analysis 3b) – such 

reductions could improve process duration by 5% and process effort by 7%. 

Furthermore, improvement combinations to increase the confidence into major 

process outputs were suggested (see Section 4.4, analysis 3c) and, according to 
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the simulation results, these may even come for free, i.e. without increasing 

process duration and effort, as they rely on increased confidence levels in 

internal deliverables, which as a side-effect reduce iterations in the process. 

All of the results summarised above, were discussed with design engineers and 

managers, who verified their plausibility. Since some of the suggested improvements 

will be considered in the next execution of the design process (see Section 6.2) the 

DPCM’s practical usefulness can be, at least thus far, confirmed.  

7.2. Limitations and future work 

Since there are multiple types of DPCs caused by a variety of reasons (see Section 2) 

and because design processes can differ substantially in terms of their planning and 

execution practices, it is important to point out the intended scope and potentially 

limiting assumptions of the DPCM. 

First, the DPCM is developed for design processes of artefacts that are not 

designed from scratch but are modifications of existing artefacts. These so-called 

evolutionary design processes constitute the majority of product designs (Bucciarelli 

1994). This application focus allows the collection of data and prediction of DPC 

effects with reasonable confidence, which would be much more difficult with radically 

new designs where mature process plans are unlikely to exist and processes are less well 

understood. 

Second, the concept's fundamental assumption is that DPCs can be represented 

as combinations of changes in activity effort and deliverable confidence. Both the 

examined literature and the industrial study have confirmed the flexibility of this 

approach to capture many types of DPCs. In fact, the replication of effects of a past 

change in a major input as well as the examination of a prospective structural change 
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produced plausible results for the examined fan sub-system preliminary design process. 

Nevertheless, particularly a major structural DPC, for example, an automation of the 

design process, which affects multiple activities, their inputs, outputs and 

interdependencies, may be difficult to model in this manner. Not only, would this 

require the user to adapt the process model manually (see Table 1, requirement 5), 

including adding, taking out or reconnecting activities and deliverables, but more 

importantly, it would be difficult for the user to assess the changed confidence into the 

affected outputs and the corresponding effects on the iterative behaviour of the design 

process. This challenge to represent effects of major structural changes is exacerbated 

given the small number of effort and confidence levels considered in the method (see 

also discussion of the DPCM’s implementation below). Therefore, the applicability of 

the DPCM is currently limited to local changes, which affect only a few activities 

and/or deliverables. Overall, additional research to examine the representability of 

empirical changes in different design processes using the DPCM would be beneficial. 

Third, the DPCM can only predict the performance of the examined process 

part. Effects of potential changes or improvements on the sub-processes upstream or 

downstream from the examined process part are not considered. For example, in the 

analysis of improvement combinations to reduce iterations (see Section 6.2), the method 

did not explicitly account for the effort potentially required in upstream processes to 

increase the confidence into inputs of the examined process. Overall, this modelling 

assumption is not expected to be critical, as further investigations showed that it does 

not necessarily require additional effort to increase confidence levels of deliverables 

(see Section 7.1) and, that once produced, many of these  inputs can be utilised 

repetitively for future design processes. Conversely, downstream processes may benefit 

from increases in the confidence of output deliverables of the examined process, which 
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is also not explicitly predicted by the DPCM. Thus, an interesting direction for future 

research is to examine the total costs/benefits of local changes and improvements for the 

overall design process.  

Fourth, with regard to the DPCM’s implementation, particularly the choice of a 

small number of discrete levels to measure confidence and effort and the relatively 

simple functional formalisation of the fundamental relationships between confidence, 

effort and iterations should be discussed. The choice of a small number of discrete 

confidence levels was also made in Clarkson and Hamilton (2000), who reported that 

designers are more comfortable with the use of discrete levels than with a (cardinal) 

numeric representation of confidence – an observation which is also supported by 

Ullman, Herling, and D’Ambrosio (1997). Also, the reasons why other authors used a 

finer measurement of confidence (e.g., Flanagan, Eckert, and Clarkson 2007) are not 

applicable to the DPCM as it is based on a relative rather than an absolute 

understanding of confidence (see Section 4.2): Applying an absolute understanding of 

confidence, the confidence level into a deliverable increases after every further 

transformation through an additional activity. Contrary, applying a relative 

understanding of confidence, the confidence level into a deliverable does not 

necessarily increase after every transformation through an additional activity, as it is 

compared to the usual confidence into this deliverable produced by a comparable 

activity in similar, past design projects and at an equivalent design stage. Furthermore, 

the choice of few discrete confidence and effort levels is also reasonable, given the 

simple functional formalisation of the method’s fundamental relationships (see Section 

5.2), as a finer measurement brings no advantage if these functions are not designed to 

operate accordingly. However, as these functions can only be specified based on the 

experience of designers the authors argue that they should be kept as simple as possible 
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to avoid the impression of a false accuracy and also to support the method’s traceability. 

Thus, these relationships are currently represented through simple mappings of 

confidence and effort levels to certain outcomes. Nevertheless, some benefits of a finer 

measurement of confidence and effort together with a more sophisticated formalisation 

of relationships are conceivable. In fact, this could allow representing the impacts of 

more moderate or even major (structural) changes on design process performance. In 

this context, future research should therefore examine whether potential benefits of a 

finer parametrisation of the method would justify the correspondingly increased data 

input requirements and the increased computational effort for simulation experiments.  

Lastly, it should be noted that the organisational impact of adapting the DPCM 

has yet to be studied. In particular, future work should explore the requirements and 

implications of integrating the DPCM concept into the existing design process 

governance and IT infrastructure of industrial companies. 

8. Conclusion 

So far research on changes in design has focused on engineering changes, i.e. changes 

in the product domain. However, the design process, which creates the product and is 

characterised by the coordinated execution of activities with complex 

interdependencies, is also subject to change. Such design process changes (DPCs) may 

comprise various perturbations that affect design activities, their deliverables or process 

structure, and ultimately impact process performance. As there is still a lack of 

comprehensive methods to support modelling and analysis of DPCs this article 

systematically develops such a method, the Design Process Change Method (DPCM).  

The key idea of the DPCM is representing DPCs as combinations of changes in 

activity effort and deliverable confidence, which influence the confidence into 
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downstream deliverables and ultimately impact the iterative behaviour of the design 

process. This idea is supported by both existing literature and industrial practice and 

results in a propagation network, which enables analysis of DPC impacts on the holistic 

process and sub-process level. 

The contributions of this research are threefold: first, it systematically develops 

a concept for the DPCM together with a set of useful analyses based on requirements 

derived from literature and industrial practice; second, it details and implements the 

concept computationally using the Applied Signposting Model framework; and third, it 

demonstrates how to apply the DPCM to improve the understanding of DPC effects on 

process performance and to support process planning and execution through identifying 

and prioritising the ‘right’ DPCs and appropriate DPC reactions. An application of the 

DPCM to the fan sub-system preliminary design process of Rolls-Royce PLC resulted 

in the suggestion of process improvements which are expected to decrease process 

duration and effort by up to 23%. 

Whilst the DPCM proved useful in its industrial application, there are still some 

interesting directions for future research: further empirical analyses of changes in 

industrial design processes to assess their representability using the DPCM; an 

examination of whether a finer measurement of confidence and effort together with a 

more sophisticated formalisation of relationships would be beneficial for analysing 

complex DPCs; an investigation as to the total costs/benefits of changes and 

improvements in a sub-process on the whole process; and an examination of the 

implications of integrating the DPCM concept into the existing design process 

governance and IT infrastructure of industrial companies. 
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Tables 

Table 1: Conceptual ideas to fulfil the identified functional method requirements. 

Functional requirement Conceptual idea to fulfil the requirement 

1. Activity-based  
modelling of evolutionary 
design processes 
(Khoo, Chen, and Jiao 
2003; Wynn, Caldwell, and 
Clarkson 2014) 

Theoretically, the DPCM could be based on various 
activity-network-based frameworks. The ASM (Wynn, 
Eckert, and Clarkson 2006) is suggested because it allows 
capturing complex interrelations between activities and 
deliverables, which is key for the analysis of DPCs. Also, it 
was specifically developed for modelling design processes 
and thus, contains many design-focused features so that it is 
convenient to use. 

2. Modelling iteration 
(Chalupnik et al. 2007; Li 
and Moon 2012) 

As DPCs can affect the level of uncertainty in the process 
and may trigger iterations, which substantially impact 
process performance (Eppinger 1991), it is suggested to 
model the occurrence of iterations dependent on uncertainty 
(see, e.g., Lévárdy and Browning 2009). 

3. Modelling changes in 
activities 
(Cronemyr, Öhrwall 
Rönnbäck, and Eppinger 
2001; Khoo, Chen, and 
Jiao 2003) 

It is suggested to represent changes in activities as changes 
in the associated effort (Lukas et al. 2007), which implicitly 
considers both changes in activity durations and in their 
resource requirements, and increases the flexibility of 
modelling real-world processes. 

4. Modelling changes in 
deliverables 
(Chua and Hossain 2012; 
Wynn, Caldwell, and 
Clarkson 2014) 

Based on the existing literature (see, e.g., Chua and Hossain 
2012), it is suggested to account for specific changes in 
deliverables by capturing their potential of causing 
iterations.  

5. Modelling structural 
changes 
(Karniel and Reich 2013) 

It is suggested to adapt process plans manually in order to 
represent structural changes because rule-based automatic 
adaptation of plans adds significant complexity to the 
method and also does not work for every change case 
(Karniel and Reich 2013). The DPCM’s user will thus 
decide, e.g., whether a new activity can be added without 
adding new deliverables. 

6. Modelling propagating 
DPC effects 
(Ahmad, Wynn, and 
Clarkson 2013; Ouertani 
2008) 

It is suggested to consider DPC propagation between 
activities and deliverables (Wynn, Caldwell, and Clarkson 
2014) in order to equally capture the lower-level effects of 
changes in activities, deliverables and structural changes, 
i.e. activity-deliverable relationships. Moreover, in order to 
limit the complexity of modelling, the method concept is 
restricted to the process domain so that change propagation 
to elements of the product domain, such as components, is 
not considered. 
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7. Identifying critical 
DPCs, reactions and DPC-
based process 
improvements 
(Chalupnik et al. 2007; 
Cronemyr, Öhrwall 
Rönnbäck, and Eppinger 
2001) 

To increase the practical usefulness the identification and 
comparison of multiple alternative candidates for critical 
DPCs, reactions and process improvements (Browning and 
Eppinger 2002), rather than the identification of a single 
theoretical worst or best case, should be supported. 
 

8. Analysing DPC impacts 
(Chua and Hossain 2012; 
Lukas et al. 2007) 

Process simulations are suggested to assess DPC impacts 
because closed-form analysis is often not possible for 
complex, stochastic networks (Shapiro et al. 2015). 
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List of Figures 

Figure 1. Major DPC types shown in an idealised design process model. Adapted from 

Shapiro, Sommer, and Clarkson 2015.  

Figure 2. Overall concept for the suggested DPCM. 

Figure 3. Types of analysis supported by the DPCM. 

Figure 4. Implementation of effort levels and confidence in ASM. 

Figure 5. Implementation of iterations in ASM. 

Figure 6. Characteristic confidence mappings for an activity with a single input and 

output. 

Figure 7. Implementation of confidence mappings in ASM. 

Figure 8. Use of variables to control the effort levels of activities during simulations in 

ASM.  

Figure 9. ASM model of the fan sub-system preliminary design process. 

Figure 10. Effects of improvement combinations to reduce iterations of V22; 

improvement combinations ordered by increasing expected process duration. 

Figure 11. Effects of joint improvement combinations to reduce iteration-likelihoods of 

V10 and V22; improvement combinations ordered by increasing expected process 

duration. 

Figure 12. Effects of joint improvement combinations to reduce iterations of V10 and 

V22 on in dividual activities; improvement combinations ordered by increasing 

expected process duration. 
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