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Abstract

Players cooperate in experiments more than game theory would predict. We introduce the

‘returns-based beliefs’ approach: the expected returns of a particular strategy in proportion to

total expected returns of all strategies. Using a decision analytic solution concept, Luce’s (1959)

probabilistic choice model, and ‘hyperpriors’ for ambiguity in players’ cooperability, our approach

explains empirical observations in various classes of games including the Prisoner’s and Traveler’s

Dilemmas. Testing the closeness of fit of our model on Selten and Chmura (2008) data for com-

pletely mixed 2 × 2 games shows that with loss aversion, returns-based beliefs explain the data

better than other equilibrium concepts.
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Economists have highlighted a number of game-theoretic contradictions and paradoxes

in which individual decision-making in real-world situations is at odds with what is pre-

dicted by game theory (Goeree and Holt 2001; Luce and Raiffa 1957; Selten 1978, Rosenthal

1981). One of the most widely analyzed games in economics, mathematics, biology and

other sciences is the Prisoner’s Dilemma, a two-by-two noncooperative game. The Pris-

oner’s Dilemma lies at the heart of important concepts in game theory such as the ‘Nash

equilibrium’ (Nash 1951). Empirical tests demonstrate that in the real world people are

often more cooperative than that predicted by the outcome of the Prisoner’s Dilemma game

and other variations such as the Traveler’s Dilemma game. In this paper we provide a

reason for this unreason1: an explanation for why cooperative strategies might be played

in the one-shot Prisoner’s Dilemma and the Traveler’s Dilemma games. We propose an

alternative equilibrium concept to the Nash by which people might form their beliefs to

play their strategies which we call ’returns-based beliefs ’. We show that this might explain

better cooperation in the Prisoner’s Dilemma and Traveler’s dilemma games. We also test

the closeness of fit of our returns-based beliefs model with hyperpriors, and by incorporating

loss aversion, using data from Selten and Chmura (2008) for completely mixed 2× 2 games.

We show that the returns based belief model is able to explain the data better than the

other stationary concepts as outlined in Selten and Chmura (2008).

In Nash equilibrium, each player chooses the action that maximizes their returns subject

to the opponent’s choice and no player can gain by changing their strategy unilaterally. By

contrast, we use a decision analytic approach where individuals form subjective probabilities

over the actions of the individual’s opponent and choose a mixed strategy profile over the

actions based on the relative returns2. We use the probabilistic choice model developed

axiomatically by Luce (1959). The returns based beliefs approach is both more sympathetic

1 We attribute this expression to Herbert Simon (1987) who wrote, ’Sometimes the term rational (or logical)
is applied to decision making that is consciously analytic, the term nonrational to decision making that
is intuitive and judgmental, and the term irrational to decision making and behaviour that responds
to the emotions or that deviates from action chosen ”rationally”. We will be concerned then, with the
nonrational and the irrational components of managerial decision making and behaviour. Our task, you
might say, is to discover the reason that underlies unreason.’ (Simon, 1987, p.57)

2 Kadane and Larkey (1982) in their seminal paper propose a decision analytic solution concept over the
game theoretic solution concept. Rios, Rios and Banks (pp. 845-849, 2009) provide a recent discussion
of the difference between game theoretic and decision analytic solution concepts. Also, see Bono and
Wolpert (2009).
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to and more consistent with the empirical testing of games. Returns-based beliefs bring

squarely into the picture the emphasis on the relative attractiveness of individual actions

in choosing the optimal strategy. Our approach treats beliefs rather than strategies as the

primary concept (p.139, Binmore 2009; Nau and McCardle 1990). In doing so, we assume

that players’ subjective beliefs are in equilibrium with reference to each other. Therefore,

consistent with a decision theoretic perspective, players adopt strategies on the basis of their

respective subjective beliefs.

Our model has similarities with the Quantal Response Equilibrium (QRE) model pro-

posed by McKelvey and Palfrey (1995) and the Boundedly Rational Nash Equilibrium

(BRNE) model of Chen, Friedman and Thisse (1997). The QRE can be viewed as an

application of stochastic choice theory to strategic games or as a generalization of the Nash

equilibrium that allows noisy optimization (Haile, Hortacsu and Kosenok 2008). The QRE

and its close variant the BRNE assumes that the decision maker might take a suboptimal

action, and that the probability of doing so increases with the expected payoff of the action.

We follow the BRNE in that decision makers are not expected utility maximizers in the

conventional sense but exhibit a tendency toward utility maximization that is not optimal

(Chen, Friedman and Thisse 1997). Each decision maker follows the random choice interpre-

tation of discrete choice theory under which each player selects a mixed strategy in order to

achieve the best possible outcome given the uncertainty regarding the other player’s choice.

In the BRNE and QRE models, the decision maker plays strategies proportional to the

expected payoff with some error. The error the decision maker makes could be interpreted

as either unmodeled costs of information processing (McKelvey and Palfrey 1995) or as un-

modeled determinants of utility from any particular strategy (Chen, Friedman and Thisse

1997). We build on the QRE and BRNE models to develop our approach. Our model has

some mathematical similarities to the QRE and BRNE. In particular, the ‘returns-based

beliefs’ is the expected returns of a particular strategy, in proportion to the total expected

returns of all strategies. However, the returns based beliefs approach differs significantly

from the QRE and the BRNE because our approach does not assume unmodeled costs of

information processing or unmodeled determinants of utility from any particular strategy.

We also do not assume that the decision maker is making errors or mistakes. Rather in the

returns based beliefs model, individuals need to form subjective beliefs about each others

possible plays. Since there is strategic uncertainty or ambiguity about these beliefs we invoke

3



the concept of hyperpriors in the formation of such beliefs. In this respect our model dif-

fers both conceptually and mathematically from both the QRE and the BRNE. Our model

based upon returns-based beliefs is also different to other alternative models that provide

an explanation for non-equilibrium outcomes such as the level-k models (Costa-Gomes and

Crawford 2006) and cognitive hierarchy (CH) model (Camerer, Ho and Chong 2004). The

level-k and CH models assume that decision makers are heterogenous in their level of so-

phistication with respect to their strategic thinking. The returns-based beliefs model differs

from the level-k and the CH models in that the former does not assume heterogeneity in the

levels of sophistication in thinking by decision makers.

We first show how the returns based belief model without ambiguity is able to provide

qualitative results that are consistent with empirical findings from the Prisoner’s Dilemma

and the Traveler’s Dilemma. We then show that the returns based belief model with hyper-

priors to incorporate ambiguity is able to better explain the empirical data from completely

mixed 2× 2 games from Selten and Chmura (2008) once loss aversion is included compared

to other stationary concepts. Thus, by putting forward the concept of returns-based beliefs

we contribute to the extensive literature which tries to reconcile game theoretic predictions

and empirical experimental results (Holt and Roth 2004). The next section develops the

RBB model with the one-shot Prisoner’s Dilemma game and the Traveler’s Dilemma game

as the context. Section II applies the RBB model to Selten and Chmura’s (2008) completely

mixed 2× 2 games. Section III concludes.

I. RETURNS-BASED BELIEFS

Game theory models systematically human behavior when strategic interactions exist.

In conventional game theory, the solution concept such as Nash equilibrium is critical in

forming the basis for the prior distribution of beliefs that players hold. In determining

the outcome of the game these prior beliefs held by the players are fulfilled in equilibrium.

However, a player’s actions are determined by her beliefs about other players which may

depend upon their real-life contexts such as custom or history. For example, Harsanyi (1982)

contended that normative game theory was not as helpful as ‘an empirically supported psy-

chological theory making probabilistic predictions about the strategies people are likely to

use, . . . given the nature of the game and given their own psychological makeup’ (Harsanyi
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1982, p.122). This psychological makeup might be conditioned by the past experience of

individuals’ beliefs about an opponent’s play. This is termed the ‘subjective’ or personal

interpretation of probability. Subjective probability is the probability that a person assigns

to a possible outcome, or some process based on his own judgment, the likelihood that the

outcome will be obtained (DeGroot 1975, p. 4; Savage 1954). The implication is that the ex-

periences of the individual might feed into the so-called perceptive and evaluational premises

of the individual and influence thereby the subjective probabilities, which then influences

the strategies chosen. This approach calls for a decision theoretic approach whereby players

form subjective beliefs about the opponent in choosing an action (Roth and Schoumaker

1983). However, as pointed by Myerson (1991, p.114), ‘A fundamental difficulty may make

the decision-theoretic approach impossible to implement, however. To assess his subjective

probability distribution over other players’ strategies, player i may feel that he should try to

imagine himself in their situations. When he does so, he may realize that the other players

cannot determine their optimal strategies until they have assessed their subjective proba-

bility distributions over i ’s possible strategies. Thus, player i may realize that he cannot

predict his opponents’ behavior until he understands what an intelligent person would ex-

pect him rationally to do, which is, of course, the problem that he started with.’ To resolve

the issue, psychological motives could be used to understand behavior in game theoretic

settings. Economists have suggested examining the process of cognitive reasoning (Rubin-

stein 2007). Research in psychology and economics shows that people have a bias towards

wanting to cooperate (Farrell and Rabin 1996; Andreoni and Miller 1993). We follow this

line of reasoning to propose a reasonable way of forming such subjective probabilities.

We argue that the willingness to cooperate might be influenced by past experience, gen-

erating ‘strategic uncertainty’ regarding the conjecture about the choice of the other player.

We define strategic uncertainty as uncertainty concerning the actions and beliefs (and beliefs

about the beliefs) of others (Brandenberger 1996). Researchers have argued that strategic

uncertainty can arise even when all possible actions and returns are completely specified and

are common knowledge (Ellsberg 1959; Van Huyck et al 1990). The rational decision-maker

has to form beliefs about the strategy that the other decision-maker will use as a result of

strategic uncertainty. As a consequence, players form their beliefs about the probabilities

that other players play in order to determine in turn their best-response strategy. Hence,

the best response strategy of one player is likely to be based upon the mixed strategy of the
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other player. The mixture is because of the uncertainty regarding the conjecture about the

choice by the other players3 (Brandenberger and Dekel 1987). This is succinctly summarized

by Rabin that ‘In psychological games, there can be a difference between interpreting mixed

strategies literally as purposeful mixing by a player versus interpreting them as uncertainty

by other players’ (Rabin 1993, p.1286). Following this line of reasoning, a player who knows

that the non-Nash equilibrium belief is held by the opponent could form a subjective assess-

ment of the opponent’s play by taking this belief into account (Basu 1990). For example, in

the Prisoner’s Dilemma a player might play the cooperate strategy if they expect the other

player to play the cooperate strategy. Therefore, player 1 has a profitable deviation by

playing cooperate with a positive probability when player 2 plays cooperate with a positive

probability4.

In order to illustrate our model we need some plausible set of assumptions about how

agents form beliefs with respect to the probability of the opponent’s strategy. We suggest

that one way in which agents might do so is by basing their decisions on Luce’s (1959)

probabilistic choice model. In this approach, players form subjective beliefs and then act

based upon the expected returns, given these beliefs, of a particular strategy, in proportion

to the total expected returns of all strategies. We call this the returns-based beliefs model.

A. The model

In this section we develop the basic elements of a one-shot game and then introduce

discrete choice theory based on subjective probabilities. We use below a particular variation

3 We are not assuming that the opponent is using a randomized strategy. The mixture merely reflects the
representation of player 1’s belief about player 2. As Wilson (1986, p.47) points out, although it makes
little difference to the mathematics, conceptually this distinction between randomization and subjective
beliefs to explain the mixed strategies is a pertinent one. This interpretation is also sympathetic to
Harsanyi’s (1973) purification interpretation of mixed strategy where mixing represents uncertainty in a
player’s mind about how other players will choose their strategies, rather than deliberate randomization
(Morris 2008).

4 Conventionally, any mixed strategy will have a support in pure strategies. However, the pure strategy
(cooperate) will get eliminated by the deletion of dominated strategies which suggests that the play of a
mixed strategy based upon a support in pure strategies would not be apposite in this context. However,
because of our argument that invokes subjective probabilities, all the strategies are played with positive
probabilities which includes the cooperate strategy. Therefore, a mixed strategy can exist if one player
experiences uncertainty with respect to his conjecture about the choice of the other player.
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of the one-shot game formulation of McKelvey and Palfrey (1995). Let (N, S, π) be a finite

game. N denotes the set of players. Each player i ∈ N has a set of pure strategies, Si

with elements si. The set of strategy profiles of all players other than i is S−i = ⊗j 6=iS
j

with elements, s−i. The benefit a player i derives from playing a strategy profile si ∈ Si

is πi
si ; πi = {πi

si}si∈Si . Each player knows who is in the game, N , and the strategy sets

available to each other, Si ∀ i ∈ N . However, each player is ignorant of the subjective

probability distribution held by the other player. We discuss below our approach to how

players form a reasonable subjective probability belief structure.

In the following discussion, we assume that each decision maker follows the random choice

interpretation of discrete choice theory under which each player selects a mixed strategy in

order to achieve the best possible outcome given the uncertainty regarding the other player’s

choice. As discussed earlier, driven by the desire to want to cooperate, for example in the

Prisoner’s Dilemma game, there is uncertainty regarding the conjecture about the choice of

the other player. Hence, the player holds an opinion based on the subjective probability with

respect to all of the unknown contingencies affecting his payoffs. In particular the player is

assumed to have ‘an opinion about the major contingency faced, namely what the opposing

player is likely to do’ (Kadane and Larkey 1982, p. 115). Kadane and Larkey (1982, p. 115)

have expressed the implications of this line of thought very neatly as follows: ‘If I think my

opponent will choose strategy i (i = 1, ...I) with probability pi, I will choose any strategy j

maximizing
∑I

i=1 piuij, where uij is the utility to me of the situation in which my opponent

has chosen i and I have chosen j......the opponent’s utilities are important only in that they

affect my views {pi} of what my opponent may do....’. Although any possible distribution

of probabilities could be a possibility based upon the subjective method of forming them,

we propose a reasonable subjective probability belief that the players might use when they

do not know each other or their respective histories. We call this ‘returns-based beliefs ’.

We believe it is reasonable to assume that the decision maker would assign probabilities

based on the expected returns from playing the different strategies. Similarly, we assume

that the opponent also assigns probabilities based on the opponent’s expected returns given

the probabilities of the focal decision maker. Following this line of reasoning, our analysis

is based on a model for which the decision probabilities are proportional to the expected

returns. We assume that agents form beliefs based upon the expected returns of a particular

strategy over the total expected returns of all strategies, assuming the opponent plays all
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possible strategies.

Our proposed approach has both theoretical and empirical justification. First, for the

theoretical justification we defer to Luce (1959) who showed using probability axioms that

if the ratio of probabilities associated with any two decisions is independent of the payoff of

any other decisions, then the choice probabilities for decision j of player i can be expressed

as a ratio of the expected payoff for that decision over the total expected payoff for all

decisions: Πi
j/

∑
k Πi

k, where Πi
j is the expected returns associated with decision j. Second,

this method of arriving at decision probabilities has been supported by empirical work which

provides empirical justification for our approach. In particular, empirical research for paired

comparison data supports the Luce (1959) method of arriving at decision probabilities such

that the probability of choosing x over y, P (x, y) = v(x)/[v(x) + v(y)] where v(x) and v(y)

are the scale values of choosing x and y respectively (Abelson and Bradley 1954). Our model

has similarities with the Quantal Response Equilibrium model (QRE) proposed by McKelvey

and Palfrey (1995) and the Bounded Rationality Nash Equilibrium (BRNE) model of Chen,

Friedman and Thisse (1997) in that all strategies with a positive payoffs are played with

positive probabilities in proportion to their expected payoffs. However, we differ from the

QRE and the BRNE models in an important respect in that our model does not require

the specification of an error distribution. On the other hand, we invoke the concept of

hyperpriors whereby players form beliefs over their beliefs in order to take into account the

ambiguity related to the cooperative stance of the opponent. We discuss these points further

below in Section II on comparing the returns based belief model to other non-equilibrium

models.

In a game between multiple players, we assume that each player has a probability distri-

bution over the choices available. This probability distribution, P i, over the elements S−i

is defined such that P i(s−i) is the probability associated with s−i ∈ S−i. We operationalize

our model by assuming an expected return framework, so that the expected payoff of the

jth pure strategy of player i, given P i, is as follows:

Πi
j(P

i) =
∑

s−i∈S−i

P i(s−i)πi
j(s

−i) (1)

where πi
j(s

−i) is player i’s payoff from choosing a pure strategy j when the other players

choose s−i and P i(s−i) is the belief held by player i about the probability the other players

will choose s−i. The decision probabilities over pure strategies for player i in turn follow the
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specification outlined above which is proportional to the expected returns as follows:

pi
j =

Πi
j(P

i)∑m
k=1 Πi

k(P
i)

(2)

This model admits a Nash-like equilibria in belief formation such that the belief probabilities

match the decision probabilities for all players. This equilibrium in beliefs can be found

by iterating between the expected payoff in equation (1) and the decision probabilities in

equation (2)5.

The returns based belief model can be used to find equilibria for games between any

number of players. However, for clarity, the games discussed in the rest of this paper will be

games played between 2 players only. We will use u1
ij and u2

ij to denote the payoffs to player

1 and 2, respectively, if player 1 plays move i and player 2 plays move j. We will denote

a mixed strategy of player 1 by p = {pi}, where pi is the probability that player 1 chooses

si ∈ S1, and denote a mixed strategy of player 2 by q = {qj}, where qj is the probability

that player 2 chooses sj ∈ S2. We will use a superscript ‘b’ to denote belief probabilities,

i.e., qb is the mixed strategy that player 1 believes player 2 will play and vice versa for pb.

We will denote the equilibrium solution in which p = pb and q = qb by a superscript ‘rbb’,

i.e., prbb, qrbb.

We assume that the way players act on their beliefs is based on the Luce (1959) expected

returns approach. However, there will remain some ambiguity as to the cooperative stance

of the other player and hence their disposition to form beliefs in such a manner. We capture

this ambiguity via the concept of hyperpriors that are formed over the beliefs developed via

the expected returns approach as outlined above. Following this interpretation, the belief

probability will arise as an integral over player 1’s belief distribution, P (q), for player 2

qb
i =

∫
qiP (q)dq = qrbb

i

∫ [
qi

qrbb
i

P (q)

]
dq = qrbb

i Xi (3)

where the last equality defines Xi from the belief distribution6. Writing the moments of the

belief probability distribution in this way is an attempt to split the belief probability into a

game dependent part, the equilibrium solution qrbb
i , and a player dependent part, Xi. We

5 Similar to the discussion in Aumann and Brandenburger (1995) on the epistemic conditions to get a Nash
equilibrium in a two player game, mutual knowledge between the players that they are cooperative, i.e.,
play a Luce type strategy, would be sufficient to get a returns based belief equilibrium.

6 Note that
∑

Xjq
rbb
j = 1 since

∑
qj = 1.
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expect players who believe their opponent to be cooperative to play close to the equilibrium

solution, and therefore Xi ≈ 1. The Luce (1959) expected returns model provides a mapping

between beliefs and actions, which allows the determination of these Xi parameters from

experimental data. This will be explored further in Section II.

In standard statistical language, the strategy qb is player 1’s prior belief on the pure

strategy that player 2 will play. The individual components of q, which characterize the

prior distribution, are hyperparameters. Player 1 may not be certain about the mixed

strategy that player 2 will adopt and so he may have a distribution over the possible mixed

strategies of player 2 and hence over the hyperparameters. Such a distribution is termed

a hyperprior and is denoted by P (q) in equation (3). In a theoretical approach, one could

prescribe a hyperprior and derive the corresponding Xi’s from equation (3). However, the

consequences of the hyperprior are entirely encoded in the mixed belief strategy that the

player forms, and hence in the Xi’s. Thus, when presented with experimental data it is more

practical to work with the measured qb
i ’s or Xi’s that can be determined from the observed

strategies through the Luce (1959) rule.

We first examine the returns based belief model without ambiguity to provide qualitative

results that are consistent with empirical results of the Prisoner’s Dilemma and the Traveler’s

Dilemma. In particular, due to the limitation of the data for the Prisoner’s Dilemma and

Traveler’s Dilemma games we will only consider the returns-based-belief equilibrium solution,

(prbb, qrbb), in which the belief and true probabilities coincide, i.e., pb = p and qb = q. We

then go on to examine the empirical evidence from the Selten and Chmura (2008) data in

section II B with the returns based belief model incorporating ambiguity using hyperpriors

as described here7.

7 We note that deviations from the RBB equilibrium solution could also arise if a player makes an error
in computation when evaluating the values associated with each move, and these values are ultimately
used to determine their choice probabilities. In this case, we can use Yi to represent the fractional error
that player 1 makes when assessing the value of move i, so that he assigns a value Yiv

rbb
i , where vrbb

i is
the value of that move in the RBB equilibrium solution. As a result of these errors, player 1 will play a
strategy with the belief probabilities

qb
i =

Yiv
rbb
i∑N

j=1 Yjvrbb
j

=
Yiq

rbb
i∑N

j=1 Yjqrbb
j

= Xiq
rbb
i (4)

where
∑

Xiq
rbb
j = 1. Mathematically, this interpretation is therefore identical to the ambiguity in beliefs

characterised by the hyperprior.
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To find the returns-based-belief equilibrium solution, the idea is that player 1 computes

the expected payoff, Πi(si,q) =
∑

u1
ijqj of each pure action si ∈ S1, given a mixed action

q of the other player. Player 1 then plays the mixed action, p = {pi}, where {pi} is the

probability of playing move si ∈ S1, and

pi =

∑
j u1

ijqj∑
i

∑
j u1

ijqj

(5)

if player 1 knew that the opponent played q. This defines a mapping from player 2’s mixed

action to player’s 1 mixed actions. Similarly player 2 would play a mixed action, q = {qi},

where {qi} is the probability of playing move si ∈ S2 and

qi =

∑
j u2

jipj∑
i

∑
j u2

jipj

(6)

if player 2 knew that player 1 played p. The combination of these mappings defines a

mapping from player 1/2 mixed strategies to player 2/1 mixed strategies and we assume

the players then play a fixed point of this mapping. Results in Chen et al. (1997) can be

used to show that there exists such a fixed point equilibrium in the case that the pay-offs

to both players from all moves are non-negative8. Hence the equilibrium can be thought

of as a set of consistency conditions whereby a player’s choice probabilities are correct

in the sense of reflecting what the player must do when the choice probabilities are best

replies to the strategies of the other player who forms such subjective choice probabilities in

proportion to the expected returns of the strategies. A more general set up of the returns

based belief approach is described in Appendix I. We illustrate the existence of such a fixed

point equilibrium through the numerical example below.

B. The Prisoner’s Dilemma

We consider the Prisoner’s Dilemma game as illustrated in Figure 1 where two agents

have to decide whether to cooperate or to defect. Let us call the agents player 1 and player

8 Chen et al. (1997) show that a fixed point equilibrium exists if probabilities are assigned in proportion to
uµ, where u is the expected utility of the move and µ is a ‘rationality’ parameter which varies between 0
and ∞. This relies on the assumption that the utilities, u, are positive. Although the basis of our model
is very different, our model relates to the Chen et al. (1997) model when µ = 1 and the utility is taken to
be the expected return from the move. This is the case without a hyperprior. Therefore, the Chen et al.
(1997) proof will carry through to our model in the case where the pay-offs are non-negative. We discuss
more general scenarios in Appendix I.
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FIG. 1: Payoffs for the Prisoner’s Dilemma game.

2 respectively. If both cooperate they both get a payoff of 4. However, both player 1 and

player 2 could be better off by playing defect regardless of what the other player does.

Playing defect is the dominant strategy for both players and is the only Nash equilibrium

of the Prisoner’s Dilemma as there is no incentive for any of the players to change their

strategies. This is clearly less than the Pareto optimum of obtaining a payoff of 4 each by

both cooperating. Yet, empirical testing of the one-shot Prisoner’s Dilemma in laboratory

experiments has shown that people are prone to play the cooperative strategies far more often

than the Nash equilibrium might lead us to predict. These studies have also demonstrated

that as the benefits from cooperation increase, players are more likely to cooperate, and

that as the loss from not cooperating increases, the likelihood of cooperation increases as

well (Sally 1995).

Scholars have emphasized that cooperation in a one-shot Prisoner Dilemma game is an

important finding of experimental research that needs to be further understood (Janssen

2008). Economists have proposed various explanations for these experimental findings: for

example, altruistic punishment among genetically unrelated people when the gains from rep-

utation are small or absent (Fehr and Gachter 2002); the ability to recognize untrustworthy

opponents (Janssen 2008); and the incorporation of notions of fairness into game theory

through which people help others that help them and hurt others that hurt them (Rabin

1993). To all of these explanations, we add an alternative: a new explanation for coopera-

tion in a one-shot Prisoner’s Dilemma game that is based upon subjective probabilities and

returns based beliefs.

In the case of the Prisoner’s Dilemma, ideally, the agents would like to cooperate by

coordinating their actions on the joint strategies that will maximize their returns, which is
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(4, 4). Intrinsically, each player knows the benefits of cooperation and hence he or she may

actually play the cooperative strategy with positive probabilities, which coordinates with the

other player. For example, research has shown that human beings are prone to cooperative

behavior based on reciprocity (Axelrod 1984; Farrell and Rabin 1996). Therefore, the history

of human interactions is likely to influence the general disposition of players to want to

cooperate9. We need to factor this cooperative bias into our decision-making framework in

order to predict how players should behave in a competitive situation where cooperation is

possible and could produce better outcomes10.

In the Prisoner’s Dilemma, Si = {C, D} and N = {1, 2}. We could begin with any

arbitrary beliefs and through a process of iteration each player updates their beliefs using

the expected payoff in equation (1) and the decision probabilities in equation (2). Conducting

this iterative process shows that these probabilities do actually converge after about three to

four iterations. Since the players are symmetric, it is not unreasonable to assume without any

further information about history or preferences that they would have the same subjective

beliefs about each other. We discuss the case with hyperpriors on the beliefs later in this

paper.

The probabilities converge for both players to 0.387 for the cooperate strategy and 0.613

for the defect strategy. Therefore, the ‘returns based beliefs’ show that the players will play

the cooperate strategies with positive probabilities which is in line with empirical evidence.

In addition the empirical evidence shows that as the benefits from cooperation increases the

players are more likely to cooperate. Sally (1995) showed using a metanalysis of over 100

studies that ‘The one major consistency with rational self interest is that the temptation to

defect decreases the level of cooperation’ (Sally 1995, p.75). Another way of looking at this

is that as the opportunity to increase one’s reward by defecting from unanimous cooperation

decreases, then the likelihood of cooperation decreases. In addition, the analysis shows that

9 Farrell and Rabin (1996) have argued that even with communication there would be ‘cheap talk’ and
hence the communication is not credible. However, Sally (1995) shows that communication does result in
an increase in cooperation among players.

10 To add to this line of reasoning, psychologists have argued that cooperation may be prompted by altruism,
by the desire to conform to social norms, or by adhering to the dictates of one’s conscience (Farrell and
Rabin 1996). In addition, economists have shown that ‘people’s natural tendency to cooperate’ is an
important trait that subjects bring to experimental situations from the outside (Andreoni and Miller
1993, p. 571).
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as the loss from not cooperating increases, the likelihood of cooperation increases too. Sally

(1995) proposed a method of calculating the Temptation Index and Loss Index, which for 2

players reduce to

Loss =
C(2)−D(0)

C(2)
(7)

Temptation =
D(1)− C(2)

C(2)
(8)

where C(x)/D(x) are the payoffs to cooperators/defectors when there are x cooperators. For

the game in Figure 1, the value of the indices are Loss = (4-1)/4=3/4 (75%) and Temptation

= (6-4)/4=1/2 (50%). As one allows the benefit from cooperation from the (Cooperate,

Cooperate) payoff to increase from 4 to 5.8, the loss index increases from 75.0% to 82.8%

which in turn increases the probabilities of cooperation from 0.39 to 0.47. In addition, as the

payoff from (Defect, Cooperate) is increased from 6 to 7.8, the temptation index increases

from 50.0% to 85.0% which in turn decreases the probability of cooperation from 0.39 to

0.35. This result is consistent with empirical evidence from the Prisoner’s Dilemma game.

However, the question that remains is whether a one unit increase in the returns to the

(C, C) outcome has a stronger or weaker effect on the willingness to cooperate compared to a

one unit decrease in the (D, C) payoff. Would a policymaker trying to increase the incidence

of cooperation be better off trying to increase the returns from cooperation or decrease the

temptation to defect from unanimous cooperation? If the (C, C) payoff in the PD game

of Figure 1 is increased by one unit to 5, we find the probability of cooperation increases

from 0.39 to 0.44. However, if instead the (D, C) payoff to the defector is decreased by one

unit to 5, the probability of cooperation increases by a lesser amount from 0.39 to 0.42. In

both cases, the temptation index decreases (from 50% to 20%/25%) but in the first case

the loss index also increases (from 75% to 80%). This indicates that policy makers who are

interested in encouraging cooperation are better suited to focus their policy on increasing

the benefits from cooperation rather than on decreasing the benefits from non-cooperation

from a similar level of effort11.

Our approach is different to previous studies that show the plausibility of cooperation

in the one-shot Prisoner’s Dilemma game discussed earlier. In this paper we propose an

11 While we have illustrated this result using the particular game shown in Figure 1, this result carries over
to any PD-type game. A proof is given in Appendix II.
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alternative explanation for the (Cooperate, Cooperate) outcome in the Prisoner’s Dilemma

that is based on subjective probabilities and returns based beliefs formation. Our approach

enables us to provide a plausible explanation for two anomalies between the theoretical

predictions of one-shot Prisoner’s Dilemma games and the empirical evidence: (1) the in-

verse relationship between cooperation and the temptation to defect and (2) the positive

relationship between cooperation and the gains from cooperation.

C. The Prisoner’s Dilemma with Loss Aversion

The argument we have made above for a player to, rationally, choose to play the domi-

nated cooperate strategy in the Prisoner’s Dilemma is that the (C,C) solution has a better

payoff than the natural Nash solution of (D,D). The idea is that a player is willing to coop-

erate based on the belief that the other is willing to cooperate in the hope that this tendency

will lead to a better payoff overall. Two general features that we would like a model of this

decision process to include would be 1) if the (C,C) strategy does not pay better than the

(D,D) strategy, then there should be zero probability that the player would choose C; 2) a

player who is averse to risk should be less inclined to play C, since there is a risk that his

opponent will defect, leading to a worse payoff for himself. The model that we have adopted,

in which the players play mixed strategies according to the Luce decision rule, does indeed

exhibit both of these features, if the PD payoff matrix is transformed to include loss aversion

(see, for example, Selten and Chmura (2008) and Brunner et al. (2010)).

Player 1 can compute his guaranteed payoff by finding the max-min of the elements in his

payoff matrix, u1, i.e., for each possible move, i, he computes his minimal payoff, minju
1
ij,

over possible strategies of his opponent, and then finds the maximum, maxi(minju
1
ij). If

the maximum occurs for i = I, for which the minimum is at j = J , then by playing

move I the player could guarantee a payoff at least as big as u1
IJ . The matrix can then be

transformed by subtracting u1
IJ from each element of the matrix. The transformed payoff

matrices represent the payoffs relative to the guarantee. The RBB approach naturally places

unfavorable weight on negative payoffs, so this transformation already encodes loss aversion.

However, the standard approach is to multiply negative entries in the transformed matrix

by a multiplier, λ. This multiplier is a measure of the degree of loss aversion of the player.

In Appendix III we analyze the PD game including loss aversion and show that it has
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precisely the features we wanted (as noted in (1) and (2) above). A solution with some

cooperation exists if there is an incentive to mutual cooperation, i.e., the payoff from defect-

defect is worse than that from cooperate-cooperate. As that incentive goes away, so does

the tendency to cooperate. In addition, we see that the more loss averse a player is, the less

inclined they will be to cooperate and sufficiently loss-averse players will always choose the

Nash equilibrium. These nice features illustrate why the Luce choice rule provides a good

model for cooperative behavior.

D. The Traveler’s Dilemma

Another game that has attracted the interest of economists and others is Basu’s (1994)

Traveler’s Dilemma game that is based on a story about two travelers who holiday on a

tropical island and then return having purchased identical antiques. Whilst returning, the

airline that they have flown back on damages their antiques irreparably, but promises them

adequate compensation, requesting them to make claims for that compensation indepen-

dently. The airline manager, who is unaware of the true cost of the antiques, makes the

following proposition to the two travelers: Each traveler has to write down the cost of the

antique si (i = 1, 2), which can take a value between 80 and 20012.

If traveler 1 and traveler 2 write down the same number (s1 = s2), then the manager

assumes that they are telling the truth and both travelers are paid the sum of money written

down. If traveler 1 writes down a number larger than traveler 2 (s1 > s2), then it is assumed

that traveler 1 is lying relative to traveler 2. In this case, the airline manager regards s2

as the cost of the antique and pays traveler 1 the sum of (s2 − r), while traveler 2 gets

the sum of (s2 + r) where r is the reward/penalty. Traveler 1 thus receives a penalty for

inflating the cost of the antique, while traveler 2 is suitably rewarded for his honesty. The

Traveler’s Dilemma game thus involves choosing the amount to claim, (s1, s2), to maximize

the travelers’ respective payoffs. It is well known that the unique Nash equilibrium of this

game is for both players to play (80, 80). However, studies of the Traveler’s Dilemma

have asserted that when the dilemma is tested in empirical laboratory situations, when the

12 In the original paper (Basu 1994), the cost of the antique can take a value between 2 and 100. However,
to avoid negative payoffs we have altered the payoff to conform with the examples in empirical studies
(Capra et al 1999, Goeree and Holt 2001).
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penalty is small, the Nash outcome does not obtain and when the penalty is large, the

outcome is very near to the Nash outcome of (80, 80) (Capra et al 1999, Goeree and Holt

2001). One of the most striking features of these studies is that the anomalous result for

the low penalty case does not disappear even when subjects play the game repeatedly and

so have the benefit of learning from past experience.

We show that a plausible explanation for the empirical evidence conducted on this game

may be based upon agents playing mixed strategies through a succession of profitable devi-

ation from the Nash equilibrium strategy of playing 80 based on the returns based beliefs

model outlined earlier. We can follow the same iteration process between players 1 and 2

whereby each player updates their beliefs using the expected payoff in equation (1) and the

decision probabilities in equation (2) until the probabilities converge. The results are shown

in Figure 2. Players 1 and 2 are most likely to play the claim strategy that maximizes this

expected value. Figure 2 shows the expected values for different penalties such as 5, 30, 40

and 60. The expected value is maximized at claim 190 for penalty value 5, 138 for penalty

value 30, 114 for penalty value 40, and 80 for penalty value 60. The claim strategy decreases

from close to 200 for small penalty values to fall sharply to the Nash equilibrium value at

about penalty level 55, and remains at this level thereafter for higher penalty values. Ta-

ble I shows the claims for the game based on returns-based beliefs (Column 1), game one

in Capra et al (Column 2) and the average for game 8-10 in Capra et al (Column 3) which

incorporates the ability of players to learn. As shown in Figure 2 this feature of the data

conforms closely to the empirical observation of the Traveler’s Dilemma in studies by Capra

et al (1999) and Goeree and Holt (2001) which show the ‘intuitive inverse relationship be-

tween average claims and the parameter that determines the relative cost of having the higher

claim’ (Capra et al 1999, p.680).

Our explanation for the reconciliation between the theoretical Nash equilibrium outcome

and the empirical findings are different to the ones provided by Capra et al (1999) in several

ways. First, the Capra model has a time element whereby there is learning taking place

over time between the actual play and the predicted claims based on the model. Therefore,

their model has an error parameter and a learning parameter to allow for this adjustment to

take place. Since our model does not assume learning over time, these parameters are not

relevant for our analysis. Second, the Capra model assumes that the decision probabilities
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FIG. 2: Expected return versus claim in the Traveler’s Dilemma game, for penalties of 5, 30, 40

and 60, as labelled.

are proportional to an exponential function of the expected payoff13.

In the next section we will test our model further using empirical data from Selten and

Chmura (2008) for 2 × 2 fully mixed games. We discuss the model with loss-aversion and

the concept of hyperpriors.

13 Decision probabilities that are exponential functions of expected payoffs implies that the choice proba-
bilities are unaffected by adding a constant to all expected payoffs (Capra et al 1999, pp. 683). The
equivalent of the Capra model for decision probabilities without a time element and error parameter is
pi

j = exp(πi
j)/

∑m
k=1 exp(πi

k).
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Maximum Claim Capra et al. Capra et al.

Penalty Returns Based Beliefs (Column 1) Game 1 Average for Game 8-10

5 190 178 195

10 180 180 186

20 160 160 119

25 149 150 138

50 86 130 85

80 80 120 81

TABLE I: Penalty and maximum claim in the Traveler’s Dilemma game

II. EXPERIMENTAL 2× 2 GAMES

In order to test the applicability of the RBB model in an empirical setting we will look at

data from Selten and Chmura (2008). They presented empirical results for 12 games, each

played between two players and with two possible moves for each player. The games are

asymmetric, games 1-6 are constant sum games, but games 7-12 are non-constant sum. The

payoffs for all twelve games are shown in Figure 3. The constant sum and non-constant sum

games form pairs (e.g. Game 1 with Game 7, Game 2 with Game 8 and so on). As noted

by Selten and Chmura (2008, p. 950), ‘the non-constant sum game in a pair is derived from

the constant sum game in the pair by adding the same constant to player 1’s payoff in the

column for R and player 2’s payoff in the row for U’.

A. Loss aversion

Before analyzing the data from the Selten games, we first transform the pay-off matrices

to include loss-aversion (consistent with the Impulse Balance Equilibrium in Selten and

Chmura 2008, p. 947). It was demonstrated by Brunner et. al (2010) that the explanatory

power of the various models compared by Selten and Chmura (2008) improves significantly

once loss aversion is included before computing the equilibrium solutions. We include loss

aversion by subtracting the guaranteed payoff from each entry in the matrix, as described

in Section IC and then multiply negative entries in the transformed matrix by a multiplier,

λ. The conventional approach is to take λ = 2 (Selten and Chmura 2008), but we will show
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Game 1
(10,8) (0,18)

(9,9) (10,8)
Game 7

(10,12) (4,22)

(9,9) (14,8)

Game 2
(9,4) (0,13)

(6,7) (8,5)
Game 8

(9,7) (3,16)

(6,7) (11,5)

Game 3
(8,6) (0,14)

(7,7) (10,4)
Game 9

(8,9) (3,17)

(7,7) (13,4)

Game 4
(7,4) (0,11)

(5,6) (9,2)
Game 10

(7,6) (2,13)

(5,6) (11,2)

Game 5
(7,2) (0,9)

(4,5) (8,1)
Game 11

(7,4) (2,11)

(4,5) (10,1)

Game 6
(7,1) (1,7)

(3,5) (8,0)
Game 12

(7,3) (3,9)

(3,5) (10,0)

FIG. 3: Pay-offs for the 12 games in Selten and Chmura (2008). In each cell an entry (x, y)

indicates a payoff of x for the row player and y for the column player.

results for both λ = 1 and λ = 2 in the following.

After carrying out this transformation, some of the initially positive pay-offs become

negative. Our previous results no longer guarantee the existence of the RBB equilibrium

solution under those circumstances. However, it is possible to prove for 2 × 2, constant-

sum games, that an RBB equilibrium exists for any choice of the loss multiplier used when

transforming the matrices to include loss-aversion. This proof is given in Appendix IV. In

the non-constant sum case it is more difficult to prove generic existence of the RBB solutions,

although such solutions do exist for all the games considered by Selten and Chmura (2008).

Two of the games, numbers 8 and 10, have a singular behavior that arises from the equality
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of pay-offs for some moves. The derivation of the RBB solution is more subtle in those cases

and is described in Appendix V.

B. Ambiguity in beliefs

In this section we will explain the empirical observations of the completely mixed 2 × 2

games using the RBB model. The RBB model incorporates ambiguity using a hyperprior

on the belief probability, as described in equation (3). The experimental data can be used

to determine the properties of this hyperprior, which we characterize in terms of the Xi

parameters. These are determined from the belief probabilities held by the players, which

we must compute from the observational data. Under the Luce (1959) rule, the probability

of move i for player 1 is just pi ∝ u1
ijqj, where qj is the player’s belief about player 2’s

strategy. In the RBB equilibrium, qj is determined from pi via a similar equation. However,

if player 1 is observed to play the strategy pobs
i , then this equation can be inverted to give

qb
j ∝ (u1)−1

jk pobs
k , which is the belief that player 1 must have had about the strategy of player

2 in order to lead them to play as they did. For any results observed in an experiment, the

belief probabilities qb
j that would lead to the observed behavior, pobs

i can be computed in

this way. If the person is playing a pure RBB strategy, then qb
j = qrbb

j , but the ambiguity

characterized by the hyperprior would lead to some deviation.

For two-move games, there is only one probability, which we denote q = q1, as q2 = 1− q.

In Figure 4 we show qb versus qrbb and pb versus prbb for all of the data in the Selten and

Chmura games. The two plots correspond to transformed games with λ = 1 and λ = 2

respectively. We see that there is a tight correlation between the beliefs that players hold

and the beliefs predicted in the RBB equilibrium, which reinforces the idea that the RBB is

a good model for describing choice behavior in games. However, there are some deviations

as we expected.

As described above, deviations will arise because the player is ambiguous as to the coop-

erative stance of the other player and therefore the likelihood that their opponent will play

the RBB solution. In order to incorporate this ambiguity we examine the RBB model with

hyperpriors. As mentioned earlier, the belief distribution, P (q), is a hyperprior as it is a

distribution for the hyperparameters, {qj}, that characterize player 1’s prior belief, q, for

the action of player 2. A particular choice of hyperprior will lead to particular {qb
i }’s, but
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FIG. 4: Belief probability (y axis) versus RBB equilibrium probability (x axis) for all data in Selten

and Chmura. The red plusses are values for p, the probability for the row player, while the green

crosses are for q, the probability of the column player. The line indicates qb = qrbb to guide the

eye. The left panel uses a multiplier λ = 1 to transform the game, while the right panel uses λ = 2.

the observational consequence of the hyperprior is entirely encoded in the Xi parameters.

These represent the fractional change from the RBB equilibrium solution. The deviation

could also be characterized by the values of the observed belief probabilities, qb
i , directly, but

using the Xi parameters allows us to factorize the belief into a game-dependent part, qrbb,

and a part that is a property of the players in the game, {Xi}. This is not the only way in

which such a factorization could be accomplished, but it provides a good description of the

observed data and it has a simple interpretation as a fractional modification of the belief

probability. The {Xi}’s can be computed for any observed data, but to test whether they

are indeed game independent for a particular set of players would require new experiments14.

In a given data set, the probability constraint
∑

qb
i =

∑
qrbb
i = 1 means that the Xi’s are

not all independent. Alternatively, we can define ri = Xi/XN for i = 1, · · ·N − 1 and then

the ri’s can independently take any values in [0,∞). In the case of the Selten and Chmura

data, each game has only two moves and therefore one independent probability and one ri,

r1 = X1/X2. This quantity can be computed from the observed probability qb and the RBB

14 This is a common problem to any analysis of the belief distribution, since it is reasonable to suppose that
a player might formulate his beliefs about his opponent in a way that depends on the properties of the
game.
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FIG. 5: Distribution of the parameter r1 for player 1’s belief probability, qb, (upper panels) and

player 2’s belief probability, pb, (lower panels). The solid lines are the best-fit zero-mean log-normal

distributions to the data. The lefthand panels use a multiplier λ = 1 to transform the games, while

the righthand panels use λ = 2.

equilibrium probability qrbb as

r1 =
qb(1− qrbb)

qrbb(1− qb)
. (9)

The r1 parameter encodes information about the players playing the game. We want to

characterize the distribution of values this parameter can take using the experimental data.

The two moves for player 1 are treated asymmetrically in r1, as we have chosen move 1 to

be in the numerator. As the moves could be ordered arbitrarily, using r2 = X2/X1 = 1/r1

is equally valid. If r1 is an intrinsic property of people, we would therefore expect its

distribution to be inversion symmetric, i.e., the distribution of 1/r1 should resemble that

of r1. A simple distribution that has this property is a log-normal distribution with zero

mean. In Figure 5 we show the distribution of r1 for the Selten and Chmura data, along

with the best-fit zero-mean log-normal distributions. The left and right hand panels are for

loss aversion multipliers λ = 1 and λ = 2 respectively.

The fits in Figure 5 reproduce the data quite well, which lends support to the picture we
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have developed, namely that the players are formulating their beliefs according to the RBB

equilibrium strategy, but with fractional modifications that arise from the player’s beliefs

about the cooperability of their opponent. Characterized in this way, the beliefs seem to

be consistent with being drawn from a zero-mean log-normal distribution. There are a few

things to note from the figure. Firstly, we have treated player 1 and player 2 independently

by analyzing the qb and pb results separately. The games considered do not treat player

1 and player 2 equivalently in terms of the payoffs. Nonetheless, the widths of the best-fit

distributions are quite similar in both cases, which supports the notion that the Xi’s are an

intrinsic characteristic of the players rather than the game. Secondly, we note that there

are some outliers in the distribution for pb. These all come from the separate replicates of

game 1. Game 1 has a very small value for prbb — the row player is unlikely to play the

upper move due to the potential penalty involved. This has two consequences — (i) the

statistical errors in measurements of this number are proportionally larger; (ii) statistical

errors are magnified, resulting in larger errors in the Xi’s. For this reason, we treated these

points as outliers when deriving the best-fit distributions. Finally, we see that the fits seem

to be somewhat better for λ = 1 than for λ = 2. The choice of this parameter is to some

extent arbitrary and λ = 2 is chosen by convention, but this result might indicate that this

set of players were not particularly loss averse.

C. Comparison to other equilibrium concepts

In Selten and Chmura (2008), the observations described here were compared to the

predictions of several equilibrium concepts — the Nash equilibrium, the QRE, the Action

Sampling equilibrium, the Payoff Sampling equilibrium and the Impulse Balance equilibrium.

In the original analysis, it was found that the impulse balance equilibrium was a much better

predictor of behavior. However, the impulse balance approach naturally incorporates loss-

aversion and it was subsequently demonstrated by Brunner et al. (2010) that if the analysis

was repeated on the transformed game including loss aversion with λ = 2, the equilibrium

concepts other than Nash are able to explain the data as well as the impulse balance results.

To compare the RBB equilibrium predictions to those of these other concepts, it is natural

to use the same deviation parameter, ri, introduced above. The alternative equilibrium

concepts are not formulated in terms of beliefs about a player’s opponent so in this context
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the Xi parameters are most readily interpreted as the fractional errors made by the player

in the computation of the equilibrium solution. The RBB solution represents an equilibrium

in beliefs and therefore we compare the belief probabilities to the RBB solution, rather

than the move probabilities. This approach is natural in the RBB model because of the

assumptions made about the players’ decision process, but the other equilibrium concepts

are not formulated in terms of beliefs about the opponent 15. For the other models, we must

therefore compare the move probabilities for each player to the predictions of the equilibrium

concept by defining

r1 =
qobs(1− qpred)

qpred(1− qobs)
(10)

where qobs is the observed probability that player 2 plays move left and qpred is the corre-

sponding probability predicted by the particular equilibrium concept under consideration.

In Figure 6 we show the distribution of the logarithm of this parameter, r1, for each

of the equilibrium concepts listed above. The bottom right panel shows the corresponding

distribution for the RBB model for comparison. We used a loss aversion multiplier λ = 2

for consistency with Brunner et al. (2010). The shape of these distributions is broadly

consistent with a normal distribution in all cases so the treatment of the deviations from the

model described here could be applied to any of the other equilibrium concepts. The width

of the distribution reflects the amount of departure from the equilibrium solution seen in the

data. We see that the Nash prediction is generally worse than the other predictions, which

is consistent with previous results in Selten and Chmura (2008) and Brunner et al. (2010).

It is also clear that the RBB solution is generally better than the other concepts, showing a

much narrower distribution in the deviation parameter.

For a more direct comparison to Selten and Chmura (2008) and Brunner et al. (2010) we

can compare goodness of fits for these various equilibrium concepts. We first compute the

squared error in the equilibrium prediction for each data point, i.e., (pX−pobs)
2+(qX−qobs)

2,

where (pX , qX) are the equilibrium model predictions for “up” and “left”. For the RBB model

we compare the belief probabilities to the equilibrium predictions, as above, while for the

other concepts we compare the move probabilities to the predictions. For consistency with

15 Note that it is possible to reformulate some of the other equilibrium concepts, for instance the QRE and
Nash solutions, in terms of a hyperprior on the belief probabilities of one player about the other. Such
models are worth further investigation.
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FIG. 6: Distribution of the error parameter, log(r1), for the Selten and Chmura (2008) data when

compared to the predictions of various equilibrium concepts. The top row of panels show, from left

to right, the Nash equilibrium, the QRE and the Action Sampling equilibrium. The bottom row of

panels show, from left to right, the Payoff Sampling equilibrium, the Impulse Balance equilibrium

and, for comparison, the RBB equilibrium described in this paper. We note that in each bin of

the histogram the bars for player 1 and player 2 have been deliberately offset from one another for

clarity, but refer to the same range of values in the bin.

Brunner et al. (2010) we compute the QRE with λ = 1.05, the action sampling equilibrium

with n = 12 and the payoff-sampling equilibrium with n = 6. In Table II we show p-values

comparing these mean squared errors between the models using the Wilcoxon signed-rank

matched-pairs test. Where a significant difference was found, we also did a one-sided test on

the same data to see which model predicted significantly smaller errors. The results of these

one-sided tests are also shown in the table. For these tests we use only data from Games 1-6,

7, 9, 11 and 12 due to the issue in computing the RBB solution in Games 8 and 10. These

p-values strikingly reinforce the conclusion we drew from the error distributions — the RBB

solution is significantly better at explaining the data than the other equilibrium concepts.

We used the Wilcoxon test to allow direct comparison to Selten and Chmura (2008) and

Brunner et al. (2010). Brunner et al. (2010) point out correctly that the Wilcoxon test is a

parametric test, and the underlying distributional assumptions may not apply to the Selten

and Chmura data. Brunner et al. (2010) also presented results based on the non-parametric
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Payoff sampling QRE Impulse balance RBB Nash

Action n.s. n.s. n.s. 0.1% (g: 0.1%) 0.1% (l: 0.1%)

Sampling n.s. 10% (l: 5%) 5% (l: 5%) 0.1% (g: 0.1%) 0.1% (l: 0.1%)

(n = 12) n.s. n.s. n.s. 5% (g: 2%) 1% (l: 0.5%)

Payoff n.s. n.s. 0.1% (g: 0.1%) 0.1% (l: 0.1%)

Sampling 0.1% (l: 0.1%) 0.1% (l: 0.1%) 0.1% (g: 0.1%) 0.1% (l: 0.1%)

(n = 6) 0.5% (g: 0.5%) 2% (g: 1%) 5% (g: 5%) 2% (l: 1%)

QRE 10% (l: 5%) 0.1% (g: 0.1%) 0.1% (l: 0.1%)

(λ = 1.05) 0.2% (l: 0.1%) 0.1% (g: 0.1%) 0.1% (l: 0.1%)

10% (g: 5%) 10% (g: 5%) 2% (l: 1%)

Impulse 0.1% (g: 0.1%) 0.1% (l: 0.1%)

Balance 0.1% (g: 0.1%) 0.1% (l: 0.1%)

n.s. (g: 10%) 1% (l: 0.5%)

0.1% (l: 0.1%)

RBB 0.1% (l: 0.1%)

0.2% (l: 0.1%)

TABLE II: P-values in favour of row concepts, using two-tailed matched-pairs Wilcoxon signed

rank test (rounded to the next higher level among 0.1%, 0.2%, 0.5%, 1%, 2%, 5% and 10%).

Where results are significant for the two-tailed test, we quote the significance of the one-sided test

in brackets, with “l” indicating the mean of the error distribution for the row value is significantly

lower than that of the the column value, and “g” indicating it is significantly greater. In each entry

of the table, the first row uses data from Games 1-6, 7, 9, 11 and 12; the middle row uses data

from Games 1-6 only; the last row uses data from Games 7, 9, 11 and 12 only.

Kolmogorov-Smirnov16 and robust rank-order tests. We also performed those statistical

tests and the results were consistent with the conclusions from the Wilcoxon test.

In summary, we have demonstrated in this section how the hyperprior concept provides

a natural way to characterize departures from the equilibrium solution observed in exper-

16 We note that the Kolmogorov-Smirnov test is also not entirely appropriate here, as it is not a matched-
pairs test. However, it is non-parametric and does tell us whether the distributions of mean-squared errors
are significantly different between the equilibrium concepts.
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iments. Our framework attempts to split up the deviation into pieces that are player de-

pendent (the Xi’s) and pieces that are game dependent. We have found that the player-

dependent pieces are well fit by a log-normal distribution and that this kind of model can

explain experimental data very closely. This type of analysis can be readily adapted to other

equilibrium concepts and games. For data in Selten and Chmura (2008), the RBB model

appears to explain the data significantly better than other equilibrium concepts when the

comparison is done in terms of belief probabilities, which is natural in the RBB framework.

III. CONCLUSION

Game theorists have long been interested in the empirical testing of game-theoretic

anomalies. A sizeable experimental literature shows that there is a dissonance between

the theory and empirics of games in a strategic setting where defection is predicted by the-

ory to be the optimal outcome over cooperation. Players in experimental settings cooperate

far more than the theory would predict. For example, the empirical testing of the one-shot

Prisoner’s Dilemma game in laboratory experiments has shown that when the temptation

to defect is low, or the benefits to cooperation are high, players do not play the Nash

equilibrium outcome as suggested by the game.

In this paper we provide a reason for this unreason and explain this anomaly by providing

a new method termed the ‘returns-based beliefs’ approach in which players form subjective

beliefs and then act based upon the expected returns, given these beliefs, of a particular

strategy, in proportion to the total expected returns of all strategies. Our approach treats

beliefs rather than strategies as the primary concept. In so doing, we assume that the players’

beliefs are in equilibrium. Our approach combines a decision analytic solution concept where

individuals form subjective probabilities over the actions of the individual’s opponent and

then choose a mixed strategy profile over the actions, using the probabilistic choice model

developed axiomatically by Luce (1959), that is based on the relative returns of each strategy

given these subjective probabilities. We hypothesize that when agents form subjective beliefs

about the strategies of the other players then there might be opportunities for profitable

deviation from the Nash equilibrium strategies when the other player is expected to deviate

from playing the Nash strategy. We incorporate the concept of hyperpriors to account for

the ambiguity of the cooperative stance of the players.

28



We test our model on various classes of games: for example, we show how our approach

provides a closer description of empirical observations in both the Prisoner’s Dilemma and

the Traveler’s Dilemma games. Our approach explains two anomalies between the theoretical

predictions of one-shot Prisoner’s Dilemma games and the empirical evidence: first, the

inverse relationship between cooperation and the temptation to defect; and second, the

positive relationship between cooperation and the gains from cooperation. We also show

that this method can be applied to the Traveler’s Dilemma; we show that the strategies

that players will choose are inversely related to the size of the reward or penalty, and accord

very closely with the empirical findings. This provides some initial support that our model

delivers predictions in games commonly used in game theory, well beyond the Prisoner’s

Dilemma.

Finally, we test the closeness of fit of our model using data from Selten and Chmura

(2008) for completely mixed 2×2 games. In particular, we show that the returns-based belief

model is able to explain the empirical data from completely mixed 2 × 2 games once loss

aversion is included, with small deviations about the equilibrium solution. We show that the

RBB belief equilibrium is generally better at explaining the data than the other stationary

concepts discussed in Selten and Chmura (2008), showing a much narrower distribution in

the deviation parameter between the actual and the predicted values and a significantly

smaller mean-square error.

We argue that returns-based beliefs are useful in game theory because they allow us to

reconcile game theoretic predictions and empirical experimental results.We believe that if

returns-based belief formation is a possible explanation for the experimental observations in

these games, then this may amplify the possibility of testing other observable anomalies in

game theory. The sensitivity of the equilibrium to changes in payoff is an important aspect of

our model that accords more with reality than the conventional Nash equilibrium. Moreover,

even if returns-based beliefs do provide predictions in some situations, there may be other

avenues for modeling non-equilibrium behavior, which when combined with our model may

provide additional insights. Therefore, we hope that this study provides a helpful prelude

for better understanding the impulses which govern human behavior.
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APPENDIX A: APPENDIX I: RETURNS BASED BELIEF EQUILIBRIUM

Consider a game played between two players, and use u1
ij, u2

ij to denote the payoffs to

player 1 and 2 respectively when player 1 plays move 1 and player 2 plays move 2. Player

1 plays an RBB strategy if, when player 2 plays a strategy q = {qj}, player 1 adopts a

strategy p = {pi} in which

pi =
u1

ijqj∑
k u1

kjqj

(A1)
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and similarly for player 2. In an RBB equilibrium we assume both player 1 and player 2 are

playing the RBB strategy and therefore

pi =
1∑

l u
1
lju

2
kjpk

u1
iju

2
kjpk (A2)

An RBB equilibrium is a fixed point of this mapping. If we denote the first fraction as

1/λ we see that, in matrix notation, u1u2T
p = λp, i.e., the RBB equilibrium is given by

eigenstates of the matrix u1u2T
.

In principle, this matrix will have m eigenstates, but we must impose the requirement

that p and q are probability vectors17. Therefore we require λ ≥ 0 and that both p and u2T
p

are probability vectors. If the pay-offs are non-negative to both players from all moves, then

the mapping

p → u1u2T
p

eTu1u2Tp
(A3)

with e = (1, 1, . . . , 1) defines a mapping from probability vectors to probability vectors and

so must have a fixed point, from the fixed point theorem. This is the essential basis of the

proof given in Chen et al. (1997) in a different setting that we mentioned earlier.

If some of the pay-offs are negative, then there is no guarantee that one of the eigenvectors

will lie in the probability vector quadrant. This arises, for example, when transforming the

pay-off matrices to account for loss aversion in the analysis of the Selten and Chmura (2008)

games described in Section II. In that context it is possible to prove that an RBB equilibrium

exists for any constant sum game (see Appendix IV) and for the particular non-constant-sum

games given in Selten and Chmura (2008), RBB equilibria are found to exist when using

the usual loss aversion multipliers.

In a more general context, if no RBB equilibrium exists as defined by the above definition,

an RBB solution can be found be zeroing any negative probabilities encountered. In other

words, when player 2 plays a strategy qj, we define

vi =

 u1
ijqj if u1

ijqj ≥ 0

0 otherwise
(A4)

and then say that player 1 plays an RBB strategy if he adopts a strategy pi in which

pi =
vi∑
k vk

. (A5)

17 We define a probability vector to be an m-tuple, {p1, . . . , pm} with pi ≥ 0 ∀i and
∑

pi = 1.
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Under this definition, the fixed point theorem will guarantee the existence of an RBB equi-

librium in all games. We will refer to this algorithm as the probability-zeroing algorithm

elsehwere.

The concept of an RBB equilibrium can be extended naturally to games between more

than two players and the existence of an equilibrium when pay-offs are positive or when

using the zeroing algorithm carries over again from the fixed point theorem. However, the

interpretation of the RBB equilibrium as an eigenstate of a matrix is lost when there are

more than two players.

APPENDIX B: APPENDIX II: TEMPTATION VERSUS PENALTY IN THE PD

We consider a general PD game with payoffs

Cooperate Defect

Cooperate (C, C) (A, B)

Defect (B, A) (D, D)
(B1)

The probability of cooperation in the RBB equilibrium solution for this game is

qC =
CqC + A(1− qC)

(C + B − A−D)qC + A + D
(B2)

which may be rewritten in the form

f(qC , A,B,C, D) = (C + B − A−D)q2
C + (2A + D − C)qC − A = 0 (B3)

We want to compare the effect on the cooperative probability, qC , of a one unit increase in

the cooperative payoff, C, versus the effect of a one unit decrease in the mixed payoff, B.

This can be achieved by computing the ratio

−∂qC/∂C

∂qC/∂B
≡ −∂f/∂C

∂f/∂B
=

(1− qC)

qC

(B4)

where the minus sign is introduced since we compare an increase in C to a decrease in B,

and the second expression follows from differentiation of equation (B3). We see that the

effect of an increase in C is greater than the effect of a comparable decrease in B, provided

qC < 0.5.
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Writing X = C +B−A−D and Y = A+B, the solution of equation (B3) can be found

to be

qC =
1

2
− 1

2X

(
Y −

√
Y 2 −X [B − C + D − A]

)
(B5)

To be a PD game, we require A < D < C < B, so X > 0 and B − C + D − A > 0, which

means the term in the square root is less than Y 2, so the term in round brackets is positive

and we deduce that qC < 1/2. Thus, the effect on the probability of cooperation of a unit

increase in C is always greater than the effect of a unit decrease in B.

APPENDIX C: APPENDIX III: PD WITH LOSS AVERSION

We set up the Prisoner’s Dilemma such that the payoff from cooperation is X, from

defection is Y , the reward from defecting while the opponent cooperates is R and the penalty

for cooperating when the opponent defects is P . The auxiliary conditions are that R > 0,

P > 0 and X > Y . The guaranteed payoff is Y , so we include loss aversion by subtracting

this value from the entries in the payoff matrix and multiplying any negative entries by a

multiplier, λ. The payoff matrix before and after transformation is shown below, denoting

cooperate by “C” and defect by “D”. Note that we treat the players symmetrically, i.e., with

the same loss aversion λ.

C D

C X,X Y − P, X + R

D X + R, Y − P Y, Y

Original payoff matrix

C D

C X − Y, X − Y −λP,X − Y + R

D X − Y + R,−λP 0, 0

Payoff matrix including loss aversion

The RBB solution is given by eigenvalues, µ, of the matrix X − Y −λP

X − Y + R 0

 (C1)

with the requirement that µ > 0 and the components of the eigenvector are strictly positive.

The eigenvalues are given by solutions of the equation

µ((X − Y )− µ) = λP (X − Y + R) (C2)
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This has positive solutions in the range 0 ≤ µ ≤ X − Y provided that X − Y ≥ 0 and(
X − Y

2

)2

≥ λP (X − Y + R) ⇒ λ ≤ (X − Y )2

4P (X − Y + R)
(C3)

and the corresponding eigenvector is parallel to (λP,X − Y − µ) so it is in the positive

quadrant and it is thus a valid RBB solution.

If either condition is violated, there is no RBB solution, but the probability-zeroing

algorithm will lead to the (D, D) Nash equilibrium.

36



Not For Publication

APPENDIX D: APPENDIX IV: TWO MOVE, CONSTANT-SUM GAMES

In the first six of the Selten games, the form of the matrix is greatly simplified since there

are only two moves for each player, and the games are constant sum. We can interchange

the moves such that the guaranteed payoff is in the top left hand corner of the payoff matrix

for player 1. If the constant sum is T then the payoff matrices take the form

u1 =

 a b

c d

 , u2 =

 T − a T − b

T − c T − d

 (D1)

with a < b and either c < a < d or d < a < c since a is the guaranteed payoff. If c < d

then the two elements in the first column of player 2’s payoff matrix are bigger than the

corresponding elements in the second column (due to the fact it is a constant sum game), and

so the second column is a dominated strategy. In the discussion of the Prisoner’s Dilemma,

we argued that there could be an incentive to play a dominated strategy if the players would

mutually benefit from such cooperation. However, when c < d, the dominance in these

games is of a more extreme form such that min(T − a, T − c) > max(T − b, T − d) so the

worst payoff to player 2 from choosing the left hand column is better than the best payoff

to player 2 from the right hand column. It is clear that in such circumstances the second

column would never be played and so we can restrict to games with no such extremely

dominated strategies18

Therefore we need d < a < c, and there are two cases: (i) c < b; (ii) c > b. The

18 Formally if the payoff to player i from strategy si ∈ Si when his opponents play s−i ∈ S−i is u(si, s−i)
then pi ∈ Si dominates qi ∈ Si if u(pi, s−i) ≥ u(qi, s−i) ∀ s−i ∈ S−i, while pi ∈ Si has this extreme
dominance over qi ∈ Si if min

{
u(pi, s−i); s−i ∈ S−i

}
≥ max

{
u(qi, s−i); s−i ∈ S−i

}
.
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transformed payoffs are then

u1 =

 0 b− a

c− a λ1(d− a)

, u2 =

 c− a λ2(c− b)

0 c− d


Case(i)

(D2)

u1 =

 0 b− a

c− a λ1(d− a)

, u2 =

 b− a 0

λ2(b− c) b− d


Case (ii)

(D3)

where λ1, λ2 are the loss-aversion multipliers described above, where we allow these to differ

for the two players.

It can be shown that, irrespective of any further assumptions about the matrix elements,

or the values of λ1 and λ2, that these transformed games have an RBB equilibrium. The

RBB equilibrium solution for player 1 is an eigenvector of the matrix u1(u2)T . In these

cases, this matrix becomes

Case (i):

 λ2(c− b)(b− a) (b− a)(c− d)

(c− a)2 + λ1λ2(d− a)(c− b) λ1(d− a)(c− d)


Case (ii):

 0 (b− a)(b− d)

(c− a)(b− a) λ1(d− a)(b− d) + λ2(c− a)(b− c)


and we can see that in case (i) there is an RBB eigenstate

Eigenvalue: µ(i) =
1

2

√
(λ1(d− a)(c− d) + λ2(b− a)(c− b)))2 + 4(b− a)(c− d)(c− a)2

−1

2
(λ1(a− d)(c− d) + λ2(b− a)(b− c)) ,

Eigenvector: p ∝

 (b− a)(c− d)

µ(i) − λ2(b− a)(c− b)


q ∝

 (b− a)(c− a)(c− d)

µ(i)(c− d)
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and in case (i) there is an RBB eigenstate

Eigenvalue: µ(ii) =
1

2

√
(λ1(d− a)(b− d) + λ2(c− a)(b− c)))2 + 4(b− a)2(b− d)(c− a)

−1

2
(λ1(a− d)(b− d) + λ2(c− a)(c− b)) ,

Eigenvector: p ∝

 (b− a)(b− d)

µ(ii)


q ∝

 (b− a)2(b− d)− λ2µ(ii)(c− b)

(b− d)µ(ii)


In the above p represents the eigenvalue of u1(u2)T which is the RBB probability for player

1, while q = (u2)Tp is the corresponding RBB probability for player 2. To be a valid

RBB solution, the eigenvalues must be positive and both p and q must lie in the positive

quadrant. The preceding solutions satisfy these requirements for any choice of λ1 and λ2.

The only case for which this is not obvious in the above expressions is q in case (ii), but it

can be verified by expanding µ(ii) for λ2 →∞.

APPENDIX E: APPENDIX V: RBB SOLUTION FOR SELTEN GAMES 8 AND

10

Games 8 and 10 in the Selten and Chmura paper require more careful treatment in

deriving the RBB solution, because the payoff matrices for player 2 contain multiple entries

that are equal to the guaranteed payoff. This has the consequence that the transformed

matrix includes a column of zeros, specifically the transformed matrices are

Game 8: u1 =

 3 −3λ1

0 5

 , u2 =

 0 9

0 −2λ2


Game 10: u1 =

 2 −3λ1

0 6

 , u2 =

 0 7

0 −4λ2


This column of zeros means that the Kernel of the matrix is non-empty and so we will

not be able to find eigensolutions. However, if we modify the payoffs by small amounts, of

order ε, there can be eigensolutions. In the RBB solution we have qrbb ∝ (u2)Tprbb and

prbb ∝ u1qrbb. The first of these equations applied to the perturbed matrix for Game 8 tells
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us  qrbb

1− qrbb

 ∝

 O(ε)

(9 + 2λ2)p
rbb − 2λ2 + O(ε)

 . (E1)

This can give us a non-trivial solution in the limit that ε → 0 provided that (9 + 2λ2)p
rbb−

2λ2 = O(ε). This defines an RBB solution prbb, from which the corresponding qrbb can be

computed using qrbb ∝ (u1)−1prbb. This solution is unique when the limit ε → 0 is taken,

independently of the way in which the matrix is initially perturbed. For the Selten game,

these solutions are

Game 8: prbb =
2λ2

9 + 2λ2

, qrbb =
6λ2 + 27λ1

10λ2 + 27λ1 + 27

Game 10: prbb =
4λ2

7 + 4λ2

, qrbb =
24λ2 + 21λ1

24λ2 + 21λ1 + 14

One important thing to note, however, is that while we can define a unique RBB equilibrium

solution for this games, dealing with deviations from the solution arising from the hyperprior,

which we discuss in the section II B, is slightly more difficult. In general, if the observed

strategy differs from the RBB solution, we can compute the belief probability which would

have led to the observed strategy. For the Selten and Chmura (2008) Games 8 and 10, this

can be done as normal for player 1, since the u1 matrix is non-singular. However, for player

2, using the perturbative technique described above, a deviation from the RBB strategy

arises from the O(ε) part of p. Thus, the belief and RBB probabilities defined in this way

coincide for any observed data. This is a consequence of the singularity in the transformed

matrices, so in the analysis described in Sections II B and II C we will ignore the data for

Games 8 and 10 because of this issue.
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