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ABSTRACT

A simple analytical model is presented describing the spontaneous genera-

tion of inertia-gravity waves at density fronts subjected to strong horizontal

strain rates. The model considers fronts of arbitrary horizontal and vertical

structure in a semi-infinite domain, with a single boundary at the ocean sur-

face. Waves are generated due to the acceleration of the steady uniform strain

flow around the density front, analogous to the generation of lee waves via

flow over a topographic ridge. Significant wave generation only occurs for

sufficiently strong strain rates, α > 0.2 f , and sharp fronts, H/L > 0.5 f/N.

The frequencies of the generated waves are entirely determined by the strain

rate. The lowest frequency wave predicted to be generated via this mechanism

has a Lagrangian frequency ω = 1.93 f as measured in a reference frame mov-

ing with the background strain flow. The model is intended as a first-order de-

scription of wave generation at submescoscale (1 to 10km wide) fronts where

large strain rates are commonplace. The analytical model compares well with

fully non-linear numerical simulations of the submesoscale regime.
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1. Introduction25

Recent observations and numerical simulations show significant inertia-gravity wave generation26

at density fronts (e.g. Alford et al. 2013; Danioux et al. 2012). Density fronts are regions of large27

horizontal density gradient, and are commonplace near the ocean surface. Wave generation at28

fronts is a potential mechanism for the transfer of energy from large-scale balanced flow to waves29

(e.g. Polzin 2010; Thomas 2012), some of which radiates from the surface into the deep ocean30

(Nagai et al. 2015). Once in the ocean interior, these waves contribute to the internal wave field31

which includes large contributions from wind and tides. Some of the internal wave energy might32

also be reabsorbed into the large-scale flow via wave-mean interactions (Booker and Bretherton33

1967; Nagai et al. 2015). The remaining internal waves from all sources are ultimately dissipated34

via breaking in the ocean interior, driving turbulence and mixing, and thus contributing to the35

maintenance of the global overturning circulation (Polzin and Lvov 2011; Wunsch and Ferrari36

2004).37

The generation of waves at density fronts occurs through a variety of mechanisms including38

baroclinic instability of the front (e.g. Zhang 2004; Viudez and Dritschel 2006), non-linear pro-39

cesses at very sharp fronts (e.g. Snyder et al. 1993; Ford 1994), and forcing (e.g. from surface40

wind stresses or buoyancy fluxes) that varies rapidly in time (e.g. Snyder et al. 1993; Griffiths and41

Reeder 1996; Rossby 1938; Gill 1984; Blumen 2000) — for a detailed discussion of these and42

other wave generation processes the reader is referred to the review articles of Plougonven and43

Zhang (2014) and Vanneste (2013). Here we investigate the specific case of wave generation at44

fronts subject to strong confluent strain flows, defined by strain rates α ∼ f . In the present work,45

we will use the term ‘strain rate’ to describe the cross-frontal confluence — that is, α ≡−∂xu for46

a front oriented along the y-axis — and not the (larger) modulus of the strain rate tensor, which we47
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will call the ‘net strain rate’. The straining is considered to arise from a larger scale background48

flow — for example, an eddy field — which then acts on the relatively smaller scale front. A49

front in such a confluent strain field will sharpen with time in a process known as frontogene-50

sis (Hoskins and Bretherton 1972). Recent observations (e.g. Shcherbina et al. 2013; Hosegood51

et al. 2013; Rudnick and Luyten 1996; D’Asaro et al. 2011) and numerical simulations (e.g. Rosso52

et al. 2015; Capet et al. 2008; Gula et al. 2014; Mahadevan and Tandon 2006) have shown that53

large strain rates are commonplace on the ocean submesoscale, which is characterized by horizon-54

tal scales of 1 to 10km (see also the review article of Thomas et al. 2008). For example, Rosso55

et al. (2015) observe large-scale (mesoscale) net strain rates of up to 0.4 f in their submesoscale56

resolving numerical model, and show that the vertical velocity on the submesoscale is strongly57

correlated with the mesoscale strain rate, suggesting active submesoscale frontogenesis is present.58

Shcherbina et al. (2013) observe very large net strains — in places exceeding 2 f — although59

this figure is the net strain rate, including the self-strain associated with the submesoscale fronts60

(and other phenomena). Nonetheless, collectively these studies emphasize that both sharp density61

fronts and large strain rates are ubiquitous at small scales in the ocean surface layer. Here we62

develop a simple model that predicts significant wave generation at such strained fronts.63

The classical quasi- and semi-geostrophic balance frontogenesis models (Williams and Plotkin64

1968; Hoskins and Bretherton 1972) assume that the strain rate is small, typically α ∼ 0.1 f . In65

this limit, the frontal system remains close to geostrophic balance and no wave generation occurs.66

Wave generation at more strongly strained fronts has recently been investigated analytically by67

Shakespeare and Taylor (2013, 2014) and Shakespeare (2015a), motivated in-part by earlier nu-68

merical results (e.g. Snyder et al. 1993). These studies investigated the idealized problem of a69

uniform potential vorticity fluid with rigid lids at the top and bottom of the domain, and fronts70

on both boundaries. Shakespeare and Taylor (2013) examined the generation of waves in this71
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configuration due to the adjustment of unbalanced initial conditions for weakly strained fronts.72

Shakespeare and Taylor (2014) examined the same configuration, but for larger strain rates, and73

showed that waves are spontaneously generated as the surface front sharpens. The waves did not74

propagate vertically, owing to the presence of the rigid lids, and were also trapped horizontally75

by the confluent strain flow. The amplitude of the generated waves was found to be exponentially76

small for small strain rate, but substantial for larger strain rates. Shakespeare and Taylor (2015)77

confirmed these results by direct comparison with numerical simulations.78

Here we introduce a model with two important differences to these previous models of strained79

internal fronts (Hoskins and Bretherton 1972; Shakespeare and Taylor 2013, 2014; Shakespeare80

2015a). Firstly, we consider a semi-infinite domain with a single boundary at the ocean sur-81

face. This is more readily applicable to the ocean than previous rigid lid models, and permits the82

downward propagation of waves generated at the surface front. Secondly, we allow non-uniform83

potential vorticity, which permits surface intensified fronts where the horizontal density gradient84

is maximum near the surface and decays with depth, as is typically the case for ocean fronts. To85

make the model analytically tractable, we linearize the equations of motion. The linearized equa-86

tions are only strictly valid in the limit of small geostrophic Rossby number, Rog = ∆bH/( f 2L2),87

where ∆b is the buoyancy difference across the front, H the frontal height and L the width. This88

assumption is unlikely to be valid for submesoscale fronts, where Rog is often order one (e.g.89

Shcherbina et al. 2013). However, comparison of the analytical model with a fully non-linear90

simulation of a submesoscale front (see §3) demonstrates that the analytic model is valid at depth,91

away from the surface front, and accurately describes the wave field. In other words, the dynamics92

of waves in the far field are largely unaffected by the locally large Rossby numbers and associ-93

ated non-linear dynamics at the front itself (a result also noted by Shakespeare and Taylor 2015;94

Shakespeare 2015a).95
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One objective of this paper is to investigate the dynamical mechanism responsible for the gener-96

ation of waves at strained fronts. In §2b we demonstrate the mathematical similarity of the present97

frontal wave problem to the classical rotating lee wave problem of Queney (1947). In the Queney98

(1947) model waves are generated when a uniform background flow passes over a topographic99

ridge. The background flow is accelerated around the ridge, into the stratified ambient, and for100

sufficiently sharp ridges (small width L) and strong flow (large Ū) characterized by large Rossby101

number Ro = Ū/( f L), buoyancy forces give rise to a wave response (Queney 1947; Pierrehumbert102

1984; Muraki 2011). Here we show that a density front presents an obstacle to a background strain103

flow, in the same way a topographic ridge presents an obstacle to a uniform background flow. The104

background strain flow is accelerated around the density front into the stratified ambient, and for105

sufficiently sharp fronts and strong strain flows, buoyancy forces drive a wave response. Just like106

steady lee waves, these ‘frontal waves’ are trapped by the background flow in a distinctive pattern.107

The effect of a background strain flow on inertia-gravity waves has previously been considered by108

Plougonven and Snyder (2005) and Thomas (2012), among others. Here, we show that the strain109

field is responsible for both the generation and the trapping of the waves.110

The paper is set out as follows. In §2 we derive the general linearized equation for the buoyancy111

field in a strained, quasi-two-dimensional flow. In §2a1 we write down the analytic solution for the112

special case of constant strain rate and stratification. The frequencies and amplitudes of generated113

waves can be determined directly from this solution, independent of the details of the frontal114

structure. We then explore the dependence of the wave generation on the strain rate (§2a2) and115

width of the surface front (§2a3). The dynamics of wave generation at internal fronts is compared116

to that at topographic obstacles in §2b. In §3 we compare the analytical model predictions with117

fully non-linear simulations of a submesoscale front. Lastly, in §4 we discuss the implications of118

these results for the generation of inertia-gravity waves in the ocean.119
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2. Theory120

We begin our analysis with the incompressible, hydrostatic, Boussinesq equations for a rotating121

fluid in Cartesian coordinates. Here, we will use (U,V,W ) to denote the velocity components in122

the (x,y,z) directions, respectively, B the buoyancy, P the pressure, and f the (constant) Coriolis123

frequency. The variables are decomposed into background (denoted by an overbar) and pertur-124

bation (denoted by lower case) components. The background state is one of uniform horizontal125

strain rate, Ū = −αx and V̄ = αy where α may be a function of time, and background strati-126

fication, N2(z), such that B̄ =
∫

N2(z)dz. The perturbation to this background state, or frontal127

anomaly — which includes the front, cross-frontal circulation and any internal wave field — is128

assumed to be infinitely long and oriented along the y-axis such that the perturbation flow has no129

y dependence. With these assumptions the flow may be written as130

U = Ū +u(x,z, t), V = V̄ + v(x,z, t), W = w(x,z, t) (1a)

P = P̄+ p(x,z, t), b = B̄+b(x,z, t), (1b)

where the background pressure must be chosen as131

P̄ =−ρ0

(
α2

2
(x2 + y2)+

∂tα

2
(y2− x2)−α f xy−

∫
B̄dz

)
, (2)

such that the background state independently (i.e. when the perturbation variables are identically132

zero) satisfies the inviscid Boussinesq equations. Substituting the net fields (1) into the Boussinesq133

equations and simplifying yields the governing equations for the two-dimensional perturbation134
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fields,135

Du = f v+αu− 1
ρ0

∂ p
∂x

+νh
∂ 2u
∂x2 , (3a)

Dv =− f u−αv+νh
∂ 2v
∂x2 , (3b)

0 =− 1
ρ0

∂ p
∂ z

+b, (3c)

Db =−N2(z)w+κh
∂ 2v
∂x2 , (3d)

0 =
∂u
∂x

+
∂w
∂ z

, (3e)

where D≡ ∂t +(u+Ū)∂x +w∂z is the material derivative. The κh and νh are the artificial hori-136

zontal diffusivity and viscosity that will be used for the numerical solutions in §3. The equations137

(3) are identical to those examined by previous authors (for example, the numerical study of Snyder138

et al. 1993, their equation 2; the only difference being that here we have the additional assump-139

tions of incompressibility and hydrostatic balance). The five equations for the perturbation fields140

(3) involve five independent variables: u, v, w, p, b.141

For the analytic model, we consider the inviscid case (κh = νh = 0) and make a number of142

simplifying assumptions. The objective is to formulate the simplest possible model for wave143

generation at fronts. With that aim, here we consider the situation where the perturbation flow,144

u, is small compared with the background strain flow, u� Ū , such that equations (3) become145

linear (following Shakespeare 2015a), with the material derivative only involving advection by the146

background flow, D ≡ D̄ = ∂t + Ū ∂x. For an inviscid, weakly strained front, this assumption is147

equivalent to the usual quasi-geostrophic (QG) approximation that the Rossby number is small.148

Assuming that time scales with the inverse strain rate or advective timescale, 1/∂xŪ = 1/α , and149

that the strain rate is small relative to the Coriolis frequency, α << f , (3a) implies that the along-150

front velocity v scales geostrophically, v ∼ ∆bH/( f L), while (3b) implies that u ∼ α/ f v. For151
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the linear model to be strictly valid we require u� Ū , or substituting the derived scales, Rog =152

∆bH/( f 2L2)� 1. However, unlike previous linear QG models (e.g. Williams and Plotkin 1968),153

we make no assumption about the strain rate α in comparison to the inertial frequency f .154

It is easily shown from the linearized equations (3) that the perturbation potential vorticity (PV)155

is conserved, or156

D̄q = 0, where q = f N2(z)
∂

∂ z

(
b

N2(z)

)
+N2(z)

∂v
∂x

. (4)

Equation (4) implies that the PV evolves according to ∂tq−αx∂xq = 0, or that q = q0(xeβ (t), z),157

where q0(x,z) is the initial PV distribution and β is the non-dimensional strain, β (t) =
∫ t

0 α(t ′)dt ′.158

Thus, the action of the strain flow is to squeeze a PV anomaly with time. Usually such a PV159

anomaly will be associated with a density front. For consistency with previous work (Shakespeare160

and Taylor 2013, 2014, 2015; Shakespeare 2015a), here we define the frontal buoyancy anomaly161

associated with the PV as162

b0(x,z) =
N2(z)

f

∫ z

−∞

q0(x,z′)
N2(z′)

dz′, (5)

such that the net perturbation buoyancy field, b, is163

b(x,z, t) = b0(xeβ , z)+b′(x,z, t), (6)

where b′ is the buoyancy response to the imposed PV anomaly. The above definition of b0 (5) is an164

entirely arbitrary — but mathematically convenient — subdivision of the perturbation buoyancy165

b in an ‘imposed anomaly’ b0 and ‘response’ b′ and implies no additional assumptions about the166

flow. The objective now is to formulate an equation for the evolution of b′ forced by the strain-167

driven sharpening of the frontal anomaly b0.168

The buoyancy response b′ may be related to the along-front velocity, v, by substitution of (6)169

into the PV equation (4):170

∂v
∂x

=− f
∂

∂ z

(
b′

N2(z)

)
. (7)
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The solution proceeds by taking the material derivative of the y-momentum equation (3b), and171

substituting the x-momentum equation (3a), to obtain172

(
D̄2 + f 2−α

2 +∂tα
)

v =
f

ρ0

∂ p
∂x

. (8)

We now take an x and z derivative of (8), and substitute ∂xv from (7) and ∂z p from (3c), yielding173

an equation for b′:174

(
D̄2−2αD̄+ f 2) ∂ 2

∂ z2

(
b′

N2(z)

)
+

∂ 2b′

∂x2 =− ∂ 2

∂x2 b0

(
xeβ , z

)
. (9)

Equation (9) may be solved numerically for a given choice of initial conditions, buoyancy anomaly175

b0, strain rate α(t), and stratification N2(z). In the next section we derive an analytic solution for176

the special case of constant strain rate and stratification.177

a. Constant strain rate and stratification178

Here we will first consider an infinite domain in both x and z. As will be described below, the179

semi-infinite domain solution with a rigid lid at z = 0 may be obtained directly from the infinite180

domain solution. Taking the Fourier transform of (9) in x and z (with N2 and α constant) yields181

[(
̂̄D

2
−2α ̂̄D+ f 2

)−m2

N2 − k2
]

b̂′ = k2 e−αt b̂0
(
k e−αt , m

)
, (10)

where k and m are the horizontal and vertical wavenumbers, respectively, hats denote the Fourier182

transform, and ̂̄D = ∂t +α(1+ k∂k) is the transformed material derivative. The general solution183

(Shakespeare 2015b, §6.2.1) to the PDE (10) for {α, m, N} 6= 0 is184

b̂′(k,m, t) =−ε
2
(

G(ε)
[
e−αt b̂0

(
k e−αt , m

)]

︸ ︷︷ ︸
forced

+ H+(ε)
[
e−αt c1

(
k e−αt , m

)]
+H−(ε)

[
e−αt c2

(
k e−αt , m

)] )

︸ ︷︷ ︸
adjustment waves

, (11)
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where ε = Nk/( f m), and the ci are unknown functions dependent on the choice of initial con-185

ditions.1 The solution (11) contains two parts. The ‘forced’ part is defined by the requirement186

that time dependence only arises through the strain-driven sharpening of the buoyancy (and PV)187

anomaly, b0(xeαt , z), as per the forcing to the right-hand side of (9) and (10). The remaining ‘ad-188

justment wave’ part of (11) describes propagating waves generated due to the adjustment of initial189

conditions that differ from those implied by the forced solution, analogous to the waves generated190

during geostrophic adjustment. The unusual form of the wave solutions in (11) is due to the fact191

that the strain field modifies the propagation of, and ultimately traps the waves — these dynamics192

were studied in a similar context in Shakespeare and Taylor (2013, see section 4.2 and figure 15193

therein). In the present work, our focus is on waves generated in response to strain forcing rather194

than via adjustment of initial conditions, and thus here we will only consider the forced part of the195

flow.196

The functions G and H± in (11) are obtained by substitution of (11) into the PDE (10), yielding197

the ODE:198

[
ε

2
δ

2 ∂ 2

∂ε2 +3δ
2
ε

∂

∂ε
+1+ ε

2
]

G(ε) =−1, (12)

where δ = α/ f is the non-dimensional strain rate (also called the ‘strain Rossby number’). The199

particular and homogeneous solutions to (12) are, respectively,200

G(ε) =−1+
ε2

1+8δ 2 1F2

(
1;
(

5
2
− ıσ

2
,
5
2
+

ıσ

2

)
;− ε2

4δ 2

)
, (13)

H±(ε) =
1
ε

J±σ ı

(
ε

δ

)
, (14)

where pFq is the generalized hypergeometric function, J is the Bessel function of complex order,201

and σ =
√
( f/α)2−1. The choice of the particular solution to (12), G(ε), is unique in that it is202

1This solution structure emerges due to the form of the material derivative in the linearized system; i.e. ̂̄D
[
e−αt F̂ (k e−αt , m)

]
= 0 for any F̂ ,

which is the Fourier equivalent of D̄ [F(xeαt , z)] = 0.
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the only solution to (12) that is finite at ε = 0, implying that the forced solution is also unique as203

explained below.204

1) GREEN’S FUNCTIONS205

The forced part of the solution (11) can be rewritten in terms of the along-front shear, by Fourier206

transforming (7) to yield207

∂̂zv = ık b̂′/( f ε
2) = f−1 G(ε)

[
−ık e−αt b̂0

(
k e−αt , m

)]
. (15)

The function ∂̂zvG = f−1 G(ε) in (15), with G defined by (13), is the Green’s function for the208

along-front shear. It contains all the dynamics and structure of the forced response, independent209

of the details of the buoyancy anomaly b0. The Green’s function depends only on the scaled210

wavenumber, ε = kN/( f m), which can be thought of as the Burger number, or scaled slope, of a211

given mode (k,m). In physical space, the solution (15) may be written as a double convolution of212

the Green’s function with the buoyancy gradient anomaly,213

∂zv(x,z, t) =
∫

∞

−∞

∫
∞

−∞

∂zvG(x− x0, z− z0)
∂

∂x0
b0
(
x0 eαt , z0

)
dx0 dz0. (16)

A valid solution for the along-front shear requires that its integral over all x has a finite value.214

The integral over all x is equal to the k = ε = 0 value of its spectrum, ∂̂zv(0) in (15). The square215

bracketed factor in (15) corresponds to the buoyancy anomaly gradient. Again, the k = ε = 0 value216

of this factor is the integral over all x of the buoyancy gradient:
∫

∞

−∞
∂xb0(xeαt ,z)dx = ∆b(z), the217

buoyancy difference across the front, which is finite and invariant time. For ∂̂zv(0) to be finite we218

thus require that G(0) is finite. The only possible solution for G(ε) is therefore that defined by219

(13), since the H±(ε) homogeneous solutions (14) are infinite at ε = 0. The forced solution (15)220

is therefore unique and its properties controlled by the Green’s function G(ε) (13).221
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Green’s functions for other fields may also be written as derivatives of G(ε). For instance, since222

u =− f−1 (D̄+α)v from (3b), it may be shown that the Green’s function for the cross-front shear223

is defined by224

∂̂zuG =− f−1
δ

(
ε

∂

∂ε
+2
)

G(ε). (17)

Similarly, the Green’s function for the divergence may be derived from continuity (3e) and satis-225

fies,226

∂̂xuG =−∂̂zwG =−N−1
δ ε

(
ε

∂

∂ε
+2
)

G(ε). (18)

Note that the motivation for using the shears and divergences of the velocity fields in the above227

expressions, rather than the velocities themselves, is that the former depend only on the scaled228

mode slope, ε = Nk/( f m), whereas the latter depend on the individual horizontal and vertical229

wavenumbers.230

The non-dimensional Green’s function for the cross-front shear, f ∂̂zuG, is shown in figure 1. The231

behavior of the Green’s function depends strongly on the magnitude of the strain rate. For small232

strain rates, δ ∼ 0.1, the function decays smoothly to zero with increasing scaled mode slope ε . For233

larger strain rate, δ ≥ 0.2, the Green’s function is smoothly decreasing for small slopes ε < 1 but234

exhibits high-amplitude oscillations in the region ε > 1, implying the accumulation of energy at235

certain preferential wavenumber combinations, ε = Nk/( f m), or resonant modes. As will be seen236

below, these oscillations correspond to a set of stationary waves with phase slopes of k/m = f ε/N237

and Lagrangian frequencies ω = f
√

1+ ε2 2. The logarithmic color scale in figure 1 indicates that238

the amplitude of the oscillations (and therefore waves) is exponentially small at small strain rate239

(consistent with the result derived in the rigid-lid case studied in Shakespeare and Taylor 2014).240

2Here, the Lagrangian frequency denotes the frequency a wave would have if it were observed in a reference frame moving with the background

flow, as opposed to the Eulerian frequency which is the frequency that is observed at a fixed point in space. This distinction will become important

in subsection 4 below.

13



The differing behavior at small and large strain rate is captured by the two asymptotic limits. In241

the limit of vanishingly small strain rate, δ → 0, the Green’s function asymptotes to a smoothly242

decaying profile,243

G(ε) =− 1
1+ ε2 , (19)

and corresponds to an along-front velocity in geostrophic balance with the buoyancy anomaly (i.e.244

the Williams and Plotkin (1968) solution). In contrast, the Green’s function for large strain rate,245

δ → ∞, asymptotes to an oscillation-dominated profile,246

G(ε) =−2δ

ε
J1

(
ε

δ

)
, (20)

where J1 is the 1st order Bessel function.247

2) STRAIN RATE DEPENDENCE248

To construct the full solution from the Green’s functions, we require knowledge of the structure249

of the buoyancy gradient anomaly, ∂xb0, at some instant in time. The solution at that time is250

given by the convolution of the anomaly with the Green’s function, as per (15) and (16). We are251

primarily interested in solutions in the semi-infinite domain z≤ 0, with a rigid-lid representing the252

ocean surface at z = 0. Here we will consider a simple surface-intensified buoyancy anomaly, or253

front, of the form254

b0(x,z) =
∆b0

2
exp
(
−
( z

H

)2
)

erf
(

εF
x

LR

)
, (21)

where H is the height scale of the front, ∆b0 is the change in buoyancy across the front and255

LR =NH/ f is the Rossby radius. The parameter εF = LR/L is the Burger number, or characteristic256

slope, of the frontal anomaly. Solutions for the semi-infinite domain can be generated using the257

solutions in the previous section by mirroring the buoyancy anomaly defined for z ≤ 0 into the258

region z > 0; that is, multiplying b0 by −sign(z).3 This process ensures that the solution contains259

3This is equivalent to changing the vertical Fourier transform to a sine transform.
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only odd (sine) vertical modes, and thus enforces the rigid-lid boundary condition of w = 0 at260

z = 0.261

The vertical velocity fields for a frontal Burger number (εF ) of 1 and strain rates of (a) 0.1 f ,262

(b) 0.3 f and (c) 1.0 f are shown in figure 2. For the small strain rate case (α = 0.1 f , figure 2a)263

the velocity is dominated by an ascending jet of large vertical velocity on the warmer (right-hand)264

side of the front, and a descending jet on the cooler side, consistent with the classical paradigm265

of the thermally-direct secondary circulation about a strained front. The larger strain rates show a266

similar circulation about the surface front, but the steepness and strength of the jets is increased.267

In addition the larger strain rate solutions exhibit banded structures at depth, which correspond to268

horizontally trapped inertia-gravity waves. The amplitude of these waves is substantially less than269

the secondary circulation for moderate strain rate (α = 0.3 f , figure 2b), but of similar order for270

large strain rate (α = 1.0 f , figure 2c). Note that the amplitude of the secondary circulation (vertical271

velocity magnitude) in each case can be significantly larger if non-linear effects are considered,272

owing to the non-linear sharpening of the surface front (see §3).273

The strain rate influences the strength and steepness of the near-surface jets of vertical velocity274

and hence the regions of largest divergence, ∂zw. The influence of the strain on the divergence275

can be predicted directly from the divergence Green’s function (18). For small strain rates, the276

divergence Green’s function has a single extremum in ε — since there are no waves in the flow,277

this extremum must correspond to the jets of large vertical velocity associated with the secondary278

circulation. As the strain rate is increased, this extremum is retained, but additional extrema begin279

to appear at larger ε . We interpret these additional extrema as corresponding to the resonant280

wave modes of the system, as will be examined in more detail below.4 Nonetheless, for now281

4However, note that uniquely defining the ‘wave’ flow in the present system is problematic, as has been discussed previously by Shakespeare

and Taylor (2014).
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we extract the ε for which the first extremum (in ε) in the divergence Green’s function occurs at282

each value of strain rate. The slope of the vertical velocity jets, k/m = f ε/N, predicted by this283

method is indicated by grey lines in figure 2. More generally, the jet slope as a function of strain284

rate is shown in figure 3a. The slope is constant for small strain rate, but increases linearly at285

large strain rate. The asymptotic limits (indicated by dashed lines on the figure) may be derived286

directly from the asymptotic Green’s functions. In the limit δ → 0 (19) the local maxima of287

the divergence Green’s function is located at ε = 1/
√

3, implying that the jets have a slope of288

k/m = f/(N
√

3)' 0.58 f/N. In this limit, the scale of the frontal circulation is largely unaffected289

by the presence of the (weak) strain flow. For large strain rate, δ → ∞, (20) the jets are steeper,290

with slope k/m ' 1.26α/N. In this limit, the convergent strain flow strongly confines the frontal291

circulation in the horizontal, leading to steeper, intensified jets.292

The vertical velocity magnitude (jet strength) may also be estimated from the Green’s function293

as the local maximum value of the divergence, and is plotted in figure 3b. The vertical velocity294

increases linearly at small strain rate and quadratically at large strain rate. The linear increase at295

small strain rate is predicted from quasi- and semigeostrophic models of frontogenesis (Williams296

and Plotkin 1968; Hoskins and Bretherton 1972) and is merely a requirement of continuity: a297

larger background strain flow implies a correspondingly larger secondary circulation to conserve298

volume at the front, since a greater volume of fluid must be deflected down and around the frontal299

anomaly. The additional (quadratic) increase in vertical velocity at large strain rate is associated300

with the linear increase in the slope of the jets, which is due to the strong strain flow confining the301

secondary circulation around the strain axis, as noted above. While non-linear effects will modify302

the magnitude of the secondary circulation (see §3), the confinement effect of the strain flow will303

still operate (as shown in the numerical simulations of Shakespeare and Taylor 2015), and thus the304

qualitative dependence of the secondary circulation on the strain rate described here is expected to305
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be robust. Indeed, figure 3b is qualitatively similar to the results of Rosso et al. (2015), in particular306

their figure 5b, which displays the dependence of the vertical velocity on the large-scale strain rate307

in their submesoscale-resolving numerical model of a sector of the Southern Ocean. The strain308

rate dependence of the vertical velocity predicted here may thus have application in parameterizing309

vertical velocities associated with fronts in ocean models of sufficiently high resolution to allow310

fronts to form, but with insufficient resolution to accurately model the frontal circulation.311

The slopes and Lagrangian frequencies of the waves (resonant modes) as a function of strain312

rate can also be determined by computing the local extrema of the Green’s function for the cross-313

frontal shear (17) shown in figure 1. This technique works since the waves visible in the solutions314

(e.g. figure 2) are associated with a local maximum in the cross-frontal shear, as well as the315

vertical velocity and divergence.5 In figure 4 we plot the frequencies and amplitudes of the six316

lowest frequency resonant modes of significant amplitude — we cannot rule out the presence317

of lesser amplitude, lower frequency modes that are obscured by the secondary circulation and318

which therefore do not generate extrema in the Green’s function spectrum. The Lagrangian wave319

frequency is related to the scaled wave slope via ω = f
√

1+ ε2. The lowest Lagrangian frequency320

associated with a distinct wave mode is 1.93 f and occurs for a strain rate of approximately 0.3 f321

(the strain rate used in figure 2b). For strain rates in the range 0.2 f < α < f , the lowest frequency322

distinct mode has a Lagrangian frequency less than 4 f . The wave slopes predicted from figure 4323

are indicated as grey lines on the vertical velocity plots in figure 2b,c.324

3) FRONTAL SCALE DEPENDENCE325

In this section we address the question of how the frontal Burger number, or characteristic frontal326

slope, εF = LR/L = NH/( f L), affects the solution for a given value of strain rate. The confluent327

5Using the Green’s function for the divergence instead of the cross-frontal shear does not produce substantially different results.
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strain acts to compress the horizontal scale L of the frontal buoyancy gradient anomaly ∂xb0 with328

time as per (16). The Burger number of the front will thus increase with time according to εF =329

εF,0 eαt . In other words, there is a one-to-one relationship between the frontal scale and time.330

Thus, examining the Burger number dependence of the solution will also tell us about the time331

evolution of the front.332

Figure 5 displays the vertical velocity fields for a front subject to a strain rate of α = 0.4 f , for333

five frontal scales (or time snapshots). The buoyancy anomaly is the same as used previously (21).334

When the frontal width is large compared to the Rossby radius (a, L = 10LR; b, L = 5LR), the335

secondary circulation is broad and relatively weak. In particular, for wide fronts (L� LR), there336

are no waves present. As the frontal width approaches the Rossby radius (c, L = 2LR), the lowest337

frequency (primary) wave mode appears. As the frontal width is reduced further (d, L = LR; e,338

L = 0.5LR), the primary wave mode amplifies and higher frequency packets appear. We observe339

that the slopes (indicated on the figure by dashed grey lines) of both the frontal jets and the waves340

are independent of the frontal width, implying that the vertical scale of the flow decreases at the341

same rate as the horizontal to keep the slope constant.342

This behavior may be understood by considering the form of the solution (15). The solution at343

a given time is defined by the product of the Green’s function and the buoyancy gradient anomaly344

spectra evaluated at that instant in time. The possible slopes of the jets and waves are controlled345

by the structure of the Green’s function at a given value of the strain rate, whereas the amplitude of346

those features is controlled by the spectral amplitude of the buoyancy gradient anomaly at the cor-347

responding wavenumber combinations. For instance, the amplitude of a wave mode with a given348

slope, ε =Nk/( f m), is determined by the integrated amplitude in the buoyancy gradient spectrum,349

∂̂xb0(k,m), along the line m = Nk/( f ε). As the frontal scale is reduced, the gradient spectrum has350

more amplitude at higher horizontal wavenumbers k, and therefore more amplitude at steeper351
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slopes. Since, as shown in figure 1, wave modes are only present in the region ε = Nk/( f m)> 1,352

the spontaneous generation of waves can only occur for fronts with significant spectral amplitude353

at the corresponding wavenumbers. Fronts that satisfy this requirement are characterized by order354

one Burger numbers, εF ∼ 1. Thus, as seen in figure 5, significant spontaneous wave genera-355

tion via the present mechanism is only observed for fronts with widths comparable to the Rossby356

radius, or smaller.357

4) RAY TRACING AND WAVE TRAPPING358

Here we apply ray tracing theory to demonstrate that the resonant wave modes seen in the above359

solutions correspond to wave packets that are generated at (or near) the front, and are confined360

horizontally by the strain flow. Our analysis follows that of Reeder and Griffiths (1996) who361

studied a very similar strained front system but via a numerical approach. The equations governing362

the propagation of a wave packet in the xz plane are363

(
D
Dt

)

g
k =−∂Ω

∂x
, (22a)

(
D
Dt

)

g
m =−∂Ω

∂ z
, (22b)

(
D
Dt

)

g
x =

∂Ω

∂k
, (22c)

(
D
Dt

)

g
z =

∂Ω

∂m
, (22d)

where (D/Dt)g is the material derivative following a packet, which propagates with speed ~cg =364

(∂kΩ, ∂mΩ) as per (22)c,d, and Ω is the appropriately Doppler shifted (or Eulerian) frequency. For365

the strain flow used here the Doppler shifted frequency is366

Ω = ω(k,m)−αkx, where ω(k,m) =± f

√
1+
(

Nk
f m

)2

, (22e)
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is the regular hydrostatic dispersion relation for inertia-gravity waves. We note that here, consis-367

tent with our basic model, we assume hydrostatic dynamics in our ray-tracing equations, and thus368

our ray-tracing analysis is only valid for sufficiently large horizontal scales (or small times). A369

discussion of non-hydrostatic effects is beyond the scope of this paper and the interested reader370

is referred to Shakespeare (2015a). Note that (22) are only valid for fronts of sufficiently small371

Rossby number such that the front does not directly affect the wave dispersion relation. Waves372

generated at stronger fronts may be trapped within the front (Kunze 1985; Whitt and Thomas373

2013) rather than propagating away. For a detailed derivation of the above equations (22), which374

are identical to equations 20, and 25 through 28, of Reeder and Griffiths (1996), the reader is375

referred to that paper. The ray tracing equations (22) may be solved explicitly to determine the376

behavior of a wave packet in the flow. Supposing the packet has initial wavenumbers (k0,m0),377

(22)a,b imply that the wave numbers at some later time are378

k = k0 eαt , and m = m0. (23)

Thus, the action of the barotropic strain flow is to exponentially increase the horizontal wavenum-379

ber with time, without altering the vertical wavenumber (as described by Reeder and Griffiths380

1996; Plougonven and Snyder 2005; Thomas 2012, among others). We can now substitute the381

above results (23) into (22)c to obtain a differential equation for the x-position of the wave packet,382

(
D
Dt

)

g
x =±e−αt ∂ω(k0eαt ,m0)

∂k0
−αx =⇒

(
D
Dt

)

g

(
xeαt)=±∂ω(k0eαt ,m0)

∂k0
. (24)

Equation (24) may be directly integrated in time6 to obtain383

x = x0e−αt± e−αt

αk0

(
ω(k0eαt ,m0)−ω(k0,m0)

)
, (25a)

where x0 is the initial horizontal location of the wave packet (this result was also obtained by384

Shakespeare 2015a, equation 15 therein). Following the same procedure for (22)d yields the z-385

6Note that the initial wavenumbers k0 and m0 are constants with respect to the material derivative (D/Dt)g.
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position of the wave packet as a function of time386

z = z0−
1

m0α

(
ω(k0eαt ,m0)−ω(k0,m0)

)
, (25b)

where z0 is the initial vertical location of the wave packet. We anticipate that wave packets will387

be generated at the origin (where the front is located) such that x0 = z0 = 0, although the exact388

time of generation is unclear. Using the nomenclature of previous sections the Burger number389

of a given wave packet is εwp = Nk0eαt/( f m0). Regardless of exactly when the wave packet is390

generated (25) implies that the packet will only propagate away from the origin when εwp is or-391

der one or larger, since when εwp� 1 the Lagrangian frequency ω(k0eαt ,m0) is close to inertial392

(and is equal to the initial frequency ω(k0,m0), and thus the location of the packet defined by (25)393

is close to zero). This result is consistent with our observation in previous sections that waves394

are only observed in the solution when the front is sufficiently sharp, defined by ε ∼ 1. Further-395

more, (25) shows how the packet is confined horizontally by the confluent strain flow; taking the396

large time limit of (25a) yields x→ N/(αm0). Thus a wave packet of vertical wavenumber m0397

ultimately stagnates (horizontally) at a point in the flow where its maximum hydrostatic horizon-398

tal group speed, N/m0, equals the strain flow speed, αx (this is only true for hydrostatic fluids;399

see Shakespeare 2015a). The packet is not confined vertically, and indeed the vertical position400

of the packet increases exponentially, z→−Nk0eαt/(αm2
0) at large time (25b) as a result of the401

barotropic straining field.402

In figure 5 we plot the path of a single wave packet, which we assume to be generated at the403

origin at time zero (figure 5a). We choose initial wavenumbers of k0 = 0.2/LR and m0 = 0.5/H404

corresponding to an initial scale consistent with the scale of the secondary circulation in figure405

5a. The path of the wave packet predicted by (25) is displayed as a solid black line on 5b to406

e, with the terminus of the line denoting the position of the wave packet at the time each flow407
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snapshot is taken. The terminus of the ray path on each plot roughly approximates the position of408

the deepest, gravest phase lines that appear as time increases. In other words, the chosen vertical409

wavenumber m0 corresponds to the largest, and therefore fastest propagating, in the system. The410

ray path also approximately captures the horizontal spread of the wave energy at late time (figure411

5e). As predicted by the above theory the ray asymptotes to N/(αm0) = 5LR at late time. Of412

course, the solution will contain waves with a range of vertical wavenumbers m0, the spectrum of413

which will be set by the vertical structure of the front. Wave packets with higher m will propagate414

more slowly in the vertical, and be confined horizontally closer to the origin. Thus, as seen in415

figure 5c,d,e, these additional packets will modify the wave phase lines in that region after the416

fastest packet has already propagated past.417

b. Comparison with rotating lee waves418

It is useful to compare the present mechanism of spontaneous generation to other well known419

mechanisms, specifically ‘lee wave’ generation associated with flow across topography in a ro-420

tating system. The classical rotating lee wave model of Queney (1947) describes the steady state421

associated with a uniform background flow, Ū = U0, passing over a topographic ridge, z = h(x),422

on an f -plane. The equation for the perturbation buoyancy, b = B−N2z, is423



(
D̄2

︸︷︷︸
accel.

+ f 2) 1
N2

∂ 2

∂ z2 +
∂ 2

∂x2︸ ︷︷ ︸
geostrophic


b = 0, (26)

where D̄ = U0∂x at steady state. The equation is composed of two parts: the usual geostrophic424

scaled Laplace operator familiar from classical QG models, which will yield a smooth large-425

scale flow, and an acceleration term associated with advection by the background flow which is426

responsible for the generation of small-scale stationary waves. The boundary condition on (26) is427

no normal flow at the ridge. Since the flow is inviscid, an equivalent condition is that the ridge428
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is an isopycnal surface; that is, the net buoyancy B = b+N2z = 0 at z = h(x) or the perturbation429

buoyancy is b(z = h(x)) = −N2h(x). In the linearized model (valid for small ridge heights) the430

boundary condition is applied at z = 0, and the solution (e.g. Queney 1947; Pierrehumbert 1984)431

is defined by the convolution432

b(x,z) =−N2
∫

∞

−∞

GL(x− x0,z)h(x0)dx0, (27)

where the Fourier transform of the Green’s function GL is433

ĜL(k,z) =





exp ıNkz√
k2U2

0− f 2
k > f

U0

exp −Nk|z|√
f 2−k2U2

0
0≤ k ≤ f

U0

. (28)

As with the equation (26), the steady solution is thus composed of two parts: a large-scale com-434

ponent that decays with height, and a short-scale wave component that does not. These waves435

are generated when the background flow is deflected (or accelerated) sufficiently rapidly over the436

ridge into the stratified ambient, which provides a restoring force. Waves can only propagate for437

Lagrangian frequencies exceeding f and strong wave generation only occurs when the acceleration438

(or advective) timescale of 1/(kU0) is of this order, 1/(kU0) ∼ 1/ f , or equivalently the Rossby439

number is order one, RoL =U0/( f L)∼ 1. If the ridge is wide or the flow weak such that RoL� 1,440

then there is no significant wave field and flow remains in linearized, uniform PV geostrophic441

balance, defined by ĜL(k,z) = exp(−Nk|z|/ f ).442

Let us now compare the dynamics of lee waves, as described in the previous paragraph, to the443

dynamics of the strained front considered in earlier sections. To make the analogy clearer, here we444

write the governing equation for a strained front with uniform interior PV (q0 = 0). This equation445

is (9) with N2 constant and frontal anomaly b0 independent of z, or446



(
D̄2−2αD̄︸ ︷︷ ︸

accel.

+ f 2) 1
N2

∂ 2

∂ z2 +
∂ 2

∂x2︸ ︷︷ ︸
geostrophic


b = 0, (29)
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subject to boundary condition b = b0 (xeαt). Equation (29) describing a strained front is identical447

in structure to (26) describing flow over a ridge — only the form of the acceleration terms differ.448

The forced solution to (29) is defined by the convolution449

b(x,z, t) =
∫

∞

−∞

GF(x− x0,z)b0
(
xeαt) dx0, (30)

where the Green’s function GF may be determined via Fourier inversion of the Green’s function450

G defined in (13). Unlike lee waves, where the ridge is rigid, the front deforms (sharpens) with451

time as defined by the b0(xeαt) in (30). However, the solution for a particular frontal width at452

some instant in time may be directly compared to the steady lee-wave solution for a ridge of the453

same width. As for lee waves, this solution can be considered to be composed of two parts: a454

large-scale secondary circulation or ‘deflection’ about the front, and a smaller-scale wave field.455

Unfortunately, unlike the lee waves, the two parts are not readily separable. As was shown in456

§2a2, if the strain rate δ = α/ f � 1 — analogous to RoL � 1 for the lee waves — then there457

is negligible generation of waves, and the flow reduces to geostrophic balance with G defined458

by (19). Notably, in this small Rossby number limit, the topographic Green’s function is the459

identical to the frontal Green’s function, ĜF = ĜL = exp(−Nk|z|/ f ). Comparing (27) and (30)460

thus implies that the geostrophic buoyancy field associated with a topographic ridge of profile461

h(x) is identical to the geostrophic buoyancy field associated with a front with surface buoyancy462

profile b0(x) =−N2h(x) at some instant in time. The secondary circulation around the front/ridge463

is determined by material conservation of the buoyancy, w =−D̄b/N2, and so will be different for464

the front and ridge owing to the different material derivative operator D̄. However, in both cases465

the secondary flow is generated owing to the need for the far-field horizontal flow to be deflected466

along isopycnals and around the surface obstacle. If this deflection is sufficiently sharp/fast (i.e.467

RoL, δ non-small) then buoyant forces give rise to a wave response.468

24



3. Numerical model comparison469

Here we describe a solution to the fully non-linear equations (3) for parameter values represen-470

tative of a submesoscale front. We consider a front with an initial structure of471

b(x,z,0) =
∆b
2

(
1+ erf

( x
L

))
exp
(
−
( z

H

)2
)
+N2 z, (31)

and choose a buoyancy difference of ∆b = 5× 10−3 m2s−1, initial frontal width of L = 10km,472

depth scale of H = 100m, stratification N2 = 1× 10−5 s−1 and assume f = 1× 10−4s−1. These473

parameters correspond to an initial geostrophic Rossby number — the parameter assumed to be474

small in the linear model — of Rog = ∆bH/( f 2L2) = 0.5, although Rog increases to O(10) as the475

front sharpens. To prevent the generation of waves associated with the adjustment of unbalanced476

initial conditions, we initialise the numerical model with zero strain flow in a state of geostrophic477

balance and gradually ramp-up the strain rate with time according to α(t) = α0
(
1− exp−(t/τ)2).478

Here we select a maximum strain rate of α0 = 0.4 f and ramp-up timescale of τ = 2π/ f .479

The numerical model employed is MITgcm (Marshall et al. 1997) configured in hydrostatic,480

two-dimensional, ocean-only mode with a rigid-lid ocean surface. The MITgcm code is modified481

to include the background strain advection terms in (3) as an external forcing in the buoyancy and482

horizontal momentum equations. The domain width is chosen as 200km with the front in the centre483

of the domain and a horizontal resolution of 100m at the front. Open boundaries with Orlanski484

radiation conditions are used at the horizontal edges of the domain. The domain depth is set to 8km485

with resolution varying from 5m at the surface to 25m at depth. A uniform background horizontal486

diffusivity and viscosity of 10m2s−1 is introduced to prevent the collapse of the front below the487

grid-scale. We also add a diffusive sponge in the deep which absorbs downward propagating waves488

and prevents reflections off the base of the domain. The sponge takes the form of an elevated489
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diffusivity and viscosity in the bottom half of the domain, κh(z) = κ∞(1+ erf(−(z+ 6)/1.5))/2490

where κ∞ = 400m2s−1 and z is in units of kilometers.491

The numerical model ultimately reaches a steady state where strain-driven sharpening of the492

front is balanced by the explicit horizontal diffusion. The time evolution of the model’s surface493

buoyancy field towards this steady state is shown in figure 6. The magnitude of the strain rate as494

a function of time is also shown. As the front sharpens it moves to the left, with warmer fluid495

slumping over cooler. The front reaches a steady state after about two days with a steady cross-496

frontal width of about 700m. The vertical velocity field in the steady state is shown in figure 7a.497

The grey lines on the figure are the wave and jet slopes predicted from the Green’s function derived498

in the previous section. These predicted slopes show good agreement with the numerical solution.499

For comparison, the vertical velocity field predicted from the analytical model is shown in figure500

7b. This prediction is derived in the following way. First, the frontal anomaly b0 is determined501

from the initial buoyancy field b(x,z,0) used in the numerical model (31). This is done by replac-502

ing the velocity v in the PV relation (7) with the geostrophic velocity from (15) (since the model503

is initialised in geostrophic balance) and rearranging to obtain,504

b0 = b−b′ = b+
(

N
f

)2 ∫ ∫
∂ 2b
∂x2 dzdz. (32)

In the absence of diffusion the frontal anomaly would sharpen continuously in time according to505

b0(xeβ (t), z) as discussed previously (where β (t) =
∫ t

0 α(t ′)dt ′). The inclusion of diffusion will506

limit the sharpening of the front to a finite width. To determine this width, consider that at steady507

state the dominant balance is between the strain and diffusion, or −αx∂xb ' κh∂xxb, which may508

be solved to obtain b(x) = ∆b(1+ erf(x/Ls))/2 where the width of the front is Ls =
√

2κh/α509

(Shakespeare and Taylor 2015). For the present values the steady frontal width is Ls = 707m510

in agreement with figure 6. Thus, the frontal anomaly b0 will approach b0(xL0/Ls, z) at large511
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time, where L0 is the initial frontal width. This frontal anomaly is convolved with the Green’s512

function to determine the analytical vertical velocity field shown in figure 7b. The waves seen513

in this solution compare well in both structure and amplitude with those in the numerical model514

solution, particularly at depth.515

The region where the linear model is expected to break down may be computed by considering516

the linearization assumption, |u| � |Ū |, made in the model derivation. The edge of this region517

approximately corresponds to the line along which |u|= 0.1|Ū | (solid black curve on figure 7) as518

derived from the analytic solution. Indeed, the major differences between the numerical and ana-519

lytical solutions occur near the surface front within this contour, where the secondary circulation520

(i.e. u) and local Rossby number are large. Figure 8 shows a magnified view of the steady solu-521

tions near the surface front. The local vorticity Rossby number, Ro = f−1∂xv, from the numerical522

model (figure 8a) peaks at a value of 7.9 at the surface front. Associated with this large Rossby523

number, the surface front in the numerical solution (figure 8b) has slumped to the left under the524

influence of gravity. This slumping has the effect of stabilizing the isopycnals compared to the an-525

alytic solution (figure 8c), which is gravitationally unstable near the surface. Associated with the526

non-linear leftward slumping of the front, the numerical vertical velocity (figure 8b) is weakened527

on the warm (cyclonic; right) side of the front, and strengthened on the cool (anticyclonic; left)528

side, relative to the analytic solution. The numerical solution also exhibits an intense downward529

jet on the cool side of the front, not present in the analytic solution. Similarly, the first few lowest530

Lagrangian frequency waves on the cool side of the front are intensified and steepened directly531

below the surface front. Furthermore, in the numerical solution the first (lowest frequency) wave532

mode appears on the cool side of the front around t = 20 hours, whereas the corresponding wave533

mode on the warm side of the front only appears later, around t = 25 hours. This behavior contrasts534

with the perfect antisymmetry maintained by the linearized analytic solution.535
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Some of the non-linear dynamics associated with the surface front in the numerical solution can536

be described by non-linear frontal models (e.g. Hoskins and Bretherton 1972; Shakespeare and537

Taylor 2014) which use the momentum coordinate, X = x+ v/ f , to include the effect of non-538

linear cross-frontal advection (i.e. u∂x). The buoyancy b in the non-linear models is described539

by the same equation as in the linear models, but in the transformed coordinate — that is, with x540

in (9) replaced by X (Shakespeare 2015a). In other words, non-linear models of two-dimensional541

fronts differ from linear models by the translation x = X − v(X ,z, t)/ f of the solution, where X is542

the coordinate appearing in the linear solution. The magnitude of the along-front flow v does not543

change. However, the coordinate contraction associated with the translation x = X − v(X ,z, t)/ f544

does imply an amplification of the cross-frontal flow (i.e. u, w) to conserve volume. In particular,545

the vertical velocity in the non-linear solution is scaled by the absolute vorticity, ζ/ f = (1 +546

f−1∂xv) = (1− f−1∂X v)−1, relative to the linear solution. We note that this relationship between547

linear and non-linear models has only been shown to be valid for the case of uniform interior548

PV, whereas here we have a variable PV. Nonetheless, here we apply these transformations to the549

linear model solution shown in figure 8c to obtain the ad-hoc non-linear solution shown in 8d.550

The ad-hoc solution captures some features of the fully non-linear numerical solution such as the551

location of the surface front and asymmetry of the vertical velocity field. However, as a result of552

the very large Rossby number at the front, the ad-hoc solution also exhibits a discontinuity in the553

buoyancy field at the surface front (down to a depth of about 40m) and an associated infinity in554

the vertical velocity, implying that diffusion and other non-linear effects are important in arresting555

the collapse of the surface front. These large Rossby number dynamics are discussed in detail in556

Shakespeare and Taylor (2015).557
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a. Wave propagation and frequency spectra558

As seen in previous sections, the spontaneously generated waves are horizontally trapped by the559

strain flow and rapidly become steady in the numerical solution (e.g. figure 7). This behavior is560

due to spatially uniform strain flow, and thus differs from what would be expected in the ocean561

where strain flows vary greatly in space (both horizontally and vertically). While we cannot di-562

rectly represent such spatial variability in our simple quasi-2D model, we can capture some of the563

dynamics by considering a temporal variation in the spatially-uniform strain rate. In particular,564

here we consider switching off the strain flow in the steady numerical solutions described in the565

previous section (§3). As the strain rate is reduced, the trapped stationary waves are able to prop-566

agate, consistent with observations of waves at ocean fronts (e.g. Alford et al. 2013), and we can567

analyze the frequency spectrum of the flow and compare to our analytic predictions.568

The methodology is as follows. We take the steady numerical solution (figure 7a) from the569

previous section and at time t = 60 hours switch off the strain flow in two ways: (a) instantaneously570

such that571

α(t) =





α0

(
1− e−(

t
τ )

2
)

t ≤ 60

0 t > 60
, (33)

and (b) gradually over 60 hours such that572

α(t) =





α0

(
1− e−(

t
τ )

2
)

t ≤ 60

α0

(
1− e−(

120−t
τ )

2
)

60 < t ≤ 120

0 t > 120

, (34)

where time is in hours and the parameter values are the same as previously (i.e. τ = 2π/ f , α0 =573

0.4 f ). The frequency spectrum of the vertical velocity field, |ŵ|(x,z,ω), in each case is then574

analyzed for a period of 120 hours from when the strain rate reaches zero (this approach avoids575
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any Doppler shifting of the frequency due to non-zero background flow, e.g. (22e)). Here we will576

consider the spatially averaged vertical velocity spectrum (units: m) defined by577

〈|ŵ|〉=
∫ ∫ |ŵ|dxdz∫ ∫

dxdz
. (35)

The spectrum 〈|ŵ|〉 is plotted in figure 9 for the (a) instantaneous and (b) gradual strain switch-578

off. Three spectra are shown in each plot: the average over the whole numerical domain (solid), the579

average above 50m (dashed), and the average below 4km (dotted). The global average in figure 9a580

shows three distinct spectral peaks coincident with the frequencies corresponding to the secondary581

circulation (vertical line labelled B), and the first two wave modes (vertical lines labelled C and D)582

for a strain rate of 0.4 f as derived from figures 3 and 4. Thus, unsurprisingly, once the strain flow583

is switched off, the previously stationary wave modes begin to propagate at the frequency set by584

their slopes. The first wave mode (C) is particularly evident. Perhaps less expected is the strong585

wave generation corresponding to what we previously identified as the secondary circulation or586

frontal jets (line B; global spectra). This wave generation is associated with the ‘adjustment’ of the587

secondary circulation — that is, once the strain rate becomes zero, a steady secondary circulation588

cannot be supported at the front, and the excess momentum (sometimes called a ‘momentum589

imbalance’) is removed via the generation of inertia gravity waves. This adjustment generation590

has previously been examined in various contexts by many authors (e.g. Rossby 1938; Blumen591

2000; Shakespeare and Taylor 2013, 2015). These adjustment waves would be generated even in592

the limit of very weak strain rate, if the strain field is turned off instantaneously, in contrast to the593

identified wave modes (C, D), which would vanish in this limit.594

Now instead consider frequency spectrum associated with the gradual switch-off plotted in figure595

9b. The gradual variation of the strain rate ensures that there is no instantaneous adjustment596

process, and the spectral peak associated with the secondary circulation is no longer present. In597
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addition, instead of distinct spectral peaks corresponding to individual wave modes (lines C, D),598

there is a broad band of high frequency wave energy which peaks around 2 f . The reason for599

this is that as the strain rate varies the resonant wave mode frequencies (e.g. figure 4) change,600

such that waves of different frequencies are continually being generated via the acceleration of the601

strain flow around the front. Notably, the peak spectral amplitude still occurs around 2 f which602

agrees with the lowest frequency (highest amplitude) wave mode for strain rates in the range603

0.25 < α/ f < 0.4 (see figure 4). The globally averaged spectrum in figure 9b also exhibits a peak604

at the inertial frequency (line A) associated with direct forcing from the time-varying strain rate605

which itself varies near-inertially (e.g. (34)).606

4. Discussion607

Here we have investigated the spontaneous generation of inertia-gravity waves at strongly608

strained density fronts. In §2a we developed a linearized model to derive solutions for the cir-609

culation and density fields associated with a background strain flow, Ū = −αx, acting across a610

frontal buoyancy anomaly in a semi-infinite domain. The solutions depend only on the magnitude611

of the strain rate and the structure of the frontal anomaly, b0(x,z), at some instant in time. All612

information about the amplitude and structure of the frontal circulation, and Lagrangian wave fre-613

quencies, is contained with the Green’s function for the problem (see figure 1). Whether waves614

are generated at a given front is determined by the Burger number of the front and the strain rate.615

Here we define the Burger number as εF = NH/( f L), where H is the depth of the frontal structure,616

L the width, and N/ f the ratio of buoyancy to inertial frequencies. Wave generation is predicted617

for Burger numbers exceeding about 0.5 and strain rates, α , exceeding about 0.2 f . The lowest618

frequency distinct wave predicted to be generated by the present mechanism has Lagrangian fre-619

quency ω = 1.93 f and is generated for a strain rate of α = 0.29 f (see figure 4). Based on these620
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results, it seems unlikely that the mechanism of wave generation examined here was responsible621

for the front-sourced waves observed by Alford et al. (2013) which were of very low frequency622

(∼ 1.01 f ). Wave amplitudes increase with increasing frontal Burger number and background623

strain rate.624

We also investigated the mechanism responsible for the generation of the frontal waves. In §2b625

we showed that wave generation at a strained front is mathematically analogous to the classical626

scenario of ‘lee wave’ generation associated with a uniform flow over a topographic ridge in a627

rotating system (e.g. Queney 1947). Waves are generated in each case whenever the acceleration628

of the background flow around the front/ridge into the stratified ambient is fast enough that it forces629

the system away from geostrophic balance. More generally, any structure that presents an obstacle630

to the background strain flow will tend to generate waves, not only surface density fronts. Indeed,631

the analytic solution implies that any surface or interior PV anomaly q0 (i.e. equation (5)) with632

some horizontal structure, whether in a bounded or unbounded domain, will generate waves in a633

strain flow. This result appears to be closely related to that of recent analytical studies describing634

the generation of gravity waves by a PV anomaly in a shear flow (Lott et al. 2010, 2012). These635

studies also employed a similar analytic approach using linearized equations of motion.636

The present model is intended as a first-order description of wave generation in regions of the637

ocean with both sharp horizontal buoyancy gradients (order one frontal Burger numbers) and638

strong strain flows, such as the ocean submesoscale. Based on the analytic model results, we639

anticipate strong wave generation at submesoscale fronts. However, submesoscale fronts also typ-640

ically exhibit large vorticity and Rossby number — a parameter that is assumed to be small in641

the linearized analytical model. Despite this assumption, in §3 we showed that the wave field642

in the analytic solution compares well with a fully non-linear numerical solution to the problem643

(i.e. equations (3)) for parameter values representative of a submesoscale front. The solutions644
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only differ significantly near the surface front, with the numerical solution developing an intense645

downward jet on the cooler side of the front. The shallowest slope waves on the cooler side of646

the front are also intensified relative to the analytic prediction, and tend to appear earlier than647

their counterparts on the warm side. Given these relatively minor differences, we can be confident648

that the analytic model provides a robust, first-order dynamical description of one mechanism of649

inertia-gravity wave generation at strained density fronts.650

However, more investigation is needed in more realistic models to quantify the relative impor-651

tance of spontaneous generation at strained density fronts to the global wave field. The model652

used herein is highly idealized, describing a two-dimensional front subject to a spatially uniform653

background strain flow. These assumptions will almost certainly break down on the submesoscale654

where both the background strain flows and the density fronts are highly three-dimensional in655

character, and evolve on super-inertial timescales. For example, Nagai et al. (2015) use a high656

resolution numerical model to show that spontaneous generated waves at fronts can be reabsorbed657

by the mean flow, rather than propagating away as described by our model. More realistic spatial658

and temporal variability will also likely modify the amplitude and frequencies of generated waves659

compared to our analytic predictions. These effects will be studied in a future work.660
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FIG. 1. Non-dimensional Green’s function for the cross-front shear, f ∂̂zuG (17), as a function of slope ε =

Nk/( f m) and strain rate δ = α/ f . Local extrema in the Green’s function correspond to waves (resonant modes)

with Lagrangian frequency ω = f
√

1+ ε2.
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for which |u|> 0.1|Ū |, where the analytical model is expected to break down, is enclosed by a solid black line

on each plot.

831

832

833

834

835

47



z
(m

)

(a)

−10 −5 0 5 10
−300

−250

−200

−150

−100

−50

−6

−4

−2

0

2

4

6
(b)

−10 −5 0 5 10
−300

−250

−200

−150

−100

−50

−10

−5

0

5

10

x (km)

z
(m

)

(c)

−10 −5 0 5 10
−300

−250

−200

−150

−100

−50

−10

−5

0

5

10

x (km)

(d)

−10 −5 0 5 10
−300

−250

−200

−150

−100

−50

−10

−5

0

5

10

FIG. 8. Comparison of the numerical and analytical solutions near the surface front. (a) The vorticity Rossby

number Ro= f−1∂xv in the numerical model steady state. (b) The vertical velocity field (m day−1) and buoyancy

contours in the numerical model steady state. (c) The vertical velocity field (m day−1) and buoyancy contours

predicted by the analytical model. (d) The vertical velocity field (m day−1) and buoyancy contours of the ad-hoc

non-linear analytical model (see text for detailed description).
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FIG. 9. Spatially averaged vertical velocity frequency spectra 〈|ŵ|〉 (m) from the numerical solution when

the strain is turned off (a) instantaneously (33) and (b) gradually (34). Three lines are displayed on each plot

for the global average spectrum (solid), near-surface spectrum (above 50m, dash) and deep spectrum (below

4km, dotted). The vertical grey lines labelled A to D indicate the specific frequencies of interest: A = inertial

frequency, B = secondary circulation ‘frequency’, C = first wave mode frequency, and D = second wave mode

frequency, as predicted from the constant strain analytic model for a strain rate of α = 0.4 f .
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