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 2 

ABSTRACT 22 

This study focused on resolving the relationship between body mass index (BMI) and type 2 23 

diabetes. The availability of multiple variants associated with BMI offers a new chance to resolve 24 

the true causal effect of BMI on T2D, however the properties of these associations and their 25 

validity as genetic instruments need to be considered alongside established and new methods for 26 

undertaking Mendelian randomisation. We explore the potential for pleiotropic genetic variants to 27 

generate bias, revise existing estimates and illustrate value in new analysis methods. A two-28 

sample Mendelian randomisation (MR) approach with 96 genetic variants was employed using 29 

three different analysis methods, two of which (MR-Egger and the weighted median) have been 30 

developed specifically to address problems of invalid instrumental variables. We estimate an odds 31 

ratio for type 2 diabetes per unit increase in BMI (kg/m2) of between 1.19 and 1.38, with the most 32 

stable estimate using all instruments and a weighted median approach (1.26 95%CI (1.17, 1.34)). 33 

TCF7L2(rs7903146) was identified as a complex effect or pleiotropic instrument and removal of 34 

this variant resulted in convergence of causal effect estimates from different causal analysis 35 

methods. This indicated the potential for pleiotropy to affect estimates and differences in 36 

performance of alternative analytical methods. In a real type 2 diabetes focused example, this 37 

study demonstrates the potential impact of invalid instruments on causal effect estimates and the 38 

potential for new approaches to mitigate the bias caused. 39 
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 3 

Observational studies have shown body mass index (BMI) to be associated with risk of type 2 40 

diabetes as well as with a range of diabetes-related metabolic traits (1; 2). However, it is well 41 

known that confounding, reverse causation and biases can generate such associations and that 42 

even with careful study design, incorrect inference is possible (3). One approach to circumventing 43 

these problems is to use genetic association results within a Mendelian randomization (MR) 44 

framework (3; 4). In MR analyses, genetic variants act as proxies for an exposure in a manner 45 

independent of confounders. If in addition the variants only affect an outcome of interest through 46 

the chosen exposure, then they are said to be valid instrumental variables (IVs). This enables 47 

evaluation of the causal effect of the exposure on the outcome, escaping some of the limitations of 48 

observational epidemiology; (5). 49 

 50 

Following the success of genome-wide association studies (GWASs), the number of MR analyses 51 

using large numbers of mostly uncharacterized variants associated with complex health outcomes 52 

or intermediates is rapidly increasing (6; 7). In the case of BMI, there are now 97 genetic variants 53 

reliably associated and there are examples where multiple variants have been used as a 54 

composite IV to estimate the causal impact of BMI on health (8). Although using many IVs can 55 

increase the power of MR analyses , it brings with it the concern that enlarged sets of genetic 56 

variants are more likely to contain invalid IVs due to violations of the assumptions necessary for 57 

valid causal inference using traditional methods (9). In particular, horizontal pleiotropy – where a 58 

genetic variant affects the outcome via more than one biological pathway (10) – is a concern. 59 

Importantly, the properties of these associations and their validity as genetic instruments need to 60 

be considered alongside established and new methods for undertaking Mendelian randomisation. 61 

 62 

In response to the general issue of using multiple genetic variants in MR, Bowden et al. (9) 63 

propose both MR-Egger regression, an approach developed from the original Egger regression 64 

technique for assessing small study bias in meta-analysis and a weighted weighted median 65 

approach (11) as alternatives to the standard MR analysis. The MR-Egger and weighted weighted 66 

median approaches both operate using distinct, but critically weaker, versions of the IV 67 

assumptions, and therefore have the potential to deliver robust causal effect estimates. The MR-68 
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 4 

Egger method also provides a formal statistical test as to whether or not the average pleiotropic 69 

effect of the genetic variants is equal to zero (9). 70 

 71 

Research Design and Methods 72 

With increasing evidence for multiple biological pathways underlying type 2 diabetes (12; 13) and 73 

increasing numbers of genetic variants available as IVs for BMI, we set out to test the potential for 74 

bias in causal estimates from MR using these state-of-the-art approaches. We compared results 75 

from MR-Egger regression (9) and weighted weighted median (11) approaches to a traditional 76 

inverse-variance weighted (IVW) method (which makes the strong assumption that all variants are 77 

valid IVs) (14) in an investigation of the causal relationship between BMI and type 2 diabetes. 78 

These methods all undertake two-sample Mendelian randomisation whereby the GWAS results for 79 

a disease outcome are unified with those of an exposure of interest and together used to estimate 80 

the causal impact of that exposure on disease. We used published data in a two-sample analysis 81 

strategy taking SNP-exposure and SNP-outcome associations from different sources (15; 16). 82 

 83 

The effect sizes for BMI-associated SNPs with associated standard errors from a mixed-sex cohort 84 

of European ancestry were taken from the Genetic Investigation of ANthropometric Traits (GIANT) 85 

consortium (17) along with results for type 2 diabetes from the DIAbetes Genetics Replication And 86 

Meta-analysis (DIAGRAM) Consortium. To avoid sample overlap, GIANT estimates were re-87 

calculated in the absence of DIAGRAM cohorts yielding a maximum sample size at any given 88 

locus of 189,079. To aid interpretation of the effects of BMI on type 2 diabetes, effect sizes were 89 

transformed to BMI units prior to analysis, assuming one standard deviation (SD) = 4.5kg/m2(17). 90 

For the corresponding SNP-outcome association, we took odds ratios (ORs) and confidence 91 

intervals from a GWAS meta-analysis conducted by the DIAGRAM Consortium. This genome-wide 92 

meta-analysis includes data from 12,171 type 2 diabetes cases and 56,862 controls of mainly 93 

European descent imputed at up to 2.5 million autosomal SNPs (DIAGRAMv3) (18). All but one 94 

(rs4787491, INO80E) of the BMI-associated SNPs (p<5x10-8) from GIANT had results listed in the 95 

DIAGRAMv3 dataset so 96 SNPs with results in both datasets were taken forward for analysis. 96 

 97 
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 5 

SNP-exposure and SNP-outcome associations were combined using the three different 98 

approaches outlined above. All analyses were conducted in R 3.2.0 (19). First, an inverse-variance 99 

weighted (IVW) method was implemented to provide a weighted average of the causal effect 100 

estimates (14). This method assumes that all genetic variants (i.e. 100%) satisfy the IV 101 

assumptions (including zero pleiotropy) and uses weights that assume the gene-exposure 102 

association estimates are measured without error (the No Measurement Error (NOME) 103 

assumption).  104 

 105 

Second, we performed MR-Egger regression (9), which assumes NOME but allows each variant to 106 

exhibit pleiotropy. MR-Egger estimates remain consistent only if the magnitude of the gene 107 

exposure associations across all variants are independent of their pleiotropic effects (the InSIDE 108 

assumption) (9). As recommended by Bowden et al (9), the extent to which pleiotropy was 109 

balanced across the set of instruments as a whole was visually assessed by plotting the causal 110 

effect estimates against their precision, using a funnel plot and checking for asymmetry (Figure 111 

1A). The NOME assumption was assessed for MR-Egger via an adaptation of the I2 statistic (���
� ) 112 

(20) and adjusted for by combining MR-Egger with the method of Simulation Extrapolation 113 

(SIMEX) (21). Using SIMEX, new data sets are created by simulating gene-exposure association 114 

estimates under increasing violations of NOME and recording the amount of attenuation in the 115 

estimate that occurs. The set of attenuated estimates are then used to extrapolate back to the 116 

estimate that would have been obtained if NOME had been satisfied. 117 

 118 

Finally, a weighted weighted median estimation method was applied (11). The weighted median 119 

provides a consistent estimate of causal effect if at least 50% of the information in the analysis 120 

comes from variants that are valid IVs. For a more detailed description of the three methods 121 

applied, see Online Appendix (Supplementary methods). A leave-one-out permutation analysis 122 

was conducted across all methods to assess the influence of potentially pleiotropic SNPs on the 123 

causal estimates (22). In the case of the linear models (IVW and MR-Egger) two additional 124 

analyses were conducted (23; 24). Firstly, the extent to which the causal estimate from each SNP 125 
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in the set could be considered an outlier was assessed using studentized residuals. Secondly, 126 

Cook’s distance (25) was used as a measure of the aggregate impact of each SNP on the model.  127 

 128 

Results 129 

All three approaches provide evidence of a positive causal relationship between BMI and type 2 130 

diabetes. This is demonstrated in Figure 1B where the slope of the lines show the causal effect 131 

estimates as predicted by the IVW, MR-Egger and m weighted median approaches. Estimates 132 

correspond to an OR for type 2 diabetes per unit increase in BMI (kg/m2) of 1.19, 1.26 and 1.38 for 133 

the IVW, weighted median and MR-Egger analyses, respectively and are in line with a previous 134 

MR estimate of 1.27 (95%CI 1.18, 1.36) (2) (Table 1). Assessment of the NOME assumption with 135 

respect to the MR-Egger estimate gave ���
� =0.83, suggesting an approximate 15% attenuation of 136 

the causal estimate towards zero. Bias adjustment via SIMEX gave a corrected MR-Egger causal 137 

estimate of 1.46 (95%CI 1.16, 1.84) for type 2 diabetes per unit increase in BMI (kg/m2). 138 

 139 

Considering the individual SNP-based contributions to MR analysis, there is one clear outlier in the 140 

distribution of effects shown in Figure 1 and that is TCF7L2(rs7903146). TCF7L2(rs7903146) 141 

shows an association with BMI that is in the opposite direction to the overall trend (and weak 142 

relative to its effect on type 2 diabetes), resulting in a large negative causal estimate from this SNP 143 

alone. The presence of at least some unbalanced pleiotropy was detected within the set of 144 

variants, as reflected by the intercept estimate of -0.019 (p=0.10) in the MR-Egger analysis.  145 

 146 

To illustrate the impact of TCF7L2(rs7903146) on causal estimates, we performed a sensitivity 147 

analysis in which each SNP in turn was removed from the set in a leave-one-out permutation 148 

analysis. We saw a shift in the causal estimates from the IVW (an increase) and MR-Egger (a 149 

decrease) as a result of the removal of TCF7L2(rs7903146) but no difference in the estimate from 150 

the weighted median approach (Table 1; Figure 2). The results of the leave-one-out permutation 151 

analysis showed that the impact of removing TCF7L2(rs7903146) from the variant set on the IVW 152 

and MR-Egger estimates was greater than that of removing almost any other variant, with the 153 

exception of FTO(rs1558902) (Figure 2A & B). When FTO(rs1558902) was removed, causal 154 
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 7 

estimates from both the IVW and MR-Egger analysis decreased (Table 1; Figure 2). In this 155 

instance we also observed movement in the causal effect estimate from the weighted median 156 

(Table 1; Figure 2C). The estimate of the intercept from MR-Egger moved closer to zero following 157 

both the removal of TCF7L2(rs7903146) and FTO(rs1558902) (Figure 2D). TCF7L2(rs7903146) 158 

was also identified as an outlier in both IVW and MR-Egger (studentized residuals, Bonferroni 159 

corrected p<1x10-19) but FTO(rs1558902) was not (Online Appendix (Supplementary Results, 160 

Figures S1A/B)). Calculation of Cook’s distance showed both variants to have a disproportionate 161 

level of influence on the model compared to other variants in the set (Online Appendix 162 

(Supplementary Results, Figures S2A/B)) . 163 

 164 

These results suggest TCF7L2(rs7903146) may be pleiotropic with respect to the outcome, i.e. 165 

that it influences type 2 diabetes through an alternative pathway (other than BMI). Evidence from 166 

existing literature supports this assertion as the type 2 diabetes risk increasing allele at 167 

TCF7L2(rs7903146) has been associated with both increased fasting glucose (26) and decreased 168 

BMI (17). Under the assumption that TCF7L2(rs7903146) demonstrates horizontal pleiotropy with 169 

respect to type 2 diabetes, we would expect its inclusion in the variant set to bias the causal 170 

estimate predicted by the IVW approach, but not that predicted by MR-Egger or the weighted 171 

median. Removing TCF7L2(rs7903146) from the variant set causes a slight shift in the causal 172 

estimates from the IVW and MR-Egger approaches, bringing them more in line with one another 173 

and also with the weighted median estimate which remained stable in this instance. Also of note is 174 

the reduction in the 95% confidence interval of the MR-Egger estimate following removal of the 175 

TCF7L2(rs7903146). This increase in precision following removal of a likely invalid instrument from 176 

the set is another potentially favourable quality of this estimator. The relatively small changes 177 

observed across all methods as a result of removing TCF7L2(rs7903146) are in line with the 178 

relatively weak effect of the SNP as shown in Figure 1B. 179 

 180 

In contrast, the effect of removing FTO(rs1558902) is more noticeable. Regardless of the method 181 

used, removing this variant results in a lower causal estimate (Table 1; Figure 2). The substantial 182 

influence of FTO(rs1558902) was predicable given the strength of its effect relative to the other 183 
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 8 

variants (Figure 1B), though properties of this effect are not in line with other variants used to 184 

instrument BMI as reported elsewhere for physical activity (27), thyroid function (28) and 185 

depression (29). The concomitant increase in standard error associated with the estimates here 186 

point towards increased uncertainty moving the estimates towards the null in the absence of 187 

FTO(rs1558902). The weighted median appears robust, even to the removal of FTO(rs1558902), 188 

as demonstrated by the relatively tight distribution of estimates returned from the leave-one-out 189 

permutation analysis (Figure 2C). This is as expected given the tolerance of weighted median 190 

approaches to outliers.  191 

 192 

Discussion 193 

By applying new analytical techniques to an old question – the causal relationship between BMI 194 

and type 2 diabetes – we have explored the potential for invalid instruments to bias causal 195 

estimates in MR. In this case where BMI is the exposure, the opportunity to use a large instrument 196 

list in causal analyses presents both opportunity, through variance explained, but also cost, 197 

through complications generated by instrument properties or methods employed. Results here 198 

suggest that both TCF7L2 and FTO appear to have genetic variation which predicts BMI reliably, 199 

but for which associations with type 2 diabetes do not fully align with that for other variants (given 200 

BMI effects and assumed causality).  201 

 202 

For TCF7L2, only recently suggested to be associated with BMI directly (17), this is not surprising 203 

and reinforces the important point that the validity of a specific method’s MR estimate depends on 204 

whether the genetic variants collectively satisfy its assumptions. In this case, it is possible that the 205 

negative association with BMI observed in GIANT is the product of a form of bias where the risk of 206 

type 2 diabetes is leading to effective treatment, health benefit and BMI reduction. This is 207 

supported by the apparently causal negative relationship between type 2 diabetes and BMI seen in 208 

a reciprocal analysis where BMI is the outcome of interest (Online Appendix (Supplementary 209 

Results, Figure S3)), though is likely to be more a comment on study design than biological effect.  210 

 211 
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 9 

In this example, the use of recently derived methods (9; 11) designed to overcome problems 212 

caused by directional pleiotropy, yields estimates which are more stable in the presence or 213 

absence of potentially invalid instruments and confirm the likely magnitude of the average effect of 214 

BMI on type 2 diabetes (i.e. from the most likely and stable estimate, an elevation of odds of 215 

disease of ~26% for each additional unit of BMI). The comparison of results from different methods 216 

for any set of potential instruments is important when assessing the reliability of causal inferences 217 

and important for downstream interpretation. In this case, whilst it is impossible to model precisely, 218 

one can estimate the hypothetical impact of an average population level change in lifecourse BMI 219 

on type 2 diabetes. Given a population size of 64.1 million in the UK in mid 2013(30) and a 220 

modelled prevalence of type 2 diabetes (including non-diagnosed cases) of 7.4%(31; 32), the 221 

estimated reduction in odds for a 1kg/m2 reduction would potentially yield a reduction in the 222 

number of cases from ~4.7-3.6 million (a shift in prevalence to 5.6%). 223 

 224 
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Tables 486 

Table 1 – Estimates from the application of inverse-variance weighted, MR-Egger and weighted 487 

median Mendelian randomisation methodologies. Estimates represent the estimated causal effect 488 

of body mass index on type 2 diabetes. 489 

Method  Estimate 95% CI p-value 

Complete variant set (n=96 SNPs) 

IVW  1.20 1.09, 1.30 8.00 x 10-05 

MR-Egger  1.39 1.14, 1.68 1.53 x 10-03 

MR-Egger(α)  -0.019 -0.041, 0.004 0.10 

Weighted median  1.26 1.17, 1.34 5.26 x 10-9 

TCF7L2(rs7903146) removed from the variant set (n=95 SNPs) 

IVW  1.22 1.16, 1.28 1.49 x 10-11 

MR-Egger  1.34 1.17, 1.51 9.71 x 10-06 

MR-Egger(α)  -0.011 -0.024, -0.024  0.13 

Weighted median  1.26 1.19, 1.32 3.29 x 10-10 

FTO(rs1558902) removed from the variant set (n=95 SNPs) 

IVW  1.16 1.06, 1.27 1.31 x 10-03 

MR-Egger  1.30 1.01, 1.65 0.04 

MR-Egger(α)  -0.012 -0.038, 0.014 0.34 

Weighted median  1.21 1.13, 1.28 6.81 x 10-08 

Intercept coefficients MR-Egger(α) represent the average pleiotropic effect of a genetic variant on 490 

type 2 diabetes risk. “IVW” refers to inverse variance weighted estimates, SNP refers to single 491 

nucleotide polymorphism.492 
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Figures 493 

Figure 1 – Genetic associations with body mass index (BMI) and type 2 diabetes from 96 variants measured in GIANT (17) and DIAGRAM (18), 494 

respectively. TCF7L2(rs7903146) and FTO(rs1558902) are marked with a ‘X’ and labelled. 495 

A - funnel plot of minor allele frequency corrected genetic associations with BMI (interpreted as instrument strength) against causal estimates based 496 

on each genetic variant individually, where the causal effect is expressed in logs odds ratio of type 2 diabetes for each unit increase in BMI. The 497 

overall causal estimates (β coefficients) of BMI on type 2 diabetes estimated by inverse-variance weighted (solid black line), MR-Egger (dashed black 498 

line) and weighted median (dotted black line) methods are also shown. Grey solid line represent x=0, that is a causal estimate of zero. 499 

B - scatter plot of genetic associations with type 2 diabetes against associations with BMI, with causal estimates (β coefficients) of BMI on type 2 500 

diabetes estimated by inverse-variance weighted (solid line), MR-Egger (dashed line) and weighted median (dotted line) methods.  501 

 502 

Figure 2 – Distributions of regression estimates resulting from leave-one-out permutation analysis. Solid line = estimate from main analysis (n=96 503 

variants); dashed line = estimate with TCF7L2(rs7903146) removed; dotted line = estimate with FTO(rs1558902) removed. 504 

A - Causal estimates (β coefficients) of BMI on type 2 diabetes estimated by an inverse-variance weighted method 505 

B - Causal estimates (β coefficients) of BMI on type 2 diabetes estimated by MR-Egger 506 

C - Causal estimates (β coefficients) of BMI on type 2 diabetes estimated by a weighted median method 507 

D – Estimates of the intercept by MR-Egger 508 

 509 
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Online Appendix  

Supplementary methods 

Mendelian randomization framework 

Let Γ̂
j
 equal the gene-outcome association estimate for variant j = 1, . . ., J, with associated 

standard errorσ
Yj

. Let γ̂
j
 equal the gene-exposure association estimate for variant j, with 

associated standard errorσ
Xj

. Let the causal effect of the exposure on the outcome be 

denoted by β . An estimate for β  based on variant j alone can be obtained via the ratio 

method as 

ˆ
ˆ

ˆ

j

j

j

β
γ

Γ
=

 

Two forms for the variance of β̂
j
are often used: 

(i)  Var(β̂
j
) =

σ
Yj

2

γ̂
j

2
  

(ii) Var(β̂
j
) =

σ
Yj

2

γ̂
j

2
+
Γ̂
j

2σ
Xj

2

γ̂
j

4
, 

Using either a first order (i) or second order (ii) Taylor series expansion. We use the variance 

from (i). This is equivalent to assuming that the gene-exposure association estimates are 

measured without error and is referred to as the No Measurement Error (NOME) 

assumption.  NOME is equivalent to the assumption ���� = 0 for all j, so that  ��� = �� for all j. 

 

The inverse variance weighted (IVW) method for the overall causal effect estimate 

Let w
j
=1/ var(β̂

j
)  where var(β̂

j
) is defined as in (i) under NOME. The  inverse variance 

weighted (IVW) estimate for the causal effect is given by the standard meta-analytic formula 

w
j

j

∑ β̂
j

w
j

j

∑
. 

The 	� terms derived under NOME are also referred to as ‘Toby Johnson’ weights. The IVW 

estimate assumes that all genetic variants satisfy the instrumental variable assumptions. If 

this is not true then it could give a biased estimate forβ .The IVW estimate for β   is 

consistent even if all genetic variants are invalid, provided that: 
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• Across all variants, the magnitude of the gene exposure associations are 

independent of their pleiotropic effects (the InSIDE assumption) 

• NOME is satisfied 

• The pleiotropic effects have zero mean 

The weighted median method for the overall causal effect estimate 

Let β̂
(1)
,…,β̂

(J )
 equal the J causal effect estimates ordered from smallest ( β̂

(1)
) to largest (

β̂
( J )

).  Now define 

w*
( j )
=
w
j

S
J

,     where    S
J
= w

j

j

∑ , 

and equate β̂
( j )

with a quantile, p
( j )

w , defined as  

 p
( j )

w =
100

S
J

S
( j )
−
w
( j )

2









. 

p
( j )

w  represents the quantile from the weighted empirical distribution function of the ordered 

estimates β̂
(1)
,…, β̂

(J )
. The weighted median estimate, β̂

WM
 is defined as the 50th percentile 

of this weighted distribution. Typically the 50th percentile will lie between two estimates ( β̂
(l )

and β̂
(m)

, say), in which case β̂
WM

is found by linear interpolation. 

β̂
WM

 is a consistent estimate for βprovided that at least 50% of the `weight’ making up S
J
 

comes from genetic variants that are valid instruments.  

 

The MR-Egger method for the overall causal effect estimate 

The MR-Egger method performs a weighted linear regression of the gene-outcome 

coefficients on the gene-exposure coefficients: 

 
Γ̂
j

σ
Yj

=
β
0E

σ
Yj

+β
1E

γ̂
j

σ
Yj

  

The weights used are also derived under the NOME assumption. If all genetic variants are 

valid instruments, then β
0E

= 0. The value of β̂
0E

 can be interpreted as an estimate of the 

average pleiotropic effect across the genetic variants. An intercept term that differs from zero 

is indicative of overall directional pleiotropy. The MR-Egger estimate forβ , β̂
1E

, is consistent 

even if all genetic variants are invalid, provided that: 

• Across all variants, the magnitude of the gene exposure associations are 

independent of their pleiotropic effects (the InSIDE assumption) 
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• NOME is satisfied. 

If NOME is violated then the MR-Egger estimate of causal effect will be attenuated towards 

the null. We can assess the strength of NOME violation for MR-Egger through the 
���  

statistic: 
��� = �
��
� , where � = 	∑ �

����� ����� 
	��
�
� 
�

�!�� �����
""#$ 	and where �̅ equals the arithmetic mean of 

the 
��� �&���  terms . Specifically, the 
��� 	statistic quantifies the proportion of the total variation 

between the 
��� �&���  terms that is due to `true’ variation between the  

�� �&���   terms.  

Consequently, when NOME is satisfied �$� ,…	, �"�  = �$, … , �", 
���  equals 1, and no attenuation 

occurs. When 
���  = 0.9 we can expect the MR-Egger estimate to be only 90% of its value 

had NOME been satisfied. A crude correction for NOME violation would be  
)*+,-.!�  , however 

this can be unstable as  
���  can sometimes be estimated as zero, even when it is truly large. 

We used the established method of Simulation Extrapolation (SIMEX) (1) instead, as 

implemented using the R package simex() (2). Under SIMEX, new data sets are created by 

simulating gene-exposure association estimates under increasing violations of NOME and 

recording the amount of attenuation in the estimate that occurs. The set of attenuated 

estimates are then used to extrapolate back to the estimate that would have been obtained if 

NOME had been satisfied. 
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Supplementary Results 

 

Outlier analysis – Studentized residuals 

 

Figure S1A – Studentised residuals applied to the IVW method. 

 

Figure S1B – Studentised residuals applied to the MR-Egger method.s 
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Outlier analysis – Cook’s distance 

 

Figure S2A – Cook’s distance applied to the IVW method. 

 

Figure S2B – Cook’s distance applied to the MR-Egger method. 

 

 

 

 

Page 25 of 45

For Peer Review Only

Diabetes



 6 

115 SNPs 110 SNPsA B

TCF7L2

MC4R

FTO

MC4R

FTO

Reciprocal analysis of type 2 diabetes and BMI 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3 – MR-Egger analysis of the causal impact of type 2 diabetes on BMI.  

A - scatter plot of genetic associations with BMI against associations with type 2 diabetes, 

with causal estimates (β coefficients) of type 2 diabetes on BMI estimated by inverse-
variance weighted (red line), MR-Egger (blue line) and median-based (green line) methods. 
For this analysis, all 115 confirmed type 2 diabetes associated loci with OR not equal to 1 
from Morris et al (2012)(3) downloaded from DIAGRAM  http://diagram-
consortium.org/downloads.html) were used. 
A - scatter plot of genetic associations with BMI against associations with type 2 diabetes, 

with causal estimates (β coefficients) of type 2 diabetes on BMI estimated by inverse-
variance weighted (red line), MR-Egger (blue line) and median-based (green line) methods. 
For this analysis, 110 confirmed type 2 diabetes associated loci with OR not equal to 1 and 
no overlapping known BMI loci (excluding FTO, MC4R and TCF7L2) from Morris et al 
(2012)(3) were again used. 
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ABSTRACT 23	

This study focused on resolving the relationship between body mass index (BMI) and type 2 24	
diabetes. The availability of multiple variants associated with BMI offers a new chance to resolve 25	
the true causal effect of BMI on T2D, however the properties of these associations and their 26	

validity as genetic instruments need to be considered alongside established and new methods for 27	
undertaking Mendelian randomisation. We explore the potential for pleiotropic genetic variants to 28	

generate bias, revise existing estimates and illustrate value in new analysis methods. A two-29	
sample Mendelian randomisation (MR) approach with 96 genetic variants was employed using 30	

three different analysis methods, two of which (MR-Egger and the weighted median) have been 31	
developed specifically to address problems of invalid instrumental variables. We estimate an odds 32	
ratio for type 2 diabetes per unit increase in BMI (kg/m2) of between 1.19 and 1.38, with the most 33	

stable estimate using all instruments and a weighted median approach (1.26 95%CI (1.17, 1.34)). 34	
TCF7L2(rs7903146) was identified as a complex effect or pleiotropic instrument and removal of 35	

this variant resulted in convergence of causal effect estimates from different causal analysis 36	
methods. This indicated the potential for pleiotropy to affect estimates and differences in 37	
performance of alternative analytical methods. In a real type 2 diabetes focused example, this 38	

study demonstrates the potential impact of invalid instruments on causal effect estimates and the 39	
potential for new approaches to mitigate the bias caused. 40	
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Observational studies have shown body mass index (BMI) to be associated with risk of type 2 45	

diabetes as well as with a range of diabetes-related metabolic traits (1; 2). However, it is well 46	
known that confounding, reverse causation and biases can generate such associations and that 47	
even with careful study design, incorrect inference is possible (3). One approach to circumventing 48	

these problems is to use genetic association results within a Mendelian randomization (MR) 49	
framework (3; 4). In MR analyses, genetic variants act as proxies for an exposure in a manner 50	

independent of confounders. If in addition the variants only affect an outcome of interest through 51	
the chosen exposure, then they are said to be valid instrumental variables (IVs). This enables 52	

evaluation of the causal effect of the exposure on the outcome, escaping some of the limitations of 53	
observational epidemiology; (5). 54	
 55	

Following the success of genome-wide association studies (GWASs), the number of MR analyses 56	
using large numbers of mostly uncharacterized variants associated with complex health outcomes 57	

or intermediates is rapidly increasing (6; 7). In the case of BMI, there are now 97 genetic variants 58	
reliably associated and there are examples where multiple variants have been used as a 59	
composite IV to estimate the causal impact of BMI on health (8). Although using many IVs can 60	

increase the power of MR analyses , it brings with it the concern that enlarged sets of genetic 61	
variants are more likely to contain invalid IVs due to violations of the assumptions necessary for 62	

valid causal inference using traditional methods (9). In particular, horizontal pleiotropy – where a 63	
genetic variant affects the outcome via more than one biological pathway (10) – is a concern. 64	
Importantly, the properties of these associations and their validity as genetic instruments need to 65	

be considered alongside established and new methods for undertaking Mendelian randomisation. 66	
 67	

In response to the general issue of using multiple genetic variants in MR, Bowden et al. (9) 68	
propose both MR-Egger regression, an approach developed from the original Egger regression 69	
technique for assessing small study bias in meta-analysis and a weighted weighted median 70	

approach (11) as alternatives to the standard MR analysis. The MR-Egger and weighted weighted 71	
median approaches both operate using distinct, but critically weaker, versions of the IV 72	

assumptions, and therefore have the potential to deliver robust causal effect estimates. The MR-73	
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Egger method also provides a formal statistical test as to whether or not the average pleiotropic 102	

effect of the genetic variants is equal to zero (9). 103	
 104	
Research Design and Methods 105	

With increasing evidence for multiple biological pathways underlying type 2 diabetes (12; 13) and 106	
increasing numbers of genetic variants available as IVs for BMI, we set out to test the potential for 107	

bias in causal estimates from MR using these state-of-the-art approaches. We compared results 108	
from MR-Egger regression (9) and weighted weighted median (11) approaches to a traditional 109	

inverse-variance weighted (IVW) method (which makes the strong assumption that all variants are 110	
valid IVs) (14) in an investigation of the causal relationship between BMI and type 2 diabetes. 111	
These methods all undertake two-sample Mendelian randomisation whereby the GWAS results for 112	

a disease outcome are unified with those of an exposure of interest and together used to estimate 113	
the causal impact of that exposure on disease. We used published data in a two-sample analysis 114	

strategy taking SNP-exposure and SNP-outcome associations from different sources (15; 16). 115	
 116	
The effect sizes for BMI-associated SNPs with associated standard errors from a mixed-sex cohort 117	

of European ancestry were taken from the Genetic Investigation of ANthropometric Traits (GIANT) 118	
consortium (17) along with results for type 2 diabetes from the DIAbetes Genetics Replication And 119	

Meta-analysis (DIAGRAM) Consortium. To avoid sample overlap, GIANT estimates were re-120	
calculated in the absence of DIAGRAM cohorts yielding a maximum sample size at any given 121	
locus of 189,079. To aid interpretation of the effects of BMI on type 2 diabetes, effect sizes were 122	

transformed to BMI units prior to analysis, assuming one standard deviation (SD) = 4.5kg/m2(17). 123	
For the corresponding SNP-outcome association, we took odds ratios (ORs) and confidence 124	

intervals from a GWAS meta-analysis conducted by the DIAGRAM Consortium. This genome-wide 125	
meta-analysis includes data from 12,171 type 2 diabetes cases and 56,862 controls of mainly 126	
European descent imputed at up to 2.5 million autosomal SNPs (DIAGRAMv3) (18). All but one 127	

(rs4787491, INO80E) of the BMI-associated SNPs (p<5x10-8) from GIANT had results listed in the 128	
DIAGRAMv3 dataset so 96 SNPs with results in both datasets were taken forward for analysis. 129	

 130	
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SNP-exposure and SNP-outcome associations were combined using the three different 154	

approaches outlined above. All analyses were conducted in R 3.2.0 (19). First, an inverse-variance 155	
weighted (IVW) method was implemented to provide a weighted average of the causal effect 156	
estimates (14). This method assumes that all genetic variants (i.e. 100%) satisfy the IV 157	

assumptions (including zero pleiotropy) and uses weights that assume the gene-exposure 158	
association estimates are measured without error (the No Measurement Error (NOME) 159	

assumption).  160	
 161	

Second, we performed MR-Egger regression (9), which assumes NOME but allows each variant to 162	
exhibit pleiotropy. MR-Egger estimates remain consistent only if the magnitude of the gene 163	
exposure associations across all variants are independent of their pleiotropic effects (the InSIDE 164	

assumption) (9). As recommended by Bowden et al (9), the extent to which pleiotropy was 165	
balanced across the set of instruments as a whole was visually assessed by plotting the causal 166	

effect estimates against their precision, using a funnel plot and checking for asymmetry (Figure 167	

1A). The NOME assumption was assessed for MR-Egger via an adaptation of the I2 statistic (!"#$ ) 168	

(20) and adjusted for by combining MR-Egger with the method of Simulation Extrapolation 169	
(SIMEX) (21). Using SIMEX, new data sets are created by simulating gene-exposure association 170	

estimates under increasing violations of NOME and recording the amount of attenuation in the 171	
estimate that occurs. The set of attenuated estimates are then used to extrapolate back to the 172	

estimate that would have been obtained if NOME had been satisfied. 173	
 174	
Finally, a weighted weighted median estimation method was applied (11). The weighted median 175	

provides a consistent estimate of causal effect if at least 50% of the information in the analysis 176	
comes from variants that are valid IVs. For a more detailed description of the three methods 177	

applied, see Online Appendix (Supplementary methods). A leave-one-out permutation analysis 178	
was conducted across all methods to assess the influence of potentially pleiotropic SNPs on the 179	
causal estimates (22). In the case of the linear models (IVW and MR-Egger) two additional 180	

analyses were conducted (23; 24). Firstly, the extent to which the causal estimate from each SNP 181	
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in the set could be considered an outlier was assessed using studentized residuals. Secondly, 192	

Cook’s distance (25) was used as a measure of the aggregate impact of each SNP on the model.  193	
 194	
Results 195	

All three approaches provide evidence of a positive causal relationship between BMI and type 2 196	
diabetes. This is demonstrated in Figure 1B where the slope of the lines show the causal effect 197	

estimates as predicted by the IVW, MR-Egger and m weighted median approaches. Estimates 198	
correspond to an OR for type 2 diabetes per unit increase in BMI (kg/m2) of 1.19, 1.26 and 1.38 for 199	

the IVW, weighted median and MR-Egger analyses, respectively and are in line with a previous 200	
MR estimate of 1.27 (95%CI 1.18, 1.36) (2) (Table 1). Assessment of the NOME assumption with 201	

respect to the MR-Egger estimate gave !"#$ =0.83, suggesting an approximate 15% attenuation of 202	

the causal estimate towards zero. Bias adjustment via SIMEX gave a corrected MR-Egger causal 203	

estimate of 1.46 (95%CI 1.16, 1.84) for type 2 diabetes per unit increase in BMI (kg/m2). 204	
 205	

Considering the individual SNP-based contributions to MR analysis, there is one clear outlier in the 206	
distribution of effects shown in Figure 1 and that is TCF7L2(rs7903146). TCF7L2(rs7903146) 207	
shows an association with BMI that is in the opposite direction to the overall trend (and weak 208	

relative to its effect on type 2 diabetes), resulting in a large negative causal estimate from this SNP 209	
alone. The presence of at least some unbalanced pleiotropy was detected within the set of 210	

variants, as reflected by the intercept estimate of -0.019 (p=0.10) in the MR-Egger analysis.  211	
 212	
To illustrate the impact of TCF7L2(rs7903146) on causal estimates, we performed a sensitivity 213	

analysis in which each SNP in turn was removed from the set in a leave-one-out permutation 214	
analysis. We saw a shift in the causal estimates from the IVW (an increase) and MR-Egger (a 215	

decrease) as a result of the removal of TCF7L2(rs7903146) but no difference in the estimate from 216	
the weighted median approach (Table 1; Figure 2). The results of the leave-one-out permutation 217	
analysis showed that the impact of removing TCF7L2(rs7903146) from the variant set on the IVW 218	

and MR-Egger estimates was greater than that of removing almost any other variant, with the 219	
exception of FTO(rs1558902) (Figure 2A & B). When FTO(rs1558902) was removed, causal 220	
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estimates from both the IVW and MR-Egger analysis decreased (Table 1; Figure 2). In this 236	

instance we also observed movement in the causal effect estimate from the weighted median 237	
(Table 1; Figure 2C). The estimate of the intercept from MR-Egger moved closer to zero following 238	
both the removal of TCF7L2(rs7903146) and FTO(rs1558902) (Figure 2D). TCF7L2(rs7903146) 239	

was also identified as an outlier in both IVW and MR-Egger (studentized residuals, Bonferroni 240	
corrected p<1x10-19) but FTO(rs1558902) was not (Online Appendix (Supplementary Results, 241	

Figures S1A/B)). Calculation of Cook’s distance showed both variants to have a disproportionate 242	
level of influence on the model compared to other variants in the set (Online Appendix 243	

(Supplementary Results, Figures S2A/B)) . 244	
 245	
These results suggest TCF7L2(rs7903146) may be pleiotropic with respect to the outcome, i.e. 246	

that it influences type 2 diabetes through an alternative pathway (other than BMI). Evidence from 247	
existing literature supports this assertion as the type 2 diabetes risk increasing allele at 248	

TCF7L2(rs7903146) has been associated with both increased fasting glucose (26) and decreased 249	
BMI (17). Under the assumption that TCF7L2(rs7903146) demonstrates horizontal pleiotropy with 250	
respect to type 2 diabetes, we would expect its inclusion in the variant set to bias the causal 251	

estimate predicted by the IVW approach, but not that predicted by MR-Egger or the weighted 252	
median. Removing TCF7L2(rs7903146) from the variant set causes a slight shift in the causal 253	

estimates from the IVW and MR-Egger approaches, bringing them more in line with one another 254	
and also with the weighted median estimate which remained stable in this instance. Also of note is 255	
the reduction in the 95% confidence interval of the MR-Egger estimate following removal of the 256	

TCF7L2(rs7903146). This increase in precision following removal of a likely invalid instrument from 257	
the set is another potentially favourable quality of this estimator. The relatively small changes 258	

observed across all methods as a result of removing TCF7L2(rs7903146) are in line with the 259	
relatively weak effect of the SNP as shown in Figure 1B. 260	
 261	

In contrast, the effect of removing FTO(rs1558902) is more noticeable. Regardless of the method 262	
used, removing this variant results in a lower causal estimate (Table 1; Figure 2). The substantial 263	

influence of FTO(rs1558902) was predicable given the strength of its effect relative to the other 264	

Deleted: median-based approach265	

Deleted: Supplementary Data266	

Deleted: (Supplementary Data)267	

Deleted: median-based approaches268	

Deleted: median-based 269	

Deleted: can be predicted because of270	

Page 34 of 45

For Peer Review Only

Diabetes



	 8	

variants (Figure 1B), though properties of this effect are not in line with other variants used to 271	

instrument BMI as reported elsewhere for physical activity (27), thyroid function (28) and 272	
depression (29). The concomitant increase in standard error associated with the estimates here 273	
point towards increased uncertainty moving the estimates towards the null in the absence of 274	

FTO(rs1558902). The weighted median appears robust, even to the removal of FTO(rs1558902), 275	
as demonstrated by the relatively tight distribution of estimates returned from the leave-one-out 276	

permutation analysis (Figure 2C). This is as expected given the tolerance of weighted median 277	
approaches to outliers.  278	

 279	
Discussion 280	
By applying new analytical techniques to an old question – the causal relationship between BMI 281	

and type 2 diabetes – we have explored the potential for invalid instruments to bias causal 282	
estimates in MR. In this case where BMI is the exposure, the opportunity to use a large instrument 283	

list in causal analyses presents both opportunity, through variance explained, but also cost, 284	
through complications generated by instrument properties or methods employed. Results here 285	
suggest that both TCF7L2 and FTO appear to have genetic variation which predicts BMI reliably, 286	

but for which associations with type 2 diabetes do not fully align with that for other variants (given 287	
BMI effects and assumed causality).  288	

 289	
For TCF7L2, only recently suggested to be associated with BMI directly (17), this is not surprising 290	
and reinforces the important point that the validity of a specific method’s MR estimate depends on 291	

whether the genetic variants collectively satisfy its assumptions. In this case, it is possible that the 292	
negative association with BMI observed in GIANT is the product of a form of bias where the risk of 293	

type 2 diabetes is leading to effective treatment, health benefit and BMI reduction. This is 294	
supported by the apparently causal negative relationship between type 2 diabetes and BMI seen in 295	
a reciprocal analysis where BMI is the outcome of interest (Online Appendix (Supplementary 296	

Results, Figure S3)), though is likely to be more a comment on study design than biological effect.  297	
 298	

Deleted:  and has been observed previously, for 299	
example, in the context of300	
Deleted:  301	

Formatted: Not Highlight

Deleted:  302	

Deleted: median-based approach303	

Deleted: median-based 304	

Formatted: Normal
Formatted: Font:Bold

Deleted: “To what extent does increased BMI 305	
predispose individuals to type 2 diabetes?”306	

Deleted: s307	
Deleted: the validity of the genetic variants chosen as 308	
instruments309	

Formatted: Not Highlight

Formatted: Not Highlight

Page 35 of 45

For Peer Review Only

Diabetes



	 9	

In this example, the use of recently derived methods (9; 11) designed to overcome problems 310	

caused by directional pleiotropy, yields estimates which are more stable in the presence or 311	
absence of potentially invalid instruments and confirm the likely magnitude of the average effect of 312	
BMI on type 2 diabetes (i.e. from the most likely and stable estimate, an elevation of odds of 313	

disease of ~26% for each additional unit of BMI). The comparison of results from different methods 314	
for any set of potential instruments is important when assessing the reliability of causal inferences 315	

and important for downstream interpretation. In this case, whilst it is impossible to model precisely, 316	
one can estimate the hypothetical impact of an average population level change in lifecourse BMI 317	

on type 2 diabetes. Given a population size of 64.1 million in the UK in mid 2013(30) and a 318	
modelled prevalence of type 2 diabetes (including non-diagnosed cases) of 7.4%(31; 32), the 319	
estimated reduction in odds for a 1kg/m2 reduction would potentially yield a reduction in the 320	

number of cases from ~4.7-3.6 million (a shift in prevalence to 5.6%). 321	
 322	
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Tables 596	

Table 1 – Estimates from the application of inverse-variance weighted, MR-Egger and weighted 597	
median Mendelian randomisation methodologies. Estimates represent the estimated causal effect 598	
of body mass index on type 2 diabetes. 599	

Method  Estimate 95% CI p-value 

Complete variant set (n=96 SNPs) 

IVW  1.20 1.09, 1.30 8.00 x 10-05 

MR-Egger  1.39 1.14, 1.68 1.53 x 10-03 

MR-Egger(
α
)  -0.019 -0.041, 0.004 0.10 

Weighted median  1.26 1.17, 1.34 5.26 x 10-9 

TCF7L2(rs7903146) removed from the variant set (n=95 SNPs) 

IVW  1.22 1.16, 1.28 1.49 x 10-11 

MR-Egger  1.34 1.17, 1.51 9.71 x 10-06 

MR-Egger(
α
)  -0.011 -0.024, -0.024  0.13 

Weighted median  1.26 1.19, 1.32 3.29 x 10-10 

FTO(rs1558902) removed from the variant set (n=95 SNPs) 

IVW  1.16 1.06, 1.27 1.31 x 10-03 

MR-Egger  1.30 1.01, 1.65 0.04 

MR-Egger(
α
)  -0.012 -0.038, 0.014 0.34 

Weighted median  1.21 1.13, 1.28 6.81 x 10-08 

Intercept coefficients MR-Egger(
α
) represent the average pleiotropic effect of a genetic variant on 600	

type 2 diabetes risk. “IVW” refers to inverse variance weighted estimates, SNP refers to single 601	
nucleotide polymorphism.602	
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Figures 608	

Figure 1 – Genetic associations with body mass index (BMI) and type 2 diabetes from 96 variants measured in GIANT (17) and DIAGRAM (18), 609	
respectively. TCF7L2(rs7903146) and FTO(rs1558902) are marked with a ‘X’ and labelled. 610	
A - funnel plot of minor allele frequency corrected genetic associations with BMI (interpreted as instrument strength) against causal estimates based 611	

on each genetic variant individually, where the causal effect is expressed in logs odds ratio of type 2 diabetes for each unit increase in BMI. The 612	

overall causal estimates (β coefficients) of BMI on type 2 diabetes estimated by inverse-variance weighted (solid black line), MR-Egger (dashed black 613	

line) and weighted median (dotted black line) methods are also shown. Grey solid line represent x=0, that is a causal estimate of zero. 614	

B - scatter plot of genetic associations with type 2 diabetes against associations with BMI, with causal estimates (β coefficients) of BMI on type 2 615	

diabetes estimated by inverse-variance weighted (solid line), MR-Egger (dashed line) and weighted median (dotted line) methods.  616	

 617	
Figure 2 – Distributions of regression estimates resulting from leave-one-out permutation analysis. Solid line = estimate from main analysis (n=96 618	

variants); dashed line = estimate with TCF7L2(rs7903146) removed; dotted line = estimate with FTO(rs1558902) removed. 619	

A - Causal estimates (β coefficients) of BMI on type 2 diabetes estimated by an inverse-variance weighted method 620	

B - Causal estimates (β coefficients) of BMI on type 2 diabetes estimated by MR-Egger 621	

C - Causal estimates (β coefficients) of BMI on type 2 diabetes estimated by a weighted median method 622	

D – Estimates of the intercept by MR-Egger 623	
 624	
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