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ABSTRACT
Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions,
provide a potentially significant contaminant to measurements of cosmic shear. However, these
intrinsic alignments are still poorly understood for galaxies at the redshifts typically used in
cosmic shear analyses. For spiral galaxies, it is thought that tidal torquing is significant in
determining alignments resulting in zero correlation between the intrinsic ellipticity and the
gravitational potential in linear theory. Here, we calculate the leading-order correction to this
result in the tidal-torque model from non-linear evolution, using second-order perturbation
theory, and relate this to the contamination from intrinsic alignments to the recently measured
cross-correlation between galaxy ellipticities and the cosmic microwave background (CMB)
lensing potential. On the scales relevant for CMB lensing observations, the squeezed limit of
the gravitational bispectrum dominates the correlation. Physically, the large-scale mode that
sources CMB lensing modulates the small-scale power and hence the intrinsic ellipticity, due
to non-linear evolution. We find that the angular cross-correlation from tidal torquing has a
very similar scale dependence as in the linear alignment model, believed to be appropriate
for elliptical galaxies. The amplitude of the cross-correlation is predicted to depend strongly
on the formation redshift, being smaller for galaxies that formed at higher redshift when
the bispectrum of the gravitational potential was smaller. Finally, we make simple forecasts
for constraints on intrinsic alignments from the correlation of forthcoming cosmic shear
measurements with current CMB lensing measurements. We note that cosmic variance can be
significantly reduced in measurements of the difference in the intrinsic alignments for elliptical
and spiral galaxies if these types can be separated (e.g. using colour).

Key words: gravitational lensing: weak – cosmic background radiation – large-scale structure
of Universe.

1 IN T RO D U C T I O N

Gravitational weak lensing by large-scale structure has emerged in
recent years as a powerful tool for studying structure formation and
the expansion history of the Universe. It coherently distorts images
of background galaxies, magnifying their angular size and shear-
ing their intrinsic projected shapes, in a manner proportional to the
integrated total mass density along the line of sight back to the
source galaxy. The current generation of imaging surveys, includ-
ing the Dark Energy Survey,1 the Kilo-Degree Survey2 and Hyper
Suprime-Cam,3 will significantly improve the statistical power of

�E-mail: prl37@cam.ac.uk
1 http://www.darkenergysurvey.org/
2 http://kids.strw.leidenuniv.nl/
3 http://www.naoj.org/Projects/HSC/HSCProject.html

cosmic shear measurements, and will be followed by much larger
surveys (Euclid4 and LSST5) in the next decade.

Gravitational lensing also affects the temperature anisotropies
and polarization of the cosmic microwave background (CMB); see
Lewis & Challinor (2006) for a review. The lensing deflections can
be reconstructed from quadratic combinations of the CMB data
(Zaldarriaga & Seljak 1999; Hu 2001; Hu & Okamoto 2002),
and the power spectrum of such reconstructions has now been
demonstrated to be a powerful cosmological probe (Sherwin et al.
2011; Planck Collaboration XVII 2014; Planck Collaboration XV
2015). CMB lensing is highly complementary to galaxy lensing,
providing measurements of the matter distribution at higher red-
shifts and closer to the linear regime. The combination of the two

4 http://www.cosmos.esa.int/web/euclid
5 http://www.lsst.org/lsst/
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lensing measurements is particularly powerful (Vallinotto 2012,
2013; Kitching, Heavens & Das 2015). Their cross-correlation
probes structure at intermediate redshifts (z ≈ 1), and should be
much more immune to systematic effects than either autocorrela-
tion. The CMB lensing–galaxy weak lensing correlation has re-
cently been detected by Hand et al. (2015), using a CMB lens re-
construction from Atacama Cosmology Telescope data and galaxy
lensing maps from the Canada–France–Hawaii Telescope (CFHT)
Stripe 82 Survey, by Liu & Hill (2015) using reconstructions from’
Planck data and galaxy lensing from CFHTLenS, and by Harnois-
Déraps et al. (2016) using the Planck lensing reconstruction and
galaxy lensing from CFHTLenS and Red Cluster Sequence Lens-
ing Survey.

Correlations of the intrinsic (i.e. before lensing) ellipticities
of galaxies, termed intrinsic alignments, are known to contami-
nate galaxy lensing surveys (see Troxel & Ishak 2014b for a re-
cent review and Joachimi et al. 2015; Kiessling et al. 2015; Kirk
et al. 2015, which form a dedicated topical volume on the sub-
ject). Intrinsic alignments are generally thought to arise from tidal
fields acting at the time of galaxy formation, although this is not
certain (see Camelio & Lombardi 2015 and references therein).
Nearby galaxies that formed in the same tidal field will have
correlations between their intrinsic ellipticities, contributing what
is known as the second term to the observed shear correlations.
A further contribution, known as the GI term, arises from the
tidal field in which a foreground galaxy forms also contributing
to the gravitational shearing of a background galaxy (Hirata &
Seljak 2004).

The CMB lensing–galaxy lensing cross-correlation is contami-
nated solely by a term equivalent to the GI term. This signal, as it
applies to the Hand et al. (2015) measurement, has been estimated
analytically by Hall & Taylor (2014) and Troxel & Ishak (2014a)
in the linear alignment model, giving a 15 per cent reduction in
the observable correlation. In this model, the shape of a galaxy
is assumed to be determined by the shape of its host halo, with
the latter assumed to be linearly related to the gravitational tidal
field through tidal stretching at the epoch of formation (Catelan,
Kamionkowski & Blandford 2001). The linear-alignment model is
motivated for elliptical galaxies, and has been successful in mod-
elling the observed number density–shape correlations of luminous
red galaxies (see e.g. Singh, Mandelbaum & More 2015 for recent
work).

A large proportion of galaxies at the redshifts associated with
galaxy surveys are, however, dim, blue galaxies that are often
spirals. In this paper, we use the terms blue and spiral galax-
ies interchangeably for simplicity, despite noting that blue el-
lipticals exist. For spiral galaxies, the intrinsic ellipticity is de-
termined by the disc orientation and so the angular momentum
direction. Tidal-torque theory describes the generation of halo
angular momentum via the torque exerted on a forming halo
for which the inertia tensor is misaligned with the tidal tensor (see
e.g. White 1984). The intrinsic ellipticity is quadratic in the com-
ponents of the angular momentum in the plane of the sky, leading
to an average ellipticity for a given tidal field that is quadratic in
the tidal field (Mackey, White & Kamionkowski 2002). The ob-
served autocorrelations of such galaxies have shown hints of such a
quadratic dependence on the tidal field at low redshifts (Lee & Pen
2007), although the significance of these results has been disputed
(Andrae & Jahnke 2011), and no direct detection has been made at
redshifts around z ≈ 0.6 (Mandelbaum et al. 2011).

In this quadratic alignment model for spiral galaxies, the GI
correlation vanishes in linear theory for which the gravitational po-

tential is Gaussian (Hirata & Seljak 2004; Hui & Zhang 2008).6 By
modelling the fraction of elliptical galaxies in the CFHT Stripe 82
lensing maps, Chisari et al. (2015a) estimate a lower contamination
of around 9 per cent from GI correlations to the CMB lensing–
galaxy lensing measurement of Hand et al. (2015), assuming no
GI contribution from spiral galaxies. However, non-linear evolution
generates non-Gaussianity in the potential, and so is expected to
source some non-zero correlations between the intrinsic ellipticity
and gravitational potential even for spiral galaxies. The size of this
non-linear contribution to the number density–ellipticity correlation
was estimated in Hui & Zhang (2008). Very recently, correlations
between the shapes of disc-like galaxies and overdensities of el-
liptical galaxies in hydrodynamical simulations have been reported
(Chisari et al. 2015b; Tenneti, Mandelbaum & Di Matteo 2015).
However, these studies differ in the nature of disc orientations. In
the Horizon-AGN (active galactic nucleus) simulation, Chisari et al.
(2015b) find that the discs are preferentially tangentially oriented
around overdensities, while in the Illustrus simulation, Tenneti et al.
(2015) find a radial alignment.

Our goal in this paper is to estimate the non-linear GI contribu-
tion to CMB lensing–galaxy lensing measurements in the quadratic
alignment model, and to assess whether this can be a significant
contaminant. The paper is organized as follows. Section 2 briefly re-
views gravitational lensing in the cosmological context, while Sec-
tion 3 summarizes the intrinsic alignments in the linear alignment
model, following closely Hall & Taylor (2014). Our main results are
in Section 4, where we calculate the CMB lensing–ellipticity corre-
lation in the quadratic alignment model, investigating the leading-
order non-Gaussian contribution. Section 4 also includes detection
forecasts for intrinsic alignments from CMB lensing–galaxy lens-
ing measurements with forthcoming cosmic shear surveys. Finally,
we conclude in Section 5.

2 G R AV I TAT I O NA L L E N S I N G F O R M A L I S M

Gravitational lensing alters the path of light rays, changing the
direction from which they appear to be emitted. The associated
change in angular coordinates in the plane of the sky is given by(

�xs

�ys

)
=

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

) (
�x

�y

)
, (1)

where the subscript s refers to coordinates in the source plane, and
the changes on the right are in the observational coordinates. The
shear terms γ 1 and γ 2 describe anisotropic, area-preserving distor-
tions, while the convergence term κ describes isotropic changes in
angular size. We take the components of the shear relative to unit
vectors along the θ and φ directions of a spherical coordinate sys-
tem. The complex shear γ ≡ γ 1 + iγ 2 is a spin +2 quantity, and,
for sources at comoving distance χ in a spatially flat universe, the
shear along the line-of-sight n̂ is (in the Born approximation)

γ (n̂; χ ) =
∫ χ

0
dχ ′ χ − χ ′

χχ ′ ð2	(χ ′n̂, χ ′). (2)

Here, 	 is the Newtonian potential at position χ ′n̂ at conformal
lookback time χ ′, and � is the spin-raising operator (e.g. Goldberg

6 In the more sophisticated model of Crittenden et al. (2001), the average
ellipticity is quadratic in the normalized tidal field, but this does not change
the result that the GI term vanishes in linear theory (Hui & Zhang 2008).
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et al. 1967). For sources with a redshift distribution f(χ ), the average
shear along n̂ is

γ (n̂) =
∫

dχ f (χ )γ (n̂; χ ). (3)

The complex shear can be expanded in spherical multipoles as

γ (n̂) =
∑
lm

γlm2Ylm(n̂), (4)

where 2Ylm = √
(l − 2)!/(l + 2)!ð2Ylm are the spin-weight two

spherical harmonics. The shear has only E-modes, so that
γ ∗

lm = (−1)mγl −m.
The shear can be estimated from the observed shape of galaxies.

For weak lensing, the observed ellipticity7 is the sum of the intrinsic
ellipticity εs and the gravitational shear

ε ≈ εs + γ. (5)

In cosmological weak lensing, the gravitational shear is typically
around 1 per cent or less, much less than the intrinsic ellipticity that
has rms dispersion 10–20 per cent, so that a statistical treatment
based on the correlation of the observed shapes of many galaxies is
required.

For lensing of the CMB, the source redshift distribution is ef-
fectively a delta function at the time of last scattering, f (χ ) =
δ(χ − χ∗). Writing the shear in terms of the CMB lensing potential
as γ = −�2φ/2, we have

φ(n̂) = −2
∫ χ∗

0
dχ

χ∗ − χ

χχ∗
	(χ n̂, χ ). (6)

Expanding φ(n̂) in spherical harmonics, φ(n̂) = ∑
lm φlmYlm(n̂),

the cross-correlation with the galaxy shear is

〈γlmφ∗
l′m′ 〉 = C

γφ
l δll′δmm′ , (7)

where, in the Limber approximation,

C
γφ
l = −2

√
(l + 2)!

(l − 2)!

∫ χ∗

0
dχ

W (χ )

χ2

χ∗ − χ

χχ∗
P	(l/χ ; χ ), (8)

where

W (χ ) =
∫ χ∗

χ

dχ ′ f (χ ′)
χ ′ − χ

χχ ′ . (9)

Here, P	(k, χ ) is the dimensional power spectrum of the gravita-
tional potential at conformal lookback time χ . Measurements of the
cross-correlation of the observed galaxy ellipticities with the CMB
lensing potential give instead, on average,

C
εφ
l = C

γφ
l + C

εsφ
l , (10)

where the second term arises from intrinsic alignments. It is analo-
gous to the GI term of Hirata & Seljak (2004), and will contaminate
any measurements of the gravitational shear. Note that, generally,
the observed ellipticity has both E- and B-modes, because of εs, but
the B-modes do not contribute to the cross-correlation with φ due
to parity. The following sections aim to calculate C

εsφ
l in the linear

and quadratic alignment models.

3 (N O N - ) L I N E A R A L I G N M E N T M O D E L

The linear alignment model is the simplest and most widely used
model for intrinsic alignments (Catelan et al. 2001). This is thought

7 For an elliptical source with minor-to-major axis ratio r, we define the
ellipticity such that |ε| = (1 − r)/(1 + r).

to be applicable to elliptical galaxies, and has had success in mod-
elling the correlations of luminous red galaxies which have been
measured to high significance, see for example Singh et al. (2015).
It assumes that galaxy shapes follow, to some extent, those of their
host dark matter haloes, which are tidally sheared by the large-scale
structure. For a galaxy at distance χ along the line-of-sight n̂, this
induces an intrinsic ellipticity given by

εs(n̂; χ ) = − C

4πG

1

χ2
ð2S [	(χ n̂, χP)] , (11)

where S represents a smoothing of the linear-theory potential over
small scales.8 The potential is evaluated at the time of galaxy forma-
tion χP. The constant C is expected to be positive (so that galaxies
are tidally sheared so their long axes are towards the overdensities of
a surrounding quadrupole mass distribution) and has the dimensions
of inverse density. An improved model can be obtained by replac-
ing the linear Newtonian potential 	 with its non-linear counterpart
(Bridle & King 2007). This is referred to as the non-linear align-
ment model; we briefly summarize the main results of this model
for the cross-correlation with CMB lensing in the remainder of
this section. More details can be found in Catelan et al. (2001)
and Hirata & Seljak (2004) for galaxy–galaxy cross-correlations or
Hall & Taylor (2014) and Troxel & Ishak (2014a) for CMB–galaxy
cross-correlations.

Under the Limber approximation, the cross-correlation between
εs and the CMB lensing potential φ evaluates to

C
εsφ
l = 2C

4πG

√
(l + 2)!

(l − 2)!

∫ χ∗

0
dχ

f (χ )

χ4

χ∗ − χ

χχ∗

1

D̄(z)
P	(l/χ ; χ ).

(12)

Here, D̄(z) ∝ (1 + z)D(z) is the rescaled growth function appropri-
ate for the gravitational potential, and is normalized to unity at high
redshifts.9 It accounts for evolution of the potential from the time
of galaxy formation χP to χ . For illustrative purposes, we take the
constant C = 5 × 10−14h−2 M�−1 Mpc3 following Bridle & King
(2007) who showed that this value matches the SuperCOSMOS
survey observations reported in Brown et al. (2002). Note that the
C

εsφ
l is positive, and so intrinsic alignments reduce the magnitude

of the overall cross-correlation signal in this model.
Fig. 1 compares the intrinsic alignment contamination, C

εsφ
l , to

the gravitational shear signal, C
γφ
l , in the linear and non-linear

alignment models for the CS82 redshift distribution from Hand
et al. (2015):

f (χ ) = AH (z)
za + zab

zb + c
, (13)

with a = 0.531, b = 7.810, c = 0.517 and A chosen to normalize the
distribution. In both cases the intrinsic-alignment term reduces the

8 Typically, the smoothing scale is taken to be around 1 Mpc, corresponding
to size of the dark matter halo. Here, we use a cut-off in Fourier space at
k = 10 hMpc−1.
9 More generally, we approximate the non-linear potential power spectrum
between modes at time χ and χP as

P	(k; χ, χP) ≈ [P	(k; χ )P	(k; χP)]1/2 ,

and so replace D̄(z) with

D̄(z) →
√

P	(k; χ )

P	(k; χP)
,

which is both time- and scale-dependent.
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4346 P. Larsen and A. Challinor

Figure 1. Absolute value of the cross-spectrum of the CMB lensing poten-
tial with the gravitational shear, Cγφ

l , (upper lines) calculated with the linear
(blue solid) and non-linear (red dashed) matter power spectrum. The corre-

lation between the intrinsic ellipticity and the CMB lensing potential, C
εsφ
l ,

is also shown (lower lines) in the linear alignment model (red dashed) and
the non-linear alignment model (solid blue). The galaxy redshift distribution
is given by equation (13).

cross-correlation by around 15 per cent, as found by Hall & Taylor
(2014) and Troxel & Ishak (2014a). Non-linear corrections are mild
up to multipoles of a few hundred, and it is on these large and
intermediate scales where current measurements of CMB lensing
have most of their signal to noise.

4 QUA D R AT I C A L I G N M E N T M O D E L

The quadratic alignment model is used to describe the alignments
of disc galaxies. It is based on tidal-torque theory (see Schaefer
2009 for a detailed review), which asserts that a protogalaxy in
a tidal field will experience a torque, provided that there is some
misalignment between the inertia tensor and the tidal tensor (White
1984). The galactic disc is assumed to form perpendicular to the
resulting angular momentum vector, giving projected ellipticities
in the flat-sky approximation (with line-of-sight direction along the
z-direction and the ellipticity components defined with respect to x
and y) of the form

εs
1 = f (L, Lz)(L

2
x − L2

y)

εs
2 = 2f (L, Lz)LxLy. (14)

Here, f(L, Lz) can depend only on the magnitude of the angular
moment, L, and the z-component by symmetry. Generally, we expect
f(L, Lz) to be negative since angular momentum in the y–z plane
gives the major axis of the projected disc along the x-axis. For the
case of a thin disc, we have f(L, Lz) = −1/(L + |Lz|)2 given our
definition of ellipticity. Here, however, we choose to follow Mackey
et al. (2002) by taking f(L, Lz) to be a constant, −C. In the final
correlation functions, this approximation gives similar results to
models that assume galaxies are thin discs (see Crittenden et al.
2001) but greatly simplifies the calculations.

The acquisition of angular momentum through tidal torquing is
best described in the Lagrangian approach. We denote comoving
Eulerian coordinates by x. For a given fluid element, its Eulerian
coordinates at time t are related to its (fixed) Lagrangian coordinates
q by x(t) = q + S(q, t), where S(q, t) is the displacement field.

The angular momentum at time t of the matter contained within a
Lagrangian volume Vq can be shown to be (White 1984)

L(t) = ρm(t)a5(t)
∫

Vq

(
q − qCOM

) × ẋ(t) d3q (15)

correct to second order in perturbations, where qCOM is the La-
grangian centre of mass. At first and second order, the displacement
S(q, t) can be written as the gradient of a displacement potential.
Approximating the cosmology as Einstein–de Sitter over the epoch
of galaxy formation, we can write

S(q, t) = a∇qψ
(1)(q) + a2∇qψ

(2)(q) + · · · , (16)

where ψ (1)(q) and ψ (2)(q) are the first- and second-order displace-
ment potentials, respectively. In terms of these, the Eulerian peculiar
velocity to second order is

ẋ(q, t) = aH∇qψ, (17)

where H = ȧ/a is the Hubble parameter and

ψ(q, t) ≡ ψ (1)(q) + 2aψ (2)(q) (18)

is the velocity potential. Finally, Taylor expanding ψ about qCOM,
we find

Li = a3HεijkIjl

∂2ψ

∂qk∂ql

∣∣∣∣∣
qCOM

(19)

correct to second order. Here,

Iij ≡ ρma3
∫

Vq

(q − qCOM)i (q − qCOM)j d3q (20)

is the (constant) Lagrangian inertia tensor and εijk is the alternating
tensor.

We see from equation (19) that misalignment between the La-
grangian inertia tensor and the tidal tensor formed from the velocity
potential leads to the acquisition of angular momentum. Assuming
an axisymmetric inertia tensor, with symmetry axis m̂, the angular
momentum of the protogalaxy is given by

Li ∝ εijk

∂2ψ

∂qk∂ql

m̂lm̂k, (21)

where ψ(q, t) is evaluated at the time of galaxy formation and at
qCOM. Following Mackey et al. (2002), we assume that the inertia
tensor of the protogalaxy is independent of the local tidal field (see
e.g. Crittenden et al. 2001 for a relaxation of this assumption). In
this case, the expected intrinsic ellipticity for a given tidal field is
obtained by averaging over the direction m̂, so that equations (14)
and (21) give

εs
1 = 3C

15

3∑
i=1

K1iK1i − K2iK2i

εs
2 = 6C

15

3∑
i=1

K1iK2i . (22)

Here, the trace-free tidal tensor

Kij ≡ Dijψ = ∂2ψ

∂qi∂qj

− 1

3
δij∇2

qψ. (23)

The quantity C is a positive normalization constant; below we shall
relate it to the dispersion of the intrinsic ellipticity.

We emphasize that the quadratic alignment model is likely a se-
vere simplification of the physics involved. Small-scale phenomena

MNRAS 461, 4343–4352 (2016)
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such as vorticity around filaments, mergers and gas accretion will
alter the alignments, and the angular momentum of the galaxy and
its host halo will have some misalignment. However, some of the
key ideas on which the model is built have been observed in data and
reproduced in simulations. For example, the quadratic dependence
of the alignments on the gravitational potential has been verified
observationally for bright blue galaxies at low redshift (Lee & Pen
2007), and Codis et al. (2015) recently found that blue galaxies in
the Horizon-AGN simulation remain correlated with the tidal field
at a redshift of z = 1.2.

In this section, we calculate the correlation between εs and the
CMB lensing potential in the flat-sky approximation, extending the
calculation of the autocorrelations of εs from Mackey et al. (2002).
A related calculation is given for the correlation between εs and the
galaxy overdensity by Hui & Zhang (2008).

The flat-sky analogue of the spin-2 expansion of εs into E and
B-modes,

εs
±(n̂) =

∑
lm

(
εs
E,lm ± iεs

B,lm

)
±2Ylm(n̂), (24)

where εs
± = εs

1 ± iεs
2, is

εs
±(θ ) = −

∫
d2l
2π

[
εs
E(l) ± iεs

B (l)
]
e±2iφl eil·θ . (25)

Here, θ is the angular position in the plane of the sky, lx ± ily =
le±iφl with l = |l|, and εs

±(θ ) are defined with respect to the x- and
y-directions. Since the B-modes do not correlate with the scalar
lensing potential φ, the cross power spectrum follows from

〈εs
E(l)φ∗(l ′)〉 = δ(2)(l − l ′)Cεsφ

l , (26)

where φ(l) is the flat-sky Fourier transform of the lensing potential.
For a source at distance χ , εs

E(l) ± iεs
B (l) depends on the 3D

Fourier transform εs
±(k, χ ) at lookback time χ and wavevector

perpendicular to the line of sight k⊥ = l/χ . There is a subtlety in
the calculation of εs

±(k) since the Fourier transform is with respect
to the Eulerian position of the galaxy at lookback time χ , i.e. it
involves the components of

Kij (k) =
∫

d3x
(2π)3/2

e−ik·x(q,t)Kik(q, tP)Kkj (q, tP), (27)

where t corresponds to lookback time χ . Here, we have approxi-
mated the Eulerian centre-of-mass position of the galaxy at time t as
xCOM(t) = x(qCOM, t). We require Kij (k) to third order to calculate
the leading-order non-zero correlation with the lensing potential φ.
Changing variables from x to q, and expanding, we have

Kij (k) =
∫

d3q
(2π)3/2

e−ik·qKik(q, tP)Kkj (q, tP)

× (
1 + a∇2

qψ
(1) − iak · ∇qψ

(1)
)
, (28)

correct to third order. Here, the term a∇2
qψ

(1) comes from the Ja-
cobian of the transformation between x and q. The terms involving
ψ (1) complicate the calculation of Kij (k); however, they do not en-
ter the correlation of εs

±(k, χ ) with the lensing potential. To see this,
consider the correlation of these terms with the gravitational poten-
tial 	. We only need linear theory to evaluate these correlations to
fourth order in perturbations. On taking the expectation value, there
are three types of Gaussian contractions to consider. Those involving
〈Kik(q, tP)Kkj (q, tP)〉 ∝ δij do not contribute to εs

±(k, χ ) by statisti-
cal isotropy. The second type involves 〈∇2

qψ
(1)(q, t)Kij (q, tP)〉 = 0,

since Kij is trace-free. Finally, we have terms involving the correla-
tion of Kij with ∂ψ (1)/∂qk at the same point, but these also vanish
by statistical isotropy.

The E-modes εs
E(l) depend only on

εs
E(k) ≡ −1

2

[
εs
+(k)e−2iφk⊥ + εs

−(k)e2iφk⊥
]

= − 1

2k2
⊥

[
(k2

x − k2
y)εs

1(k) + 2kxkyε
s
2(k)

]
, (29)

which transform as a scalar under rotations about the z-axis. Ulti-
mately, in the Limber approximation, only Fourier modes with k
perpendicular to the z-direction contribute to the correlation func-
tions. Using equation (22), and retaining only those terms from
equation (28) that contribute to the correlation with the lensing
potential, we find (Mackey et al. 2002)

k2
⊥εs

E(k) ⊃ C

15

∫
d3k′d3k′′

(2π)3/2

[
fE(k′, k′′)

×ψ(k′, χP)ψ(k′′, χP)δ(3)(k′ + k′′ − k)
]
, (30)

where

2fE(k′, k′′) = (
2k′2

z − k′2
⊥
) [(

k′
⊥ · k′′

⊥ + k′′2
⊥

)2 − (
k′

⊥ × k′′
⊥
)2

]
+ (

2k′′2
z − k′′2

⊥
) [(

k′
⊥ · k′′

⊥ + k′2
⊥
)2 − (

k′
⊥ × k′′

⊥
)2

]
− 6k′

zk
′′
z

[
k′

⊥ · k′′
⊥

(
k′2

⊥ + k′′2
⊥

) + 2k′2
⊥k′′2

⊥
]
. (31)

Note that fE is invariant under rotations of its arguments about the
z-direction. The (dimensional) 3D cross power spectrum between
εs
E(k) and 	(k) is defined by

〈εs
E(k)	(k′)〉 = δ(3)(k + k′)Pεs

E	(|k⊥|, kz), (32)

and depends only on the magnitude of k⊥ and kz. Since εs
E(k) is

quadratic in the velocity potential ψ , the cross power spectrum
involves the ψψ	 bispectrum, defined by (with our Fourier con-
ventions)

〈ψ(k1, χ1)ψ(k2, χ2)	(k3, χ3)〉 = (2π)−3/2δ(3)(k1 + k2 + k3)

×Bψψ	(k1, k2, k3; χ1, χ2, χ3).

(33)

It follows that

k2
⊥Pεs

E	(|k⊥|, kz) = C

15

∫
d3k′d3k′′

(2π)3/2

[
fE(k′, k′′)

×Bψψ	(k′, k′′, k; χP, χP, χ )δ(3)(k′+k′′−k)
]
,

(34)

Finally, in the Limber approximation and for a source distribution
f(χ ), the cross-correlation between the intrinsic alignments and the
CMB lensing potential evaluates to

C
εsφ
l = −2

∫ χ∗

0
dχ

f (χ )

χ2

χ∗ − χ

χ∗χ
Pεs

E	(l/χ, kz = 0), (35)

where, for simplicity, we have assumed that all galaxies form at the
same time χP.

We evaluate Pεs
E	(|k⊥|, kz = 0) from equation (34) by taking

k = k(1, 0, 0) and writing k′ in terms of a magnitude k′ = αk, a
polar angle θ and an azimuthal angle ϕ:

k′ = αk(cos θ, sin θ cos ϕ, sin θ sin ϕ). (36)

In equation (34), the delta-function enforces k′′ = k − k′, which,
with the above parametrization, has magnitude

k′′ = k
√

1 + α2 − 2αμ, (37)
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where μ ≡ cos θ , so the bispectrum term in the integrand of equa-
tion (34) depends only on k, α and μ. We can therefore integrate
fE(k′, k′′) over ϕ to find∫

dϕ

2π
fE(k′, k′′) = α2k6 1

2

[
(1 + α2)(1 − 3μ2) + αμ(1 + 3μ2)

]
= α2k6f̄E(α,μ), (38)

so that

Pεs
E	(|k⊥|, kz = 0) = C

15

∫
k′2dk′dμ

(2π)2

[
α2k4f̄E(α, μ)

×Bψψ	(k′, k′′, k; χP, χP, χ )
]
, (39)

where α = k′/k and k′′ is given by equation (37). Using this in
equation (34), we obtain our final expression for the cross power
spectrum:

C
εsφ
l = −2C

15

∫ χ∗

0
dχ

f (χ )

χ2

χ∗ − χ

χ∗χ

∫
k′2dk′dμ

(2π)2

[
α2k4

×f̄E(α, μ)Bψψ	(k′, k′′, k; χP, χP, χ )
]
, (40)

with k = l/χ .
We now consider the normalization constant C. Following

Mackey et al. (2002) again, we determine this by assuming that
all of the intrinsic ellipticity of galaxies comes from tidal torquing
(so we likely overestimate the amplitude of the intrinsic-alignment
correlations). In this case, we equate the mean-squared intrinsic el-
lipticity of a single galaxy to the squared dispersion of the intrinsic
ellipticity over the galaxy population, εs2, to find

εs2 = 〈(εs
1)2 + (εs

2)2〉 = C2〈(L2
x + L2

y)2〉. (41)

The average here is over the direction m̂ of the symmetry axis of
the inertia tensor and over realizations of ψ (which are assumed
independent). At fixed m̂, the angular momentum is proportional to
ψ and so

〈LiLj 〉ψ = C

15
〈(∇2

qψ)2〉(δij − m̂im̂j ), (42)

where the expectation value is over ψ . Approximating ψ as a Gaus-
sian random field, we use this result to take the expectation value
of (L2

x + L2
y)2 at fixed m̂ using Wick’s theorem, and finally average

over m̂. The end result is10

C = 153/2

8

√
εs2

〈(∇2
qψ)2〉 , (43)

where ψ is evaluated at the time of galaxy formation.

4.1 Bispectrum

In the quadratic alignment model, the cross-correlation between
the intrinsic ellipticity and the CMB lensing potential depends on
the bispectrum of the velocity and gravitational potentials, and so
vanishes for Gaussian potentials.11 In particular, equation (40) in-
volves the two-time bispectrum Bψψ	(k1, k2, k3; χP, χP, χ ). We
evaluate this at tree-level using standard results from second-order

10 Equation (43) corrects the result in Mackey et al. (2002); their equa-
tion 24 differs by a factor of

√
3/2.

11 Note that this holds true even if source clustering corrections are included
for the galaxy lensing (Hirata & Seljak 2004; Hui & Zhang 2008).

perturbation theory (e.g. Bouchet et al. 1995). For the displacement
potential, we have

ψ (2)(k) = 1

2

∫
d3k1

(2π)3/2

k2
1k

2
2

k2
G(k1, k2)ψ (1)(k1)ψ (1)(k2), (44)

where k2 = k − k1 and the Lagrangian coupling kernel

G(k1, k2) = 3

7
− 3

7

(
k1 · k2

k1k2

)2

. (45)

For the gravitational potential,

	(k, t) = 	(1)(k, t) + 	(2)(k, t) + · · · , (46)

at linear order

	(1)(k, t) = −3

2

(
a3H 2

)
ψ (1)(k) (47)

in an Einstein–de Sitter universe. More generally, one replaces
3a3H2/2 with 4πGa3ρmD̄(a) where, recall, D̄(a) is the rescaled
linear growth function normalized to unity as a → 0. At second
order,

	(2)(k, t) ≈ −4πGa4ρmD̄2
∫

d3k1

(2π)3/2

k2
1k

2
2

k2
F (k1, k2)

×ψ (1)(k1)ψ (1)(k2), (48)

where we have made the (excellent) approximation that the growth
rate for the second-order displacement potential is the square of
that for the first-order potential. Here, the Eulerian coupling kernel
F (k1, k2) is given by

F (k1, k2) = 5

7
+ k1 · k2

2k1k2

(
k1

k2
+ k2

k1

)
+ 2

7

(
k1 · k2

k1k2

)2

. (49)

Using these results, we find

Bψψ	(k1, k2, k3; χP , χP , χ ) = −8πGa3ρm

×
(

k2
1k

2
2

k2
3

a(χ )D̄2(χ )Pψ (1) (k1)Pψ (1) (k2)F (k1, k2)

+ k2
1k

2
3

k2
2

a(χP )D̄(χ )Pψ (1) (k1)Pψ (1) (k3)G(k1, k3)

+ k2
2k

2
3

k2
1

a(χP )D̄(χ )Pψ (1) (k2)Pψ (1) (k3)G(k2, k3)

)
, (50)

approximating the cosmology as Einstein–de Sitter at χP. Here,
Pψ (1) (k) is the (time-independent) power spectrum of the linear-
theory displacement potential ψ (1)(k), which is proportional to the
power spectrum of the linear-theory gravitational potential 	(k) at
early times.

The various terms in equation (50) have different dependences on
χP and χ . As we discuss in Section 4.2, the second and third terms
dominate the cross-correlation on large and intermediate scales. In
the bispectrum, these terms scale as a(χP) implying a strong de-
pendence of the cross-correlation on the (uncertain) time of galaxy
formation, with earlier times giving a smaller correlation.

In practice, we use an extension of the tree-level bispectrum in
equation (50), suggested by Schmittfull, Regan & Shellard (2013)
in the context of the matter bispectrum where it better describes the
weakly non-linear regime. In this approximation, the structure of
the tree-level result is retained but the effect of loops on the external
legs are accounted for by using the non-linear 	 power spectra
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Intrinsic alignments from tidal torquing 4349

in place of their linear-theory ψ counterparts.12 The non-linear
potential power spectra are calculated from the non-linear matter
power spectrum via the Poisson equation in Fourier space. We use
the HALOFIT (Smith et al. 2003) fitting function implemented in
the CAMB code (Lewis, Challinor & Lasenby 2000).

4.2 Squeezed-limit approximation

Physically, we expect the cross-correlation in equation (40) on large
and intermediate scales to be dominated by the squeezed limit of the
bispectrum with k′ ≈ k′′ � k. Since the intrinsic ellipticity depends
quadratically on the tidal tensor, it is dominated by small-scale
modes with wavenumbers up to the assumed smoothing scale. The
squeezed limit of the bispectrum corresponds to a modulation of
the power in small-scale modes by the large-scale modes responsi-
ble for the CMB lensing. This modulates the intrinsic ellipticities
correlating them with the CMB mode. (See Baldauf et al. 2011 and
Sherwin & Zaldarriaga 2012 for similar arguments in other applica-
tions.) We verify the dominance of the squeezed limit numerically
in Section 4.3.

In the squeezed limit, we can simplify the tree-level bispectrum
further. Writing it as a function of k, α and μ, and expanding to
leading order in 1/α, we have

Bψψ	(k′, k′′, k; χP , χP , χ ) ≈ −8πGa3ρm

×6

7
a(χP )D̄(χ )k2(1 − μ2)Pψ (1) (k)Pψ (1) (k′). (51)

This receives approximately equal contributions from the second
and third terms on the right of equation (50), while the first term
is suppressed by a factor α2Pψ (1) (k′)/Pψ (1) (k) � 1. Finally, we use
equation (51) in equation (40) and integrate over μ. Retaining the
leading term in 1/α in the resulting integrand, we find the approxi-
mate result

C
εsφ
l ≈ 2l2C 〈(∇2

qψ)2〉∣∣
χP

8

525

(
2

3a2H 2

)∣∣∣∣
χP

×
∫ χ∗

0
dχ

f (χ )

χ4

χ∗ − χ

χχ∗

1

D̄(z)
P	(l/χ ; χ ). (52)

Note that this has exactly the same l-dependence as the cross-
correlation in the linear alignment model.13 It may not be obvious
from the calculation above why the shape of the cross-correlation
in the squeezed limit of the quadratic alignment model should be
the same as in the linear alignment model. The reason is that, in the
squeezed limit, we care about the effect of a large-scale mode on
the evolution of small-scale modes. We show in Appendix A that
if one averages the intrinsic ellipticity given in equation (22) over

12 In detail, in the first term in equation (50), we replace
D̄2(χ )Pψ (1) (k1)Pψ (1) (k2) with the non-linear P	(k1; χP , χ )P	(k2; χP , χ )

[divided by the square of 4πGa3ρm]; in the second term we replace
D̄(χ )Pψ (1) (k1)Pψ (1) (k3) with the non-linear P	(k1; χP )P	(k3; χP , χ ) and
similarly in the third term (but with k1 replaced by k2). Note that this pro-
cedure has not been tested against numerical simulations for the Bψψ	

bispectrum that we require here.
13 The original version of this paper approximated the tidal term in equa-
tion (19) with the Eulerian tidal tensor formed from the non-linear Eulerian
gravitational potential 	. We have now self-consistently included all second-
order terms within tidal-torque theory, leading to a change in the sign and a
reduction in the magnitude of the cross-correlation between εs and φ.

Figure 2. Absolute value of C
εsφ
l for the quadratic alignment model (blue

solid lines) and the squeezed-limit approximation (red dashed lines) assum-
ing a formation redshift of zP = 3 (upper lines) and zP = 15 (lower lines).

We also show C
γφ
l (black solid line) and the linear alignment model C

εsφ
l

(green dotted line) for comparison. All spectra are calculated with a cut-off
of k = 10 hMpc−1 and the redshift distribution given by equation (13).

small-scale modes of ψ (1)(q), in the presence of fixed large-scale
modes of ψ (1)(q), in second-order perturbation theory one finds

〈εs(n̂; χ )〉S = − 8C

525χ2

(
2

3a2H 2

)∣∣∣∣
χP

〈(∇2
qψ

(1)
S )2〉ð2	

(1)
L , (53)

where ψ
(1)
S are the short modes of ψ (1)(q) and 	

(1)
L are the large-

scale modes of the Eulerian gravitational potential at lookback time
χP and evaluated at distance χ back along the line of sight. In
the quadratic alignment model, the effect of the large-scale modes
on a galaxy’s intrinsic shape has, after averaging over small-scale
modes, exactly the same structure as in the linear alignment model,
i.e. it depends linearly on the large-scale tidal tensor. Correlating
equation (53) with the CMB lensing potential, using the Limber
approximation, we recover the correlation in equation (52).

4.3 Results

We calculate C
εsφ
l using the full result from equations (40) and

(50) [with the non-linear power spectrum], and with the squeezed
limit approximation given by equation (52) for a population of
tidally torqued galaxies with the CS82 redshift distribution of equa-
tion (13). We take the mean-squared intrinsic ellipticity εs2 = 0.03
from Reyes et al. (2012). The results are shown, along with the grav-
itational shear contribution C

γφ
l and C

εsφ
l for the linear alignment

model, in Fig. 2.
As well as being dependent on the assumed value of the mean-

squared intrinsic ellipticity, the result for the quadratic alignment
model contamination is also strongly dependent on the time of
galaxy formation, going as (1 + zP)−1 in the squeezed-limit approx-
imation. At high zP, the bispectrum of the gravitational potential
from non-linear growth is suppressed and the resulting correlation
C

εsφ
l is small. We show results for the endpoints of the plausible

range zP = 3–15. The lack of a model of the galaxy formation
time allows a wide range of possible values for the contamination
of the cross-correlation by intrinsic alignments: 2–7 per cent con-
tamination for the smallest multipoles and 5–18 per cent for the
highest for the range zP = 3–15. As expected, the shapes of C

εsφ
l

are very similar for the quadratic and the linear alignment models.
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Figure 3. As Fig. 2, but with the CMB lensing potential replaced by the
galaxy lensing potential, φgal. Note that the total GI contribution to the
observable correlation is twice that plotted.

The amplitudes are also comparable, although we emphasize that
our results for the quadratic alignment model should be seen only as
upper limits given the assumptions that all alignments and the total
intrinsic ellipticity are determined by tidal torquing at the time of
galaxy formation. Finally, we see that the squeezed-limit approxi-
mation from equation (52) matches well with the full result on large
and intermediate scales.

4.4 Comparison with the GI term for galaxy lensing

The calculation above can easily be modified to calculate the GI
correction to the shear autocorrelation for lensing of galaxies. The
gravitational shear γ (n̂) for galaxies with redshift distribution f(χ )
is derivable from a lensing potential φgal, with γ = −�2φgal/2. The
autocorrelation of the observed galaxy ellipticities is

Cεε
l = −1

2

√
(l + 2)!

(l − 2)!

(
C

γφgal
l + 2C

εsφgal
l

)
+ Cεsεs

l , (54)

where C
γφgal
l is given by the CMB–shear result, equation (8), with

the CMB lensing kernel replaced with the galaxy kernel, i.e.

χ∗ − χ

χχ∗
→ W (χ ). (55)

Similarly, C
εsφgal
l is given by the same replacement in the intrinsic–

CMB result, equation (40). Note the additional factor of 2 in the
GI term in equation (54) since both legs of the correlation have
a contribution from the intrinsic ellipticities of galaxies. The final
term in equation (54) is the second term, first calculated in Mackey
et al. (2002) and Crittenden et al. (2001).

The spectra C
γφgal
l and C

εsφgal
l are shown in Fig. 3, for the same

galaxy redshift distribution and formation times used in Section 4.3.
The reduced redshift range of the galaxy window function W(χ )
leads, as expected, to a lower fractional level of contamination
from intrinsic alignments (this can be understood as the typical GI
correlation increases with increasing redshift separation between
the sources; Hirata & Seljak 2004). For the redshift distribution
considered here, at high multipoles the total GI contamination,

2C
εsφgal
l /C

γφgal
l , is of comparable importance to the contamination

found for the CMB–galaxy correlation.

Figure 4. Absolute value of the ratio C
εsφ
l /C

γφ
l in the quadratic alignment

model (with zP = 3) for redshift distributions given by equation (56) with
z0 = 0.5 (blue solid), z0 = 0.8 (red dashed), z0 = 0.9 (green dot–dashed)
and z0 = 1.0 (black dotted).

4.5 Effect of galaxy redshift distribution

The effect of varying our choice of redshift distribution is considered
in Fig. 4. This shows the ratio of C

εsφ
l to C

γφ
l , in the quadratic

alignment model with zP = 3, for redshift distributions given by

f (z) ∝ z2e−(1.4z/z0)3/2
, (56)

with z0 = 0.5, 0.8, 0.9 and 1.0. When z0 = 0.9, this is the pre-
dicted Euclid redshift distribution from Amendola et al. (2013).
A strong dependence on the median redshift z0 can be seen (with
lower values giving higher contamination fractions, due to the larger
galaxy–CMB separation), emphasizing the need for accurate red-
shift distributions in predicting the intrinsic alignment contamina-
tion. In practice, there is likely to be a dependence of the time of
galaxy formation on the observed redshift distribution, which may
alter this effect.

4.6 Observational constraints

There are few observational constraints on intrinsic alignments of
blue galaxies at redshifts relevant to cosmic shear surveys. The
best constraints to date come from the null detection reported in
Mandelbaum et al. (2011), which combines galaxy shapes from
Sloan Digital Sky Survey (SDSS) with spectroscopic redshifts
from the WiggleZ Dark Energy survey. Fitting their density–
shear correlation to a non-linear alignment model gives 95 per cent
confidence limits of A = 0.15+1.03

−1.07 for a median redshift of ap-
proximately 0.6. Here, A is an amplitude value that scales the
alignment amplitude C in equation (11) from the fiducial value
C = 5 × 10−14 h−2 M�−1 Mpc3 of Bridle & King (2007). The
95 per cent upper limit is A = 1.18, or equivalently a maxi-
mum intrinsic alignment contamination to C

γφ
l of approximately

13 per cent for the above analysis. The null detection in Heymans
et al. (2013) gives weaker constraints, with a 95 per cent upper limit
of A = 1.84.

4.7 Detection forecasts

In this short section, we report the results of a Fisher-matrix analysis
to determine the expected constraints on the CMB lensing–galaxy
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lensing correlation from upcoming cosmic shear data. In particu-
lar, combining the shear data from the full Dark Energy Survey
(assuming a galaxy number density of 12 arcmin−2) with the recon-
structed CMB lensing potential from Planck (Planck Collaboration
XV 2015) should give a strong detection of C

γφ
l , with a signal

to noise greater than 20. This strong detection opens up the pos-
sibility of additionally constraining the intrinsic-alignment signal.
Jointly constraining an intrinsic-alignment signal, with the shape of
the non-linear alignment model of equation (12) and an amplitude
parameter A (with fiducial value A = 1), alongside cosmological pa-
rameters with Planck 2015 priors (Planck Collaboration XIII 2015),
would give a 1σ error of σ (A) ≈ 0.5. An interesting prospect to im-
prove on such a marginal detection is to make use of the expected
difference of the intrinsic-alignment amplitudes between samples
of red and blue galaxies to null the cosmic shear signal C

γφ
l . This

removes much of the cosmic variance from a measurement of the
difference of alignment amplitudes. For example, assuming fidu-
cial values of Ared = 1 and Ablue = 0, and that 20 per cent of the
galaxies are red and subject to significant alignments, the difference
in amplitudes Ared − Ablue could be constrained with a 1σ error of
approximately 0.2.

5 SU M M A RY A N D C O N C L U S I O N S

We have considered the impact of intrinsic alignments of spiral
galaxies on the CMB lensing–galaxy lensing cross-correlation. Us-
ing the quadratic alignment model, we calculated the leading-order
cross-correlation between the intrinsic ellipticities of galaxies and
the CMB lensing potential, C

εsφ
l , from non-linear evolution. The

resulting cross-correlation is very similar in shape to that arising
in the linear alignment model, which describes tidal stretching of
elliptical galaxies. An important next step is to attempt to verify
these qualitative conclusions with hydrodynamical simulations (e.g.
Chisari et al. 2015b; Codis et al. 2015; Tenneti et al. 2015), for ex-
ample by comparing the large-scale 3D anisotropic cross-spectrum
Pεs

E	(|k⊥|, kz) with our prediction from the quadratic alignment
model.

We argued that C
εsφ
l on large and intermediate scales is domi-

nated by the squeezed limit of the bispectrum of the gravitational
potential. This is consistent with the simple physical picture of
large-scale modes responsible for the CMB lensing modulating the
small-scale power that controls the intrinsic ellipticity through non-
linear evolution. We showed by averaging out the small-scale modes
in the presence of the large-scale mode why the quadratic alignment
model predicts a very similar shape for C

εsφ
l as the linear alignment

model, despite the very different alignment mechanisms at work.
The amplitude depends on the level of non-Gaussianity and so has a
strong dependence on the time of galaxy formation. Assuming that
all intrinsic alignments arise from tidal torquing, we estimated the
magnitude of the contamination to the cross-correlation to be of the
same order as in the linear alignment model for plausible ranges of
the redshift of galaxy formation.

The similar shapes of C
εsφ
l in the linear and quadratic align-

ment models (which extends to the GI term in the case of cosmic
shear analyses on large and intermediate scales) justifies the cur-
rent practice of fitting spiral galaxies with templates derived from
the (non-)linear alignment model (e.g. Mandelbaum et al. 2011 and
Heymans et al. 2013). We also note that the assumed difference
in amplitude of the intrinsic alignment signals between different
galaxy populations could be exploited to reduce significantly the
cosmic variance in measurements of the intrinsic alignment signal
in upcoming lensing data.
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A P P E N D I X A : C O N D I T I O NA L E X P E C TAT I O N
VA L U E O F εs F RO M T I DA L TO R QU I N G

Here, we calculate the conditional expectation value of εs, from
equation (22), in the presence of a large-scale mode of the linear
Lagrangian displacement potential ψ (1)(q). When further correlated
with the large-scale CMB lensing potential, this gives the cross-
correlation C

εsφ
l .

The intrinsic ellipticity depends quadratically on the trace-free
tidal tensor Kij, so we are led to consider the zero-lag autocorre-
lation of Kij conditioned on the large-scale mode. Given the shape
of the matter power spectrum, the conditional expectation value is
dominated by small-scale modes of the tidal tensor. We approx-
imate these using standard results from second-order Lagrangian
perturbation theory in an Einstein–de Sitter universe (e.g. Bouchet
et al. 1995). In particular, we use the real-space version of equa-
tion (44),

ψ (2)(q) = 3

14
∇−2

q

⎡
⎣(

∂2ψ (1)

∂qi∂qj

)2

− (∇2
qψ

(1)
)2

⎤
⎦

= 3

14

[
1

2

(
∂iψ

(1)
)2 − ∇−2

q ∂i

(∇2
qψ

(1)∂iψ
(1)

)]
, (A1)

and split into small and large-scale modes. Here, ∇−2
q is the inverse

Laplacian (i.e. free-space Greens function) and, throughout this
appendix, partial derivatives with respect to qi are denoted as ∂i .
The relevant split is

ψ
(2)
S = 3

14

[
∂iψ

(1)
L ∂iψ

(1)
S − ∇−2

q ∂i

(
∇2

qψ
(1)
L ∂iψ

(1)
S

)

− ∇−2
q ∂i

(
∇2

qψ
(1)
S ∂iψ

(1)
L

)]
, (A2)

where the subscripts L and S denote long- and short-wavelength
modes of ψ . We calculate the conditional expectation value of εs

by using equation (A2) in the correlator

〈KS,ijK
kl
S 〉S = 〈K (2)

S,ijK
(1)kl
S + K

(1)
S,ijK

(2)kl
S 〉S, (A3)

where the expectation value is over ψ
(1)
S . Recall that the tidal tensor

Kij ≡ Dijψ = ∂2ψ

∂qi∂qj

− 1

3
δij∇2

qψ, (A4)

and the velocity potential ψ(q, t) = ψ (1)(q) + 2aψ (2)(q) to second
order. We are ignoring the linear-theory contribution to this expec-
tation value [i.e. terms involving 〈K (1)

S,ijK
(1)kl
S 〉S in equation (A3)]

since it does not contribute to the correlation with the large-scale
CMB lensing potential.

In evaluating equation (A3), only terms with an even total num-
ber of derivatives acting on short-scale modes of ψ (1) survive the
averaging. Considering the first term on the right of equation (A2),
the relevant terms are

〈KS,ijK
kl
S 〉S ⊃

〈(
∂i∂mψ

(1)
L ∂j∂

mψ
(1)
S + ∂j∂mψ

(1)
L ∂i∂

mψ
(1)
S

−2

3
δij∂m∂nψ

(1)
L ∂m∂nψ

(1)
S

)
Dklψ

(1)
S

〉
S

+ (ij ) ↔ (kl). (A5)

These are easily evaluated in Fourier space to give

7

3a
〈KS,ijK

kl
S 〉S ⊃ 8

15
〈(∇2

qψ
(1)
S )2〉δ〈k

〈i ∂
l〉∂j 〉ψ

(1)
L , (A6)

where the angle brackets denote the symmetric, trace-free part on
the enclosed indices.

The contribution of the second term on the right of equation (A2)
involves

〈Dij∇−2
q ∂m(∇2

qψL∂mψS)K (1)kl
S 〉S = −

∫
d3k

(2π)3/2

d3k′

(2π)3/2[
P

ψ
(1)
S

(k)k′ 2ψ
(1)
L (k′)eik′ ·qkmk〈kkl〉

× (k′ + k)m(k̂′ + k)〈i(k̂′ + k)j 〉
]
, (A7)

plus the term from interchanging (ij) and (kl). Here, k′ is the
wavevector of the large-scale mode and k of the short-scale modes,
so that k′ � k. Expanding to first-order in k′/k, we have

(k̂′ + k)〈i(k̂′ + k)j 〉 = k̂〈i k̂j 〉 + 2
k′

k

(
k̂〈i k̂′

j 〉 − k̂
′ · k̂ k̂〈i k̂j 〉

)
, (A8)

and so the leading-order contribution from the second term on the
right of equation (A2) evaluates to

7

3a
〈KS,ijK

kl
S 〉S ⊃ − 4

15
〈(∇2

qψ
(1)
S )2〉∇2

qψ
(1)
L δ

〈k
〈i δ

l〉
j 〉. (A9)

Terms of this isotropic form do not contribute to 〈εs〉S by symmetry.
The third term on the right of equation (A2) has a similar struc-

ture to equation (A7), but with k′ 2km replaced with k2k′ m in the
Fourier integrals. The effect of this is that the leading-order term
in the expansion (A8) no longer contributes and the terms that are
first order in k′/k must be retained [and additionally in the factor
(k′ + k)m]; the end result is that the leading-order contribution from
the third term on the right of equation (A2) is

7

3a
〈KS,ijK

kl
S 〉S ⊃ − 4

105
〈(∇2

qψ
(1)
S )2〉

×
(

5∇2
qψ

(1)
L δ

〈k
〈i δ

l〉
j 〉 + 6δ

〈k
〈i ∂

l〉∂j 〉ψ
(1)
L

)
. (A10)

Finally, combining these results, we have at leading-order

7

3a
〈KS,ijK

kl
S 〉S = 16

21
〈(∇2

qψ
(1)
S )2〉

×
(

2

5
δ

〈k
〈i ∂

l〉∂j 〉ψ
(1)
L − ∇2

qψ
(1)
L δ

〈k
〈i δ

l〉
j 〉

)
. (A11)

The first term on the right does not contribute to 〈εs〉S, while for the
second term, we use the identity

δ
j
l δ

〈k
〈i ∂

l〉∂j 〉ψ
(1)
L = 7

12
∂i∂

kψ
(1)
L + 13

36
δk
i ∇2ψ

(1)
L , (A12)

so that equation (22) gives the complex ellipticity as

〈εs〉S = 8C

525
a(χP)〈(∇2

qψ
(1)
S )2〉

(
∂

∂qx

+ i
∂

∂qy

)2

ψ
(1)
L (A13)

for the line-of-sight along the z-direction. We can express this in
terms of the large-scale Eulerian gravitational potential using the
leading-order result that

	
(1)
L (x, tP) = −

(
3a3H 2

2

)∣∣∣∣
tP

ψ
(1)
L

∣∣∣
q=x

. (A14)

For an arbitrary direction on the spherical sky, we have

〈εs(n̂; χ )〉S = − 8C

525χ2

(
2

3a2H 2

)∣∣∣∣
tP

〈(∇2
qψ

(1)
S )2〉ð2	

(1)
L , (A15)

where 	
(1)
L is evaluated at position χ n̂ at the formation redshift.
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