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1 Introduction

The restructuring of the European electricity market is a long process. The integration of various
national markets through the so called “Market Coupling” approach is currently the most advanced
market design in Europe. In contrast with the standard US approach to restructuring that aims
at transforming the numerous constraints appearing in the electricity system in specially designed
markets, market coupling essentially relies on an energy market and leaves it to the Transmis-
sion System Operators (TSOs1) to take care of most of these constrains by a mix of market and
quantitative constructs. The result is what economists call an incomplete market where several
constraints are not priced by the market. We take up a particular question of market coupling
namely the removal of congestion through counter-trading. This problem has been encountered in
many jurisdictions outside of Central Western Europe and hence is of general interest. We then
look at the problem of the organization of counter-trading by different system operators through

∗Corresponding author: Université catholique de Louvain, School of Engineering (INMA) and CORE, Voie du

Roman Pays, B-1348 Louvain-la-Neuve, Belgium. t: +32 (0)10 474323, e: yvessmeers@me.com. The authors are

grateful to one anonymous referee. The usual disclaimer applies.
1Transmission System Operator (TSO) is a company that is responsible for operating, maintaining and developing

the transmission system for a control area and its interconnections. See ENTSO website.
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the glasses of Generalized Nash Equilibrium (GNE), which provides a natural context for model-
ing incomplete markets. Generalized Nash Equilibria are related to Quasi-Variational Inequality
(QV I) models for which computational advances have recently been proposed. QV I problems
are extensions of Variational Inequality (V I) problems. They differ by both their mathematical
properties and economic interpretations. This paper implicitly uses the V I and QV I concepts by
respectively referring to the Nash Equilibrium (NE) and Generalized Nash Equilibrium (GNE)
problems.

A Nash Equilibrium describes an equilibrium between agents interacting through their payoffs:
the action of one agent influences the payoff of another agent. A Generalized Nash Equilibrium
involves agents that interact both at the level of their payoffs, but also through their strategy
sets: the action of an agent can influence the payoff of another agent, but it can also change the
set of actions that this agent can undertake. The idea of using Generalized Nash Equilibrium
in electricity transmission controlled by several operators is quite natural: because of Kirchhoff’s
laws, the actions of one operator influences the set of possible actions of another operator. A
transmission system operated by different operators is thus naturally described by a Generalized
Nash Equilibrium.

The concept of GNE was first introduced by Arrow and Debreu in [1] and Debreu in [3] where
they refer to these problems as an abstract economy. Apart from these pioneering contributions,
only in the nineties were GNEs recognized for their numerous applications in economics, math-
ematics and engineering. In the context of electricity applications, Wei and Smeers [13], solve a
GNE problem for an oligopolistic electricity market where generators behave à la Cournot and
transmission prices are regulated. Pang and Fukushima [10] show how a non-cooperative multi-
leader-follower game applied to the electricity market can be expressed as a GNE problem. This
latter model is an example of an Equilibrium Problem subject to Equilibrium Constraints (EPEC)
(see Ralph and Smeers [11] for an illustration of a related example of such a problem). EPEC

problems are more complex than the QV I problems discussed here where we concentrate on GNEs
that arise when players share a common good (like power, transport and telecommunication net-
works), but are not valued by the market at a single price. In the literature, this is referred to as
a problem with shared constraints. The lack of a unique price for a shared constraint makes the
market incomplete. This is reflected in a multiplicity of dual variables of the common constraints.
Our interest is about GNE problems that have an interpretation of incomplete markets for re-
sources described by shared constraints. Mathematically we are interested in exploring solutions
of the QV I where the dual variables of the shared constraints differ.

The general situation is that a quasi-variational problem has a plurality of solutions that include
those of the underlying V I problem. In his seminal paper (see Theorem 6 [6]), Harker proves that
the V I solutions are the only points in the solution set of theQV I when the dual variables associated
to shared constraints are identical for all players. This has an important implication: solving the
V I gives a solution to the QV I. There is also a shortcoming, solving the V I does not say anything
about the other solutions of the QV I. Differently from V I, only few methods are available for
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solving GNE problems (see Fukushima [5] and Facchinei and Kanzow [4] for a complete overview).
Recently, Fukushima ([5]) has introduced the new class of restrictedGNE that can be considered

as an extension of the normalized Nash Equilibrium. A normalized equilibrium, initially introduced
by Rosen [12], is a special GNE where the multipliers of the shared constraints are equal among
all players up to a constant factor. In his paper [5], Fukushima defines the restricted GNE for the
class of GNE problems with shared constraints and presents a controlled penalty method to find
a restricted GNE. However, in some cases, it could be interesting to have the full set of solutions
of the GNE problem. A recent paper by Fukushima in collaboration with Nabetani and Tseng
(see [7]) suggests two parametrized V I approaches respectively called price-directed and resource
directed, to capture all GNEs.

The contribution of this paper can be summarized as follows. We discuss the economic insight
provided by the price-directed parametrization algorithm (see [7]) on market coupling and on the
organization of counter-trading applied to the restructured European electricity system. Market
coupling is currently implemented in France, Belgium and the Netherlands and it will be soon
extended to Germany. This market organization is based on the separation of the energy and
transmission markets. The energy market is subdivided into zones, each controlled by a Power
Exchange (PX2), that are interconnected by lines, with limited transfer capacity, which provide
a simplified representation of the grid. Taking stock of this information on the interconnections,
PXs clear energy markets, but the resulting flows may be not feasible with real network. This
forces TSOs to re-shuffle power flows in order to eliminate overflows and restore network feasibility.
The set of these operations is known as counter-trading or re-dispatching. The deriving costs
change according to the degree of coordination of the different TSOs and they are usually charged
to power producers or consumers. This problem can be considered as an illustration of a more
general problem encountered for instance in hierarchical planning in production management. We
first discuss the economic interpretation of the variational and quasi-variational inequality problem
and some of its implications for algorithmic purposes. We then apply the methods to a set of
counter-trading case studies and report the results as well as the advantages and shortcoming
encountered. The paper emphasises the numerical aspects of different counter-trading models
where TSOs operate in a more or less integrated way. These models are applied to a six node
network that we assume to be subdivided into two zones (North and South). These zones have
an inter-connector with limited transfer capacity. Each zone is controlled by a PX and a TSO.
We assume that PXs are coordinated and then operate as if they were a sole entity; while TSOs
can be coordinated or uncoordinated. We first model the case where TSOs operate in a integrated
way to then move to situations where TSOs are not coordinated and have different controls on
the counter-trading resources. A companion paper goes in more detail into the economics of the
problem (see Oggioni and Smeers [9]). The results of a more realistic study are illustrated by
Oggioni and Smeers in [8], where the analysis is applied to a prototype of the North-Western

2A Power Exchange (PX) is an operator with the mission of organizing and economically managing the electricity

market, while guaranteeing competition between producers.
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European electricity market.
The remainder of the paper is organized as follows. In Section 2, we recall the mathematical

background; Section 3 introduces the economic interpretation, the data and the network used for
the empirical analysis. Section 4 is devoted to the explanation of the models and some theoretical
results, while the results of the simulations are reported in Section 5. Finally, Section 6 concludes
with the last observations.

2 Mathematical Background

This section reviews the mathematical instruments used in the paper. The QV I problem defined
by the pair QV I(F,K) is to find a vector x∗ ∈ K(x∗) such that:

F (x∗)T (x− x∗) ≥ 0 ∀ x ∈ K(x∗) (1)

where K(x) is a point to set mapping from <n into a subset of <n and F is a point-to-point
mapping from <n into itself.

There exists a strict correspondence between QV I and a related GNE problem defined as
follows. Suppose that each player i solves the following utility maximization problem, where its
strategy xi is affected by the strategy xN\i of the other N\i players:

Maxxi u
i(xi, xN\i) (2)

s.t. xi ∈ Ki(xN\i)

A GNE of the game is thus defined as a point x∗ = (x∗1, x∗2 , ..., x∗n) ∈ K(x∗) such that:

ui(x∗) ≥ ui(xi, x∗N\i) ∀ xi ∈ Ki(x∗N\i) i ∈ N

Ki : xN\i −→ Xi is a point to set map which represents the ability of player N\i to influence the
feasible strategy set of player i.

The QV I formulation of this GNE problem is then defined as follows:

−∇xiui(x∗i, x∗N\i)T (xi − x∗i) ≥ 0 ∀ xi ∈ Ki(x∗N\i) (3)

and the more compact form is:

F (x∗)T (x− x∗) ≥ 0 ∀ x ∈ K(x∗) (4)

where F T (x∗) ≡ (−∇Tx1u
1(x∗), ...,−∇T

xN
uN (x∗)) and K(x∗) ≡

∏N
i K

i(x∗N\i).
Different particularizations of the solution set of the QV I have been offered in the literature.

They are presented in the following through an example that we complement with some economic
interpretations that will be important in the rest of the paper.
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2.1 Particular cases

Assume an economic system with three players (N = 1, ..., 3) and two common constraints (m =
1, 2) that each expresses a limitation in some resources. Each player i solves an optimization prob-
lem taking into account the limitation of resources expressed in the two constraints. The players’
problems are stated below with the dual variables of their constraints indicated at the right:

The first player solves:
Minx1θ1 = (x1)2 + x1x2 − x1x3 (5)

x1 − 2x2 + x3 ≥ 2.4 (λ1) (6)

x1 + x2 + x3 ≥ 3 (β1) (7)

x1 ≥ 0 (ω1) (8)

The second player’s problem is:

Minx2θ2 = (x2)2 + x1x2 + x2x3 (9)

x1 − 2x2 + x3 ≥ 2.4 (λ2) (10)

x1 + x2 + x3 ≥ 3 (β2) (11)

x2 ≥ 0 (ω2) (12)

And finally the third player solves:

Minx3θ3 = (x3)2 + x1x3 + x2x3 (13)

x1 − 2x2 + x3 ≥ 2.4 (λ3) (14)

x1 + x2 + x3 ≥ 3 (β3) (15)

x3 ≥ 0 (ω3) (16)

Following Theorem 6 of Harker [6], we single out the solution of a QV I for which the dual variables
of all players’ common constraints are identical and we write the KKT conditions of these different
problems as:

0 ≤ 2x1 + x2 − x3 − λ− β⊥x1 ≥ 0 (17)

0 ≤ x1 − 2x2 + x3 − 2.4⊥λ ≥ 0 (18)

0 ≤ x1 + x2 + x3 − 3⊥β ≥ 0 (19)

for the first player and
0 ≤ 2x2 + x1 + x3 + 2λ− β⊥x2 ≥ 0 (20)

0 ≤ x1 − 2x2 + x3 − 2.4⊥λ ≥ 0 (21)

5



0 ≤ x1 + x2 + x3 − 3⊥β ≥ 0 (22)

for the second player. Finally for the third player:

0 ≤ 2x3 + x1 + x2 − λ− β⊥x3 ≥ 0 (23)

0 ≤ x1 − 2x2 + x3 − 2.4⊥λ ≥ 0 (24)

0 ≤ x1 + x2 + x3 − 3⊥β ≥ 0 (25)

The solution of this three players’ problem is x = [2.1, 0.2, 0.7]T . This makes the two constraints
binding and λ and β amount to 0.167 and 3.533 respectively. We interpret this model as one where
a market allocates the common resources represented in the two constrains through a single price
system (one price for each constraint). We refer to this scenario as “case 1”.

Rosen’s ([12]) considers another solution of the QV I problem where the dual variables of the
shared constraints are equal among all players up to a constant factor ri that depends on players,
but not on the constraints. This is mathematically expressed as:

λi = λ/ri i = 1, 2, 3 (26)

βi = β/ri i = 1, 2, 3 (27)

Rosen refers to this solution as normalized equilibrium. The complementarity formulation of the
problem is as follows:

0 ≤ 2x1 + x2 − x3 − λ1 − β1⊥x1 ≥ 0 (28)

0 ≤ x1 − 2x2 + x3 − 2.4⊥λ1 ≥ 0 (29)

0 ≤ x1 + x2 + x3 − 3⊥β1 ≥ 0 (30)

for the first player, while that of the second player is:

0 ≤ 2x2 + x1 + x3 + 2λ2 − β2⊥x2 ≥ 0 (31)

0 ≤ x1 − 2x2 + x3 − 2.4⊥λ2 ≥ 0 (32)

0 ≤ x1 + x2 + x3 − 3⊥β2 ≥ 0 (33)

Finally that of the third player is stated as:

0 ≤ 2x3 + x1 + x2 − λ3 − β3⊥x3 ≥ 0 (34)

0 ≤ x1 − 2x2 + x3 − 2.4⊥λ3 ≥ 0 (35)

0 ≤ x1 + x2 + x3 − 3⊥β3 ≥ 0 (36)

Rosen’s normalized equilibrium is obtained when the dual variables of the shared constraints
are equal among all players up to a constant factor ri.
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We denote this scenario as “case 2” and we interpret it as one where there is an imperfect
market for allocating the common resources of the two constraints. Prices tend to equalize, but
there remains a gap. This can easily be interpreted as the bid-ask spread found in insufficiently
liquid markets. Assuming that r1 = 1.05, r2 = 1 and r3 = 0.95, the solution of the normalized
Nash equilibrium becomes x = [2.01, 0.2, 0.790]T and the corresponding values of λi and βi are as
stated in Table 1.

λi Values βi Values

λ1 0.127 β1 3.302
λ2 0.134 β2 3.467
λ3 0.141 β3 3.650

Table 1: λi and βi values in the normalized equilibrium (case 2)

Fukushima ([5]) generalizes this notion and considers the more general case of a restricted QV I
or GNE problem by imposing that the relative values of different resources differ among players. A
tuple x = (x1, ..., xN ) is said to be a restricted GNE, if there exists Lagrange multipliers λ = (λvi )
... that satisfy KKTv, v = 1, ..., N together with the additional conditions3:

λ = (λvi ) ∈ Λ

where Λ is a nonempty cone in <mN+ . The class of restricted GNE extends the Rosen’s normalized
equilibrium (see above for the definition of normalized equilibrium). In other words, one has a
restricted GNE when the ratio of shadow prices associated with the common resources is neither
too large nor too small for every pair of player4. Considering our three players example, this can
be expressed by conditions:

δλ1

r1
≤ λ2

r2
≤ δλ1

r1
and

δλ2

r2
≤ λ3

r3
≤ δλ2

r2
(37)

εβ1

r1
≤ β2

r2
≤ εβ1

r1
and

εβ2

r2
≤ β3

r3
≤ εβ2

r2
(38)

One may be interested in other solutions of the QV I. Suppose for instance that we want to
impose λ1 = λ + 0.05, λ2 = λ and λ3 = λ − 0.05, β1 = β + 1, β2 = β and β3 = β − 1. The
solution of this particular GNE is x = [2.625, 0.2, 0.175]T and the corresponding values of αi and
βi are reported in Table 2. This is the kind of GNE that we want to tackle in this paper and,
in particular, the difference between dual variables can be interpreted as a lack of arbitrage in
incomplete markets. This is our “case 3”.

3Directly taken from Fukushima [5].
4Directly taken from Fukushima [5].
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λi Values βi Values

λ1 0.392 β1 4.883
λ2 0.342 β2 3.883
λ3 0.292 β3 2.883

Table 2: λi and βi values at equilibrium (case 3)

A particular case of the above is to impose λ1 = λ + 0.05, λ2 = λ and λ3 = λ − 0.05 while
βi = β. The solution to this GNE thus becomes x = [2.125, 0.2, 0.675]T with the corresponding αi

and βi in Table 3. The interpretation of this situation is an economic system where some resources
are effectively priced by the market (those that have identical dual variables), but others are not
or only imperfectly priced. We denote it as “case 4”.

λi Values βi Values

λ1 0.225 β1 3.350
λ2 0.175 β2 3.350
λ3 0.125 β3 3.350

Table 3: λi and βi values at equilibrium (case 4)

We motivate our interest in that problem in Section 3 where we discuss a real world example of
that situation. We now explain that the parametrized V I approach proposed by Nabetani, Tseng,
Fukushima (NTF hereafter), that we briefly present next, provides a particularly attractive way to
handle that problem, both numerically and in terms of its economic interpretation.

2.2 The NTF price directive algorithm

Consider the following GNE defined as follows. For each i = 1, ..., N , find x∗i such that for given
x∗N\i optimally solves the following convex optimization problem:

Minxi θ
i(xi, x∗N\i) (39)

s.t. g(xi, x∗N\i) ≤ 0 xi ∈ Ki(x∗N\i)

where g(xi, x∗N\i) are the players’ common constraints. The parametrized V I approach proposed
by Nabetani, Tseng, Fukushima solves that GNE problem through a family of V Is defined as
follows. Consider a problem V I(F γ ,K) where the mapping F γ : <n → <n is defined as follows:

F γ(x) = (∇xiθi(x) +∇xig(x)γi)Ni=1 (40)

and γi is a parameter assigned to each player i. These authors show that the solution set of a
GNE problem is a subset of the solution set of these parametrized V I(F γ ,K). In Theorem 3.3 of

8



[7], they also give conditions for identifying when a solution of V I(F γ ,K) is effectively a GNE.
Consider the KKT conditions for V I(F γ ,K):

0 ∈ [(∇xiθi(x) +∇xig(x)γi) +∇xig(x)π], i = 1, ..., N

0 ≤ π⊥g(x) ≥ 0, xi ∈ Xi, i = 1, ..., N

Theorem 3.3 says that for any γ ∈ <mN+ and any (x∗, π∗) ∈ <n × <m satisfying the KKT
conditions indicated above, a sufficient condition for x∗ to be a GNE is that:

〈g(x∗), γi〉 = 0, i = 1, ..., N. (41)

If in addition a constraint qualification condition holds at x∗, then (41) is also a necessary
condition for x∗ to be a GNE. This algorithm can be easily adapted to the problem treated in this
paper.

The following section provides the economic intuition that motivates this problem. We first
present the problem in general terms and then adapt it to the particular situation that is treated
in Section 3.3.

3 Economic interpretation

3.1 A general production context

Nash equilibria are commonly used in economics to describe markets affected by market power. In
contrast, we concentrate in this paper on markets where all agents are price takers and hence there
is no market power. This was the context adopted by Debreu and Arrow and Debreu in [3] and [1]
for introducing social equilibrium. Specifically we consider the following social equilibrium problem
that arises in production management. Consider the problem of decentralizing the activities of an
organization into different Business Units (BU) that is each evaluated on its own performance. The
interactions between the business units are of two types. First, actions of one BU can influence the
payoff (performance index) of another BU . Second, all BUs share common constraints (resource
availability or operations constraint) with the implication that the actions of one BU can change
the remaining resources available to the other BUs. Both types of interactions are known by
economists as externalities. Negative externalities create inefficiencies; positive externalities create
benefits. While the organization can in principle achieve its best result by an overall optimization,
it is believed that the centralization of operations required by this optimization decreases individual
incentives to be efficient (moral hazard in economic parlance).

The decentralization process consists in assembling activities in BUs and organizing internal
markets for shared resources. We explained that integrating all operations would maximize ef-
ficiency where it is not for a degradation of individual incentives. In a similar way, efficiency
justifies creating an internal market for all common resources or restrictions in the decentralized
organisation (see the treatment of common constraints in Dantzig-Wolfe decomposition), except if,
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following Williamson’s theory [14], externalizing transactions through these markets would increase
costs with respect to keeping them inside an integrated firm. There is thus a trade-off in decentral-
ization between increasing individual incentives towards efficiency and incurring costs because of
loss of coordination. We justify the introduction of our problem as an instrument to measure the
economic cost resulting from the loss of coordination in decentralized operations.

The economic problem can be analyzed in two stages. A first question is to group activities
into BUs, the other is to decide which resource or restriction to allocate through a market and
which not. The first problem can be handled by testing different groupings of activities. Suppose,
in order to treat the second question, that the decomposition of the overall organisation in BUs is
defined. The question then arises as to the creation of an internal market for common resources or
restrictions. The resources or constraints allocated through an internal market have a common price
charged by all BUs. The other resources can be valued differently by the different BUs without any
market reconciling these different valuations into a single price or opportunity cost. Inefficiency
arises from both improper grouping of activities and price differences that signal residual arbitrage
possibilities. Assessing this inefficiency can then be done either by measuring the additional cost
incurred by the decentralized organization or by valuing the remaining arbitrage possibilities. The
NTF price directed algorithm provides a particularly attractive way to tackle that problem. We
apply these general ideas to the particular problem of counter-trading in restructured electricity
systems, that we describe after introducing a GNE formulation of the above discussion.

3.2 Formulation in terms of GNE

3.2.1 Problem statement

We formulate the above problem in the following abstract way. There are two BUs, each noted
i = N,S (in order to use the same notation as in the rest of the paper). Each BU maximizes a
utility function U i(x) taking into account both common and individual constraints. Some of the
constraints are considered sufficiently important for organizing a common market. Others are seen
as less important and hence left to informal arrangements.

Player N solves the following problem:

MaxxNU
N (xN , xS) (42)

s.t.
XN (xN ) = 0 (νN ) (43)

Y (xN , xS) = Y N (xN ) + Y S(xS) ≥ 0 (µN ) (44)

Z(xN , xS) = ZN (xN ) + ZS(xS) ≥ 0 (λN ) (45)

where the function UN and XN are respectively the utility and the own constraint of player N ; Y
and Z are the common and separable constraints, Y denoting those for which a common market
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has been put in place. The second player, labeled S (South), solves the following similar problem:

MaxxSU
S(xN , xS) (46)

s.t.
XS(xS) = 0 (νS) (47)

Y (xN , xS) = Y N (xN ) + Y S(xS) ≥ 0 (µS) (48)

Z(xN , xS) = ZN (xN ) + ZS(xS) ≥ 0 (λS) (49)

The combination of these two optimization problems constitutes a Generalized Nash Equilibrium
problem. Referring to the above interpretation we impose that the dual variables µN and µS are
equal because they can be interpreted as a transfer price in the common market of constraints Y . In
contrast, λN and λS can be different because no internal market has been created for these common
constraints. νN and νS refer to BUs’ own constraints and hence can be expected to be different.
This is a particular Generalized Nash Equilibrium in the sense that some of the constraints are
priced by the market and hence their dual variables are equal for both players. But the market
is incomplete in the sense that it does not cover all common constraints and the dual variables of
the uncovered constraints can be different. The theory of GNE tells us that there may be several
solutions to this problem, implying that the outcome of the organization is intrinsically ambiguous.
It is thus relevant to inquire whether these different outcomes can be far apart some of them being
quite inefficient compared to the outcome where all constraints would be priced by a complete
market. Conversely one may wonder whether there are cases where there is a single outcome (the
QV I and the associated V I have identical solution sets).

We explore this question by applying the parametrized variational inequality approach described
by Nabetani, Tseng and Fukushima in [7] and construct the following parametrized model.

MaxxN,SU
N (xN , xS) + US(xN , xS) + (ZN (xN ))γN + (ZS(xS))γS (50)

s.t.
XN (xN ) = 0 (νN ) (51)

XS(xS) = 0 (νS) (52)

Y (xN , xS) = Y N (xN ) + Y S(xS) ≥ 0 (µ) (53)

Z(xN , xS) = ZN (xN ) + ZS(xS) ≥ 0 (λ) (54)

Changing the γ parameters leads to different Generalized Nash Equilibria provided that positive γ
are associated to a positive λ. There is only a single GNE if it is impossible to generate different
GNE by modifying the γ. Assuming adequate constraint qualification and the optimization prob-
lem is feasible, this can only happen if the optimization problem is unbounded. This occurs if it
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does not have any primal dual solution, a property that can be checked on the complementarity
theorem obtained from the KKT conditions of the optimization problem. These are stated as:

0 ≥ ∂xNU
N (xN , xS)
∂xN

+γN
∂xNZ

N (xN )
∂xN

+νN
∂xNX

N (xN )
∂xN

+µ
∂xNY

N (xN )
∂xN

+λ
∂xNZ

N (xN )
∂xN

⊥xN ≥ 0

0 ≥ ∂xSU
S(xN , xS)
∂xS

+ γS
∂xSZ

S(xS)
∂xS

+ νS
∂xSX

S(xS)
∂xS

+ µ
∂xSY

S(xS)
∂xS

+ λ
∂xSZ

S(xS)
∂xS

⊥xS ≥ 0

0 ≤ Y (xN , xS)⊥µ ≥ 0 (55)

0 ≤ Z(xN , xS)⊥λ ≥ 0 (56)

XN (xN ) = 0 (νN ) (57)

XS(xS) = 0 (νS) (58)

3.2.2 Assessing inefficiencies

The above model can be used to test the inefficiency of a particular organization. These arise from
two sources. One is in the delineation of the individual constraints of the BUs (the X constraints)
when they result from an ex ante allocation of some common resources. The other source of
inefficiency is the absence of a common market for the resources that remain common. This is
is expressed by the difference of valuation of these resources by the BU (the dual variables). In
all cases this implies a change of the utility function value of the BUs. It is this approach that
we illustrate in the following application taken from the restructuring of the European electricity
market.

3.3 Counter-trading in restructured electricity markets

The operations of the electricity system under the regulatory regime is the paradigm of the fully
centralized and optimized organisation of operations: all machines operating in the short run are
under the control of a single optimization problem. The underlying philosophy of the restructuring
of the sector is that decentralising operations improve the incentive of individual agents (generators,
traders, consumers) to be efficient, possibly at the cost of some loss of coordination of operations.
The question is to find a good trade-off by gaining on incentives without loosing too much on coor-
dination. We here consider a particular problem that arises in the European context of electricity
restructuring namely the organisation of counter-trading after the clearing of the energy market by
Power Exchanges. A full description of the overall problem, namely the so called market coupling,
would lead us too far away from the numerical objective of this paper and we therefore report a
brief summary in Appendix A (see the companion paper [9] for more details). We here restrict
ourselves to the subproblem of counter-trading that we describe on the basis of a six node example
initially presented by Chao and Peck in [2].
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3.3.1 The test problem

Consider the six node network depicted in Figure 1 introduced by Chao and Peck (see [2]).

Figure 1: Six node market (Chao and Peck (1998))

The network accounts for eight lines of which only two have limited capacity. These are line
(1-6) and (2-5) with a respective capacity of 200 and 250 MW. Kirchhoff’s laws are represented by
a Power Transfer Distribution Factor (PTDF) matrix that indicates the portions of energy that,
after being injected into a node or before being withdrawn from a hub node (node 6 in the example)
flows through the lines. In this example, the PTDF matrix concerns only lines (1-6) and (2-5) and
its elements are reported in Table 4. Electricity is produced in nodes i = 1, 2, 4 and consumed in

Power (1 MW) Power flow on Power flow on
Injected at Node link 1 → 6 (MW) link 2 → 5 (MW)

1 0.625 0.375
2 0.5 0.5
3 0.5625 0.4375
4 0.0625 -0.0625
5 0.125 -0.125

6 (hub) 0 0

Table 4: PTDF of the 6 node market (Chao and Peck (1998))

nodes j = 3, 5, 6. Marginal production cost (c(qi)) and inverse demand (w(qj)) functions are given
in Table 5.

3.3.2 Counter-trading

Assume a zonal energy market decomposed in two Northern and Southern zones as depicted in
Figure 2 (see [9] for more details). Zones are currently associated to countries in Europe and there
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Node Function Type Function

1 c(q1) 10+0.05q
2 c(q2) 15+0.05q
3 w(q3) 37.5-0.05q
4 c(q4) 42.5+0.025q
5 w(q5) 75-0.1q
6 w(q6) 80-0.1q

Table 5: Demand and cost functions of the 6 node market (Chao and Peck (1998))

is one PX and one TSO per country. We refer to the Northern and Southern TSOs as TSON and
TSOS respectively.

Consider a set of energy trades resulting from the clearing of the energy market by the PXs in
market coupling (see Appendix A). These trades have been obtained on the basis of a simplified
representation of the grid (like in Figure 2) and hence can sometimes lead to excessive flows on
some lines of the real network. Counter-trading is the operations whereby TSOs buy incremental
or decremental injections at different nodes of the grid so as to modify the flows on the lines and
make them compatible with the real capabilities of the grid, namely network in Figure 1, in real
time. Counter-trading does not change the energy transactions cleared in the energy market as
these are settled at the prices arrived at by the PXs. Counter-trading is an other market that is
settled separately. It can be organized in different ways of which we discuss a few possibilities.

Figure 2: Two zones market

3.3.3 Counter-trading is fully optimized

We first consider an arrangement where both TSOs operate as a single entity. This corresponds
to an overall optimization of all counter-trading operations by an entity that has access to all
counter-trading resources (incremental and decremental injections and withdrawals). This implic-
itly assumes that the gains accruing from an overall optimization exceed the costs incurred because
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of the full harmonization and integrated control of the TSOs.

3.3.4 Counter-trading is decentralised

The second arrangement takes place when the two TSOs retain separate operations, but share
common constraints or resources. The capacities of the lines joining the Northern and Southern
zones are common constraints used by both TSOs. They can be priced or not depending on whether
one introduces a market for transmission at the counter-trading level or not. We want to check the
impact of this pricing on the overall efficiency of counter-trading. Common economic sense indeed
suggests that the inception of a transmission capacity market increases efficiency. Counter-trading
resources at the generator or consumer levels are the other set of resources. They may be shared
by the two TSOs or not depending on the organisation. When shared, we assume, in compliance
with general non discrimination principles that both TSOs access them at the same price. We
distinguish three extents of sharing counter-trading resources. A first situation is the one where
there is effectively an internal market for counter-trading resources: both TSOs can have access
to all incremental and decremental injections in both zones. A second case is the one where this
common market exists, but is limited by quantitative constraints that are interpreted in terms of
security: a TSO can only access part of the counter-trading resources of the other zone. The third
situation occurs when there is no common market for counter-trading resources. We also want to
assess the impact of these different organisations on the overall efficiency of counter-trading. We
here present the structure of the model and refer to a companion paper [9] for a broader analysis
of numerical results.

3.3.5 Note on counter-trading costs

Re-dispatching costs interact with the PX’s bids and create a link between the market coupling
and counter-trading problems. This is not discussed here, but illustrated in a companion paper
(see [9]). For the sake of readability we report the average counter-trading cost α because it is easy
to interpret and compare to the energy price. It is obtained by dividing the total counter-trading
cost (TCC) that varies with the model considered by the total generation (

∑
i=1,2,4 qi). This is

defined as follows:
α =

TCC∑
i=1,2,4 qi

4 Modelling

The original NTF paper is stated in terms of variational inequality problems; our example deals
with variational inequality models that are integrable into optimization problems. We therefore
only refer to optimization models, using the following nomenclature:

Sets
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• l=(1-6);(2-5): Lines with limited capacity;

• n = 1, 2, 3, 4, 5, 6: Nodes

• i(n) = 1, 2, 4: Subet of production nodes;

• j(n) = 3, 5, 6: Subet of consumption nodes

Parameters

• PTDFl,n: Power Transfer Distribution Factor (PTDF) matrix of node n on line l;

• F̄l: Limit of flow through lines l = (1− 6); (2− 5);

• qn: Power traded (bought or sold) in node n (MWh); these are determined in the market
coupling problem and are taken as data in the counter-trading models.

Variables

• ∆qn: Counter-trading variables: Incremental or decremental quantities of electricity with
respect to qn (MWh).

We assume that all agents are price takers. They bid in both the day-ahead and counter-trading
markets. We do not separately model a balancing market taking care of deviations with respect to
day-ahead.

4.1 Counter-trading operations are optimized

Assume that TSON and TSOS buy incremental and decremental quantities of electricity ∆qn in
their domestic market (N = (1, 2, 3) and S = (4, 5, 6) respectively) and coordinate operations to
remove congestion at the minimal counter-trading cost. This is stated in the optimization problem
(59)-(65).

The global re-dispatching costs appears in the objective function (59). There are two classes
of constraints. The first class involves both TSOs and includes the balance equations (60), (61)
and the transmission capacity constraints (62) and (63). Conditions (60) and (61) impose that
the sum of the incremental injections (∆qi=1,2,4) and withdrawals (∆qj=3,5,6) equals zero. This
expresses that the amount of energy cleared by the PX is not affected by counter-trading. As
alluded to before, this rule separates the trading of energy (the qn that remain unchanged) and the
counter-trading operations (the ∆qn variables that are counter-trading operations) in two different
markets. The dual variables λ±l associated with (62) and (63) respectively define the marginal
values of the capacited lines (1-6) and (2-5) in the two flow directions. Because there is a single
optimization problem for both TSOs, they see the same value for the congested lines. In the second
class, we group constraints (64)-(65) that are specific to the geographic zone covered by each TSO.
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The non-negativity constraints (64) state that the quantities of electricity demanded and produced
in the Northern zone plus the incremental and decremental injections of the TSON have to be
non-negative. An identical reasoning applies in condition (65) for the zone covered by TSOS .

Min∆qn

∑
i=1,2,4

∫ qi+∆qi

qi

ci(ξ)dξ −
∑

j=3,5,6

∫ qj+∆qj

qj

wj(ξ)dξ (59)

s.t. ∑
i=1,2,4

∆qi +
∑

j=3,5,6

∆qj = 0 (µ1) (60)

∑
i=1,2,4

∆qi −
∑

j=3,5,6

∆qj = 0 (µ2) (61)

F l − [
∑

i=1,2,4

PTDFi,l(qi + ∆qi)−
∑

j=3,5,6

PTDFj,l(qj + ∆qj)] ≥ 0 (λ+
l ) (62)

F l + [
∑

i=1,2,4

PTDFi,l(qi + ∆qi)−
∑

j=3,5,6

PTDFj,l(qj + ∆qj)] ≥ 0 (λ−l ) (63)

qn + ∆qn ≥ 0 n = 1, 2, 3 (νNn ) (64)

qn + ∆qn ≥ 0 n = 4, 5, 6 (νSn ) (65)

Problem (59)-(65) is strictly convex and admits a unique solution. This model provides the
benchmark for evaluating other organizations of counter-trading. Finally, the average re-dispatching
costs α is computed by dividing the objective function (59) by

∑
i=1,2,4 qi.

4.2 Decentralized counter-trading Model 1: TSON and TSOS have full access

to all re-dispatching resources

TSON and TSOS no longer cooperate for removing network congestion, but still have full access to
all counter-trading resources of the system. This means that a TSO can buy and sell incremental
and decremental injections and withdrawals in the control area of the other TSO (e.g. TSON can
also counter-trade in the Southern zone and vice versa). This situation can be interpreted as the
creation of an internal market of counter-trading resources. Denoting the counter-trading variables
of the Northern and Southern TSOs respectively as ∆qNn=1,...,6 and ∆qSn=1,...,6, the following presents
the problem of TSON , the problem of TSOS is similar and given in Appendix C.

4.2.1 Problem of TSON

TSON solves the optimization problem (66)-(71). It minimizes its re-dispatching costs (66) taking
into account its balance constraints (67) and (68) (each TSO must remain in balance) and the
counter-trading actions of the other TSO. These actions appear in the transmission constraints
(69)-(70), and the overall non-negativity constraint (71) on generation and consumption. Note
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that constraints (67) and (68) are specific to the single Northen TSO while (69)-(70), and (71)
involve both TSOs.

Min∆qN
n

∑
i=1,2,4

∫ qi+∆qSi +∆qNi

qi+∆qSi

ci(ξ)dξ −
∑

j=3,5,6

∫ qj+∆qSj +∆qNj

qj+∆qSj

wj(ξ)dξ (66)

s.t. ∑
i=1,2,4

∆qNi +
∑

j=3,5,6

∆qNj = 0 (µN,1) (67)

∑
j=3,5,6

∆qNj −
∑

i=1,2,4

∆qNi = 0 (µN,2) (68)

F l − [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qSj + ∆qNj )] ≥ 0 (λN,+l ) (69)

F l + [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qSj + ∆qNj )] ≥ 0 (λN,−l ) (70)

where l = (1− 6), (2− 5)
qn + ∆qNn + ∆qSn ≥ 0 ∀n (νNn ) (71)

4.2.2 An efficient Generalized Nash Equilibrium

The combination of both TSOs’ problems suggests a Generalized Nash Equilibrium model that we
want to interpret in terms of markets for counter-trading resources and transmission capacities.

A first step towards the creation of an internal market of counter-trading resources is that both
TSON and TSOS have access to the same incremental and decremental injections and withdrawals.
This is stated in the constraints (67)-(68) of the TSON and (114)-(115) of the TSOS ’s problems
(see Appendix C). The intended effect is that this access should be at the same price for both TSOs.
This remains to be proved. One may also wish to create a market of transmission capacities. This
is expressed by the constraints imposed on the dual variables of constraints (71) for TSON and the
analogous constraint for TSOS . Imposing the equality of these dual variables amounts to assume
a market of transmission capacities as both TSOs see the same price for transmission resources. In
contrast, there is no market for line capacity in the counter-trading system if the dual variables of
(69)-(70) for TSON and (116)-(117) for TSOS can be different.

The two assumptions of transmission market can be easily cast in the NTF parametrized
optimization problem (72)-(80) (a parametrized V I problem in general). The objective function
(72) combines the actions of both TSOs and also includes the parameters5 γN,S,± that perturb

5The apeces N,S of the parameters γN,S,± indicate “North” and “South”; while the sign “+” and “-” indicate the

flow directions. The positive direction is from the Northern to the Southern zone; the negative direction is from the

Southern to the Northern zone.
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the dual variables λ+
l and λ−l associated with the common transmission constraints (77) and (78).

Setting the γN,S,± to zero implies equal dual variables of the transmission constraints and hence
a transmission market. Setting them at different values represents the case where there is no
transmission market. While (77) and (78) are common to TSON and TSOS , the balance conditions
(73), (74), (75) and (76) apply to each individual TSO. Conditions (73)-(74) are identical to (67)-
(68) and refer to TSON , while (75) and (76) regard TSOS (compare (114) and (115) in Appendix
C).

Min
∆qN,S

n

∑
i=1,2,4

∫ qi+∆qNi +∆qSi

qi

ci(ξ)dξ −
∑

j=3,5,6

∫ qj+∆qNj +∆qSj

qj

wj(ξ)dξ+ (72)

+(γN,+l − γN,−l ) · (
∑

i=1,2,4;l

PTDFi,l ·∆qNi −
∑

j=3,5,6;l

PTDFj,l ·∆qNj )

+(γS,+l − γS,−l ) · (
∑

i=1,2,4;l

PTDFi,l ·∆qSi −
∑

j=3,5,6;l

PTDFj,l ·∆qSj )

s.t. ∑
i=1,2,4

∆qNi +
∑

j=3,5,6

∆qNj = 0 (µN,1) (73)

∑
j=3,5,6

∆qNj −
∑

i=1,2,4

∆qNi = 0 (µN,2) (74)

∑
i=1,2,4

∆qSi +
∑

j=3,5,6

∆qSj = 0 (µS,1) (75)

∑
j=3,5,6

∆qSj −
∑

i=1,2,4

∆qSi = 0 (µS,2) (76)

F l − [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qNj + ∆qSj )] ≥ 0 (λ+
l ) (77)

F l + [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qNj + ∆qSj )] ≥ 0 (λ−l ) (78)

where l = (1− 6), (2− 5)

qn + ∆qNn + ∆qSn ≥ 0 ∀n (νNn ) (79)

qn + ∆qNn + ∆qSn ≥ 0 ∀n (νSn ) (80)

While the above formulation accounts for the fact that both TSOs have access to the same
counter-trading resources (balance conditions (73), (74), (75) and (76)), it does not imply yet that
they see the same prices for them as one would expect in an internal market of these resources.
This relation is established in the following propositions.
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Proposition 1 Denote transmission constraints (77) and (78) respectively as g+
l and g−l . Suppose

that
〈
g+
l (x∗), γN/S,+l

〉
= 0 and

〈
g−l (x∗), γN/S,−l

〉
= 0. The solution of problem (72)-(80) is a GNE

if and only if γN,+l = γS,+l and γN,−l = γS,−l .

Proof 1 See Appendix E. �

The implication of this proposition is that a GNE solution of this problem, if it exists, has
identical dual variables for the transmission constraints. This amounts to creating a market of
transmission resources. It also implies a single price for counter-trading resources thereby com-
pleting the proof that we did create an internal market of these resources. This is stated in the
following proposition.

Proposition 2 The solution of the GNE problem (72)-(80), if it exists satisfies λN,±l = λS,±l ;
µN,1 = µS,1 and µN,2 = µS,2 .

Proof 2 See Appendix F. �

The interpretation of this second proposition is twofold. From a mathematical point of view
it expresses that the solution set of the QV I associated to this GNE problem is identical to the
solution set of the related V I problem. This identifies a class of problems for which the solutions sets
of the QV I and V I are identical. The economic interpretation of that problem is that introducing
a common access to counter-trading resources, implicitly implies the existence of a market for
transmission resources and an internal (non discriminatory) market of counter-trading resources.
In other words, an internal market of counter-trading resources “completes” the market.

The next implication is an expected result. A complete market is efficient; the outcome should
be identical to the one of the full optimization of counter-trading. This also proves that the solution
of the GNE (72)-(80), if it exists, is unique. This is expressed in the following corollaries.

Corollary 1 Suppose the solution to coordinated counter-trading problem (59)-(65) exists. Then,
the solution of the GNE problem (72)-(80) exists and coincides with that of the coordinated counter-
trading problem (59)-(65).

Proof 3 See Appendix G. �

Corollary 2 The solution of the GNE problem (72)-(80) is unique.

Proof 4 Since the solution to problem (59)-(65) is unique (see Section 4.1), thanks to Corollary
1, we can immediately conclude that the solution to problem (72)-(80) is unique too. �
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4.3 Decentralized counter-trading Model 2: TSON and TSOS have limited ac-

cess to part of the counter-trading resources

4.3.1 A partial market of counter-trading resources

The model presented in Section 4.2 assumes that both TSOs have full access to all re-dispatching
resources. We depart from this assumption here and model the case where both TSON and TSOS

have a limited access to the counter-trading resources located outside of their control area. This
means that the Northern TSO’s purchase of Southern counter-trading resources is limited and
conversely. The optimization problems of each TSO are immediately derived from those in Section
4.2 by adding upper and lower constraints on the variables defining re-dispatching in the zone not
directly controlled by this TSO. We do not report these individual optimization problems here,
but directly present the model in the Nabetani, Tseng and Fukushima’s form. The additional
constraints (86) and (87) impose the upper and lower bounds on the actions of two TSOs in the
jurisdiction that is not under their direct control. Condition (86) limits the TSON ’s purchase of
Southern counter-trading resources and condition (87) does the same for TSOS in the Northern
zone. This arrangement is likely to be more realistic (“pragmatic” in usual parlance) than the
above creation of an internal market: TSOs that are not integrated will probably insists on keeping
resources under their sole control. We shall see that giving up the internal market of counter-
trading resources can have dramatic consequences. We discuss these consequences in principle in
this paper together with some numerical results. We further elaborate on these numerical results
in our companion paper (see [9]).

4.3.2 Inefficient Generalized Nash Equilibrium

Let ∆qNn and ∆qSn be respectively the bounds (in absolute value) imposed on TSOs resorting to
outside resources. The other conditions and constraints are as in Section 4.2. The NTS problem is
stated as follows:

Min
∆qN,S

n

∑
i=1,2,4

∫ qi+∆qSi +∆qNi

qi

ci(ξ)dξ −
∑

j=3,5,6

∫ qj+∆qSj +∆qNj

qj

wj(ξ)dξ+ (81)

+(γN,+l − γN,−l ) · (
∑

i=1,2,4;l

PTDFi,l ·∆qNi −
∑

j=3,5,6;l

PTDFj,l ·∆qNj )

+(γS,+l − γS,−l ) · (
∑

i=1,2,4;l

PTDFi,l ·∆qSi −
∑

j=3,5,6;l

PTDFj,l ·∆qSj )

s.t. ∑
i=1,2,4

∆qNi +
∑

j=3,5,6

∆qNj = 0 (µN,1) (82)

∑
j=3,5,6

∆qNj −
∑

i=1,2,4

∆qNi = 0 (µN,2) (83)
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∑
i=1,2,4

∆qSi +
∑

j=3,5,6

∆qSj = 0 (µS,1) (84)

∑
j=3,5,6

∆qSj −
∑

i=1,2,4

∆qSi = 0 (µS,2) (85)

−∆qNn ≤ ∆qNn ≤ ∆qNn n = 4, 5, 6 (ηN,±n ) (86)

−∆qSn ≤ ∆qSn ≤ ∆qSn n = 1, 2, 3 (ηS,±n ) (87)

F l − [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qSj + ∆qNj )] ≥ 0 (λ+
l ) (88)

F l + [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qSj + ∆qNj )] ≥ 0 (λ−l ) (89)

where l = (1− 6), (2− 5)

qn + ∆qNn + ∆qSn ≥ 0 ∀n (νNn ) (90)

qn + ∆qNn + ∆qSn ≥ 0 ∀n (νSn ) (91)

The following proposition is a preliminary; it gives the condition for the existence of Generalized
Nash Equilibrium and is a direct application of the NTF results.

Proposition 3 Denote transmission constraints (88) and (89) respectively by g+
l and g−l . Suppose

that
〈
g+
l (x∗), γN/S,+l

〉
= 0 and

〈
g−l (x∗), γN/S,−l

〉
= 0. If the solution to problem (81)-(91) exists,

it is a GNE.

Proof 5 The proof is a direct application of NTF’s Theorem 3.3 (see [7]). �

In contrast with the case of the internal market of counter-trading resources, the outcome of the
market is here ambiguous: there may be several GNEs and they may differ in terms of efficiency.
We first state that we fall back on the case of the internal market of counter-trading resources
(decentralized Model 1) if none of the quantitative restrictions of cross zonal resources is binding.
This means that the resources remaining of the exclusive control of the zonal TSO are not too
important.

Proposition 4 Denote transmission constraints (88) and (89) respectively as to g+
l and g−l . Sup-

pose that
〈
g+
l (x∗), γN/S,+l

〉
= 0 and

〈
g−l (x∗), γN/S,−l

〉
= 0. If the solution to problem (81)-(91)

exists and no cross zonal counter-trading resource is binding, then γ
N,+/−
l = γ

S,+/−
l and the GNE

is unique and identical to the solution of the optimized counter-trading.

Proof 6 Apply the proof of Appendix E after noting that the KKT conditions of problem (72)-
(80) are identical to those of problem (81)-(91) when cross zonal quantitative restrictions are not
binding. �
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As expected, things change when some of the cross zonal quantitative restrictions are binding.
The following proposition states that the solution of the GNE (81)-(91), if it exists, is not unique
when some of the quantitative limitations on counter-trading resources are binding.

Proposition 5 Suppose that a GNE obtained by solving (81)-(91) has some cross zonal restric-
tions binding. The valuation of the transmission capacities by both agents are identical when all
γ
N/S,+/−
l are zero and the solution always satisfies λN,−l − λS,−l =γN,−l − γS,−l and λN,+l − λS,+l =γN,+l −
γS,+l .

Proof 7 See Appendix I. �

This proposition disentangles the impact of two market incompletenesses. Setting all γ to zero
creates a market for transmission capacities even in the absence of a market of counter-trading
resources. This is a step in the right direction: a transmission market does not restore the full
efficiency of counter-trading, but it improves it. The absence of a transmission market can lead to
different inefficient outcomes. These can be obtained by introducing a wedge between γ different
from zero (while verifying that the conditions

〈
g+
l (x∗), γN/S,+l

〉
= 0 and

〈
g−l (x∗), γN/S,−l

〉
= 0 for

a GNE are maintained). This is illustrated in the numerical results through further examples and
expanded in our companion paper (see [9]).

Last it may be useful to recall that counter-trading is not always possible.

Corollary 3 The solution of the GNE problem does not necessarily exist.

Proof 8 It suffices to take a case where the NTF problem is infeasible. �

4.4 Decentralized counter-trading Model 3: TSON and TSOS operate only in

their own control area

4.4.1 A segmented market of counter-trading resources

This section presents a more extreme situation. The following model, directly presented in the
Nabetani, Tseng and Fukushima’s formulation, describes a transmission market where each TSO
manages the re-dispatching resources of its own area only, taking as given the action of the other
TSO. There is no additional transaction from a TSO into the other TSO zone.

The problem is formulated through relations (92) to (100). The objective function (92) global-
izes the counter-trading costs of the two TSOs. This problem is subject to the shared transmission
constraints (97)-(98) and the balance constraints of TSON ((93) and (94)) and TSOS ((95) and
(96)).

Min
∆qN,S

n

∑
i=1,2

∫ qi+∆qNi

qi

ci(ξ)dξ −
∑
j=3

∫ qj+∆qNj

qj

wj(ξ)dξ+ (92)
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+
∑
i=4

∫ qi+∆qSi

qi

ci(ξ)dξ −
∑
j=5,6

∫ qj+∆qSj

qj

wj(ξ)dξ+

+(γN,+l − γN,−l ) · (
∑
i=1,2;l

PTDFi,l ·∆qNi −
∑
j=3;l

PTDFj,l ·∆qNj )

+(γS,+l − γS,−l ) · (
∑
i=4;l

PTDFi,l ·∆qSi −
∑
j=5,6;l

PTDFj,l ·∆qSj )

s.t.
∆qN3 + ∆qN1 + ∆qN2 = 0 (µN,1) (93)

∆qN3 −∆qN1 −∆qN2 = 0 (µN,2) (94)

∆qS5 + ∆qS6 + ∆qS4 = 0 (µS,1) (95)

∆qS5 + ∆qS6 −∆qS4 = 0 (µS,2) (96)

F l − [
∑
i=1,2

PTDFi,l(qi + ∆qNi ) +
∑
i=4

PTDFi,l(qi + ∆qSi )−
∑
j=3

PTDFj,l(qj + ∆qNj ) (97)

−
∑
j=5,6

PTDFj,l(qj + ∆qSj )] ≥ 0 (λ+
l )

F l + [
∑
i=1,2

PTDFi,l(qi + ∆qNi ) +
∑
i=4

PTDFi,l(qi + ∆qSi )−
∑
j=3

PTDFj,l(qj + ∆qNj ) (98)

−
∑
j=5,6

PTDFj,l(qj + ∆qSj )] ≥ 0 (λ−l )

where l = (1− 6), (2− 5)
qn + ∆qNn ≥ 0 n = 1, 2, 3 (νNn ) (99)

qn + ∆qSn ≥ 0 n = 4, 5, 6 (νSn ) (100)

Re-dispatching costs are then truly zonal: the average counter-trading cost in the Northern
area is:

αN =
(
∑

i=1,2

∫ qi+∆qNi
qti

ci(ξ)dξ −
∑

j=3

∫ qj+∆qNj
qj

wj(ξ)dξ)

q1 + q2

with a similar formula for the Southern area. A “global” average-dispatching cost can also be deter-
mined by dividing the the total re-dispatching costs (

∑
i=1,2

∫ qi+∆qNi
qti

ci(ξ)dξ −
∫ q3+∆qN3
q3

w3(ξ)dξ +∫ q4+∆qS4
q4

c4(ξ)dξ −
∑

j=5,6

∫ qj+∆qSj
qj

wj(ξ)dξ) by
∑

i=1,2,4 .qi
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4.4.2 Further inefficient Generalized Nash Equilibrium

The following propositions are particular cases of those obtained in the preceding section. The first
statement again directly obtains from NTF’s results: it simply states the conditions under which
the solution of this problem is a GNE.

Proposition 6 Denote transmission constraints (97) and (98) respectively by g+
l and g−l . Suppose

that
〈
g+
l (x∗), γN/S,+l

〉
= 0 and

〈
g−l (x∗), γN/S,−l

〉
= 0. If the solution to problem (92) to (100)

exists, it is a GNE.

Proof 9 The proof is a direct application of NTF’s Theorem 3.3 (see [7]). �

There is no market of counter-trading resources in this case and there may thus be different
GNEs. The following proposition states that the GNE solution of the (92) to (100), if it exists, is
not unique.

Proposition 7 Suppose a GNE obtained by solving (92) to (100) exist. The valuation of the
transmission capacities by both agents are identical when all γN/S,+/−l are zero and the solution
always satisfies λN,−l − λS,−l =γN,−l − γS,−l and λN,+l − λS,+l =γN,+l − γS,+l .

Proof 10 See Appendix K. �

These comments are parallel to those of Section 4.3.2. As already explained before setting all γ
to zero creates a market for transmission capacities that can only improve efficiency even without an
internal market of counter-trading resources. One can assess the range of possible inefficiencies by
introducing a wedge between the valuations of the transmission constraints using the γ of the TSOs.

Last we again recall that there may not exist a GNE because counter-trading is not possible.

Corollary 4 The solution of the GNE problem does not necessarily exist.

Proof 11 It suffices to take a case where the NFT problem is infeasible. �

5 Results

This section illustrates the different models of counter-trading starting from injections as reported
in Table 6. These are obtained by solving a market coupling problem of the type described in
Appendix A. The reader is referred to Oggioni and Smeers [9] for more details on this problem.
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q1 q2 q3 q4 q5 q6

366.667 266.667 183.333 166.667 283.333 333.333

Table 6: Nodal demand and generation (MWh)

5.1 Optimized counter-trading

The optimization of counter-trading refers to an organization where TSOs fully cooperate to relieve
congestion. Applying this principle to the network depicted in Figure 1 we find a counter-trading
cost of 1,145.833 e, which in average amounts to 1.432 e/MWh. The re-dispatched quantities are
indicated in Table 7; there is a net counter-trading flow from South to North equal to 50 MWh.
Line (1-6) is congested in the North-South direction and its marginal value is 40 e/MWh.

∆q1 ∆q2 ∆q3 ∆q4 ∆q5 ∆q6
-66.666 33.333 16.666 33.333 16.666 -33.333

Table 7: Re-dispatching quantities (MWh)

As we will see in the following, the coordinated counter-trading model is relatively efficient.
Because it is a cooperative solution, some regions may be better off by not participating. We do
not deal with that question and assume that market operators are able to re-distribute resources
among market players in such a way that no player or zone is worse off than by not participating.

5.2 Decentralized counter-trading Model 1: TSOs have full access to all counter-

trading resources

Assume that TSON and TSOS can access all counter-trading resources. Setting all “γN,S,±l ” equal to
zero (compare to the model discussed in Section 4.2), the problem can be interpreted as a market
where both TSOs equally value capacities; this simulates a market of transmission capacities.
Numerically, we fall back to the solution of the optimized counter-trading problem. Applying
different “γN,S,±l ” with the view of testing different valuations of transmission capacities, and hence
the absence of a transmission market, always leads to unbounded NTF problems. There is no primal
dual solution to the NTF problem and hence no GNE. This complies with the theory: as stated
in Section 4.2.2 an internal market of counter-trading resources implies a market of transmission
capacities.

The value of the dual variable of line (1-6) in the model where all “γN,S,±l ” are equal to zero
is 40 e/MWh in the positive direction North-South. One can thus expect that taking γN,+(1−6) =

γS,+(1−6) = 40 leads again to the solution of the optimized counter-trading, but with the dual variables
of the transmission constraints all equal to zero. Re-dispatching quantities are given in Table 7.
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The sole important figure is the total (the sum over the two TSOs) re-dispatching; the allocation
of this total between the two agents is arbitrary.

5.3 Imperfectly coordinated counter-trading Model 2: TSON and TSOS have

limited access to part of the counter-trading resources

The situation changes when we constraint the access of a TSO to counter-trading resources in the
other jurisdiction. Suppose limits of one TSO’s access to resources in the other zone as given in
Table 8. These are selected by halving the counter-trading flows from South to North obtained for
optimized counter-trading (compare Table 7). Taking into account these limits, we run five cases
that differ by the values assigned to the parameters “γN/S,±l ”. Results are reported in Table 9.
Recall that α defines the average counter-trading cost. The bottom of Table 9 reports the total
counter-trading costs (TCC) and the counter-trading costs of the two TSOs. The other row names
are self explanatory.

∆qS
1 ∆qS

2 ∆qS
3 ∆qN

4 ∆qN
5 ∆qN

6

33.333 16.666 8.333 16.666 8.333 16.666

Table 8: Limits on the action of the two TSOs (MWh)

These different cases are meant to produce different Generalized Nash Equilibria. Cases 1 and
2 are obtained with equal γ for the two TSOs and hence represent the impact of a market of
transmission capacities. The constraints on cross zonal access to resources are not binding and
the solution is identical to the one of the optimized counter-trading. The policy implication of
this finding is interesting: this case allows individual TSOs to retain the exclusive control on some
of their plants, which is a limitation to the internal market of counter-trading resources. But the
creation of a transmission market overcomes the negative consequences of that limitation and allows
one to restore efficiency. The other cases assume TSOs with different γ, therefore modeling the
absence of a transmission market. This leads to different phenomena.

Supposes first that the sole γN,+(1−6) is positive and equal to 40 (case 3). There is no transmission
market, which creates another GNE. Different valuations of the common line (1-6) capacity signal
economic inefficiencies as can be seen by the increase of 164.773 e of the re-dispatching costs
compared to Case 1. The average re-dispatching cost becomes 1.638 e/MWh. The result of the
counter-trading activity is a net flow of 36.364 MWh going from South to North. TSON ’s re-
dispatching costs amount to 1,454.077 e, while TSOS benefits from the operations as can be seen
from its negative re-dispatching costs. Again, line (1-6) is congested and its marginal value becomes
42.424 e/MWh; this increase with respect to the 40 observed in the optimal counter-trading reflects
the inefficiency created by the absence of the transmission market.

Consider now the alternative arrangement where we impose γS,+(1−6) = 40 (case 4). The counter-
trading flow from South to North is of 43.284 MWh. This case is more efficient than Case 3,
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Case 1 Case 2 Case 3 Case 4 Case 5

γN,+
(1−6) 0.000 40.000 40.000 0.000 80.000
γN,+
(2−5) 0.000 0.000 0.000 0.000 0.000
γS,+
(1−6) 0.000 40.000 0.000 40.000 20.000
γS,+
(2−5) 0.000 0.000 0.000 0.000 0.000

MV line (1-6) 40.000 0.000 42.424 40.995 22.667

α (e/MWh) 1.432 1.432 1.638 1.535 1.862

CCN (e) 722.198 763.860 1,454.077 -236.485 1,796.357
CCS (e) 423.640 381.970 -143.470 1,464.408 -306.769
TCC (e) 1,145.833 1,145.833 1,310.606 1,227.923 1,489.588

Table 9: γN/S,±l values, Marginal Value (MV) of congested line (1-6), average re-dispatching cost
(α) and TSOs’ counter-trading costs in different cases

but counter-trading costs are still higher than in Case 1. In contrast with Case 3, TSON now
gains from counter-trading, while TSOS incurs additional re-dispatching costs. Line (1-6) is still
congested with a marginal value of 40.995 e/MWh (slightly higher than the 40 e/MWh of the
optimal counter-trading).

Case 5 shows the worst degradation of all. The γ of the TSOs relative to line (1-6) are indicated
in Table 9. Global re-dispatching costs amount to 1,489.588 e. TSON incurs most of this cost
while TSOS still benefits. The net re-dispatch amounts to 30 MWh from South to North. The
marginal value of line (1-6) is now 22.667 e/MWh.

5.4 Imperfectly coordinated counter-trading Model 3: TSOs control the counter-

trading resources of their area only

Going one step further, suppose that TSOs remove congestion on the interconnection by only
acquiring counter-trading resources in their jurisdiction. In other words, re-dispatching quantities
sum to zero in each zone and there is no exchange of re-dispatching resources between the two
zones.

This should increase inefficiency; we consider different cases and report the results in Table
10. “γN,S,±l ” are all equal to zero in Case 1. Recall that this simulates a transmission market.
Inefficiency is highlighted by significant re-dispatching costs of 2,520.833 e with average value of
3.151 e/MWh. Both TSOs counter-trade and TSON face the highest cost. Line (1-6) is congested
in the positive direction and has a marginal value of 146.667 e/MWh! Parallel to what we did
for the un-coordinated counter-trading Models 1 and 2, we also consider the case where γN,+(1−6) =

γS,+(1−6) = 146.667. This is Case 2 reported in Table 10. Attributing this particular value to the γ of
both TSOs, we get again the results of Case 1, even though the dual variable of line (1-6) capacity
falls to zero.
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Case 1 Case 2 Case 3 Case 4 Case 5

γN,+
(1−6) 0.000 146.667 146.667 0.000 102.667
γN,+
(2−5) 0.000 0.000 0.000 0.000 0.000
γS,+
(1−6) 0.000 146.667 0.000 146.667 44.000
γS,+
(2−5) 0.000 0.000 0.000 0.000 0.000

MV line (1-6) 146.667 0.000 48.889 97.778 63.555

α (e/MWh) 3.151 3.151 3.851 3.851 3.263

CCN (e) 1,680.556 1,680.556 2,987.658 746.912 2,158.581
CCS (e) 840.278 840.278 93.363 2,334.109 451.882
TCC (e) 2,520.833 2,520.833 3,081.021 3,081.021 2,610.463

Table 10: γN/S,±l values, Marginal Value (MV) of congested line (1-6), average re-dispatching cost
(α) and TSOs’ counter-trading costs in different cases

We further degrade the situation in Cases 3 and 4 that respectively assume γN,+(1−6) and γS,+(1−6)

equal to 146.667. These cases have identical average and total re-dispatching costs that are also
the worst among the scenarios considered. Parallel to what we observed with a restricted internal
market of counter-trading resources (Model 2), TSOS significantly reduces its re-dispatch costs in
Case 3, while TSON benefits in Case 4.

In Case 5, we assume that γN,+(1−6) = 102.667 and γS,+(1−6) = 44.000. These values are respectively
the 70% and 30% of 146.667. Under this alternative assumption, system inefficiency increases, in
comparison with Cases 1 and 2. Both TSOs face counter-trading costs whose global average is
3.263 e/MWh.

6 Conclusion

In this paper, we discuss the economic and mathematical insights provided by the application of
the notion of Generalized Nash Equilibrium and its computation through the Nabetani, Tseng
and Fukushima’s algorithm for Quasi-Variational Inequality problems applied to a market design
problem arising in the restructuring of the European electricity market. Specifically, we study
different degrees of coordination in counter-trading activity in the context of the implementation of
“Market Coupling” in the European electricity market. We also explain that the approach applies
in general to problems of restructuring of an integrated organization into different Business Units.

The reference case for an efficient counter-trading is the overall optimization by a single inte-
grated Transmission System Operator. Full optimization minimizes the cost of removing congestion.
Even though efficient, this solution may require too much horizontal integration for being politically
acceptable. Alternatives need thus be considered: we consider three organizations that all suppose
that the grid remains operated by different TSOs.
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The first case is what we call an internal market of counter-trading resources. Following up on
current attempts in European circles to get integrated ancillary services like balancing or reserve, we
suppose that an operators can resort to any counter-trading resource in the market whether in their
jurisdictions or outside. We show that we reproduce the result of the full optimization. This finding
also has an interesting mathematical interpretation. It singles out an unusual situation where the
solution set of a variational inequality problem (in our case the perfectly coordinated counter-
trading problem) coincides with that of the corresponding quasi-variational inequality problem
(when all players have an un-discriminatory access at identical price to all market shared resources).
The economic interpretation is also useful: the un-discriminatory access to the same set of counter-
trading resources “completes the market” and hence makes it efficient. Last but not least the
recourse to the NTF algorithm offers a neat explanation of why this happens: even though the
organization appears to be of the imperfect coordination type, it may in fact be economically
efficient because of the arbitrage taking place in the procurement of counter-trading resources.

Any restriction to the internal market of counter-trading resources degrades the situation. A
first degradation happens if operators can only resort in a limited way to counter-trading resources
outside of their jurisdiction. The situation can be improved by creating a market of transmission
services at the counter-trading level, but full efficiency will only be restored in very particular cases.
Here again, the resort to the NTF algorithm makes this analysis particularly easy.

The last case is the one where the market of counter-trading resources is fully segmented.
Efficiency is further deteriorated even though the introduction of a common market of transmission
resources can again help.

We conduct all the analysis on a simple six nodes region model, but the results are general.
Specifically, the recourse to the NTF algorithm only requires solving an optimal power flow problem.
This is now a standard model, which shows that the analysis can be conducted for any real world
problem.
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Appendix A: Market coupling model

When PXs and TSOs are not integrated, PXs clear the energy markets on the basis of a simplified
representation of the transmission grid that TSOs give them. This organization of the energy market
is known as market-coupling (MC). Market coupling is the most advanced version of cross-border
trade implemented in Europe. It is currently applied in France, Belgium and the Netherlands and
soon it will be extended to Germany. According to our problem formulation, PXs operate in a
coordinated way, but they clear a market organized as depicted in Figure 2. The objective function
(101) includes the average re-dispatching costs α. We here suppose that the TSO costs are paid
through a levy α charged through the PX. This assumption is introduced for the sake of convenience
and does not restrict in any way the scope of the model. We also assume in this example that it
is paid by the generators (the reality is that this levy is largely charged to the consumer side, but
this distinction is immaterial for our purpose) and then this levy is proportional to the quantity
injected in the energy market. Conditions (102) and (103) express the energy balance in Northern
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and in the Southern zone respectively. The free variable I indicates the import/export between
the two zones. The shadow variables φN,S are the marginal energy prices of the Northern and
Southern zones respectively. Constraints (104) and (105) impose that flow I respects the transfer
limit I of the interconnecting line in the two possible directions. The dual variables δ1 and δ2 are
the marginal costs of utilization of this zonal link. Finally, the non-negativity of variables qn is
required.

Minqn

∑
i=1,2,4

∫ qi

0
ci(ξ)dξ −

∑
j=3,5,6

∫ qj

0
wj(ξ)dξ + α · (q1 + q2 + q4) (101)

s.t.
q1 + q2 − q3 − I = 0 (φN ) (102)

q4 − q5 − q6 + I = 0 (φS) (103)

I − I ≥ 0 (δ1) (104)

I + I ≥ 0 (δ2) (105)

qn ≥ 0 ∀n (106)

Appendix B: Complementarity conditions of the perfectly coordi-

nated counter-trading model

Consider the complementarity formulation of problem (59)-(65), as indicated below, where λl =
(−λ+

l + λ−l )

0 ≤ ci(qi + ∆qi)− λl ·
∑
l

PTDFi,l − µ1 + µ2⊥(qi + ∆qi) ≥ 0 i = 1, 2, 4 (107)

0 ≤ −ωj(q3 + ∆qj) + λl ·
∑
l

PTDF3,l − µ1 − µ2⊥(qj + ∆qj) ≥ 0 j = 3, 5, 6 (108)

0 ≤ F l − [
∑

i=1,2,4

PTDFi,l(qi + ∆qi)−
∑

j=3,5,6

PTDFj,l(qj + ∆qj)]⊥λ+
l ≥ 0 (109)

0 ≤ F l + [
∑

i=1,2,4

PTDFi,l(qi + ∆qi)−
∑

j=3,5,6

PTDFj,l(qj + ∆qj)]⊥λ−l ≥ 0 (110)

∑
i

∆qi +
∑
j

∆qj = 0 (µ1) (111)

∑
i

∆qi −
∑
j

∆qj = 0 (µ2) (112)

where ci(qi + ∆qi) =
∂

∫ qi+∆qi
qi

ci

∂∆qi
for i = 1, 2, 4 and −ωj(qj + ∆qj) =

∂
∫ qj+∆qj
qj

wj

∂∆qj
for j = 3, 5, 6.
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Appendix C: TSOS’ s problem in the decentralized counter-trading

Model 1

The problem (113)-(118) solved by TSOS is similar to that of the TSON . Its formulation is as
follows:

Min∆qS
n

∑
i=1,2,4

∫ qi+∆qNi +∆qSi

qi+∆qNi

ci(ξ)dξ −
∑

j=3,5,6

∫ qj+∆qNj +∆qSj

qj+∆qNj

wj(ξ)dξ (113)

s.t. ∑
i=1,2,4

∆qSi +
∑

j=3,5,6

∆qSj = 0 (µS,1) (114)

∑
j=3,5,6

∆qSj −
∑

i=1,2,4

∆qSi = 0 (µS,2) (115)

F l − [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qNj + ∆qSj )] ≥ 0 (λS,+l ) (116)

F l + [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qNj + ∆qSj )] ≥ 0 (λS,−l ) (117)

where l = (1− 6), (2− 5)

qn + ∆qNn + ∆qSn ≥ 0 n = 1, ..., 6 (νSn ) (118)

Appendix D: Complementarity conditions of the imperfectly coor-

dinated counter-trading Model 1

We here present the mixed complementarity formulation of the decentralized counter-trading Model
1 (72)-(80). Setting γNl = (−γN,+l + γN,−l ); γSl = (−γS,+l + γS,−l ) and λl = (−λ+

l + λ−l ) for
l = ((1− 6), (2− 5)), the complementarity conditions are as follows:

0 ≤ ci(qi + ∆qNi + ∆qSi )−
∑
l

(λl + γNl ) · PTDFi,l − µN,1 + µN,2⊥(qi + ∆qNi + ∆qSi ) ≥ 0 (119)

0 ≤ −wj(qj + ∆qNj + ∆qSj ) +
∑
l

(λl + γNl ) · PTDFj,l − µN,1 − µN,2⊥(qj + ∆qNj + ∆qSj ) ≥ 0 (120)

0 ≤ ci(qi + ∆qNi + ∆qSi )−
∑
l

(λl + γSl ) · PTDFi,l − µS,1 + µS,2⊥(qi + ∆qNi + ∆qSi ) ≥ 0 (121)
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0 ≤ −wj(qj + ∆qNj + ∆qSj ) +
∑
l

(λl + γSl ) · PTDFj,l − µS,1 − µS,2⊥(qj + ∆qNj + ∆qSj ) ≥ 0 (122)

0 ≤ F l − [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qNj + ∆qSj )⊥λ+
l ] ≥ 0 (123)

0 ≤ F l + [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qNj + ∆qSj )⊥λ−l ] ≥ 0 (124)

∑
i=1,2,4

∆qNi +
∑

j=3,5,6

∆qNj = 0 (µN,1) (125)

∑
j=3,5,6

∆qNj −
∑

i=1,2,4

∆qNi = 0 (µN,2) (126)

∑
i=1,2,4

∆qSi +
∑

j=3,5,6

∆qSj = 0 (µS,1) (127)

∑
j=3,5,6

∆qSj −
∑

i=1,2,4

∆qSi = 0 (µS,2) (128)

where i = 1, 2, 4; j = 3, 5, 6 and the dual variables µN,1, µS,1, µN,2 and µS,2 associated with
equality constraints are free variables. Moreover, it holds that (see proof of Proposition 2):

ci(qi + ∆qNi + ∆qSi ) =
∂
∫ qi+∆qNi +∆qSi
qi

ci

∂∆qNi
=
∂
∫ qi+∆qNi +∆qSi
qi

ci

∂∆qSi
i = 1, 2, 4 (129)

wj(qj + ∆qNj + ∆qSj ) =
∂
∫ qj+∆qNj +∆qSj
qj

wj

∂∆qNj
=
∂
∫ qj+∆qNj +∆qSj
qj

wj

∂∆qSj
j = 3, 5, 6 (130)

Note that conditions (119), (120), (125) and (126) exclusively refer to TSON , while (121),
(122), (127) and (128) are those of TSOS . Finally, (123) and (124) are the common transmission
constraints.

Appendix E: Proof of Proposition 1

Because all constraints are linear, constraint qualification holds. Following Theorem 3.3 of [7],〈
g(x∗), γi

〉
= 0 (131)

is a necessary and sufficient condition for a solution x∗ to problem V I(F γ ,K) to be a GNE.
Suppose this property holds for a solution of the parametrized problem (72)-(80). It is then a

GNE and we can write the KKT conditions of that parametrized problem (see the complementarity
conditions in Appendix D). Suppose that qn + ∆qNn + ∆qSn > 0 for all n and that λl = (−λ+

l + λ−l )
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in order to simplify the discussion. Then the optimality condition in (119)-(122) are binding and
it follows that:

ci(qi + ∆qNi + ∆qSi )−
∑
l

γNl PTDFi,l −
∑
l

λl · PTDFi,l − µN,1 + µN,2 = 0 (132)

−wj(qj + ∆qNj + ∆qSj ) +
∑
l

γNl PTDFj,l +
∑
l

λl · PTDFj,l − µN,1 − µN,2 = 0 (133)

ci(qi + ∆qNi + ∆qSi )−
∑
l

γSl PTDFi,l −
∑
l

λl · PTDFi,l − µS,1 + µS,2 = 0 (134)

−wj(qj + ∆qNj + ∆qSj ) +
∑
l

γSl PTDFj,l +
∑
l

λl · PTDFj,l − µS,1 − µS,2 = 0 (135)

Subtracting (134) from (132) and (135) from (133) leads to the following conditions:∑
l

(γNl − γSl )PTDFi,l = −(µN,1 − µN,2) + (µS,1 − µS,2) i = 1, 2, 4 (136)

∑
l

(γNl − γSl )PTDFj,l = (µN,1 + µN,2)− (µS,1 + µS,2) j = 3, 5, 6 (137)

Because node 6 is the hub, we have PTDF6,l = 0 and hence (µN,1 + µN,2) − (µS,1 + µS,2) = 0
in (137). This in turn implies (γN(1−6) − γ

S
(1−6))PTDFj,(1−6) + (γN(2−5) − γ

S
(2−5))PTDFj,(2−5) = 0 for

j = 3, 5 and then:

(γN(1−6) − γ
S
(1−6)) = −

PTDFj,(2−5)

PTDFj,(1−6)
(γN(2−5) − γ

S
(2−5)) j = 3, 5 (138)

This is verified only when γNl = γSl because the ratio PTDFj,(2−5)

PTDFj,(1−6)
assumes a positive and a

negative value. Taking stock of condition (131), we can deduce that:

γN,+l = γS,+l

γN,−l = γS,−l

�

Appendix F: Proof of Proposition 2

Assume again in order to simplify the discussion that qn + ∆qNn + ∆qSn > 0 ∀n and define λNl =
(−λN,+l +λN,−l ) and λSl = (−λS,+l +λS,−l ) for l = ((1−6), (2−5)). We state the KKT conditions of
the problems of the two TSOs’ problems (namely (66)-(71) for TSON and (113)-(118) for TSOS)
by deriving with respect to the variables ∆qNn and ∆qSn . We get:
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∂
∫ qi+∆qNi +∆qSi
qi

ci

∂∆qZi
−
∑
l

λZl PTDFi,l − µZ,1 + µZ,2 = 0 i = 1, 2, 4 Z = N,S (139)

−
∂
∫ qj+∆qNj +∆qSj
qj

wj

∂∆qZj
+
∑
l

λZl PTDFj,l − µZ,1 − µZ,2 = 0 j = 3, 5, 6 Z = N,S (140)

From (139) and (140), we can immediately deduce that:

∂
∫ qi+∆qNi +∆qSi
qi

ci

∂∆qNi
=
∂
∫ qi+∆qNi +∆qSi
qi

ci

∂∆qSi
= ci(qi + ∆qNi + ∆qSi ) i = 1, 2, 4 (141)

∂
∫ qj+∆qNj +∆qSj
qj

wj

∂∆qNj
=
∂
∫ qj+∆qNj +∆qSj
qj

wj

∂∆qSj
= −wj(qj + ∆qNj + ∆qSj ) j = 3, 5, 6 (142)

and summing (139) to (140), we have:

ci(qi+∆qNi +∆qSi )−wj(qj+∆qNj +∆qSj )+
∑
l

λZl (PTDFj,l−PTDFi,l)−2µZ,1 = 0 Z = N,S (143)

Since condition (143) holds for both TSOs, we can rewrite it in an explicit way:

ci(qi + ∆qNi + ∆qSi )− wj(qj + ∆qNj + ∆qSj ) +
∑
l

λNl (PTDFj,l − PTDFi,l)− 2µN,1 = 0 (144)

ci(qi + ∆qNi + ∆qSi )− wj(qj + ∆qNj + ∆qSj ) +
∑
l

λSl (PTDFj,l − PTDFi,l)− 2µS,1 = 0 (145)

Taking into account the results of conditions (141) and (142) and subtracting (145) from (144),
we get: ∑

l

(λNl − λSl )(PTDFj,l − PTDFi,l)− 2(µN,1 − µS,1) = 0 (146)

We now subtract (140) from (139) and apply the above reasoning. We get:

ci(qi+∆qNi +∆qSi )+wj(qj+∆qNj +∆qSj )−
∑
l

λZl (PTDFj,l+PTDFi,l)+2µZ,2 = 0 Z = N,S (147)

that can be substituted by these two conditions:

ci(qi + ∆qNi + ∆qSi ) + wj(qj + ∆qNj + ∆qSj )−
∑
l

λNl (PTDFj,l + PTDFi,l) + 2µN,2 = 0 (148)
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ci(qi + ∆qNi + ∆qSi ) + wj(qj + ∆qNj + ∆qSj )−
∑
l

λSl (PTDFj,l + PTDFi,l) + 2µS,2 = 0 (149)

Again, taking stock of conditions (141) and (142), (148) and (149) become:∑
l

(λNl − λSl )(PTDFj,l + PTDFi,l)− 2(µN,2 − µS,2) = 0 (150)

The combination of conditions (146) and (150) leads to the following equalities:∑
l

(λNl − λSl )PTDFj,l − (µN,1 − µS,1)− (µN,2 − µS,2) = 0 (151)

∑
l

(λNl − λSl )PTDFi,l + (µN,1 − µS,1)− (µN,2 − µS,2) = 0 (152)

By setting, α = (µN,1 +µN,2)− (µS,1 +µS,2) and β = (µN,1−µN,2)− (µS,1−µS,2) conditions (151)
and (152) become: ∑

l

(λNl − λSl )PTDFj,l − α = 0 j = 3, 5, 6 (153)

∑
l

(λNl − λSl )PTDFi,l + β = 0 i = 1, 2, 4 (154)

We observe that PTDF6,l = 0. This implies that α = 0. If α = 0, then it holds that:∑
l

(λNl − λSl )PTDFj,l = 0 j = 3, 5 (155)

This corresponds to:

(λN(1−6) − λ
S
(1−6))PTDFj,(1−6) + (λN(2−5) − λ

S
(2−5))PTDFj,(2−5) = 0 j = 3, 5 (156)

(λN(1−6) − λ
S
(1−6)) = −

PTDFj,(2−5)

PTDFj,(1−6)
(λN(2−5) − λ

S
(2−5)) j = 3, 5 (157)

But PTDFj,(2−5)

PTDFj,(1−6)
assumes a positive and a negative value respectively for j = 3, 5 and then λNl = λSl .

This result means that the marginal value of congestion of one line is identical for both TSOs.
Consequently, the two TSOs are implicitly coordinated and there is no arbitrage. This also implies
that α = β = 0 and then:

(µN,1 + µN,2)− (µS,1 + µS,2) = 0 (158)

(µN,1 − µN,2)− (µS,1 − µS,2) = 0 (159)

These can be rewritten as follows:

µN,1 − µS,1 = (µS,2 − µN,2) (160)
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µN,1 − µS,1 = −(µS,2 − µN,2) = 0 (161)

This implies that µN,1 = µS,1 and µN,2 = µS,2. �

Appendix G: Proof of Corollary 1

Corollary 3.2 of Nabetani, Tseng and Fukushima’s paper (see [7]) proves that if the dual problem
has solution then ⋃

γ∈Γ

SOLV I(F
γ ,K) ⊇ SOLGNEP

We first consider the case where γ = 0. Under this assumption V I(F,K) = V I(F γ=0,K) and the
parametrized problem is identical to the optimized counter-trading problem. This can be easily
done by imposing ∆qNn + ∆qSn = ∆qn.

As already observed, the optimized counter-trading problem has a unique solution because of
the convexity of the set K and the strict convexity of its objective function. This implies that the
solution of the decentralized counter-trading problem (72)-(80) coincides with that of the optimized
counter-trading model (59)-(65) when γ = 0.

We now show that the solution set of problem V I(F γ ,K) when γN,±l = γS,±l and µZ,1 = µZ,2

reduces to a unique solution that is the solution of the optimized counter-trading problem (59)-(65).
Compare now the KKT conditions of the optimized counter-trading problem with those of the

decentralized counter-trading problem. Denote ∆qn = ∆qNn + ∆qSn for all n and λl = (−λ+
l +

λ−l ), the optimality conditions of the optimized counter-trading model are as follows (compare
complementarity conditions in Appendix B):

ci(qi + ∆qNi + ∆qSi )−
∑
l

λlPTDFi,l − µ1 + µ2 = 0 i = 1, 2, 4 (162)

−wj(qj + ∆qNj + ∆qSj ) +
∑
l

λlPTDFj,l − µ1 − µ2 = 0 j = 3, 5, 6 (163)

+ transmission constraints and the re-dispatching balances.

Denoting similarly γNl = (−γN,+l + γN,−l ) γSl = (−γS,+l + γS,−l ) and knowing that γN,±l = γS,±l ,
the optimality conditions of the decentralized counter-trading Model 1 are as follows:

ci(qi + ∆qNi + ∆qSi )−
∑
l

(λl + γNl )PTDFi,l − µ1 + µ2 = 0 i = 1, 2, 4 (164)

−wj(qj + ∆qNj + ∆qSj ) +
∑
l

(λl + γNl )PTDFj,l − µ1 − µ2 = 0 j = 3, 5, 6 (165)

+ transmission constraints and the re-dispatching balances.

Setting λl = λl + γNl one can easily see that the two groups of optimality conditions are identical
and then the corresponding problems admit the same solution set.
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Appendix H: Complementarity conditions of the decentralized counter-

trading Model 2

We here show the mixed complementarity formulation of the un-coordinated counter-trading Model
2 (81)-(87). Setting γNl = (−γN,+l + γN,−l ); γSl = (−γS,+l + γS,−l ) and λl = (−λ+

l + λ−l ) for
l = ((1 − 6), (2 − 5)) and introducing ηNn = ηN,+n − ηN,−n for n = 4, 5, 6 and ηSn = ηS,+n − ηS,−n for
n = 1, 2, 3 where ηN,+i , ηN,−i ηS,+i and ηS,−i are respectively the dual variables of ∆qNi − ∆qNi ≥ 0;
∆qNi + ∆qNi ≥ 0; ∆qSi − ∆qSi ≥ 0; ∆qSi + ∆qSi ≥ 0, the complementarity conditions become as
follows.:

0 ≤ ci(qi+∆qNi +∆qSi )−
∑
l

(λl+γNl ) ·PTDFi,l−µN,1 +µN,2⊥(qi+∆qNi +∆qSi ) ≥ 0 i = 1, 2

(166)

0 ≤ c4(q4 +∆qN4 +∆qS4 )−
∑
l

(λl+γNl ) ·PTDF4,l−µN,1 +µN,2 +ηN4 ⊥(q4 +∆qN4 +∆qS4 ) ≥ 0 (167)

0 ≤ −w3(q3 + ∆qN3 + ∆qS3 ) +
∑
l

(λl + γNl ) ·PTDF3,l − µN,1 − µN,2⊥(q3 + ∆qN3 + ∆qS3 ) ≥ 0 (168)

0 ≤ −wj(qj+∆qNj +∆qSj )+
∑
l

(λl+γNl )·PTDFj,l−µN,1−µN,2+ηNj ⊥(qj+∆qNj +∆qSj ) ≥ 0 j = 5, 6

(169)

0 ≤ ci(qi+∆qNi +∆qSi )−
∑
l

(λl+γSl )·PTDFi,l−µS,1+µS,2+ηSi ⊥(qi+∆qNi +∆qSi ) ≥ 0 i = 1, 2

(170)
0 ≤ c4(q4 + ∆qN4 + ∆qS4 )−

∑
l

(λl + γSl ) ·PTDF4,l−µS,1 +µS,2⊥(q4 + ∆qN4 + ∆qS4 ) ≥ 0 (171)

0 ≤ −w3(q3 +∆qN3 +∆qS3 )+
∑
l

(λl+γSl )·PTDF3,l−µS,1−µS,2 +ηS,23 ⊥(q3 +∆qN3 +∆qS3 ) ≥ 0 (172)

0 ≤ −wj(qj+∆qNj +∆qSj )+
∑
l

(λl+γSl )·PTDFj,l−µS,1−µS,2⊥(qj+∆qNj +∆qSj ) ≥ 0 j = 5, 6

(173)
0 ≤ F l − [

∑
i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qNj + ∆qSj )]⊥λ+
l ≥ 0 (174)

0 ≤ F l + [
∑

i=1,2,4

PTDFi,l(qi + ∆qNi + ∆qSi )−
∑

j=3,5,6

PTDFj,l(qj + ∆qNj + ∆qSj )]⊥λ−l ≥ 0 (175)
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0 ≤ ∆qNn −∆qNn ⊥ηN,+n ≥ 0 n = 4, 5, 6 (176)

0 ≤ ∆qNn + ∆qNn ⊥ηN,−n ≥ 0 n = 4, 5, 6 (177)

0 ≤ ∆qSn − ∆qSn⊥ηS,+n ≥ 0 n = 1, 2, 3 (178)

0 ≤ ∆qSn + ∆qSn⊥ηS,−n ≥ 0 n = 1, 2, 3 (179)∑
i=1,2,4

∆qNi +
∑

j=3,5,6

∆qNj = 0 (µN,1) (180)

∑
j=3,5,6

∆qNj −
∑

i=1,2,4

∆qNi = 0 (µN,2) (181)

∑
i=1,2,4

∆qSi +
∑

j=3,5,6

∆qSj = 0 (µS,1) (182)

∑
j=3,5,6

∆qSj −
∑

i=1,2,4

∆qSi = 0 (µS,2) (183)

Appendix I: Proof of Proposition 5

Let us denote the NTF’s formulation of problem (81)-(91) as to V I(F γ ,K2). The primal solution
of problem V I(F γ=0,K2) is unique when all γN/Sl = 0. This is because both the objective function
(81) and the set defined by the constraints are convex. Due to the lack of perfect arbitrage between
the two TSOs, the equality γNl = γSl is no more ensured and then when γ

N/S
l 6= 0 we have two

different cases.
If γN/Sl 6= 0 and γNl = γSl , then the transformations applied to λl in the complementarity

version of problem (81)-(87) are simply translations (as we already seen in the Proof of Corollary
1 in Appendix G). This means that:

λ
N/S
l = λl + γ

N/S
l

and implies that under this assumption the solution set of problem V I(F γ ,K2) coincides with
that of problem V I(F γ=0,K2). Since the solution set of the primal problem of V I(F γ=0,K2)
contains one solution, this is also the unique solution of V I(F γ=0,K2).

This does not happens when γ
N/S
l 6= 0 and γNl 6= γSl because the translations operated on the

problems of are now different. In other words:

λNl = λl + γNl (184)

λSl = λl + γSl (185)

respectively for the TSON and TSOS . As a consequence, the solution set can admit several
solutions. However, from conditions (184) and (185), one immediately deduces that λNl = λl = λSl
when γ

N/S
l = 0 and that

λNl − λSl = γNl − γSl
�
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Appendix J: Complementarity conditions of the decentralized counter-

trading Model 3

This section presents the complementarity formulation of the imperfectly coordinated counter-
trading Model 3. By setting γNl = (−γN,+l + γN,−l ); γSl = (−γS,+l + γS,−l ) and λl = (−λ+

l + λ−l ) for
l = ((1− 6), (2− 5)), we get the following conditions:

0 ≤ ci(qi + ∆qNi )−
∑
l

(λl + γNl ) · PTDFi,l − µN,1 + µN,2⊥(qi + ∆qNi ) ≥ 0 i = 1, 2 (186)

0 ≤ −w3(q3 + ∆qN3 ) +
∑
l

(λl + γNl ) · PTDF3,l − µN,1 − µN,2⊥(q3 + ∆qN3 ) ≥ 0 (187)

0 ≤ c4(q4 + ∆qS4 )−
∑
l

(λl + γSl ) · PTDF4,l − µS,1 + µS,2⊥(q4 + ∆qS4 ) ≥ 0 (188)

0 ≤ −wj(qj + ∆qSj ) +
∑
l

(λl + γSl ) · PTDFj,l − µS,1 − µS,2⊥(qj + ∆qSj ) ≥ 0 j = 5, 6 (189)

0 ≤ F l − [
∑
i=1,2

PTDFi,l(qi + ∆qNi ) + PTDF4,l(q4 + ∆qS4 )− PTDF3,l(q3 + ∆qN3 ) (190)

−
∑
j=5,6

PTDFj,l(qj + ∆qSj )]⊥λ+
l ≥ 0

0 ≤ F l + [
∑
i=1,2

PTDFi,l(qi + ∆qNi ) + PTDF4,l(q4 + ∆qS4 )− PTDF3,l(q3 + ∆qN3 ) (191)

−
∑
j=5,6

PTDFj,l(qj + ∆qSj )]⊥λ−l ≥ 0

∆qN3 + ∆qN1 + ∆qN2 = 0 (µN,1) (192)

∆qN3 −∆qN1 −∆qN2 = 0 (µN,2) (193)

∆qS5 + ∆qS6 + ∆qS4 = 0 (µS,1) (194)

∆qS5 + ∆qS6 −∆qS4 = 0 (µS,2) (195)

Appendix K: Proof of Proposition 7

The proof is parallel to that of Proposition 5 (see Appendix I).
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