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Abstract

The use of correlation between forecasts and actual returns is commonplace in the lit-
erature, often used as a measurement of investors’ skill. A prominent application of this
is the concept of the Information Coefficient (IC). Not only can IC be used as a tool to
rate analysts and fund managers but it also represents an important parameter in the asset
allocation and portfolio construction process. Nevertheless, theoretical understanding of it
has typically been limited to the partial equilibrium context where the investing activities of
each agent have no effect on other market participants. In this paper we show that this can
be an undesirable oversimplification and we demonstrate plausible circumstances in which
conventional empirical measurements of IC can be highly misleading. We suggest that im-
proved understanding of IC in a general equilibrium setting can lead to refined portfolio
decision making ex ante and more informative analysis of performance ex post.
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1 Introduction

“...the man who is right always has two forces working in his favor - basic con-
ditions and the men who are wrong” Reminiscences of a Stock Operator, Edwin
Lefèvre (1923, p.124)

“Some investors are born with high IC, some achieve high IC, and some have
high IC thrust upon them” Anonymous market practitioner during year-end bonus
discussions

The correlation between investors’ forecasts of returns and actual returns themselves has
featured in many contexts, theoretical and empirical, ever since the earliest days of portfo-
lio theory. Among the first appearances of this important quantity was its prominent rôle in
Treynor and Black’s (1973) model of active management, one of the earliest theoretical treat-
ments of that topic. Although not referred to as such in that paper, this correlation became
known as the Information Coefficient (IC) and, under this sobriquet, has featured prominently
in the literature ever since.1

In a related paper, Satchell and Williams (2010) (henceforth, S&W), we applied skill mea-
surements to policy questions concerning relationships between welfare and the profile of skill
of agents in the market. We demonstrated the effects of changing the distribution of skill in the
market, assuming that available skill levels remain fixed. We also showed that adjusting skill
parameters had generally ambiguous effects on equilibrium price volatility, agents’ returns and
wealth volatility.

To explore welfare aspects in that analysis we used the hit-rate which is the proportion of
future outcomes correctly forecast by an investor, focusing only on market direction and ignoring
magnitudes. That approach was intended to keep the mathematics simple in order to focus on
the economic intuition. In this paper however we take the analysis a stage further by considering
the more general case where agents forecast future asset prices over a continuous range. In this
context the the hit-rate measure is naturally superseded by the Information Coefficient.

In S&W we assumed that agents had control over the level of their own skill level; we com-
puted marginal effects of skill improvements on the assumption that an agent could adjust their
own hit-rate independently of other agents. On the face of it this is an innocuous assumption
which is ubiquitous elsewhere in the literature. A typical model is that agents know their own
skill levels based on econometric analysis of their past forecasts and actual returns. A ratio-
nal utility-maximizing investor determines their asset demands given knowledge of their own
skill level and the implicit assumption is that this skill level will remain constant over repeated
forecasting instances. In other words an agent’s ex ante hit-rate (or IC) (used in their decision
process) is equal, in expectation at least, to their ex post hit-rate (or IC) (measured from ac-
tual performance). In a stylised theory of active management Grinold and Kahn (1999) claim

1Coggin and Hunter (1983) discuss empirical IC measurement issues, Dimson and Marsh (1984) refer to
the concept in their empirical study of analysts’ forecasting ability, Khan et al (1996) apply IC in global asset
allocation, Khan (1998) discusses its applicability in bond investing, Grinold and Kahn (1999) cover a range of
active management analytics, Lee (2000) uses it as a key parameter in a range of analytics pertaining to tactical
asset allocation, Herold (2003) discusses its relevance in qualitative forecasting, Satchell and Williams (2007)
consider the question of optimal forecasting horizon, Fishwick (2007) analyses the case of multiple models.
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that skill (in their case measured by IC) is what differentiates active managers from passive
managers.

This paper questions that crucial assumption. We will show that when an investor has a
non-trivial impact on market price then the equality between ex ante and ex post IC will not
hold in general. The basic problem is that as an investor’s forecast is priced into equilibrium
it inevitably tends to push equilibrium price closer towards the investor’s own private forecast.
This erodes the amount of alpha available for the investor. In the extreme case of perfect
forecasting (ex ante IC → 1) the equilibrium price will represent exactly the future price, alpha
will be constantly equal to zero and hence measured IC will degenerate to zero.

Some institutional investors may consider their trading sizes to be negligible relative to
overall market turnover and therefore turn a blind eye to this issue. However the relevant
size measure here is not simply the volume of each institution’s own trading in isolation, but
the overall proportion of market activity accounted for by that institution aggregated together
with others which share substantially the same market views. The extensive literature on style
analysis indicates that there is a high degree of clustering between investors who can be sorted
into categories within which performance is relatively highly-correlated.2 In recent years this
phenomenon has become particularly acute in such areas as quantitative strategies (analysed
in some detail by Lo (2008) and alluded to by Litterman (2009)). Therefore the issues which
we consider in this paper have extremely broad relevance.

Our paper is a distant relative of parts of the market microstructure literature which deal
with the process by which traders reveal information about their private forecasts via the equi-
librium price, such as the seminal work by Kyle (1985). Similar topics are addressed in the
literature on dynamic models of interacting agents, exemplified by Brock and Hommes (1997)
and Branch (2002), and by theoretical and empirical studies of order flow and tâtonnement
(reviewed by Bouchaud et al (2009)). However the specific problem which we approach here
deliberately abstracts away from the precise mechanics of trade execution; we focus on equilib-
rium price outcomes irrespective of how exactly these are brought about. This keeps our results
at a general level but nevertheless the methodology which we demonstrate is equally applicable
in microstructural settings where even more detailed subtleties of investor interaction can be
incorporated.

We relate more closely to the empirical performance measurement literature which debates
the perennial question of whether results are due to luck or skill. In this research it is common to
use estimated alphas (or Information Ratios) as an indicator of skill and compute such metrics
as significance levels and test for evidence of persistence. This line of inquiry dates back at least
as far as Treynor and Mazuy (1966) and a representative sample of papers includes Dimson and
Marsh (1984), Lee and Rahman (1990) and Malkiel (1995). On the whole the evidence in favour
of skill dominating luck is inconclusive. However there are many econometric challenges involved
in the estimation process, such as highlighted by Ferson and Schadt (1996) and in prominent
recent work, Kosowski et al (2006) and Kosowski et al (2007) deploy robust bootstrap methods
which address many of these issues and find that performance of the best mutual funds and

2As a sampling of the relevant literature: Sharpe (1992) and Brown and Goetzmann (1997) approach this for
the case of mutual funds while Agarwal and Naik (2000), Fung and Hsieh (2002) and Brown and Goetzmann
(2003) address the case of hedge funds.
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hedge funds cannot be explained by luck.
In much of the performance measurement literature the maintained hypothesis is that empir-

ical alphas (or their IC or Information Ratios counterparts) are a valid representation of skill;
something which we will show should not necessarily be taken at face value without further
consideration of the market structural context.

A candid understanding of forecasting ability (and its limits) is essential throughout the fund
management process. Considerable resources and attention are routinely applied to the business
of forecasting returns and their dependency structures as well as optimisation and portfolio
construction, however the effectiveness of all this activity is seriously impaired if forecasts bear
little resemblance to reality.3 In practice, the lack of certainty in forecasts can be dealt with
in numerous alternative ways, e.g. robust optimisation (see Koutsoyannis and Satchell (2007)),
Bayesian methods (e.g. Black and Litterman (1992)) or resampling techniques (see Scherer
(2007)), however we feel it would be desirable to have a more solid theoretical understanding
of structural factors which influence forecast accuracy in the first place.

It is well known among practitioners that long time series are required to obtain tolerable
estimates of IC; while this may simply be due to erratic forecasting performance by analysts,
our results highlight other potential explanatory factors. Without resorting to simulation we
also provide a number of analytic results and approximations which may prove useful to practi-
tioners as basic tools to assess the order-of-magnitude of these factors. Furthermore in certain
circumstances it may be appropriate to treat IC as a stochastic variable in its own right; again
our results can be insightful in this regard.

For the sake of clarity throughout this paper we use the term Realised Information Coefficient
(RIC) to refer to measured ex post IC in order to distinguish this from the unobserved IC which
we take to mean the IC used by an investor ex ante to make their portfolio allocation decision,
i.e. the IC which they believe represents their personal skill level. At the risk of repetition: the
quantities normally measured and discussed elsewhere in the literature are what we term RIC.

We will show that the relationship between these two values is a complex function which
depends on the profile of skill of all agents in the market and the correlation structure of their
forecasts, and indeed the relationship can be non-monotonic. The key message is that while ex
ante IC may indeed be a valid measure of an investor’s innate forecasting skill, the ex post RIC,
necessarily extracted by empirical analysis, depends on a whole slew of factors entirely outside
the investor’s control (and knowledge). We will furnish various examples which demonstrate
that the impact of these factors can vary from entirely negligible (which makes RIC a perfectly
valid metric) to dramatic (changing the sign and magnitude of IC between ex post and ex ante
and rendering RIC virtually useless as an indication of skill).

In fact depending on the degree of complexity of the market’s skill structure we find that RIC

can often assume counter-intuitive values in relation to IC; for example we will demonstrate
circumstances where a neutral investor who never uses forecasts (IC = 0) can appear to be a
valuable contrarian indicator (RIC < 0).4

3In particular the hedge fund industry has recently seen a proliferation of so-called ‘alpha capture’ systems in
which systematic quantitative methods are used by funds to rank and filter brokers’ recommendations according
to their forecast level of accuracy (see Burgess (2006), Mackintosh (2006) and Grene (2008)).

4This is somewhat reminiscent of Lewis Carroll’s observation that ‘even a stopped clock is right twice a day’.
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Although a more detailed discussion is beyond the scope of this paper we do believe that
an investor has at least partial control over their level of forecasting skill. Plausibly it could
be increased by more thorough analysis or training, and methods by which it can be decreased
are trivially obvious. The target of these efforts is clearly ex ante IC, untainted as it is by
external market effects. However our non-monotonicity result means that (potentially very
costly) improvements in personal IC may not translate into any measured skill improvements
at all, whether in terms of RIC, Information Ratios or utility. It also suggests that an optimal
level of skill exists for a given type of investor, albeit dependent on the skill of others.

It is ex ante IC which should be the exogenous primitive of analysis when we consider
comparative statics or hypothetical scenarios. Say, for instance, a star stock-picker in US
equities (measured in terms of ex post RIC) is contemplating investing in a small emerging
market where he has no prior experience. What expectations should he (and his investors) have
as regards likely RIC and Information Ratio for this endeavour? Even if he has a consistent
ability to forecast emerging prices just as accurately as US stocks, our results show that naively
assuming the portability of his usual RIC into the new market is a misleading oversimplification.
We suggest that a preferable approach would be to combine the investor’s IC with knowledge
of the skill structure in the new market in order to obtain a new RIC value.

A wide array of questions like this arise when we consider the intertemporal stability of RIC,
effect of herding on RIC, policy issues surrounding investor education, and so on. In all these
matters we believe knowledge of investors’ ex ante IC levels is vital to coherent analysis and
the temptation to proxy these using measured RIC levels should be avoided if at all possible.

Having accurately quantified RIC we are able to incorporate this value in an analytic expres-
sion for an investor’s ex ante expected utility and we compare this briefly with the corresponding
Information Ratio given by applying Grinold’s (1989) Fundamental Law of Active Management.

The paper is organised as follows: Section 2 discusses the sequence of events involved in the
forecasting and investing process and explains how various alternative methods of calculating
IC values fit into this schedule; Section 3 sets up our equilibrium model and derives our central
result: the Realised Information Coefficient; Section 4 provides illustrative examples and Section
5 discusses utility and welfare issues. Section 6 concludes.

2 Skill and Price Targets

When publishing buy/sell recommendations it is usual for analysts in the equity market to
provide forecasts of future prices (known as price targets) rather than forecasts of returns. To
some extent this is for convenience due to delays between analysis and publication during which
time the current market price can change, however it is also very consistent with the large body
of corporate finance literature which focuses on valuation of companies by methods such as
discounted cashflow or earnings multiples (see, for instance, Brealey and Myers (2002)). It is
most likely therefore that the elemental forecast is of price level rather than percentage return,
with the percentage returns themselves computed as a secondary step given current market
prices.

An extensive literature deals with the part which analysts and their forecasts play in financial
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markets, encompassing the decision process by which forecasts are devised and the statistical
relationship between forecasts and actual prices, as well as discussion of issues concerning incen-
tives and the regulatory environment. A thorough review of recent work in this area is provided
by Ramnath et al (2008).

A noteworthy paper with relevance to our analysis here is Asquith et al (2005) who perform
a thorough empirical analysis of the contents of analysts’ research reports and their associated
market impact. They find that price targets have significant explanatory power over actual
price outcomes. Indeed Treynor and Black (1973) also recognise that one of the earliest stages
in the analysis process is when ‘the analyst begins by appraising the security in question’ and
subsequently ‘compares his appraisal with the current market price of the security’. Nevertheless
the literature of financial economics and mathematical finance has been dominated for decades
by models in which the evolution of prices is specified exogenously or derived from exogenous
primitives such as expected returns, covariances or endowment processes.

From a skill measurement point of view we believe this highlights the need for precise
treatment of the sequence and timing of events involved in forecast formulation and subsequent
trading and we refer to the specific timeline of events as shown in Table 1. If we measure
IC over a series of returns computed between I and IV but the transaction in III has market
impact then the actual realised IC is likely to differ from this since it should be computed based
on returns between III and IV. We might think of the IC between I and IV as the skill level
which an analyst is ‘born with’, while that between III and IV is endogenous to the general
equilibrium which is ground out once all participating investors have interacted based on their
own (possibly correlated) research efforts.

We assume that there are J agent types identified by superscripts i ∈ [0, J − 1], we denote
the future price (stage IV) by pt+1, investor type i’s standardised score (stage II) by S(i) and
the known pre-forecast market price (stage I) by p0. We impose joint-normality between pt+1

and all scores S(i). Therefore by the standard formula for the conditional expectation of a
multivariate normal we have:

Et=0

[
pt+1 | S(i)

]
− p0 = µ + IC(i)σS(i) (1)

where µ and σ2 are, respectively, unconditional mean and variance of future money gains per unit
asset. As (1) indicates, S(i) is standardised with E

[
S(i)

]
= 0 and VAR

[
S(i)

]
= 1. Expectation

and variance operators describe temporal distributions and we can think of prices (pt) and
forecasts (S(i)

t )i∈[0,J−1] as being a (J+1)-vector of random variables indexed by t. We emphasise,
however, that throughout this paper we make no assumptions about the actual dynamics of this
process over time. Our analysis relies only on the requirement that scores S(i) (used to determine
equilibrium price pt) be jointly-normal with the actual future price pt+1 and we are agnostic
about the source of randomness which drives pt+1 itself.

We will shortly distinguish between the two alternative formulations of Information Coeffi-
cient which we have described and show their relationship. In order to highlight the essence of
this without undue mathematical complexity we define IC’s here in terms of per-asset money
gains rather than percentage returns. In other words we assume that investors’ money gain
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Table 1: Stages in the research and trading process

Stage Activity Time
I Analyst observes current market price 0
II Analyst performs research Forecast Price Determined [0, t)
III Investor executes transaction Equilibrium Price Determined t
IV Future price materialises Gain or Loss Realised t + 1

forecasts (or scores) and actual money gains follow a bivariate normal distribution.5

The normal distribution assumption for future values (as opposed to percentage returns)
does appear elsewhere in the finance literature. We list, among many others, the following:
Leland and Pyle’s (1977) analysis of informational asymmetries between borrowers and lenders
in financial markets, the literature on optimal security design (e.g. Allen and Gale (1988),
Demange and Laroque (1995)), and Lo and Wang’s (2001) intertemporal model of asset-pricing
and trading volume where the effects of agents’ competition for returns are a key aspect.

3 Model and Distributions

3.1 Equilibrium Price Solution

We assume J investor types identified by i ∈ (0, J − 1). There are a total of K investors in
the market and there are Kf (i) investors of type i. We assume that each investor has an expo-
nential utility function with differing type-specific coefficients of absolute risk aversion, access
to unlimited risk-free borrowing/lending and that all settlements and payoffs occur simultane-
ously in the same period. Investors of type i all believe the future asset price is distributed
N

(
p0 + µ(i), σ(i)2

)
where we emphasise that their subjective mean return per asset (in terms of

money gains) µ(i) is defined as:
µ(i) = µ + IC(i)σS(i)

consistent with the notion of a price target. Their subjective variance σ(i)2 is given by

σ(i)2 = σ2(1− IC(i)2)

While the classification of investors into types may seem like a blunt simplification, it very
much agrees with the extensive body of literature documenting high degrees of correlation
between active managers who share the same style, as well as stylized facts such as herding by
momentum investors.

Investor type i has coefficient of absolute risk aversion denoted by λ(i) and their asset
allocation problem can be written in terms of p as follows:

E
[
u(i)(x(i))

]
= − 1

λ(i)
E

[
exp(−λ(i)x(i)(pt+1 − pt))

]

= − 1
λ(i)

[
exp

(
−λ(i)x(i)µ(i) +

1
2
λ(i)2x(i)2σ(i)2 + λ(i)x(i)pt − λ(i)x(i)p0

)]

5In a continuous time dynamic model this simplification could potentially be avoided by modeling asset prices
as a lognormal diffusion.
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where x(i) indicates units of risky asset held by each agent of type i. First order conditions for
expected utility maximisation with respect to x(i) therefore provide:

x(i) =
p0 + µ + IC(i)σS(i) − pt

λ(i)σ(i)2
(2)

We now determine the equilibrium price by imposing market clearing, where we denote the
aggregate supply of securities by Z (assumed fixed):

K
J−1∑

i=0

f (i) p0 + µ(i) − pt

λ(i)σ(i)2
= Z

pt = p0 +
J−1∑

i=0

δ(i)µ(i) − σ2 Z

K
(3)

We define the weighted harmonic mean of the risk-aversion-variance product as:

σ2 ≡
(

J−1∑

i=0

f (i) 1
λ(i)σ(i)2

)−1

(4)

and a quantity we call market presence as:

δ(i) = f (i) σ2

λ(i)σ(i)2
(5)

Hence we find that the equilibrium price is directly driven by agents’ forecasts adjusted by
a risk-aversion discount. We have in fact specialised a general result in Lintner (1969) who
considers equilibrium with heterogeneous agents; here we parameterise the heterogeneity in a
particular fashion but the weighted average form of the expression still holds for subjective
means µ(i) and variances σ(i)2 derived in other ways.

We have already alluded to the temporal (J+1)-dimensional stochastic process (pt, S
(i)
t )i∈[0,J−1]

indexed by t. We now introduce a new family of cross-sectional processes indexed by i ∈ [0, J−1].
In this framework, realisations (for fixed t) are µ(i) and S(i). In fact we could write everything
with double indices (µ(i)

t ,S(i)
t , etc.) but we avoid this. Possible cross-sectional measures could

be (f (0), ..., f (J−1)) or (δ(0), ..., δ(J−1)). Indeed it is often helpful to think of the vector of market
presences δ(i) as if it were a cross-sectional probability measure which depends on the frequency
of agents’ types in the market, their skill levels and risk aversion. Under this interpretation we
can think of the equilibrium price (3) as being the expected value of the forecast of an agent
selected at random in the market, denoted by

pt | S = Eδ

[
p0 + µ(i) − σ2 Z

K

]
(6)

where Eδ denotes expectation with respect to the δ-measure and S ≡ [S(0), ..., S(J−1)].
We will return to this analogy shortly.

Proposition 3.1. If 0 ≤ IC(i) < 1∀i and
J−1∑
i=0

δ(i) =
J−1∑
i=0

f (i) = 1 then δ(i) ≥ 0∀i iff f (i) ≥ 0∀i.
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Proof. See A.3.1.

3.2 Distribution of Price over Repeated Forecasting Instances

We now consider the ex ante distribution of equilibrium prices pt over repeated realisations of
S(i) given perfect knowledge of δ(i) and IC(i). Note that in the course of setting up our investor’s
optimal portfolio problem we implicitly assumed that she has no knowledge of the structure
of skill in the market (i.e. the levels of other types’ IC and the inter-forecaster correlations,
none of which featured in her optimal portfolio decision). However here we put ourselves in the
position of an omniscient social planner. Alternatively one can think of this distribution as that
which any investor would gradually learn over time by empirical observation of the behaviour
of prices.

We have already established that the equilibrium price pt will be a δ-weighted linear com-
bination of individual agents’ forecasts minus a risk premium. Conditional on knowledge of
all agents’ forecasts (represented by S(i)) we know that pt is deterministic therefore. From an
unconditional point of view, however, we know that this linear combination will itself be normal
since we have assumed joint normality of forecasts and actual prices. Therefore we focus our
attention here on establishing the unconditional (over i and t) expectation and variance of pt

as follows:

E [pt | S] = E
[
Eδ

[
p0 + µ(i) − σ2 Z

K

]]
= p0 + µ− σ2Z

K
(7)

and

E(pt) = E [E [pt | S]] = p0 + µ− σ2Z

K
(8)

VAR(pt) = E [VAR (pt | S)] + VAR [E (pt | S)] (9)

= E
(
E [pt | S− E [pt | S]]2

)
+ 0

= E






[
J−1∑

i=0

δ(i)IC(i)σS(i)

] 


J−1∑

j=0

δ(j)IC(j)σS(j)










=
J−1∑

i=0

J−1∑

j=0

δ(i)δ(j)IC(i)IC(j)φijσ
2

≡ V σ2 (10)

where 0 ≤ V < 1 is a scalar multiplier of the unconditional future price variance which represents
the degree to which uncertainty over future prices is ‘transmitted’ into current equilibrium price
pt. We refer to V as the Variance Factor and with some abuse of terminology we interpret this
as a measure of volatility. φij represents correlation between the forecasts of type i and type j,
(i.e. S(i) and S(j)).

Although it is perhaps most immediate to think of the repeated forecasting instances as
taking place sequentially over successive time periods (thereby making V loosely analogous to
time-series volatility) we might alternatively consider forecasts as relating to multiple different
assets but which take place at the same instant in time. The latter interpretation is analogous
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to cross-sectional volatility (CSV) as discussed by Sénéchal (2004).6

If investors all have zero skill, i.e. IC = 0, then an uninformed investor in fact has no
uncertainty over pt: it will be that which clears the market on the basis of unconditional
expectations and pt is determined unambiguously. However if all investors in the market are
known to have high skill levels with IC → 1 and correlation φjk = 1, then uncertainty over pt

is at its highest and tends towards the unconditional variance of future prices.
If we apply the probability interpretation of δ(i) introduced earlier then (10) can be under-

stood in the following fashion. Suppose that we select two investors independently at random
(with replacement) according the δ(i) measure; the probability of choosing a given pair of agent
types (i, j) is clearly the product δ(i)δ(j) (we represent this measure by δ × δ). We denote
this pair of types by B = (B1, B2) and their respective forecasts by µ(B1) and µ(B2). Now
the covariance between the agents’ forecasts is a random variable in its own right, denoted
by COV

[
µ(B1), µ(B2) | B

]
. We then pose the question: what is the unconditional covariance

between two agents’ forecasts? We can show that this is also the expression in (10) since we
can re-write it as

COV(µ(B1), µ(B2)) = Eδ×δ

(
COV

[
µ(B1), µ(B2) | B

])
+ COVδ×δ

(
E

[
µ(B1) | B

]
, E

[
µ(B2) | B

])

= Eδ×δ




J−1∑

i=0

J−1∑

j=0

I{B1}(i)I{B2}(j)IC(B1)IC(B2)φB1,B2σ
2



 + COVδ×δ (µ, µ)

=
J−1∑

i=0

J−1∑

j=0

δ(i)δ(j)IC(i)IC(j)φijσ
2 + 0

= V σ2

where I{Bk}(x) represents the indicator function which takes the value 1 iff x = Bk and 0
otherwise.

We therefore see a close relationship between the degree of agreement between agents and
the level of volatility in the market.

On an informal level we can extend this analogy further: in the event where the two agents
are of the same type there will be perfect agreement on forecasts and therefore zero trade;
however whenever the agent types differ there will almost surely be trade since one forecast will
be strictly higher than the other. When skill is low then forecasts will tend to cluster relatively
close to the unconditional mean future price (generating relatively low V ) and when skill is
higher the forecasts will be more dispersed (higher V ).

When correlation is high then the equilibrium price at which trades take place will more
closely track individual forecasts (rather than pairwise averages) and therefore mirror the degree
of dispersion. When correlation is low, however, an extreme forecast on the part of type i is
more likely to be matched with a more modest forecast by type j, thus dampening V . In the
extreme case where correlation is significantly negative, for instance, then a particularly high
forecast from i is more likely to be matched by a correspondingly low forecast from j which will

6Whether we consider the time-series or cross-sectional interpretation, the obvious expeditious assumption
here is that the skill structure of the market and unconditional moments of pt+1 remain unchanged over repeated
instances.
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tend to neutralize it completely.

3.3 Return and Wealth Distributions

We now turn our attention to the distribution of investors’ future wealth. We are interested in
the unconditional distributions of two particular random variables: the deviation of the future
(time t + 1) price from the (time t) equilibrium price (we denote this by Y ) and the type i

agent’s anticipated money gain on one unit of the primary securities (denoted A(i)). Note that
actual money gain Y is common to all types whereas anticipated gain is type-specific. From
A(i) it is straightforward to obtain the agent’s holding of the asset (which we denote H(i)).

First we have (with derivations in A.1.1):7

Y ≡ (pt+1 − pt) ∼ N



σ2 Z

K
, σ2



1 + V − 2
J−1∑

j=0

δ(j)IC(j)2







 (11)

and

A(i) ≡
(
p0 + µ(i) − pt

)
(12)

∼ N

(
σ2 Z

K , σ2

[
IC(i)2 + V − 2

J−1∑
j=0

δ(j)IC(j)IC(i)φij

] )

hence type i agent’s holding of the asset is given by:

H(i) ≡ A(i)

λσ(i)2

=
p0 + µ(i) − pt

λσ(i)2

∼ N

(
σ2Z

Kσ(i)2 , σ2

(λσ(i)2)2

[
IC(i)2 + V − 2

J−1∑
j=0

δ(j)IC(j)IC(i)φij

] )
(13)

3.4 Realised Information Coefficient

An investor’s gains over time depend on the relationship between their forecast and the forecasts
of others and also on the general structure of skill in the market. RIC is the correlation between
an agent’s forecast money gain (per unit asset) A(i) and actual money gain Y . For a given type
of agent i, the difference between the two measurements depends on both how faithfully the
equilibrium price represents future prices (i.e. the level of skill of others) as well as the degree
of correlation between forecast of agent type i and others.

Proposition 3.2. The Realised Information Coefficient achieved by type i is defined as the
correlation between actual gains (11) Y ≡ pt+1 − pt and type i’s anticipated gains (12)

7The mean is a non-stochastic risk premium which follows from (8) above.
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A(i) ≡ p0 + µ(i) − pt. It is given by the formula:

RIC(i) =
IC(i)2 −

J−1∑
j=0

δ(j)IC(j)2 −
J−1∑
j=0

δ(j)IC(j)IC(i)φij + V

√√√√
[
1 + V − 2

J−1∑
j=0

δ(j)IC(j)2

] [
IC(i)2 + V − 2

J−1∑
j=0

δ(j)IC(j)IC(i)φij

] (14)

Proof. See A.3.2.

Proposition 3.3. For all equi-frequent types with equal constant absolute risk-aversion RIC =
0 whenever all types share the same IC irrespective of the degree of correlation or shared level
of skill.

Proof. See A.3.3.

This proposition provides us with the important result that if all agent types have equal
constant absolute risk aversion and equal headcount in the market and increase their skill in
tandem, then their ability to capture alpha remains at zero. This situation is somewhat redolent
of an ‘arms race’ and is analogous to the case of the two-agent discrete state model outlined in
S&W where skill was measured using hit-rate. We note also that if Information Ratio is naively
computed using IC instead of RIC then it is liable to be extremely misleading in this situation.
Indeed if we were to derive a social welfare function based on IC (which, we emphasise once
again, is our ex ante measure) then it would show the benefit of increasing skill when the reality
would be that skill improvement is futile.

4 Example Skill Profiles

We now illustrate the RIC concept and the calculation of variances for two example structures:
(1) two equi-frequent types with differential skill and uncorrelated forecasts, and (2) a continuum
of an infinite number of correlated types where skill is distributed unevenly across the investor
population. In both cases we assume equal constant absolute risk aversion across all agent
types. These represent two extreme cases and we would suggest that many real-world markets
may lie somewhere in between these two. For each case we are also able to present various
relevant propositions.

4.1 Two equi-frequent types with equal constant absolute risk-aversion, dif-

ferential skill and uncorrelated forecasts

Suppose that IC(0) > IC(1) with f (0) = f (1) = 0.5 and φ01 = 0, i.e. one investor type has a
clear forecasting advantage over the other. We now have δ(0) > 0.5 > δ(1) and therefore σ2

A will
differ between the two types.

σ2
A(i) = σ2

[
IC(i)2 + V − 2δ(i)IC(i)2

]

= σ2
[
V + IC2(1− 2δ(i))

]
(15)
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Figure 1: Realised Information Coefficient (RIC) for agent type 0 in model of two equi-frequent
uncorrelated types; IC(1) fixed at 0, 0.4 and 0.8 (from highest to lowest line)
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Specifically, by virtue of different signs in the (1− 2δ(i)) component in (15), σ2
A(0) < V <σ2

A(1) .
This means that the superior forecaster sees money returns which are less variable than spot
prices while the opposite will be true for the inferior forecaster. Note that this will be the case
irrespective of the exact magnitudes of IC(0) and IC(1). This effect arises since the superior
forecaster’s larger position-taking (reflected in δ(0) > 0.5) tends to work against her when
making investments: she will always tend to push the market towards her private valuation
thereby reducing the range of returns accessible per unit asset. However it is important to
realise that this only describes price on a per asset basis: her superior forecasting ability and
larger position-taking somewhat compensate for these effects when considering overall portfolio
returns.

Figure 1 illustrates RIC for this skill structure for selected ranges of IC pairs consistent
with positive-definiteness in the overall matrix of forecasts and returns.8 Fortunately we are
also able to obtain useful analytic results in certain particular cases, such as the case when we
have one skilled and one unskilled type which we consider below.

Firstly we adopt the perspective of the skilled type and compute his variances and RIC

below, with illustrative plots in Figure 2.

σ2
Y = σ2

[
1 + V − 2δ(skilled)IC(skilled)2

]

= σ2



1 +

(
IC(skilled)

2− IC(skilled)2

)2

−
(

2IC(skilled)2

2− IC(skilled)2

)



8Ensuring positive definiteness is an important consideration which we return to (and discuss further) in
Proposition 4.4.
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Figure 2: Variances of actual return (Y ) and skilled type’s anticipated return (A) for equi-
frequent skilled/unskilled case; σ2 = 1
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σ2
A(skilled) = σ2

[
IC(skilled)2 + V − 2δ(skilled)IC(skilled)2

]

= σ2
[
IC(skilled)2 + δ(skilled)2IC(i)2 − 2δ(skilled)IC(skilled)2

]

= σ2IC(skilled)2
(
1− δ(skilled)

)2

σY | IC=0 = 1 (16)

σY | IC=1 = 0 (17)

σA | IC=0 = 0 (18)

σA | IC=1 = 0 (19)

For the skilled type, RIC reduces to:

=

√
IC(skilled)2 − 2δ(skilled)IC(skilled)2 + V√

1 + V − 2δ(skilled)IC(skilled)2

=
σA(skilled)

σY

hence we have
RIC(skilled) |IC(skilled)=0= RIC(skilled) |IC(skilled)=1= 0

Proposition 4.1. For the case of one skilled and one unskilled type with equal constant absolute
risk-aversion the following approximation holds when f (skilled) ≈ 0

RIC(skilled) ≈ IC(1− f (skilled))

Proof. See A.4.1.
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Proposition 4.2. For two uncorrelated types with only one skilled and equal constant absolute
risk-aversion, the maximum RIC is obtained when IC = 1√

1+f
and the maximum RIC value at

this point is 1−f
1+f .

Proof. See A.4.2.

We turn now to the perspective of the unskilled type. Here we find that σ2
Y is identical to

the case above, however we have

σ2
A(UNskilled) = σ2

[
IC(UNskilled)2 + V − 2δ(UNskilled)IC(UNskilled)2

]

= σ2V

this indicates that the unskilled type will tend to take larger and larger positions as the available
returns contract due to the increased skill of the skilled type.

Proposition 4.3. For two uncorrelated types with only one skilled

RIC(UNskilled) = −RIC(skilled) (20)

irrespective of the frequency of the types.

Proof. See A.4.3.

We illustrate the above proposition in Figure 3 where we show how a completely unskilled
investor (IC = 0) can nevertheless appear to be a useful contrarian indicator when placed in a
market alongside an equally-frequent skilled type. This arises because the unskilled investor’s
forecast will always be the unconditional mean which, on average, will be below the skilled type’s
forecast in a bull market and above it in a bear market. Since the equilibrium price at which
both investors trade will be the weighted average of these two forecasts, the unskilled investor
will tend to short the market when it’s more likely to rally and go long when it’s more likely to
fall.

To summarise this highly simplistic example: we have shown how RIC can become a zero
sum game, with specific level highly dependent on the degree to which forecasts are distributed
in the population. The lesson we draw from this is that it is vital to appreciate the competitive
dynamic which drives a wedge between investor’s innate skill (measured by IC) and the returns
which they are actually able to capture (measured by RIC). While forecasting is not a com-
petitive activity (the quality of one investor’s forecast is not influenced by the quality of other
investors’ forecasts), trading clearly is a competitive activity. The assumption that RIC = IC

ignores this reality.
Once again we draw attention to the evident dangers of drawing conclusions about forecast-

ing skill per se by exclusively focusing on RIC. In the example above it is clear that the skilled
type can increase RIC by increasing their personal IC, but these gains come at the expense
of the unskilled type. The unskilled type unwittingly suffers despite having no change in their
own level of skill whatsoever. Although we do not examine it here, it is easy to imagine that
the arrival of a new third agent type into this market, with IC > 0, might dramatically change
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Figure 3: RIC for skilled (positive) and unskilled (negative) agents
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measured RIC levels of all agents. Given the rapid flow of entry and exit in today’s financial
markets it seems concerning to make inferences based on measurements which are not robust
to such structural changes.

4.2 Infinite Correlated Types with Pareto-distributed Precision

A drawback of the simple two-type model is that analysis of comparative statics and scenarios
requires all agents of the same type to change their skill in unison. If, for instance, a single
atomistic individual wished to change their personal IC then it would constitute the creation
of a new third type and require a re-specification of the model. Such effects are, however, of
considerable interest to us and we can address these successfully in a model with a continuum
of available skill levels.

In this case we devise a means of parameterising a population-wide skill structure such that
we can specify a density for the type frequency f rather than a discrete vector. Although there
are infinitely-many ways of achieving this we aim here for parsimony combined with clarity
in algebra and so we limit consideration to structures which lead to tractable calculations of
various necessary moments and RIC. Again for clarity we assume equal constant absolute risk
aversion.

A key consideration in this process regards inter-forecaster correlations φij . When the num-
ber of types increases significantly it is no longer convenient to specify all pairwise correlations
individually. Specifying a single pairwise constant correlation is one approach but this does
not simplify the RIC calculation very much. The proposition below provides sufficient condi-
tions for parameterisation of correlation such that (a) positive definiteness is maintained in a
population of arbitrarily-many types and (b) the RIC calculation is somewhat simplified.

Proposition 4.4. Suppose the correlation between forecasts of type i and type j is denoted by
φij, then in a population of multiple types with differential skill the overall matrix of forecasts
and returns will be positive definite if

φij = kIC(i)IC(j) where i += j

φij = 1 where i = j
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1 < k <
1

IC2
max

where IC2
max denotes the largest IC2 value in the population.

Proof. See A.4.4.

This indicates that the higher the maximum IC, the less freedom we have to influence levels
of correlation, e.g. as IC → 1 we require k → 1. However if we set the maximum skill level
even modestly high (e.g. ICmax = 0.7) then we can vary k between 1 and 2 which gives some
useful flexibility.

How should we interpret k? Consider the covariance between two agents’ forecasts (types i

and j): it will be kIC(i)2IC(j)2σ2. (We use here the fact that their forecasts each have the form
µ+IC(i)σS(i) which have standard deviation IC(i)σ so we obtain the covariance by multiplying
these standard deviations together and then multiply by the correlation φij .) The variance of
type i’s own forecast is IC(i)2σ2. Hence we can compute the beta between the two agents’
forecasts as kIC(j)2, i.e. type i is more influenced by type j when type j’s skill is high.

If, for instance, we take the case of IC(j) = 0.5 and k = 2 then the beta between type i and
type j will be 0.5 irrespective of the skill level of type i. The skill level of type i depends on how
much of their own ‘noise’ they add to this common component (and the common components
they share with all the other types).

This captures the idea that there is some degree of imitation between different agent types
with the more skilled exerting a relatively high influence on the less skilled. This is consistent
with the real-world situation where particularly successful forecasters develop a higher public
profile over time than others, perhaps due to a chronic survivorship bias. It also captures
the hypothetical (yet plausible) situation where prominent investment firms establish trading
positions for the ‘house’ before publicising influential research recommendations afterwards;
such recommendations then rapidly become self-fulfilling prophecies supported by the weight of
client money.

Of course our model does not explicitly embody such dynamic, and potentially strategic,
interactions. Nevertheless it is clear that in general the correlation structure of forecasts, com-
bined with appropriate type classifications, can represent quite a high degree of richness in
investor behaviour, albeit in reduced form. The imitation strategies of investors are discussed
by Hirshleifer and Teoh (2009) together with a broad review of related topics in herding and
contagion.

We now consider the distribution of skill in the population. For convenience we choose to
work initially with each type’s precision, which we define as π = 1

1−IC2 rather than IC directly.
This is convenient because the range of precision is [1, πmax) which makes it more amenable
to fitting with a standard continuous distribution. Here we use the upper-truncated Pareto
distribution for this purpose, which has exactly this support. This also seems a reasonable choice
given the popularity of Pareto distributions in modeling quantities like income and wealth; at
first glance there seems fair justification to believe that the distribution of precision in the
population might be similar.

17



Hence the density function for precision is:

f(π) =
s

1− π−s
max

π−(s+1) ; 1 ≤ π < πmax (21)

where s > 1 is a shape parameter. From standard features of the truncated Pareto distribution
(e.g. Zaninetti and Ferraro (2008)), the mean precision is given by

Ef [π] =
s

s− 1
1− π1−s

max

1− π−s
max

(22)

We now proceed to calculate the corresponding precision-weighted (or ‘market presence’)
density which as usual we denote δ.9

Proposition 4.5. When the precision of investors is distributed in the population according
to the density f(π) which is Pareto-distributed with parameter s, truncated at πmax then the δ

density is

δ(π) =
(s− 1)

1− π1−s
max

π−s ; 1 ≤ π < πmax (23)

i.e. the δ distribution is the original unweighted f distribution but with the shape parameter
reduced by one.

Proof. See A.4.5.

As an aside, it is apparent here that we require s > 2 if we wish to ensure that π has a finite
mean under the δ-density.

Having defined both correlation structure and skill distribution we are now able to compute
the variances and RIC. Thanks to the particular correlation structure which we imposed we
are able to write all these quantities in terms of Eδ

[
IC2

]
, which is the expected value of IC2

computed under the ‘market presence’ density δ. For brevity we denote this by IC2 and begin
with the following helpful result:

Proposition 4.6. When investor precision is Pareto-distributed according to f(π) truncated at
πmax, as in (21), we have

IC2 =
1

1− π1−s
max

[
1
s

(
1− π−s

max

)
− π−s

max (πmax − 1)
]

→ 1
s

as πmax →∞

Proof. See A.4.6

9The derivation of δ and associated moments which follows is somewhat informal in that we make the extension
to a continuum of states by replacing mass functions with densities and summations with integrals. In the
appendix (A.1.2) we sketch some formalities which clarify our method.
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Proposition 4.7. As πmax →∞ the mean of IC2 under the δ-density and the mean IC2 under
the f-density have the following properties

Eδ

[
IC2

]
> Ef

[
IC2

]

∂Eδ

[
IC2

]

∂Ef [IC2]
> 1

Proof. The mean under the f -density is given by the expression in Proposition 4.6 with s

replaced by s + 1 and the results above follow directly.

The above proposition will be of central importance later in our discussion of skill improve-
ment. The intuition is that an adjustment in skill distribution which raises or lowers average
IC2 under the f density (representing unweighted headcount) will lead to a proportionally
larger change in average IC2 under the δ density because the weighting in the latter calculation
is itself determined by (the increased) precision levels.

We now calculate the key variance components which appear in (11) and (12). Since we are
now dealing with a continuum of types the type-specific σ2

A is now expressed as a function of
agent’s IC. Derivations are provided in A.4.7.

V = k
(
IC2

)2
(24)

σ2
Y = 1− IC2

(
2− kIC2

)
(25)

σ2
A(IC) = IC2

(
1− 2kIC2

)
+ k

(
IC2

)2
(26)

(Recall that for positive definiteness we have 1 < k < 1
IC2

max
.)

By simple differentiation we see that σ2
Y decreases monotonically as IC2 increases, i.e. as

average skill increases in the market we find equilibrium price more accurately represents the
future actual price and hence available returns per unit asset reduce. This is similar to the
effect noted in the previous example of two types illustrated in Figure 2(a).

Similarly we find that σ2
A is increasing in own skill (IC2) only if kIC2 < 1

2 , i.e. when
average skill and correlation are relatively low. In other words an agent will only find that
improved skill translates into increased ex ante alpha per unit asset if there is relatively little
skilled competition and/or he is relatively uncorrelated with others. Again this is qualitatively
the same as the case with only two types illustrated in Figure 2(b).

Proposition 4.8. When investor precision is Pareto-distributed according to f(π) truncated
at πmax, as in (21), the Realised Information Coefficient (RIC) for an investor with personal
Information Coefficient denoted by IC is given as follows:

RIC(IC) =

[
IC2 − IC2

] [
1− kIC2

]

√[
1− IC2

(
2− kIC2

)] [
IC2

(
1− 2kIC2

)
+ kIC2IC2

] (27)

where we denote the expected value of IC2 under the δ-density by IC2 and k is the correlation
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parameter as defined in Proposition 4.4 with 1 < k < 1
IC2

max
.10

Proof. This expression follows from substituting continuum versions of (24), (25) and (26) into
Proposition 3.2.

Various observations arise from this expression:
(1) Since the denominator will always be positive the sign of RIC is given unambiguously

by the numerator. From the correlation structure we know that k < 1
IC2

max
and hence we can

be sure that the second factor is positive since IC2 < IC2
max. Therefore the sign is uniquely

determined by whether IC(i)2 is greater or lesser than the δ-weighted mean IC2. This is the
analog (with a continuum of types) of the result in the two type model where the skilled and
unskilled agents’ RIC’s sum to zero. Once again we see that RIC is very much determined by
competitive forces.

(2) A type with IC2 = IC2 will have RIC of zero irrespective of correlation; in other words
a hypothetical ‘average investor’ has zero ex post skill. This is somewhat analogous to the result
in the finite types model where increasing all types’ skill in tandem fails to lead to any utility
improvement. Here we would find that any changes in the distribution of skill nevertheless leave
the ‘average’ type no better off in terms of RIC.

(3) According to the Fundamental Law of Active Management, type-specific Information
Ratios will be approximately proportional to RIC. We might therefore obtain a crude indication
of overall social welfare by computing the expected value of RIC across the population according
to the unweighted f -density. The types with IC below the ‘threshold’ IC2 will contribute
negatively to this average and those above IC2 will contribute positively. Loosely speaking we
would therefore expect the f -weighted mean RIC to lie ‘close to’ zero.

(4) The average IC2 which we focus on in Proposition 4.8 is calculated under the δ-density.
However Proposition 4.7 reminds us that this is not the same as the unweighted population
average (calculated under f). Indeed raising average skill of the whole population under the f

density will raise IC2 even more. Very informally, the effect of this is to raise the ‘threshold’ IC2

level disproportionately high relative to the new f -weighted average and intuitively this causes
us to suspect that the social welfare impact of such skill improvement might not necessarily
be positive. We investigate this phenomenon more exactly via numerical methods later in the
paper.

(5) By (rather lengthy) differentiation of (27) it can be shown that

∂RIC(IC)
∂IC2

< 0

and
∂RIC(IC)

∂IC2
> 0

i.e. RIC is increasing in an agent’s own skill IC2 but decreasing in the δ-weighted average skill
of the population IC2.

10We reiterate that the mean quantity IC2 is not the headcount-weighted mean which would be given by the f
distribution, rather it is the precision-weighted mean. However given that the distributional assumptions which
we have made there is a simple relationship between f and δ and it is straightforward to convert between the
two means as required.
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Figure 4: RIC against IC for three values of s: 2, 10 and 100 (from lowest to highest line); in
each case k = 1
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Plotting RIC against IC helps us gain further insight. Figure 4 shows example plots for
k = 1 and s either 2, 10 or 100. When s = 2 the mean value of skill is relatively high (IC2 = 0.5)
and the distribution of skill decays fairly slowly across the population. In this case the intensity
of competition for returns is very high and hence only the highest levels of IC translate into
positive RIC. This case is the lowest line in the figure. By contrast when s = 100 the skill
distribution is heavily concentrated around low-skilled types. These are much better conditions
for the relatively high skilled since they face less competition for returns and the opportunity of
trading with a multitude of less well-informed counterparties. Hence we see that positive RIC

is obtained at lower levels of IC. This is shown in the highest line on the plot.
This plot also sheds light on approximate comparative statics of skill improvement. Suppose

a single atomistic investor were to change his personal IC, then the new level of his RIC can
be approximated by reference to the appropriate curve. (We assume here that the magnitude
of the individual investor’s demand in the market is negligible so that the effect of this change
on the f and δ distributions is immaterial.) Such deductions cannot be made from the model
of two types in the previous section unless all investors of the same type change skill together.

It is also helpful to state the inverse form of Proposition 4.8 as follows:

Corollary 4.9. The personal Information Coefficient (IC) of an investor with Realised Infor-
mation Coefficient RIC is given by:

IC(RIC) =



IC2 +
1
2
θ2RIC2 + θRIC

√√√√1
4
θ2RIC2 + IC2

(
1− kIC2

1− 2kIC2

)



1
2

where

θ2 =

[
1− IC2

(
2− kIC2

)] (
1− 2kIC2

)

[
1− kIC2

]2
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Proof. See A.4.8

Having established the analytic distinction between IC and RIC we now consider the shapes
of the unweighted distributions of these quantities across the population, given the assumption
of Pareto-distributed precision which we have already presented. We tackle this in stages,
beginning with computation of the distribution of IC2 which we denote fIC2 .

Proposition 4.10. When π = 1
1−IC2 is Pareto-distributed with shape parameter s, truncated

at πmax ≡ 1
1−IC2

max
, the unweighted density of IC2 is

fIC2(IC2) =
s

1− π−s
max

(
1

1− IC2

)−s+1

; 0 ≤ IC2 < IC2
max

Proof. See A.4.9

This density is illustrated in Figure 5. We now consider the unweighted distribution of RIC.

Proposition 4.11. When π = 1
1−IC2 is Pareto-distributed with shape parameter s, truncated

at πmax ≡ 1
1−IC2

max
, the density of RIC is given by

fRIC(RIC) =
s

1− π−s
max




1

1− IC2 − 1
2θ2RIC2 − θRIC

√
1
4θ2RIC2 + IC2

(
1−kIC2

1−2kIC2

)





−s+1

×



θ2RIC + θ

√√√√1
4
θ2RIC2 + IC2

(
1− kIC2

1− 2kIC2

)
+

1
4θ3RIC2

√
1
4θ2RIC2 + IC2

(
1−kIC2

1−2kIC2

)





where θ is defined in Corollary 4.9.

Proof. See A.4.10

Finally we turn our attention to the distribution of IC (our ex ante) measurement.

Proposition 4.12. When π = 1
1−IC2 is Pareto-distributed with shape parameter s, truncated

at πmax ≡ 1
1−IC2

max
, the density of IC is given by

fIC(IC) =
2s

1− π−s
max

(
1

1− IC2

)−s+1

IC ; 0 ≤ IC < ICmax

Proof. See A.4.11

Proposition 4.13. The mode of IC under the unweighted f distribution (described in Propo-
sition 4.12) is given by

ICmode =
1√

2s− 1
(28)

Proof. See A.4.12
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Figure 5: Unweighted Pareto distributions of IC2 for alternative shape parameters (k = 1)
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Figure 6: Unweighted IC distribution (solid line) and RIC distribution (dashed line) where
k=1 and s = 10; ICmode ≈ 0.229
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We plot examples of these densities in Figures 6 and 7. These plots are a vivid summary of
our analysis: we show that the initial distribution of IC is uniformly positive, relatively evenly
distributed around the mode and with an upper tail extending to the perfect foresight case of
IC = 1. In comparison, however, the distribution of RIC is shifted to the left, extends across
the full range of correlations from −1 to +1 and is less peaked. (In this case with k = 1 we
have ICmax = +1 so we observe a full range of correlations.)

We do not provide analytic expressions for the mean, median or mode of RIC in this paper
however it is clear from inspection of the plot that these are likely to be closer to zero than
in the IC distribution. We provide some preliminary numerical evidence of this in the next
section. This is entirely consistent with Proposition 4.8 which shows that a key driver of the
RIC value is the difference between IC2 and the mean IC2 rather than absolute values of IC.

The cumulative distributions plotted in panel (b) of Figures 6 and 7 demonstrate how higher
quartiles of IC map to lower quartiles of RIC.
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Figure 7: Unweighted IC distribution (solid line) and RIC distribution (dashed) where k=1
and s = 100; ICmode ≈ 0.071
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5 Utility and Social Welfare

5.1 Future Wealth Density Function

Having now determined RIC it is feasible for us to go a step further and derive the shape
of the distribution of random future wealth W . From this we can obtain an expression for
unconditional expected utility as a function of the skill parameters in the market. This gives us
an exact picture of the marginal utility of skill and associated welfare issues without resorting
to the Information Ratio proxy.

The question of determining the distribution of an active investor’s future wealth has been
addressed in the literature only to a limited extent, for instance Lee (2000), one of the few
treatments of this topic, computes the first two moments but not the full distribution.

In the case of a passive investor in a CAPM-type setting, future wealth is simply the product
of portfolio weights and actual asset returns. Since portfolio weights are a deterministic function
of exogenous means and covariances this is straightforward to derive. Passive investors are
rewarded for taking systematic market risk with whatever risk premium prevails in equilibrium.

For active managers, however, the portfolio weights are stochastic and - assuming non-
zero forecasting skill - there is a dependency between these and actual returns (which are of
course also stochastic).11 This means that the distribution of future wealth is more complex.
However some useful (and fairly innocuous) simplification can be obtained if we pay attention
to separating market risk premium from alpha due to active management. In the analysis below
we are interested in the distribution of the product of the random variables in (11) and (13)
which respectively represent money gains per unit asset and holding size (in units). The mean
of each of these components is a non-stochastic quantity proportional to risk premium.

In the analysis below it can be shown that the general functional form of the wealth distribu-
tion does not depend on the magnitude of this risk premium, however it does of course influence
the values of various parameters of the distribution. Non-zero risk premium increases the com-
plexity of the parameters and thereby diverts attention from the pure skill effects. Inspection of
(11) and (13) reveals that the absolute magnitude of the risk premium depends on exogenous

11Satchell and Hwang (2001) consider the implications of this for the calculation of tracking error in passive
portfolios.
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factors such as unconditional price variance σ2, risk-aversion levels and overall headcount in the
market (K). Since our focus in this paper is very much on the actively-managed component
of returns (i.e. the alpha), for clarity of exposition we assume that the risk premium equals
zero, but note that incorporating a non-zero risk premium is perfectly tractable at the cost of
additional algebra.

Proposition 5.1. We denote by W a type i investor’s random future wealth which is the
product of per-unit money gain Y and number of units held H(i). (See (11) and (13) for precise
definitions of these random variables).

The density of W is given by

fW (w) =
e

RICw
(1−RIC2)σY σ

H(i) K0

[
Abs(w)

(1−RIC2)σY σ
H(i)

]

π
√

1−RIC2σY σH(i)

(29)

where K0 denotes the modified Bessel function of the third kind (with imaginary argument) and
the variances σ2

Y and σ2
H(i) are given by (11) and (13).

Proof. See A.2.

As an aside, this distribution appears elsewhere in the (unrelated) finance literature in the
form of the variance-gamma model of Madan and Seneta (1990) and Madan, Carr and Chang
(MCC) (1998). Perhaps the earliest reference (in a non-financial context) is Craig (1936).

The first two cumulants are given by:

µW = RICσY σH (30)

V ar(W ) = (1 + RIC2)σ2
Y σ2

H (31)

However since the wealth distribution is manifestly non-normal it also important to consider
higher moments. These are computed by Craig (1936) and MCC and we can show that

Skewness =
2RIC(3 + RIC2)

(1 + RIC2)
3
2

which will be approximately zero for small RIC. Also

Kurtosis =
9 + 42RIC2 + 9RIC4

(1 + RIC2)2

Hence excess kurtosis will be approximately 6 for small RIC. We note also that skewness is
increasing in RIC while kurtosis is increasing in the absolute value of RIC.

A selection of plots of the future wealth density appears in Figure 8. These relate to the
equifrequent skilled/unskilled structure from the perspective of the skilled type.
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Figure 8: Probability Density of Skilled Agent’s Future Wealth (two equi-frequent types, σ2 = 1)
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5.2 Portfolio Information Ratio

We define the per-period Information Ratio of the investor’s portfolio to be12

IR =
RIC√

1 + RIC2

If we consider the first example skill structure in Section 4 (two equifrequent types: one skilled
and one unskilled) then we have shown in Proposition 4.1 that we may approximate RIC by
IC(1− f) for an uncorrelated forecaster when f is relatively small. We can therefore write

IR ≈ IC(1− f)√
1 + IC2(1− f)2

As per Grinold and Kahn (1999), this per-period Information Ratio should be multiplied by√
breadth as appropriate, where breadth indicates the number of times per year that investments

are made based on forecasts.
Hence we can generalise Grinold’s (1989) Fundamental Law of Active Management (in this

endogenous returns model of equifrequent skilled/unskilled types) to

IR ≈ IC(1− f)√
1 + IC2(1− f)2

√
breadth

where it is clear that for an uncorrelated atomistic investor with negligible market impact
(f → 0) we have Grinold’s original formulation.

5.3 Unconditional Expected Utility

Having determined future wealth distribution it is straightforward to compute unconditional
expected utility. This entails taking the expectation of

u(W ) = − 1
λ

exp (−λW ) (33)

with respect to the probability measure given by (29). The resulting expression is a product
of − 1

λ and the moment generating function of the product of two correlated normals. Craig

12We define the Information Ratio as:

IR =
rP − rB

σε
(32)

where rP is the investor’s portfolio return, rB is the return of a benchmark portfolio and σε is the standard
deviation of the so-called tracking-error (the periodic difference between the portfolio and benchmark returns).
This measurement has its roots in Sharpe (1981). Grinold (1989) shows that (in certain conditions) for investors
with mean-variance utility the Information Ratio defines a preference ordering between portfolios equivalent to
expected utility maximisation. Here we consider the investor’s benchmark portfolio to be a strategy of doing
nothing, i.e. having no holdings in risky assets whatsoever (rB = 0), and hence ex ante the expression reduces
to:

IR =
RIC√

1 + RIC2

since we replace rP with expected wealth from (30) and we use standard deviation in wealth obtained from (31)
in place of σε. Effectively we make this step by multiplying both numerator and denominator of (32) by the
investor’s arbitrary initial wealth; note that the investor’s portfolio choice has no dependence on initial wealth
due to the exponential form of the utility function so its magnitude here is irrelevant.
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(1936) provides a closed form expression for this: once again if we make the assumption of zero
risk premium then

E [exp(tζ1ζ2)] = [1− (1 + ρ)t]−
1
2 [1 + (1− ρ)t]−

1
2

= [1− (1 + ρ)t + (1− ρ)t− (1 + ρ)(1− ρ)t2]−
1
2

=
[
1− 2ρt− (1− ρ2)t2

]− 1
2 (34)

where we denote two standard correlated normal random variables by ζ1 and ζ2 and their
correlation by ρ. Hence from (33) expected utility here will be:

E [u] = − 1
λ

E [exp(tζ1ζ2)]

with ρ = RIC and t = − σAσY
(1−IC2)σ2 since W = Y H(i).

For illustration we plot in Figure 9 certainty equivalent wealth levels for type-0 investors in
the case of two equi-frequent uncorrelated investor types. We compute this by the following
transformation:

wce = − 1
λ

log (−λE [u (W )]) (35)

This is directly comparable with the RIC plot in Figure 1 and some qualitative similarity is
immediately apparent.

By differentiation of (34) we can obtain a general expression for unconditional expected
marginal utility of skill:

∂E [u]
∂IC

=
1
2λ

[
−2 ∂ρ

∂IC t− 2ρ ∂t
∂IC − 2t ∂t

∂IC (1− ρ2) + 2ρ ∂ρ
∂IC t2

]

[1− 2ρt− (1− ρ2)t2]
3
2

= λ2 [E [u]]3
[

∂ρ

∂IC
t + ρ

∂t

∂IC
+ t

∂t

∂IC
(1− ρ2)− ∂ρ

∂IC
ρt2

]

= λ2 [E [u]]3
[

∂ρ

∂IC
(t− ρt2) +

∂t

∂IC
(ρ + t− tρ2)

]
(36)

and we now use this to revisit the skill structures examined in Section 4 from a marginal utility
perspective.

5.3.1 Two equi-frequent types: one skilled and one unskilled (skilled perspective)

In this case we have

t = − σAσY

1− IC2

ρt2 =
σA

σY

σ2
Aσ2

Y

(1− IC2)2
=

σ3
AσY

(1− IC2)2

ρ =
σA

σY

tρ2 = −σ2
A

σ2
Y

σAσY

(1− IC2)
= − σ3

A

σY (1− IC2)
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Figure 9: Certainty-Equivalent Wealth of investor type 0 in equi-frequent two independent agent
model; IC(1) fixed at 0, 0.4 and 0.8 (from highest to lowest line)
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Hence from the variances defined in (11) and (12) we have

ρ + t− tρ2

=
σA

σY
− σAσY

(1− IC2)
+

σ3
A

σY (1− IC2)

=
σA

σY (1− IC2)
[
(1− IC2)− σ2

Y + σ2
A

]

= 0

and therefore (36) simplifies to

∂E [u]
∂IC

= λ2 [E [u]]3
∂ρ

∂IC
(t− ρt2)

= λ2 [E [u]]3
∂ρ

∂IC
t(1− ρt)

with
sign

[
∂E [u]
∂IC

]
= sign

[
∂ρ

∂IC

]

Hence we find that when RIC reaches a maximum, so too does expected utility. This indi-
cates that for this particular skill structure it is not unreasonable to proxy expected utility by
Information Ratio or RIC. This will not be true in general for all skill structures however.

We also consider the limiting cases: IC = 0 and IC = 1. In this case it is clear from (16),
(17), (18) and (19) that

E [u] = − 1
λ

[1 + (1 + ρ)σY σH(i) ]−
1
2 [1− (1− ρ)σY σH(i) ]−

1
2

= − 1
λ

An investor skill Laffer curve? Consider the case of one skilled and one unskilled type. The
non-monotonic utility/skill trade-off depicted in Figure 9 is a little reminiscent of the Laffer
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Figure 10: Social Welfare Functions for two equi-frequent uncorrelated agents with equal con-
stant absolute risk-aversion

(a) Utilitarian (equal-weighted) (b) Rawlsian (maximin)

curve.13 As investors improve their forecasting skill there can exist distributions of skill in the
market which cause them to become ‘victims of their own success’. This arises because although
their increased precision leads to larger position-taking, this in turn causes the variance of market
prices to increase. On an ex ante basis, beyond a certain point of IC, this extra variance in
market prices leads to variance in returns which more than offsets the benefits of larger-position
taking.

Once more our results here echo those of the simpler discrete model in S&W. Improvements
from relatively low levels of skill do improve the RIC (and expected utility) of the smarter
agent but at the direct expense of the other. Beyond a certain critical point, however, the RIC

of the ‘smarter’ agent begins to decline.
Finally we follow the approach in S&W of computing social welfare functions where we

combine the expected utilities of both agent types into a single overall measurement. These
are illustrated in Figure 10 and are qualitatively very similar in shape to those obtained in the
model of two discrete states detailed in S&W. If we ignore relatively implausible extreme values
of skill (close to perfect certainty IC ≈ 1) we see that social welfare is in fact maximised when
both agents are equally unskilled (IC = 0) and any improvement in skill by either agent leads
to a reduction in social welfare.

5.3.2 Continuum of infinite number of correlated types

Results here are more opaque when derived analytically. However it is straightforward to gener-
ate expected utility values numerically by substituting necessary variance and RIC parameters
into (34). The plots which we present in Figure 11 once again reveal the usefulness of RIC as

13An explanation of the concept can be found in Canto, Joines and Laffer (1982). The Laffer Curve suggests
that the relation between tax revenue and tax rate is concave with an optimal tax rate in excess of which marginal
revenue begins to decline. Eventually at a tax rate of 100% the revenue raised is zero since the high tax rate acts
as the ultimate disincentive to work.
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Figure 11: Certainty-Equivalent Wealth (dashed line) and RIC (solid line) as a function of ex
ante IC
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Figure 12: f -weighted average IC, RIC and certainty-equivalent wealth (from highest to lowest
curve) against shape parameter of precision distribution
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a crude proxy for expected utility.
In Figure 12 we extend the analysis to the level of aggregate social welfare. We achieve

this numerically by calculating the average values of IC, RIC and certainty-equivalent wealth
weighted by the f distribution (which represents the headcount of investors of each type in the
population). These averages are plotted against increasing values of the s (shape) parameter
of the precision distribution. Recall that increasing the s parameter will reduce mean values of
IC and IC2 according to the Propositions in Section 4.

Strikingly, however, Figure 12 shows that reducing mean IC2 (our ex ante personal skill
measurement) brings about an increase in both RIC and expected utility. After introducing
the RIC formula in Proposition 4.8 we raised the concern that an increase in mean IC2 under
the f -density will be outpaced by the corresponding increase in the ‘threshold’ IC2 computed
under the (precision-weighted) δ-density and this would tend to depress RIC values; in this
plot we see evidence of exactly this. In particular it is noteworthy that the f -weighted mean
RIC is negative despite the corresponding mean IC being positive.
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6 Conclusions

The Information Coefficient (IC) is widespread in the literature, however it tends to be used in a
partial equilibrium context. While this is an acceptable treatment when investors are atomistic
and have no significant market impact we have shown that it has serious defects otherwise.

In this paper we have attempted to introduce some preliminary theory to bring IC into a
general equilibrium setting. During the course of our work it became obvious that considerable
richness and diversity of investor behaviour can be captured in this way and choosing illustrative
examples is challenging in itself. Nevertheless, irrespective of the exact structural assumptions
which we have made, we have found certain recurrent themes in our analysis. Often these have
taken the form of precise analytic results which have either reinforced or challenged conven-
tional wisdom. Occasionally we have come across deeper, more complex issues which deserve
further scrutiny. In the paragraphs below we summarise our findings and attempt to tease out
implications for practitioners and theorists.

Our first recurring theme is that connections between measured IC (which we term RIC)
and innate personal forecasting skill may be tenuous at best. The measured IC number (RIC)
is a noisy signal, corrupted by the influences of other competing (and potentially correlated)
agents. Furthermore the relationship between signal and noise is highly non-linear. This has a
range of implications:

(1) It provides a theoretical basis for the null hypothesis that positive in-sample investing
performance (measured for instance by Information Ratio) will not persist out-of-sample. As a
corollary to this, the value of analyst ratings based on past predictive accuracy may currently
be over-estimated by the market. However we have been able to propose a way in which the
skill/performance relationship can be modeled and parameterised by other potentially observ-
able factors, specifically the overall profile of skill in the market and its distribution in terms of
headcount. This may incrementally complicate future empirical analysis but it does not render
it useless.

(2) Investors should make attempts to extract an estimate of their IC from available data
using methodologies which go beyond simple correlation calculations. We have shown, for
instance, that in a highly simplified two-type skilled/unskilled market RIC ≈ (1 − f)IC, i.e.
measured Information Coefficient RIC is approximately the product of innate skill IC and the
proportion of the market which is unskilled. This shows the need to adjust empirical correlations
(which would ordinarily be RIC values) to take account of market structure.

(3) Changes in market structure (e.g. correlation due to herding) will inevitably have an
impact on RIC values, but such effects can be partially estimated in advance as long as we have
knowledge of innate skill embodied in IC. It is IC rather than RIC which is the exogenous
factor and it is very much in investors’ own interests to estimate its magnitude in order to
facilitate this kind of analysis.

(4) An investor who has high RIC in one market may have much lower RIC in another
market, even if he has exactly the same forecasting accuracy. This can arise due to differences
in distribution of skill or inter-forecaster correlations. There is a conventional wisdom that
diversification across markets is desirable in an aim to increase overall Information Ratios and
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hence such forays are commonplace. However our theory suggests that investors might be better
advised to remain exclusively in high-RIC markets, where they enjoy comparative advantage,
and instead attempt to improve their Information Ratios by increasing breadth.

(5) Given the quantitative uncertainty surrounding the exact level of IC, investors may
be curious as to how to adapt existing models which depend on cardinal estimates of future
returns. Potentially attractive alternative paradigms include models based on ordered forecasts
such as Almgren and Chris (2007).

Our second recurring theme is that, loosely speaking, RIC and utility depend on skill
relative to the ‘average’ rather than absolute levels. However the subtlety here is that the key
benchmark ‘average’ skill level is itself skill-weighted, i.e. the skill of higher skilled investors
features more prominently in the average calculation than that of lower-skilled investors. Some
implications are:

(1) From the point of view of the individual there may indeed be benefit in increasing skill
as long as that investor is atomistic, however this may not be the case if the investor is locked
in an ‘arms race’ scenario with other correlated agents who improve in unison. Again the need
to identify both one’s own IC level and the structure of the market is compelling.

(2) Negative measured skill (RIC) does not necessarily imply a low level of innate forecasting
ability (IC). Indeed it would not be surprising to find that the RIC of roughly half of market
participants is below zero.

(3) From the social welfare point of view we can easily demonstrate plausible conditions
where increasing average skill levels across the general population leads to a decline in welfare,
measured in terms of headcount-weighted utility. (Apparent from the fact that the skill-weighted
average skill increases more rapidly than the headcount-weighted average.) This has important
policy consequences in areas of investor education and financial innovation and we discuss these
matters in Satchell and Williams (2010).

(4) Measured RIC will typically understate an investor’s innate forecasting ability (as repre-
sented by IC) and the extent of this discrepancy depends on the distribution of headcount across
types. If we take the example of the equifrequent skilled/unskilled model then skilled investors
suffer a reduction in RIC when they, as a group, become a larger proportion of the population:
‘small is beautiful’ when it comes to skill. Active fund management over the last half century
has had a history of innovation, e.g. the 1970’s hedge fund industry was dominated by just two
style categories: event-driven and managed futures funds (essentially trend-followers), however
this has more recently fragmented into many more diverse styles with a relatively uniform dis-
tribution of AUM.14 Although further research is required, we believe our model provides an
embryonic formal framework for analysing this form of evolution.

In the course of this analysis we have tried to keep our model as simple as possible to explain
our ideas clearly, but at the same time retain important features of reality. There are many
theoretical aspects which can be expanded upon in further study. For instance although our
model is static it shows the RIC which results ex post from a given profile of IC which agents

14This is apparent in estimated Assets Under Management (AUM) data compiled by various hedge fund
researchers, e.g. Lo (2008).
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use ex ante. If agents use historical measured RIC as a means of determining IC to use for
their current period portfolio choice, then our model can easily be adapted to provide a dynamic
evolution of RIC and associated variances. This could be combined with investor entry and exit
dynamics (which characterise f) and the result would contribute to the literature on dynamic
agent-based models.

The static nature of the current model precludes agents from learning about the structure
of skill in the market around them. In reality we would expect to observe behaviour of this
kind although it seems likely that the complexity and dynamic nature of market structure may
make it a tall order for agents to determine this with great accuracy. Similarly there is great
scope to extend the model into conventional frameworks of intertemporal portfolio choice.

In summary, we have presented a theoretical basis which we believe is a foundation for
considerable further study. Our aim has been neither to bury the Information Coefficient nor to
praise it, but to draw attention to its power and usefulness, provided it is properly understood.

A Proofs and Derivations

A.1 Derivations

A.1.1 Variances of actual and anticipated gains in (11) and (12)

σ2
Y = V ar(pt+1 − pt)

= V ar(pt+1) + V ar(pt)− 2Cov(pt+1, pt)

= σ2 + V σ2 − 2
J−1∑

i=0

δ(i)IC(i)2σ2

σ2
A(i) = V ar(IC(i)σS(i) − pt)

= V ar(IC(i)σS(i)) + V ar(pt)− 2Cov(IC(i)σS(i), pt)

= IC(i)2σ2 + V σ2 − 2Cov




J−1∑

j=0

δ(j)IC(j)σS(j), IC(i)σS(i)





= IC(i)2σ2 + V σ2 − 2
J−1∑

j=0

δ(j)IC(j)IC(i)φijσ
2

A.1.2 Extension from discrete number of types to a continuum of types

In the discrete case we begin with the function f (i) which denotes the proportion of the pop-
ulation of type i. This group of investors has skill IC(i). For the continuum case we take the
following approach: suppose that we represent the population of investors by the interval (0,∞]
of the real line and we denote by F the probability measure representing the proportions of
each type. F is defined over all subsets of (0,∞]. This measure has density f with respect
to Lebesgue measure and we will typically use f in further computations. Now we define the
precision function 1

1−IC2 (x) and risk aversion function λ(x) as positive measurable functions on
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(0,∞] and hence subjective variance σ̃2(x) ≡ σ2(1−IC2(x)) will also be a measurable function.
We now define the weighted harmonic mean risk-aversion variance product as

σ2 ≡




∞∫

0

f(x)
1

σ̃2(x)
dx




−1

> 0 (37)

and hence the δ density is obtained from:

δ(x) = f(x)
σ2

σ̃2(x)
(38)

where in fact σ2

σ̃2(x) is the Radon-Nikodym derivative of the ‘market-presence’ measure with
respect to the population headcount measure F . We denote by ∆ the ‘market-presence’ measure
itself, i.e.

∆(A) ≡
∫

A
δdm (39)

where m denotes Lebesgue measure.
We can now proceed to calculate integrals under the ‘market-presence’ measure. Formally

we shall use Lebesgue integrals although for the structures which we consider they will be
computationally equivalent to Riemann integrals. For example the mean value of IC2 under
the ‘market presence’ measure (with density δ) will be

Eδ

[
IC2

]
=

∫ ∞

0
IC2(x)δ(x)dx (40)

From one definition of the Lebesgue integral (see Billingsley (1995)) this can be thought of
as the following limit:

∫ ∞

0
IC2(x)δ(x)dx = lim

n

∑

|l|≤n2n

l − 1
2n

∆
[
x :

l − 1
2n

≤ IC2(x) <
l

2n

]
(41)

Very informally one can think of this as calculating the expected values of various quantities
by partitioning the population into increasingly finely-grained subsets. We group all investors
in each subset together and ‘label’ them with the IC2 value of the lowest member. For a given
level of granularity (represented by n) we compute the sum of these ‘labels’ weighted by the size
of the subset according to the market presence measure ∆. The value of the integral is then
the limit as the size of subsets is reduced.

Finally we note that ∆(x) = 0 when x ∈ (0,∞], or equivalently the set of investors such
that x is precisely equal to a given real number has measure zero.

A.2 Derivation of future wealth density

We derive the density of wealth function by application of standard change of variable methods
such as described by Billingsley (1995).

Recall that

W (i) = Y H(i) = Y
A(i)

λσ(i)2
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where we note that Y and H(i) are jointly normal with correlation coefficient RIC which we
denote by ρ. We first consider the joint density of (W (i), Y ). Invoking the transformation
method we have that (H(i), Y ) is bivariate normal with density denoted by f(H(i), Y ). We
define the one-to-one transformation ξ1 = W (i) = Y H(i) and ξ2 = Y and have that the joint
density of ξ1 and ξ2 is

g(ξ1, ξ2) = f

(
ξ1

ξ2
, ξ2

)
|J |

where

|J | = det

[
∂H(i)

∂ξ1
∂H(i)

∂ξ2
∂Y
∂ξ1

∂Y
∂ξ2

]

= det

[
1
Y −H(i)

Y

0 1

]

=
1
Y

is the Jacobian of the transformation. Hence we have

g(ξ1, ξ2) = f

(
W (i)

Y
, Y

)
1
Y

=
1

2π
√

1− ρ2σH(i)σY

1
Y

exp

[
− 1

2(1− ρ2)

(
W (i)2

σ2
H(i)Y 2

+
Y 2

σ2
Y

− 2ρW (i)

σH(i)σY

)]

=
e

ρW (i)

(1−ρ2)σ
H(i)σY

2π
√

1− ρ2σH(i)σY

1
Y

exp

[
− 1

2(1− ρ2)

(
W (i)2

σ2
H(i)Y 2

+
Y 2

σ2
Y

)]

Now we require the marginal density of W (i) which we obtain by integration over Y as follows:

g(W (i)) =
e

ρW (i)

(1−ρ2)σ
H(i)σY

2π
√

1− ρ2σH(i)σY

∞∫

−∞

1
Y

exp

[
− 1

2(1− ρ2)

(
W (i)2

σ2
H(i)Y 2

+
Y 2

σ2
Y

)]
dY

we achieve this by the substitution

τ =
Y 2

2σ2
Y (1− ρ2)

so we have

Y =
√

2τσY

√
1− ρ2

dY

dτ
=

1√
2τ

σY

√
1− ρ2
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hence

g(W 1(i)) =
e

ρW (i)

(1−ρ2)σ
H(i)σY

2π
√

1− ρ2σH(i)σY

∞∫

−∞

1
2τ

exp

[
−

(
W (i)2

4σ2
H(i)σ

2
Y (1− ρ2)2τ

+ τ

)]
dτ

=
e

ρW (i)

(1−ρ2)σ
H(i)σY

2π
√

1− ρ2σH(i)σY

∞∫

0

1
τ

exp

[
−

(
W (i)2

4σ2
H(i)σ

2
Y (1− ρ2)2τ

+ τ

)]
dτ

=
e

ρW (i)

(1−ρ2)σ
H(i)σY

π
√

1− ρ2σH(i)σY

K0

(
W (i)

σH(i)σY (1− ρ2)

)

where K0 (·) is the modified Bessel function of the third kind with imaginary argument and the
last step follows from

Kυ(z) =
1
2

∞∫

−∞

exp (−z cosh t− υt) dt

if we make the substitution 1
2zet = τ to obtain

Kυ(z) =
1
2

(
1
2
z

)υ
∞∫

0

exp
(
−τ − z2

4τ

)
dτ

τυ+1

as per Watson (1944, page 182-3).

A.3 Proofs of Section 3 Propositions

A.3.1 Proposition 3.1

Proof. (a) The proof of f (i) ≥ 0∀i ⇒ δ(i) ≥ 0∀i follows directly from (4) and (5). (b) To
prove δ(i) ≥ 0∀i ⇒ f (i) ≥ 0∀i we proceed by contradiction: suppose δ(i) ≥ 0∀i but ∃j : f (j) <

0 ⇒ σ2 < 0 ⇒ f (i) ≤ 0∀i (since δ(i) ≥ 0∀i)⇒
J−1∑
i=0

f (i) < 0 which contradicts the requirement

J−1∑
i=0

f (i) = 1.
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A.3.2 Realised Information Coefficient formula

Proof.

RIC(i) ≡ σA(i)Y

σA(i)σY

=
Cov(pt+1 − pt, IC(i)σS(i) − pt)

σA(i)σY

=
Cov(pt+1, IC(i)σS(i))− Cov(pt+1, pt)− Cov(pt, IC(i)σS(i)) + V σ2

σA(i)σY

=

IC(i)2σ2 −
J−1∑
j=0

δ(j)IC(j)2σ2 − Cov

(
J−1∑
j=0

δ(j)IC(j)σS(j), IC(i)σS(i)

)
+ V σ2

σA(i)σY

=
IC(i)2 −

J−1∑
j=0

δ(j)IC(j)2 −
J−1∑
j=0

δ(j)IC(j)IC(i)φij + V

√√√√
[
1 + V − 2

J−1∑
j=0

δ(j)IC(j)2

] [
IC(i)2 + V − 2

J−1∑
j=0

δ(j)IC(j)IC(i)φij

] (42)

A.3.3 Proposition 3.3

Proof.

RIC(i) =
IC(i)2 −

J−1∑
j=0

δ(j)IC(j)2 −
J−1∑
j=0

δ(j)IC(i)IC(j)φij + V

σY σA(i)

=
IC2 − JδIC2 − (J − 1)δIC2

J−1∑
j=0

φij − δIC2 + J(J − 1)δ2IC2
J−1∑
j=0

φij + Jδ2IC2

σY σA(i)

=
IC2 − IC2 − (J−1)

J IC2
J−1∑
j=0

φij − IC2

J + (J−1)
J IC2

J−1∑
j=0

φij + IC2

J

σY σA(i)

= 0

since δ(i) = δ = 1
J due to the assumption of equifrequent types with equal constant absolute

risk aversion.
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A.4 Proofs of Section 4 Propositions

A.4.1 Proposition 4.1

Proof. RIC Approximation: we know that V = δ(skilled)2IC(skilled)2, so we have

RIC =

√
IC2 − 2δ(skilled)IC2 + δ(skilled)2IC2

√
1 + δ(skilled)2IC2 − 2δ(skilled)IC2

= IC(skilled) (1− δ(skilled))√
1 + IC2δ(skilled)

[
δ(skilled) − 2

]

Furthermore we have
δ =

f

1− IC2(1− f)
(43)

Now we proceed by first order Taylor approximation around f = 0, differentiating with respect
to f . This is facilitated by noting that ∂RIC

∂f = ∂RIC
∂δ

∂δ
∂f and

∂δ

∂f
=

∂

∂f

[
f

1− IC2(1− f)

]

=
(1− IC2(1− f))− fIC2

(1− IC2(1− f))2

=
1

1− IC2
if f = 0

∂RIC

∂f
= IC

− ∂δ
∂f (1 + IC2δ(δ − 2))

1
2 − (1− δ)1

2(1 + IC2δ(δ − 2))−
1
2 (2IC2δ − 2IC2) ∂δ

∂f

1 + IC2δ(δ − 2)

= IC

[
− ∂δ

∂f
+ IC2 ∂δ

∂f

]
if f = 0

= IC

[
IC2 − 1
1− IC2

]

= −IC

Hence

RIC ≈ RIC(f = 0)− ICf

= IC(1− f)

A.4.2 Proposition 4.2

Proof. First we have some intermediate results. Since we have only one skilled type we use IC

and δ to represent skill level and market presence of that type in the derivation below; clearly
IC = 0 for the unskilled type and their market presence is given by 1− δ.
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Initially we recall (43) and hence

∂δ

∂IC
=

2IC

(1− IC2)
δ(1− δ) > 0

We now proceed to compute

σ2
A = σ2IC2 (1− δ)2

∂σ2
A

∂IC
= σ2

[
2IC(1− δ)2 − 2IC2(1− δ)

∂δ

∂IC

]

= σ2

[
2IC(1− δ)2 − 4IC3

1− IC2
δ(1− δ)2

]

and now the key argument:

∂
[
RIC2

]

∂IC
= 0

∂

∂IC

[
σ2

A

σ2
Y

]
= 0

∂

∂IC

[
σ2

A

σ2
A − σ2 (IC2 − 1)

]
= 0

[
σ2

A − σ2
(
IC2 − 1

)] ∂σ2
A

∂IC − σ2
A

[
∂σ2

A
∂IC − 2ICσ2

]

[
σ2

A − σ2 (IC2 − 1)
]2 = 0

∂σ2
A

∂IC

{
σ2

[
1− IC2

]
[
σ2

A − σ2 (IC2 − 1)
]2

}
+

2ICσ2σ2
A[

σ2
A − σ2 (IC2 − 1)

]2 = 0

∂σ2
A

∂IC
= −2

IC

1− IC2
σ2

A

2IC(1− δ)2 − 4IC3

1− IC2
δ(1− δ)2 = −2

IC3

1− IC2
(1− δ)2

(1− IC2)− 2IC2δ = −IC2

IC2δ =
1
2

fIC2

1− IC2(1− f)
=

1
2

1− IC2(1− f) = 2IC2f

IC2 =
1

1 + f

At this point we have

δ =
1 + f

2

1− δ =
1− f

2

1− IC2

IC2
=

1− 1
1+f

1
1+f

= f
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RICmax =

√
σ2

A

σ2
Y

=

√
IC2(1− δ)2

IC2(1− δ)2 − IC2 + 1

=

√
(1− δ)2

(1− δ)2 + (1−IC2)
IC2

=

√√√√√√

(
1−f

2

)2

(
1−f

2

)2
+ f

=
1− f

1 + f

Hence the turning point in RIC will come where IC = 1√
1+f

at which point RIC will be at its

maximum value of 1−f
1+f .

A.4.3 Proposition 4.3

Proof. We denote the unskilled and skilled types by the superscripts (0) and (1) respectively
(and hence IC(0) = 0).

RIC(0) =
IC(0)2 −

J−1∑
i=0

δ(i)IC(i)2 −
J−1∑
i=0

δ(i)IC(i)IC(0)φ0,1 + V

√[
1 + V − 2

J−1∑
i=0

δ(i)IC(i)2

] [
IC(0)2 + V − 2

J−1∑
i=0

δ(i)IC(i)IC(0)φ0,1

]

=
−δ(1)IC(1)2 + δ(1)2IC(1)2

√[
1 + δ(1)2IC(1)2 − 2δ(1)IC(1)2

] [
δ(1)2IC(1)2

]

= −IC(1)

(
1− δ(1)

)
√

1 + IC(1)2δ(1)
[
δ(1) − 2

]

= −RIC(1) (44)

A.4.4 Proposition 4.4

Proof. We require a simple functional form which we can impose on φij such that we ensure
positive definiteness of the overall matrix of forecasts and prices (pt+1, S

(i)
t )i∈[0,J−1] which we

denote by Γ.

Γ =





σ2 IC(0)σ IC(1)σ ... IC(J−1)σ

IC(0)σ 1 φ0,1 ... φ0,J−1

IC(1)σ φ1,0 1 ... φ1,J−1

... ... ... ... ...

IC(J−1)σ φJ−1,0 φJ−1,1 ... 1




(45)

41



From Kreindler and Jameson (1972) the condition for positive definiteness can equivalently be
stated as requiring positive definiteness of:




1 φ0,1 ... φ0,J−1

φJ−1,0 1 ... φ1,J−1

... ... ... ...

φJ−1,0 φJ−1,1 ... 1




−





IC(0)2 IC(0)IC(1) ... IC(0)IC(J−1)

IC(1)IC(0) IC(1)2 ... IC(1)IC(J−1)

... ... ... ...

IC(J−1)IC(0) IC(J−1)IC(1) ... IC(J−1)2




(46)

=





1− IC(0)2 φ0,1 − IC(0)IC(1) ... φ0,J−1 − IC(0)IC(J−1)

φ1,0 − IC(1)IC(0) 1− IC(1)2 ... φ1,J−1 − IC(1)IC(J−1)

... ... ... ...

φJ−1,0 − IC(J−1)IC(0) φJ−1,1 − IC(J−1)IC(1) ... 1− IC(J−1)2




(47)

(Alternatively this condition can be thought of as checking positive definiteness in the condi-
tional covariance matrix of individual scores given the actual asset price, which is what the
above matrix is).

Now suppose we set φ as follows:

φij = kIC(i)IC(j) where i += j (48)

φij = 1 where i = j (49)

Then we require positive definiteness of




1− IC(0)2 (k − 1)IC(0)IC(1) ... (k − 1)IC(0)IC(J−1)

(k − 1)IC(1)IC(0) 1− IC(1)2 ... (k − 1)IC(1)IC(J−1)

... ... ... ...

(k − 1)IC(J−1)IC(0) (k − 1)IC(J−1)IC(1) ... 1− IC(J−1)2




(50)

Which can be written as an outer product plus a diagonal matrix as follows:

(k − 1)





IC(0)

IC(1)

...

IC(J−1)





[
IC(0) IC(1) ... IC(J−1)

]

+





1− kIC(0)2 0 ... 0
0 1− kIC(1)2 ... 0
... ... ... ...

0 0 ... 1− kIC(J−1)2





A sufficient condition for positive definiteness is therefore:

1 < k <
1

IC2
max

(51)

where IC2
max denotes the largest IC value in the population.
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A.4.5 Proposition 4.5

We recall the definition of δ for the discrete case from (4) and (5) and use the following approach
for a continuum of types (see A.1.2 for further clarification):

Proof.

δ(π) =
π

Ef [π]
f(π) (52)

=
s− 1

s

1− π−s
max

1− π1−s
max

s

1− π−s
max

π−s (53)

=
(s− 1)

1− π1−s
max

π−s ; 1 ≤ π < πmax (54)

A.4.6 Proposition 4.6

Proof.

Eδ

[
IC2

]
=

πmax∫

1

(
1− 1

π

)
δ(π)dπ

=
(s− 1)

1− π1−s
max

πmax∫

1

(
π−s − π−s−1

)
dπ

=
(s− 1)

1− π1−s
max

[
1

1− s
π1−s +

1
s
π−s

]πmax

1

=
(s− 1)

1− π1−s
max

[
1

s− 1
− 1

s
+

1
1− s

π1−s
max +

1
s
π−s

max

]

=
1

1− π1−s
max

[
1
s
− π1−s

max +
s− 1

s
π−s

max

]

=
1

1− π1−s
max

[
1
s

(
1− π−s

max

)
− π−s

max (πmax − 1)
]

→ 1
s

as πmax →∞

A.4.7 Variance Components

In the discrete types case we have to evaluate summations of the form

J−1∑

j=0

δ(i)IC(i)IC(j)φij
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where IC(i) is fixed. If we impose the correlation structure φij = kIC(i)IC(j) then the equivalent
continuum form of the summation is

Eδ

[
IC(i)ICφij

]

= kIC(i)2Eδ

[
IC2

]

and also, by a similar method, the continuum version of V (the Variance Factor of equilibrium
prices) becomes

V =
πmax∫

1

πmax∫

1

IC(π1)IC(π2)φ(π1, π2)δ(π1)δ(π2)dπ1dπ2

= k

πmax∫

1

πmax∫

1

(
1− 1

π1

) (
1− 1

π2

)
δ(π1)δ(π2)dπ1dπ2

= k
(
Eδ

[
IC2

])2

where we use π1 and π2 to denote the two identical ranges of precision over which we double
integrate. As explained in A.1.2 the set of investors where π1 = π2 has measure zero. Hence in
the continuum we always integrate over cases analogous to those in the discrete case where we
have i += j and φij = kIC(i)IC(j); this results in the simple expressions above.

A.4.8 Corollary 4.9

Proof.

RIC =

[
IC2 − IC2

] [
1− kIC2

]

√[
1− IC2

(
2− kIC2

)] [
IC2

(
1− 2kIC2

)
+ kIC2IC2

]

=
IC2 − IC2

√
IC2 + k IC2IC2

1−2kIC2

[
1− kIC2

]

√[
1− IC2

(
2− kIC2

)] (
1− 2kIC2

)

θRIC =
IC2 − IC2

√
IC2 + k IC2IC2

1−2kIC2

θ2RIC2 =
IC4 − 2IC2IC2 +

(
IC2

)2

IC2 + k IC2IC2

1−2kIC2

where

θ2 =

[
1− IC2

(
2− kIC2

)] (
1− 2kIC2

)

[
1− kIC2

]2
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Now

IC4 − IC2
(
2IC2 + θ2RIC2

)
+

(
IC2

)2
− k

(
IC2IC2

1− 2kIC2

)
θ2RIC2 = 0

We now apply the quadratic formula to determine IC2 as a function of RIC. We must be
careful here to distinguish between two cases: RIC ≤ 0 and RIC > 0. These correspond,
respectively, to the cases IC2 ≤ IC2 and IC2 > IC2 and the appropriate IC2 functions are
given for each case by choosing the appropriate sign in the quadratic formula (i.e. selecting
the appropriate root). By judicious rearrangement, however, we can exploit the fact that the
relevant sign is also the sign of RIC itself, and so IC2 can be stated in a convenient format as
shown below:

IC2 =
2IC2 + θ2RIC2 ±

√
4IC2θ2RIC2 + θ4RIC4 + 4k

(
IC2IC2

1−2kIC2

)
θ2RIC2

2

IC2 = IC2 +
1
2
θ2RIC2 + θRIC

√√√√1
4
θ2RIC2 + IC2

(
1− kIC2

1− 2kIC2

)

A.4.9 Proposition 4.10

Proof. We apply the standard change of variable method as described by Billingsley (1995).

fIC2(IC2) = f(π)
∂

∂IC2

[
1

1− IC2

]

=
s

1− π−s
max

(
1

1− IC2

)−(s+1) [
1

1− IC2

]2

=
s

1− π−s
max

(
1

1− IC2

)−s+1

; 0 ≤ IC2 < IC2
max

A.4.10 Proposition 4.11

Proof. We follow the same method as in Proposition 4.10 above. For this we require IC2 as a
function of RIC, which is provided by Corollary 4.9, and also the derivative of this function
with respect to RIC which we obtain as follows:

∂IC2(RIC)
∂RIC

= θ2RIC + θ

√√√√1
4
θ2RIC2 + IC2

(
1− kIC2

1− 2kIC2

)
+

1
4θ3RIC2

√
1
4θ2RIC2 + IC2

(
1−kIC2

1−2kIC2

)
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It is now straightforward to compute the density as the product:

fRIC(RIC) = fIC2

[
IC2(RIC)

] ∂IC2(RIC)
∂RIC

A.4.11 Proposition 4.12

Proof.

fIC(IC) = fIC2(IC2)
∂

∂IC
IC2

=
2s

1− π−s
max

(
1

1− IC2

)−s+1

IC ; 0 ≤ IC < ICmax

A.4.12 Proposition 4.13

Proof.

fIC(IC) =
2s

1− π−s
max

(
1

1− IC2

)−s+1

IC ; 0 ≤ IC < ICmax

For the mode we require:

∂fIC(IC)
∂IC

= 0

2s

1− π−s
max

(
1

1− IC2
mode

)−s+1

+
2s

1− π−s
max

ICmode(s− 1)
(

1
1− IC2

mode

)2−s

(−2ICmode) = 0

1− 2IC2
mode(s− 1)

(
1

1− IC2
mode

)
= 0

1− IC2
mode = 2(s− 1)IC2

mode

ICmode =
1√

2s− 1
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