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Abstract 

Weather Factors and Performance of Network 
Utilities: A Methodology and Application to 
Electricity Distribution 

EPRG Working Paper    1020 

Cambridge Working Paper in Economics  1042 

Tooraj Jamasb, Luis Orea, Michael G. Pollitt  

 

Incentive regulation and efficiency analysis of network utilities often 

need to take the effect of important external factors, such as the weather 

conditions, into account. This paper presents a method for estimating 

the effect of weather conditions on the costs of electricity distribution 

networks using parametric techniques. It examines whether the use of 

popular statistical variable reduction techniques is conceptually and 

econometrically sound for analyzing the effect of weather on the network 

costs. In this paper we estimate cost functions with the whole set of 

weather variables, identifying, when necessary, a subset of variables 

that can accurately reflect the effects of weather conditions. We show 

that weather conditions significantly affect distribution costs and the 

absence of weather variables has a downward biased impact on the 

effect of quality on costs. Also, the performance of statistical weather 

composites to capture this effect is poor. Finally, we show that there is a 

distinction between the effects of persistent and time varying weather 

conditions. 

Keywords Electricity distribution cost, separability, weather composites, 

instrumental variable estimator. 
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1. Introduction  

 

In efficiency analysis and incentive regulation of utilities it is desirable to control 
for the effect of differences in environmental factors, such as the weather and 
geography, on their performance. This is particularly important in the case of 
incentive regulation and benchmarking of electricity networks where the results 
of efficiency analysis have important financial implications for the firms. As Yu et 
al. (2009a) pointed out severe weather conditions tend to increase service 
interruptions (Coelho et al., 2003; Domijan et al. 2003) and hence the corrective 
costs associated with replacing the damaged equipment and restoring power. At 
the same time, over time utilities may adapt their operating and investment 
practices to prevent power interruptions and to reduce the effect of these.  
 
However, taking the effect of weather or other multi-faceted environmental 
settings on the cost and quality of services into account is a challenging task as 
they either consist of a large and varied number of factors with complex 
interactions or it is difficult to formulate hypotheses with respect to the effect of 
weather conditions on their performance. Previous studies have used 
explanatory factor analysis (EFA) or principal components analysis (PCA) to 
reduce the number of weather factors into a small number of variables for 
further analysis. As the use of statistical variable reduction techniques is 
increasingly popular in production and efficiency economics (e.g. Nieswand et al., 
2009; Adler and Ekaterina, 2010; Zhu, 1998), we provide a comprehensive 
analysis of the theoretical implications of using composites and the endogeneity 
issues that envelop their use in analyzing the effect of climate on electricity 
distribution.1 
 
This paper extends the limited literature on the relationship between weather, 
costs, and service quality in electricity distribution networks (e.g. Nillesen and 
Pollitt, 2010) by testing whether weather conditions have had a significant effect 
on UK network costs using parametric techniques. To achieve this objective we 
utilize the same data as in Yu et al. (2009a) on UK electricity distribution 
companies, and identify, by testing hypotheses about individual and joint 
significance of the weather parameter estimates, a subset of variables that by 
and large reflect the effects of the weather conditions. This is a feasible as our 
dataset only includes nine weather variables. This short set of weather variables 
allows us, in addition, to test econometrically the theoretical restrictions that 
justify the use of weather composites. 
 

The primary contribution of the paper is to show that PCA and EFA techniques 
are generally not appropriate to properly model the impact of weather, or 
similar explanatory factors, on economic costs. In addition, we show a 
statistically significant effect of weather on costs that weather composites are 

                                                 
1 This analysis extends the literature that, using simple linear models and assuming that all 
explanatory variables are exogenous, and discusses the econometric implications of using ridge 
and principal component regression as a way for coping with multi-collinearity problems (see, 
e.g., Jolliffe, 1982; Fomby et al., 1984; Green, 2008). 
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not able to capture adequately. Moreover, the absence of weather variables 
causes a downward biased impact for the effect of service quality on costs. 
Finally, we show that there is a distinction between the effects of persistent and 
time varying weather conditions. 
 
Section 2 discusses several theoretical and econometrical issues regarding the 
effect of weather on network costs and quality of service and also describes the 
models used in the study. Section 3 explains the data and variables used in the 
empirical exercise. Section 4 presents the parameter estimates using different 
specifications and estimators. Section 5 summarizes the results, and presents the 
main methodological and practical conclusions. 
 

2. Electricity Distribution Networks: Costs, Quality, Weather, and 

Method Issues  

 

2.1. Test for the existence of weather composites 

As likely cost drivers, weather factors should be included among the 
determinants of the performance of electricity distribution costs. Given a vector 
of weather variables the cost function to be estimated is: 

   KwwwwwpqyCC ,...,,,,,, 21       (1) 

where y stands for some measure of output (e.g., energy delivered or network 
length), p stands for input prices, q is a measure of service quality, and 
w=(w1,w2,…,wK) is the full set of available weather variables. We assume that w 
contain all the relevant information to model the effect of weather, as a complex 
meteorological phenomenon, on distribution costs. This specification of the cost 
function allows us to study the effect of weather conditions on cost, the 
technology and its characteristics (e.g., scale economies).2 
 
The number of factors comprising the weather phenomena might be large and, in 
principle, all could be included in the cost function. However, a complete 
disaggregation of the weather vector can be prohibitive due to the number of 
parameters that would have to be econometrically estimated. In order to address 
this difficulty, researchers often use a two-stage approach. First, they aggregate 
the weather variables into a few composite (i.e. aggregated) weather measures. 
Second, they then plug the composites into the cost function in a second stage 
analysis. The two-stage approach implies replacing the vectors of separate each 
weather variables with, say, an aggregate weather measure, g(w1,w2,…,wK), and 
estimate the following cost function:3  

                                                 
2 When a cost frontier approach is used, the weather variables can be included as determinants of 
the efficiency level of electricity distribution companies instead of as determinants of the cost 
frontier. In practice, any of these two strategies to incorporate weather conditions into the model 
usually yield similar results as shown in the empirical section. 
3 We have simplified the model for for notational ease. In practice, the explanatory factor analysis 
and principal components allow for more than one composite. Moreover, they may chose the 
“optimal” number of composites using statistical tests. 
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  KwwwgpqyCC ,...,,,,, 21        (2) 

As the aggregate is independent of the levels of the variables that are outside of 
it, it implies that the marginal rate of “transformation” (MRT) between any two 
weather variables is:4 
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It is worthy to note that (3) in turn implies that: 
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Equations (3) and (4) indicate that cost function (1) is separable in the sense that 
the MRT between any two weather variables only depend on the variables within 
the composite – i.e. the MRTs do not change with other cost drivers. Therefore, a 
necessary condition for the existence of a consistent weather composite is the 
separability of the elements within the aggregate from those outside the 
aggregate.5 Thus, the test for the existence of weather composite is a test for 
separability, and this property can be tested econometrically. If no consistent 
weather aggregate is found, then the use of weather composites in estimation of 
the electricity distribution technology may well be subject to specification errors. 
 
Next, we develop specific tests for weather aggregation using a quadratic cost 
function that can be interpreted as a second-order approximation (in levels) to 
the companies’ underlying cost function.6 This cost function can be written as:  
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 (5a) 

 
where for notational ease we assume one measure of output, one measure of 
service quality, one input price, and that weather can be represented only by two 
weather variables, i.e. w1 and w2. A convenient way to compress the above cost 
function is:  
 

),,,,(),(),,( 2121 wwpqymwwgpqyQC      (5b) 

                                                 
4 Here we apply the concept of “transformation” to weather variables and hence its 
interpretation is slightly different than in the output framework where this concept is standard. 
5  For a general discussion see Denny and Fuss (1977) and Fuss and Waverman (1981).  
6 For separability tests using translog cost functions, see Kim (1986). 
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where Q(y,q,p) is a quadratic function of non-weather variables, g(w1,w2) is a 
quadratic function of individual weather variables, and m(y,q,p,w1,w2) captures 
the interactions between weather and non-weather variables. 
 
The question here is whether we can replace, from a theoretical point of view, w1 
and w2 by a composite variable. The marginal rate of transformation between the 
two individual weather variables can be written using (5a) as: 
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The separability property implies the following restrictions: 
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These constraints are necessary conditions for the existence of a consistent 
weather aggregate. However, imposing these constraints requires introducing 
non-linearities into the estimation of the cost function that are considerably 
more difficult to estimate. As a result, and following Kim (1986), we propose 
testing sufficient conditions for separability instead of testing necessary 
conditions. Unlike the necessary conditions, sufficient conditions do not require 
introducing non-linearities into the estimation of the cost function, and can be 
easily tested using simple likelihood ratio and Wald tests.  
 
Kim (1986) suggested testing that all parameters in m(y,q,p,w1,w2) are 
simultaneously equal to zero. That is, the null hypothesis to be tested is: 
 

0: 2121210  ppqqyyH        (8) 

The marginal rates of transformation in (6) do not depend in this case on non-
weather variables and the quadratic cost function becomes: 
 

),(),,( 21 wwgpqyQC          (9) 

In addition to (8), another sufficient condition can be tested in the context of a 
quadratic cost function. Here the sufficient condition is that all weather variables 
share the same parameters, that is: 
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In this case, the marginal rates of transformation (6) become: 
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and the quadratic cost function (5a) can be written as: 
 

 pWqWyWWWpqyQC pqy   2
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1),,(    (12) 

where W= w1+w2 can be interpreted as a theoretically-based weather composite. 
However, the existence of such a composite is highly unlikely as it implies that all 
weather variables have the same effect on companies’ costs.7 The first set of 
sufficient conditions in (8) do not allow marginal costs to vary with weather, but 
they allow each weather variable to have a different effect on companies’ costs. 

This is the case in explanatory and principal components analysis, as each 
individual variable might receive a different weight. 
 
In summary, if we cannot reject separability using either (8) or (10) we can 
conclude that using composite weather variables to control for the effect of 
weather conditions on costs or quality is, at least, acceptable from a theoretical 
point of view. 
 

2.2. Exact vs. statistical weather composites 

The previous section suggests that, in theory, we can analyze the weather effect 
in two steps, viz., first, aggregating all weather variables into a few composite 
(i.e. aggregated) weather variables, and then including these among the 
explanatory variables of costs. Another issue is whether the procedure to 
aggregate individual weather variables allows us to capture the real effect of 
weather and/or to get consistent parameter estimates.  
 
The theory of index numbers has shown that the appropriate functional form of 
the aggregate depends on how weather enters into the cost function, which in 
turns depends on the characteristics of the technology. According to this theory, 
there is only one appropriate aggregate or index for each technology. This index 
is termed as “exact” for that technology using the terminology coined by Diewert 
(1974). For instance, for a quadratic cost function that satisfies the sufficient 
conditions for separability in (8), the exact or appropriate weather composite is 
the quadratic function of individual weather variables in (13):  
 

                                                 
7
 This is the reason they receive the same weight (i.e. equal to one) in the composite. 
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If the underlying cost function is quadratic, the individual weather variables 
appear alone and interacting each other. These interactions might be capturing 
the complexity of weather as a meteorological multifaceted phenomenon. It 
should be noted that, if the number of individual weather variables is relatively 
large, estimating a quadratic function of all individual weather variables might 
not be feasible due to the large number of parameters to be estimated. Hence, an 
interesting issue here is whether the aggregates should be complex functions 
encompassing all factors, or, although weather is a complex phenomenon, they 
can be obtained by a simple addition of a subset of weather factors. If the 
number of individual weather variables is relatively small, this issue can be 
analyzed by testing whether the second-order parameters in (13) are 
simultaneously equal to zero.  
 
As mentioned above, previous studies have used statistical techniques, such as 
EFA and PCA to construct composite weather measures from individual weather 
variables. In practice, this approach implies replacing the exact weather 
composite g(w1,w2) by a statistical weather composite h(w1,w2), and estimate a 
cost function of the type as in (14):  
 

 ),(),,( 21 wwhpqyQC        (14) 

where  is the random noise term. A measurement error might appear either 
because g(w1,w2) and h(w1,w2) have different functional forms or, sharing the 
same functional form, they use different weights for each variable. Regarding the 
first source of measurement errors, these might appear if we reject that g(w1,w2) 
is linear and we still use EFA and PCA weather composites, which are linear 
functions of specific weather variables. For this reason, it is convenient to test 
whether the second-order parameters in (13) are simultaneously equal to zero. 
 
In order to shed light on the nature of the second source of measurement errors 
attributed to different weights in linear composites, let us assume that the 
theoretically consistent (i.e. exact) weather composite is a linear function of w1 
and w2 as in (15): 
 

221121 ),( wwwwg          (15) 

Note that the coefficients of both observed variables, 1 and 2, capture the 
theoretical effect of each variable on distribution costs. From a theoretical point 
of view, this effect does not rely on how w1 and w2 are statistically distributed, 
how large their variances are, or whether they are highly correlated or not.  
 
Next we summarize the conceptual framework of EFA and PCA. These statistical 
methods are widely used in the social sciences to compress a set of observed 
variables into few unobserved composite (aggregate) variables called ‘factors’. 
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Computationally, there are not many differences between both methods.8 
However, while the PCA is a descriptive technique that does not assume an 
underlying statistical model, the EFA assumes a statistical framework that 
incorporates a number of assumptions about the data generation process.  
 
The PCA method only aims to explain the (total) variation in all the observed 
variables with a fewer number of composite variables. The most that is hoped for 
is that a few composites will provide a good summary of the observed variables. 
In practice, the weights of each observed variable in the composite are simple 
multiplies of the so-called factor loadings. In this case, the statistical PCA weather 
composite h(w1,w2) can be written as in (16): 
 

221121 ),( wwwwh          (16) 

The statistical nature of PCA has two important theoretical implications. First, 
this technique does not employ external information to construct aggregate 
composites, e.g. to compute weather composites it only uses weather variables. 
This is, of course, a virtue and explains the popularity of PCA in previous 
research. However, as the composite is obtained without regard to a specific 
application, the technique does not choose the weight that individual variable 
receives in the composite on the basis of any theoretical relationship between 
weather variables and costs. This implies that the statistical approach may not 
capture the real effect of weather conditions on companies’ costs, or that the 
composite might capture the real effect by chance. For instance, as PCA tend to 
maximize the variance of the set of observed variables, w1 might receive a large 
weight (i.e. 1>2) because it has the largest variance. However, the theoretical 
effect of this observed variable may be quite smaller than the other observed 
variable (i.e. 1<2). This type of error might explain the fact that no clear 
relationships are obtained in previous studies using weather composites. 
 
Similar points also apply to the use of EFA although it has more theoretical 
implications. The basic principle in EFA is that variation on observed variables 
can be attributed to variation on common factors (that affect more than one 
observed variable) and/or specific factors (that only influence one observed 
variable). In other words, the total variance of observed variables can be 
partitioned into common variance and unique variance. While PCA aims to 
explain the variation in all the observed variables, EFA only aims to explain the 
correlations, so variables with small correlation with common factors contribute 
to the composite even less than in PCA. The larger loading factors are multiplied 
by a larger amount and the differences between weights are accentuated. In this 
case, compared to the PCA, the observed variables with a higher correlation with 
common factors tend to receive larger weights in the EFA. This means that, in 

                                                 
8 A detailed discussion of the statistical pros and cons of each method is beyond the scope of this 
paper. It suffices to note that there is no consensus among statistical theorists as to what 
conditions should determine the use of EFA or PCA. However, PCA is often preferred as a method 
for data reduction, while EFA is often preferred when the goal of the analysis is to detect 
structure. For this reason, some statistical scholars prefer EFA to PCA (Bentler et al., 1990; 
Gorsuch, 1990; Widaman, 1990), while others prefer the latter (Arrindell et al., 1985; Steiger, 
1990; Velicer et al., 1990). Moreover, some argue that the difference between the two techniques 
is negligible (see, e.g., Velicer et al., 1990). 
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extreme cases, the composite may be almost a linear function of a single variable 
with weights for other variables close to zero. In summary, EFA can address 
measurement error problems, but we are likely to add a new source of bias as it 
ignores specific factors when computing composites.  
 

2.3. Weather and endogeneity issues 

An additional issue is the presence of endogeneity problems when estimating 
costs functions using a particular weather composite. Since weather conditions 
might be correlated with other cost explanatory variables, the question is 
whether the composites produce consistent estimates of the parameters of other 
relevant variables. In this sense, special attention must be given to the 
parameters of the marginal cost of quality improvements due to quality of 
service measures, such as number of costumer minutes lost, are likely to be 
endogenous as adverse weather conditions tend to increase costs but can also 
lower quality services.  
 
This case is presented in Figure 1 where we assume separability and draw two 
hypothetical cost functions, one for good weather and other for bad weather. 
According to (9), the vertical distance between these cost functions is by 
construction equal to g(w1,w2). If the random data generation process behind 
service quality were completely independent of weather, we would have 
observations along both cost functions. However, bad weather conditions tend to 
reduce service quality. As shown in Figure 1, this implies that most observations 
with bad weather are associated with low quality levels, and most observations 
with good weather are associated with high levels of quality. As shown in the 
figure, estimating a cost function without weather variables would yield 
downward biased parameter estimates for the coefficient associated with service 
quality. Obviously, given weather information we would be able to estimate the 
effect of weather on cost, i.e. g(w1,w2), this bias would disappear as the estimated 
g(w1,w2) allows us to distinguish the two cost functions in Figure 1.  
 
Using again a simple framework, we next shed light on the existence of 
endogeneity problems when weather composites are used as proxies for 
g(w1,w2). First, let us assume again separability and rewrite the cost equation 
(14) as in (17): 
 

vwwhwwgwwhpqyQC  ),(),(,),(),,( 212121    (17) 

where v is a noise term with zero mean and not correlated with any of the 
explanatory variables. Second, we assume that both exact and statistical 
composites are linear functions of w1 and w2, as in (18): 
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Figure 1. Service quality and weather 

 

For simplicity we assume that the sum of all coefficients is equal to one. In order 
to distinguish one composite from the other we swap the weight of the individual 
weather variables. This is a simple way to characterize that h(w1,w2) measures 
with error the real effect of weather on costs, measured by g(w1,w2). Thus, if 
>0.5, the statistical composite underestimates the effect of the first weather 
variable and overestimates the second. Only when =0.5, the statistical 
composite would yield the same results as the exact composite, and the 
measurement errors would disappear.  
 
If we assume that exact and statistical composites are the linear functions in 
(18), we can rewrite the overall error term in (17) as in (19): 
 

vww  21 )21()12(        (19) 

The issue here is whether quality of service measures (such as number of 
costumer minutes lost) are still endogenous variables, that is, whether 
cov(q,)≠0. If, for simplicity we also assume that the expected values of q, w1 and 
w2 are zero, the overall random term  has also zero mean, and hence 
endogeneity implies E(q)≠0. From (19) this expectation can be written as in 
(20): 
 

)()21()()12()( 21 wqEwqEqE       (20) 

Equation (20) shows that a sufficient condition for E(q) to be zero is that 
=1/2, i.e. the statistical composite coincides with the exact composite. So, in this 
case, not only we are capturing the effect of weather on costs correctly, but also 
the parameter of quality of service is estimated consistently. This result suggests 
that we can avoid the endogeneity problem associated with weather conditions 
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using an appropriate weather composite. If =1 or =0, the above expectation is 
equal to the difference between E(qw1) and E(qw2), or vice versa. Therefore, if 
quality of service is equally correlated with both individual weather variables, 
the endogeneity problem again vanishes. However, this situation might be quite 
improbable in practice as the nature, frequency and service restoration 
strategies of utilities can be different when they are caused by, say, thunder or 
extremely low temperatures. Therefore, we would still expect the presence of 
endogeneity when statistical composites are used.9 
 
The above paragraph refers to instances where researchers have weather data 
available. However, weather data is often not available, or is costly to collect and 
prepare. In order to estimate consistently the parameters of the cost function in 
these situations, an appropriate instrumental variables (IV) estimator that 
allows us to handle the endogeneity of the quality variable can be used. As is 
often the case, the main issue using the IV estimator is to find suitable 
instruments. 
 
When information on weather conditions is not available, the effect on cost of 
bad weather is an unobservable variable. If we assume separability between bad 
weather (wit) and the rest of explanatory variables (here qit), the model to be 
estimated can be written as in (21): 
 

ititititititit v)q(Cv)w(g)q(CC      (21) 

where, qit is a measure of service quality, wit is a measure of bad weather, and vit 
is the noise term not correlated with any of the explanatory variables. For 
notational ease we exclude from the cost function other relevant variables such 
as output level, network length and input prices. The overall effect of bad 
weather on cost, it, can in turn be decomposed into a fixed or time-invariant 
weather effect, i, and a time-varying weather effect, dit=it-i. While the first 
effect can be interpreted as the persistent (i.e. average) weather conditions in 
the region where a particular company is located, the second can be interpreted 
as temporal deviations from this average. In this case, we can rewrite equation 
(21) as in (22): 
 

ititiitit vd)q(CC         (22) 

The quality variable in (22) may be correlated with both time-invariant and 
time-varying weather effects. If the fixed component of weather effect is 
correlated with the quality variable, i.e. cov(qit,i)0, the best strategy to 
instrument the endogenous variable qit is to use the differences of this variable 
as instruments.10 If the endogenous variables are also correlated with the time-
                                                 
9 Another obvious source of endogeneity is the presence of interaction terms ignored by the 
econometrician when assuming separability is wrong. If we wrongly assume separability and 
estimate (9) using a weather composite, the interactions between weather and non-weather 
variables, i.e. m(y,q,p,w1,w2) are captured by the random term. As all variables simultaneously 
appear in both the deterministic and stochastic parts of the cost equation, most explanatory 

variables are likely to be correlated with the random term. 
10 Indeed, a standard result in panel data models is that first-differences of the endogenous 
variables can be used as valid instruments for the equation (23). See, e.g., Arellano and Bover 
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varying weather component, i.e. cov(qit,dit) 0, we should use lagged, instead of 
contemporaneous, first-differences of the endogenous variables as instruments. 
Another possibility is to use the Fixed Effect (FE) estimator or taking first 
differences in (22) to drop the fixed-effect from the equation, and use lagged 
values of the quality variable as instrument in case this variable is correlated 
with the time-varying weather component. This approach suffers from some 
disadvantages in the present application as the instruments tend to be weak 
when individual variables are highly persistent (see Blundell et al., 2000), and 
the coefficients of persistent variables usually become statistically insignificant 
as their effects are captured by the fixed effects. 
 

3. Data and Sample 

 

We utilize the same dataset as in Yu et al. (2009a) on 12 distribution companies 
in the UK for the 1995/96 to 2002/03 period as we also intend to compare our 
results using parametric techniques with their results using a non-parametric 
approach. This has conditioned the output vs. input orientation, the cost 
definition, and the selection of outputs and inputs. The monetary and physical 
data for the inputs and outputs are based on publications and information from 
Ofgem. The data on service quality is mainly based on information from the 
annual Electricity Distribution Quality of Service Report published by the Office 
of Gas and Electricity Markets (Ofgem). The weather data were obtained from 
the UK Meteorological office for most observation stations. All monetary 
variables are expressed in 2003 real terms.  
 

3.1. Variables 

We estimate a cost function that resembles that of the input-oriented model used 
in Yu et al. (2009a). Following their specification, our dependent variable is the 
sum of operational and capital expenditures (Totex), and the costs of network 
energy losses, also used as input in Yu et al. (2009a).11 The latter costs have been 
calculated by multiplying energy losses by the average industrial electricity 
price. Hence, our dependent variable includes both explicit costs (i.e. Totex) and 
implicit costs (i.e. the opportunity cost of network energy losses).12  
 
Customer numbers (CUST) and units of energy delivered (ENGY) are the most 
commonly used outputs in benchmarking of distribution network utilities 
(Giannakis et al., 2005; and Yu et al. 2009a, 2009b). These outputs are important 
                                                                                                                                            
(1985), Blundell and Bond (1998), and Bond (2000). It should be noted, however, that these 
papers addressed similar endogeneity problems in dynamic (i.e. autoregressive) panel data 
models, which are much more complex than those estimated in our application. 
11 Capital expenditures refer to actual investments in a given year. Yu et al. (2009a) employed 
this cost definition to replicate the regulator’s benchmarking model as closely as possible. Ofgem 
used this measure of Capex to avoid issues that follow attempts to valuation of stock of capital 
and calculation of its opportunity cost. 
12 As we are estimating a total cost function, we allow firms to manage operational (Opex) and 
capital (Capex) expenditures to minimize the cost effect of weather. The differential effect of 
weather on Capex and Opex, and on input mix, is the subject of another parallel paper that tries 
to distinguish between corrective and preventive costs. 
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cost drivers and influence the pricing of distribution services. Given that the 
statistical correlation between these two outputs is large (over 97%), we only 
present our parameter estimates using ENGY as a unique output.13 There is less 
consensus on using network length (NETL) as an explanatory variable for costs. 
We include the network length to reflect the size of the service area as has been 
used (as an output) by Ofgem. 
 
We use customer minutes lost (CML) as a quality attribute of output; a reduction 
in which is regarded as desirable. However, improving service quality is costly. 
Therefore, we expect a negative effect from quality service variable on costs. Yu 
et al. (2009b) treated the social cost of customer minutes lost as a cost to be 
minimized together with private costs.14 We do not add these social costs to our 
private costs, but include customer minutes lost as a determinant of private 
costs. This allows us to obtain a measure of private marginal costs of quality 
improvements. In order to include customer minutes lost in our models, we 
multiply the per-customer values by the number of customers, to make the 
variable scalable and include it as a determinant of costs. 
 
We use average industrial electricity price (EPR) as the price for network energy 
losses. Unfortunately input price data for operating and capital inputs is not 
available. By convention many studies using non-parametric techniques use 
unity as the price of operating and capital inputs. If we followed the same 
strategy in a parametric framework (i.e. including invariant input prices), we 
would not able to distinguish their effect from those of other explanatory 
variables. In general, we expect that the price effect of operational and capital 
inputs is captured by the constant term and the observed price included in the 
cost function (i.e. the price for energy losses) as many industrial prices tend to 
behave similarly over time. Regardless, distinguishing among these effects is not 
a crucial issue for this paper and we focus on the effect of weather variables. 
 
As weather conditions can have a significant impact on electricity distribution 
costs, we utilize the weather data used by Yu et al. (2009a) for each company. We 
use the average values of measurements from two weather stations in the 
service area of each firm. All yearly weather data is used in order to make 
maximum use of the information available for each company. We use data on 
nine weather variables: minimum and maximum air temperature, total rainfall, 
the number of days when minimum air, grass and concrete temperatures were 
below zero degrees, and the number of days with heavy hail, heard thunder and 
strong wind. Other than temperatures, which are expressed in degrees Celsius, 
and rainfall in mm, the remaining variables are in number of days per year. 
 

                                                 
13 We also carried out our empirical exercise using CUST as output, and obtained quite similar 
results. The specification of the cost function that uses the energy delivered as output appears 
more appropriate as our dependent variable includes the cost of energy losses. Given that energy 
delivered is the product of customer number times per capita demand, this does not imply that 
we ignore CUST as it is already included in ENGY, and the main driver of changes in energy 
delivered is by far CUST. 
14 This requires an estimate of customer willingness-to-pay (WTP) for quality improvement. See 
Yu et al. (2009b) for more details about how to obtain WTP and problems of obtaining accurate 
measurement. 
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3.2. Sample 

The cross-sectional and time dimension of our panel data set is conditioned by 
availability of weather data. Two companies were excluded as complete data 
records of weather in the service areas of these two utilities were not available. 
We have used data on service quality for the years 1993/94 and 1994/95 in 
order to compute the service quality instruments used in the GMM estimations. 
In addition, we excluded the 2003/04 data from the analysis because the 
available cost data for that year has been already "cleaned" from the effect of 
severe weather conditions, and hence there is nothing to "clean" with our model. 
Table 1 reports the summary statistics of the data used. 

 

Table 1: Descriptive Statistics (96 Observations) 

Description Variable Type Unit Mean Std. 

dev. 

Min Max 

Total expenditures 

(Totex+energy losses 

costs) 

C Dependent 

Variable 

Million £ 243.99 85.66 88.16    449.99 

Energy delivered ENGY Output Thousand 

GWh 

20.67 7.26 7.492      36.262 

Customer number CUST Output Million 1.88 0.70 0.625       3.393 

Network length NETL Output Thousand 

Km 

55.84 15.27 32.002      92.121 

(Customer minutes 

lost) x (n
o
 of 

customers) 

CML Service 

Quality 

Million 

Minutes 

163.75 76.58 60.67    670.58 

Input price for network 

energy losses 

EPR Input 

price 

Thousand 

£ 

43.79 12.93 25.19    77.06 

Min. temperature MINTEMP Weather Degrees 

C 

1.06 1.57 -1.9 5.7 

Hail HAIL Weather Days 2.25 2.66 0 14 

Thunder THUNDER Weather Days 10.57 5.93 2 27.4 

Concrete temperature CONCRETE Weather Days 57.76 22.97 14.6 107.5 

Max. temperature MAXTEMP Weather Degrees 

C 

20.76 1.95 15.85 25.2 

Total rainfall RAIN Weather Mm 891.25 237.94 476.8 1536.5 

Air frost AIRFROST Weather Days 38.04 19.14 4.22 84 

Ground frost GROUND Weather Days 86.00 25.67 29.81 147.5 

Gale GALE Weather Days 7.55 8.83 0 52 

Description of the Weather Variables: Min. Temp=Minimum air temperature (lowest monthly 

average). Air Frost=Number of days when minimum air temperature was below zero degrees C. 

Ground Frost=Number of days when minimum grass temperature was below zero degrees C. 

Concrete Temp=Number of days when minimum concrete temperature was below zero degrees 

C. Total Rainfall=Total rainfall (mm).Hail=Number of days when hail fell (00-24 GMT) ie. solid 

precipitation with a diameter 5mm or more. Thunder=Number of days when thunder was heard. 

Max. Temp.=maximum air temperature (highest monthly average). Gale=Number of days when 

mean wind speed over any 10 minute period reached 34 knots or more (Force 8). 
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Table 2 shows the averages of yearly measured values for the weather variables 
over the 8-year period of study. The two distribution companies in Scotland have 
the lowest temperatures on average over the period than those in other areas. 
The service area of SP Distribution has the highest level of total rainfall: almost 
double that of CE-YEDL, which has the lowest figure. More than half of the 
companies have experienced less than 10 days of thunder on average over the 
period of the study.  
 

Table 2: Average annual values of weather parameters (1995 – 2002) 

Distribution 
company 

Max.  
Temp. 

Min.  
Temp. 

Total  
Rainfall 

Hail Thunder 
Air 

Frost 
Ground 

Frost 
Concrete 

Temp 
Gale 

EDF - EPN 23.04  0.31  672  1.64  19.36  47.75  88.66  61.72  3.14  

CN East 22.03  1.16  685 0.99  16.55  36.06  87.27  68.84  1.67  

SP Manweb 20.52  1.48  771 0.74  7.55  38.12  86.94  46.52  14.02  

CE - NEDL 19.99  -0.43  812 1.77  8.45  53.70  105.57  72.99  2.92  

UU 21.00  0.78  1191 3.88  15.13  35.38  75.25  50.25  0.75  

EDF - SPN 22.67  1.72  759 2.19  17.77  27.49  72.47  45.44  2.79  

SSE - Southern 22.89  0.63  868 0.57  10.88  49.23  98.84  65.55  2.01  

WPD S Wales 19.86  2.47  1006 8.06  7.58  19.69  55.06  38.45  25.34  

WPD S West 19.95  3.53  1052 0.65  8.65  11.41  55.41  31.68  9.29  

CE - YEDL 20.71  1.45  641 0.46  5.45  20.90  63.37  35.78  8.10  

SSE - Hydro 17.53  -0.11  997 3.68  4.05  53.02  117.80  81.15  16.72  
SP Distribution 18.94  -0.28  1236 2.40  5.44  63.74  125.32  94.68  3.88  

 

 

4. Empirical Results 

As discussed in Section 2 we estimate several (restricted and non-restricted) 
specifications of the quadratic cost function (5a). This function can be 
interpreted as second-order approximation (in levels) to the companies’ 
underlying cost function. As all variables are in levels, this function can be also 
viewed as the parametric counterpart of Yu et al. (2009a) that applied non-
parametric techniques to data in levels. 
 

We use units of energy delivered (ENGY) as output. Other cost determinants are 
the total customer minutes lost (CML), the network length (NETL), and the price 
for energy losses (EPR).15 For weather conditions we use the nine weather 
variables collected by Yu et al. (2009a), viz. MINTEMP, HAIL, THUNDER, 
CONCRETE, MAXTEMP, RAIN, AIRFROST, GROUND, and GALE. All explanatory 
variables were divided by the sample geometric mean, so the first order 
parameters can be interpreted as derivatives at the sample geometric means.16 
 

                                                 
15 Since we do not have the complete set of input prices we cannot impose the traditional linear 
homogeneity restriction in prices suggested by the economic theory. 
16 In order to check the robustness of our results, we also estimated several models using alternative 
functional forms, such as the Cobb-Douglas or the Translog. We also estimated our models using the 
stochastic frontier model introduced by Battese and Coelli (1995) to mimic the efficiency analysis carried 
out in Yu et al. (2009a). Since the results were robust to other specifications, the parameter estimates of 
these alternative models are not reported here. They are available upon request 
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4.1. Parameter estimates and existence of weather composites  

Table 3 shows the parameter estimates of both linear and quadratic cost 
functions using ordinary least squares. For all specifications of the cost function 
we reject the null hypothesis of no heteroskedasticity at the 5 percent level of 
significance using the Breusch-Pagan LM chi-squared test. Although accounting 
for heteroskedasticity does not produce significant changes in inference, we 
present hereafter the White Heteroskedasticity-Consistent t-ratios. 
 
The first model showed in Tables 3 and 4 is the basic Linear Model that imposes 
common marginal costs for all companies and no weather effects. This model is 
equivalent to equation (5a) assuming that all weather coefficients and all second-
order coefficients are simultaneously equal to zero. All the estimated coefficients 
have the expected sign, that is, the coefficients of energy delivered, network 
length and input price are positive and statistically significant, and the coefficient 
of customer minutes lost is negative, suggesting a positive marginal cost of 
quality improvements.17 We find similar results in other models – i.e., at the 
sample geometric mean, all derivatives have their expected signs. 
 
This model excludes weather variables and hence it ignores the effect of weather 
on network costs. An important question that the present paper seeks to address 
is: should weather conditions be included as determinants of costs? To test this 
hypothesis we extend the previous model by including the full set of weather 
variables (Full-set Linear model), and used Wald tests to check if all weather 
coefficients are simultaneously equal to zero. This hypothesis was clearly 
rejected by the tests, so the answer to the above question is clearly positive, that 
is, weather conditions matter and they should be included as cost determinants.  
 
All the estimated coefficients in the Full-set-Linear model have again the 
expected signs. However, while the coefficients of energy delivered, network 
length and input price are similar to that obtained in the basic model, the 
coefficient of CML in Table 3 has increased 38% (from 0.185 to 0.260 in absolute 
terms). This result corroborates our previous assertion that the CML is likely to 
be endogenous and that marginal cost of quality improvements tend to be 
underestimated when we do not control for the effect of weather. These results 
suggest that, in order to obtain consistent estimates, we need either to gather 
weather data and include it in our cost function, or to use econometric tools to 
estimate consistently our relevant parameters when information on weather 
conditions is not available. 
 

 

                                                 
17 Indeed, note that actually CML is the “inverse” of a real quality measure. If we call this quality 
measure as QUAL, the marginal cost of quality improvements can be computed as: 

QUAL

CML

CML

C

QUAL

C
MC
















(·)(·)  

If the relationship between CML and QUAL can be represented by the linear function QUAL=A-
CML, where A can be viewed as the maximum quality level, the above marginal cost is reduced to: 

CML

C
MC






(·)  
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Table 3. Linear and Quadratic parameter estimates. Output: Energy Delivered (ENGY). 

  Linear Full-set-Linear Quadratic Full-set Quadratic Small-set-Quadratic 

Variable Par. Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio 

Constant 0 243.9 60.85 286.1 2.84 265.0 35.67 277.66 2.96 267.40 40.45 

ENGY y 7.174 6.74 7.773 7.02 5.295 4.15 5.723 3.50 6.225 4.41 

NETL n 1.459 2.77 1.377 2.45 1.865 3.30 2.147 3.01 1.849 3.20 

EPR p 4.083 14.22 4.321 11.51 4.692 14.45 5.058 9.07 5.128 13.60 

CML q -0.185 -3.62 -0.260 -4.44 -0.032 -0.39 -0.151 -1.78 -0.153 -2.01 

1/2(ENGY)2 yy
     -1.040 -2.81 -0.812 -1.68 -0.639 -1.51 

1/2(NETL)2 nn     -0.225 -1.88 -0.235 -1.63 -0.199 -1.46 

1/2(EPR)2 pp     -0.170 -4.25 -0.182 -4.08 -0.183 -4.98 

1/2(CML)2 qq     0.003 4.74 0.003 4.28 0.003 4.25 

ENGYNETL yn     0.623 2.83 0.514 1.94 0.447 1.78 

ENGYEPR yp     0.056 0.66 0.083 1.06 0.097 1.26 

ENGYCML yq     0.007 0.36 -0.007 -0.29 -0.007 -0.35 

NETLEPR np     0.108 3.16 0.072 2.14 0.068 1.99 

NETLCML nq     -0.038 -4.44 -0.028 -2.43 -0.027 -2.93 

EPRCML pq     -0.018 -2.93 -0.016 -2.81 -0.016 -2.91 

MAXTEMP 1   0.439 0.10   -0.058 -0.01   

RAINFALL 2   0.000 0.03   -0.020 -1.06   

AIRFROST 3   -0.425 -0.75   -0.232 -0.42   

GROUND 4   -0.454 -1.13   0.232 0.64   

GALE 5   0.456 0.79   0.022 0.03   

MINTEMP 6   9.477 2.27   11.571 3.07 10.875 3.12 

HAIL 7   2.646 1.22   5.301 2.95 4.217 2.95 

THUNDER 8   1.815 1.64   1.988 2.15 1.985 2.51 

CONCRETE 9   1.500 2.43   0.667 1.15 0.700 2.89 

Chi2 (d.f.)   23.36 (9) a 47.9 (10) d 28.67 (9) a 28.58 (4) c 

     1.42 (5) b  

R-squared  78.74 83.45 86.64 90.44 90.26 

Adj. R-sq  77.81 80.83 84.33 87.39 87.98 

Notes: Robust t-ratios. Wald tests: (a) H0: k=0, k=1,..,9.  (b) H 0: k=0 , k=1,..,5. (c) H 0: k=0 , 

k=6,..,9.  (d) H 0: jh=0 , j,h=y,n,p,q.   

 

In the next two models in Table 3 we relax the assumption of common marginal 
costs and estimate quadratic specifications of the cost function without weather 
variables (Quadratic model) and with weather variables (Full-set Quadratic 
model). The Wald test in the first model rejects that all second-order coefficients 
are simultaneously equal to zero, i.e. we can reject common marginal costs 
among companies. Hence, a quadratic specification should be used to analyze 
network costs. Here, we also find evidence of endogeneity of the service quality 
variable and its relationship with weather conditions. Indeed, as in the linear 
model, the coefficient of CML surges when we control for weather conditions 
indicating that there is likely a downward biased when we ignore the effect on 
distribution costs of weather.18  
                                                 
18 We have also tested directly the existence of such a relationship by estimating several models 
where the CML variable is explained by a set of weather variables. The parameter estimates of 
these models also suggest that the service quality tends to be lower under bad weather 
conditions, as shown in Figure 1. On the other hand, we also estimated several models where the 
CML variable is explained by the weather composites used in Yu et al. (2009a). Neither of the two 
composites were individually and jointly significant. This lack of relationship may explain why 



 

18 

 
Given that our sample is quite small we finally try to reduce the number of 
weather variables in order to carry out the separability tests discussed in Section 
2. This can be done without losing much information, as many of the weather 
variables are highly correlated and some of them do not have a statistical effect 
on costs. As we cannot reject that the coefficients of MAXTEMP, RAINFALL, 
AIRFROST, GROUND, and GALE are simultaneously equal to zero, we have re-
estimated the quadratic model with a small set of weather variables consisting of 
MINTEMP, HAIL, THUNDER, and CONCRETE. The adjusted goodness of fit of this 
model is higher than in the previous ones and all weather variables are 
individually and jointly significant. The selection strategy followed in the present 
paper can be seen as a backward procedure where we delete variables from the 
full model and use an adjusted R2 statistic criterion to select the “reduced” 
model.19 In should be noted, however, that in the present application we are not 
especially interested in the “reduced” model that is finally selected because, with 
nine weather variables, we do not need to select a subset of weather variables in 
order to test whether they have had a significant effect on network costs. We 
select a subset of weather variables only to test econometrically the theoretical 
restrictions that justify the use of weather composites. 
 
In order to perform these tests we: (1) extend our preferred model in Table 3 by 
adding quadratic weather terms and the interactions between the selected four 
weather variables with other cost determinants; and (2) we test the separability 
conditions in (8) and (10) as well as the significance of the second-order weather 
coefficients. The test values are shown in Table 4. 
 
While the test values in Table 4 allow us to reject, as expected, the separability 
conditions (10), we cannot reject the separability conditions (8). As these 
conditions are sufficient but not necessary, the results in this table allow us to 
conclude that the traditional approach of using composite weather variables to 
control for the effect of weather conditions on costs is theoretically acceptable. 
However, a weather composite that treats each individual weather variable 
symmetrically is not supported by the data.  
 

 

                                                                                                                                            
the endogeneity problem does not vanish in Table 6 when the two weather composites are 
included as determinants in the cost function. 
19 Many different procedures (e.g. forward, backward or stepwise) and criteria (e.g. adjusted R2 
statistic, F-test or Mallows Cp criterion) for selecting the best regression model have been 
suggested. See Halinski and Feldt (1970) for an early discussion of these procedures, and 
Mittelhammer et al. (2000) for a more general and critique analysis of the variable selection 
problem and model choice. The traditional backward elimination procedure is basically a 
sequence of tests for significance of explanatory variables, starting with the full model. We have 
simplified it by just testing hypotheses about the joint significance of some weather parameter 
estimates. The estimation strategy followed in this paper is feasible as our data set only includes 
nine weather variables. This procedure, and other more comprehensive procedures, becomes 
impractical with hundreds of variables. In these cases, the best alternative is to use the so-called 
stepwise method that is based on the two traditional forward and backward selection 
procedures. 
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Table 4. Cost effect of differences in weather conditions 

Common environment: Best weather conditions Average weather conditions 

 
Total 

cost 

Full weather set Small weather set 
Full set of weather 

variables 
Small weather set 

Weather 

effect 
% 

Weather 

effect 
% 

Weather 

effect 
% 

Weather 

effect 
% 

EDF - EPN 350 64 18.2 64 18.4 11 3.1 9 2.7 

CN East 312 72 22.9 70 22.5 18 5.9 15 4.9 

SP Manweb 226 39 17.3 39 17.4 -14 -6.1 -16 -6.9 

CE - NEDL 187 42 22.3 43 23.1 -11 -6.1 -12 -6.3 

UU 291 54 18.7 63 21.5 1 0.5 8 2.6 

EDF - SPN 201 68 33.9 68 33.6 15 7.5 13 6.3 

SSE-Southern 300 46 15.2 49 16.4 -7 -2.5 -6 -1.9 

WPD S Wales 179 76 42.7 75 42.1 23 13.1 20 11.4 

WPD S West 188 48 25.4 53 28.2 -5 -2.8 -2 -1.0 

CE - YEDL 248 27 10.9 26 10.5 -26 -10.5 -29 -11.6 

SSE - Hydro 145 52 35.8 52 35.6 -1 -0.8 -3 -2.3 

SP Distribution 299 49 16.4 57 19 -4 -1.4 2 0.6 

Sector average 244 53 23.3 55 24.0 0 0.0 0 0.0 

Notes: Total cost and weather effect in £ million. These numbers are based on the estimated 

models in Table 3. The best weather conditions are computed using the minimum values of all 

weather variables.  

 
 
The previous result suggests that, in theory, we can analyze the weather effect in 
two steps, viz., by first aggregating all weather variables into a few composite 
(aggregated) weather variables, and adding the latter to the set of cost’s 
explanatory variables. Next, we try to examine whether the composite should be 
a complex function of each weather factor or it can be obtained by a simple 
addition of a subset of weather factors. In order to achieve this objective we test 
whether the second-order coefficients of a quadratic weather composite are 
simultaneously significant. The test values in Table 4 do not allow us to reject a 
linear specification of the weather composite. We found, therefore, that just 
adding weather variables as shifters in the cost function is sufficient to control 
for the cost effect of weather.20  
 
So far we have not interpreted the signs and magnitude of the coefficients 
estimated for each weather variable, as we are more interested in the overall 
effects than in individual effects. The main focus of this paper is whether weather 
conditions, as a whole, matter and how they should be included in cost functions. 
As weather is a complex phenomenon and its overall effect on cost is unknown, 
we take an agnostic position and do not make specific assumptions about the 
probable (partial) effect of each weather variable on distribution costs. 
Alternatively, it likely does not make sense to interpret a partial effect of a 
particular variable (i.e. assuming that other variables do not change) due to the 
high co-movement of many of the weather variables. In addition, given the large 
correlation among many of the weather variables, some variables might be 

                                                 
20 On the other hand, this result indicates that the linear nature of the variable reduction 
techniques is supported by the data. The soundness of the weights used by these techniques to 
compress the weather information is examined in Section 4.3. 
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capturing not only their own effect but also the effect of other (correlated) 
variables that might have a non expected sign or magnitude. In summary, what 
matters is the overall effect and not the partial effects. 
 
Nevertheless, with the exception of MINTEMP, most of the estimated coefficients 
for each weather variable have the expected sign in the sense that harsh weather 
conditions is normally associated with higher costs. See, for instance, the positive 
effect of THUNDER, HAIL and CONCRETE. Other weather variables, such as 
MAXTEMP, AIRFROST, and GROUND, do not seem to affect the costs. However, 
the lack of significance can be explained by the fact that some of them are highly 
correlated with other variables. In this sense, for instance, AIRFROST and 
GROUND are highly correlated with CONCRETE. Therefore, their effect is likely 
being captured by the latter variable. MAXTEMP and THUNDER are also highly 
correlated and this might explain why only THUNDER is significant. It seems that 
GALE and RAINFALL do not have a significant effect on costs although this 
outcome might be partially caused by the fact that they are slightly correlated 
with HAIL. Although the unexpected positive effect of MINTEMP is likely due to 
its high correlation with other temperature-related variables,21 we retained this 
variable as its coefficient is statistically significant.  

 

4.2. Cost effect of adverse weather conditions 

The weather parameter estimates allow us to compare the actual costs with 
those of a common environment. Table 5 shows the weather effect using two 
scenarios, and both the full and small sets of weather variables. In order to do 
this we use the parameters estimates in Table 3. In the “Best weather conditions” 
scenario the common environment is computed using the minimum values of all 
weather variables.22 Here we compare the actual costs with those of a 
hypothetical company with good weather conditions. Using this company as 
reference, the extra costs attributed to worse weather conditions represents on 
average a 23.3% of total costs. The largest percentages are for WPD S Wales with 
a cost increase of 42%, followed by SSE-Hydro (35.8%) and EDF-SPN (33.9%).23 
The large effect of WPD S Wales is caused by hail (16 times the smaller). SSE-
Hydro also has much hail, but has low air, ground and concrete temperatures. In 
the case of EDF-SPN, the company is penalized by the relative high frequency of 
thunder and lightning. In the “Average weather conditions” scenario we compare 
each company with a hypothetical company with average weather conditions. 
This allows us to know which companies are penalized by bad weather 
conditions and which are operating in more favorable environment. The 
companies that are, in relative terms, penalized by unfavorable weather 
conditions are EDF–EPN, CN East, UU, EDF-SPN, and WPD S Wales. The extra 

                                                 
21 MINTEMP may also be capturing the effect of other unobserved variables. In order to test this 
hypothesis we estimated the model including fixed effects. The coefficient of MINTEMP was still 
positive and statistically significant, suggesting that it is not explained by, for instance, the 
overhead line percentage or the woodland percentage of the network. 
22 For simplicity we use the same criteria for all variables, whether they have a positive or a 
negative coefficient. The results do not change if we compute the cost differentials using 
maximum values for those variables with negative (but not significant) coefficients.  
23 Note that the values in Table 5 tend to penalize the smaller companies as in our models 
marginal effect of weather on total cost is constant. 
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costs in the two latter companies are quite large, 7.5% and 13.1% respectively. 
However, CE-YEDL operates in good weather conditions in terms of, 
temperature, hail and thunders. These favorable conditions allow CE-YEDL to 
reduce its costs by 10%. 

 

Table 5. Weather composite tests 

Null Hypotheses 
Critical Values 

d.f. Test value 
10% 5% 

Separability (eq. 8) 23.5 26.3 16 16.86 

Separability (eq. 10) 32.0 35.2 23 46.94 ** 

Linear Composite 16.0 18.3 10 6.38 

Notes: Wald Tests. Chi-squared distribution. An * (**) indicates that the null hypotheses is 
rejected at 5% (1%). 

 
 

4.3. Performance of statistical weather composites 

The results in the previous section show that weather conditions have had a 
significant effect on costs, and that the use of (asymmetric) composite weather 
variables is supported by the data. We next try to analyze the performance of the 
two statistical weather composites used by Yu et al. (2009a). Both weather 
composites (W1 and W2) are linear combinations of the previous nine weather 
variables and they were constructed using the explanatory factor analysis. In 
order to analyze the performance of these two composites, we replace all 
individual weather variables in Table 3 by W1 and W2 and re-estimate the linear 
and quadratic models. The results are presented in Table 6. 
 
Table 6 shows that, although we found that weather conditions have had a 
significant effect on costs, none of the weather composites are statistically 
significant in any of the models. Yu et al. (2009a) have not found a clear effect on 
efficiency of both weather composites. As anticipated in Section 2, we may use 
this lack of significance as an example of the problems that might appear when 
using variable reduction techniques, such as the EFA or PCA. These techniques 
do not necessarily choose the appropriate weights (i.e. those that measure the 
real effect on cost of each individual weather variables) and hence they may not 
be able to capture the real effect of weather conditions on costs. 
 

Moreover, we note the relative small value of the coefficient of CML in Table 6. In 
all models, the estimated values are close to that obtained without controlling for 
weather conditions, and much lower than those obtained when individual 
weather variables where included as cost determinants. This suggests that not 
only we are not able to capture the real effect of weather conditions on costs 
using the two weather composites, but also we are not able to estimate 
consistently the marginal cost of quality improvements, which is still being 
underestimated. In the next section, we provide more evidence about this 
endogeneity problem.  
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Table 6. Parameter estimates. Composite weather variables. 

Variable Linear Quadratic 

 Coef. t-ratio Coef. t-ratio 

Constant 243.986 61.656 264.147 35.872 

ENGY 7.275 5.971 5.805 3.550 

NETL 1.587 2.733 1.782 2.586 

EPR 4.251 13.295 4.897 12.371 

CML -0.191 -3.816 -0.028 -0.330 
1
/2( ENGY)

2   -0.808 -1.932 
1
/2(NETL)

2
   -0.176 -1.489 

1
/2(EPR)

2
   -0.176 -4.371 

1
/2(CML)

2
   0.003 3.992 

ENGY NETL   0.513 2.322 

ENGY EPR   0.079 0.861 

ENGY CML   0.007 0.339 

NETLEPR   0.097 2.738 

NETLCML   -0.036 -3.911 

EPRCML   -0.019 -2.974 

W1 -0.251 -1.283 -0.210 -1.272 

W2 0.051 0.829 0.046 0.800 

R-squared 0.793 0.870 

Adj. R-sq 0.779 0.844 

Notes: Robust t-ratios in OLS models. Output: Energy Delivered (ENGY).  

 
 
In an attempt to better understand why weather composites have not been able 
to capture the real effect of weather conditions on costs we next compare the 
estimated weather parameters and the implicit parameters that result from 
plugging the two weather composites into the cost function. Indeed, in Table 6 
we estimate a model where the cost effect of weather conditions can be written 
as in (23): 
 

2211)( WWh           (23) 

where W1 and W2 are the two weather composites, and the estimated 
parameters of these two weather composites are respectively denoted by 1 and 
2. It should be noted again that both weather composites are linear 
combinations of the nine weather variables, that is as in (24): 

KK

KK

wwwW

wwwW

22221212

12121111

...

...








      (24) 

where K=9. The coefficients of each weather parameters can be found in Yu et al. 
(2009a).24 If we now plug (24) into (23) we obtain the implicit parameters of 
each weather variable: 
 

      KKK wwwh 221122221211212111 ...)(     (25a) 

                                                 
24 See Table 3 in Yu et al. (2009a). 
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or 
 

KK wwwh   ...)( 2211       (25b) 

From (25a) it is straigthforward to see that each implicit parameter, k, shares 
components with other implicit parameters, and hence the model based on 
weather composites can be seen as a restricted least squares estimator.25 Fomby 
et al. (1978) show that principal component estimator is the restricted least 
squares estimator with the smallest variance of those with the same number of 
restrictions. The small variance is a virtue, but as shown by Greene (2008) it is a 
biased estimator. Althought the standard errors of the parameters of the weather 
variables in Table 3 may be inflated as a consequence of the correlation among 
some weather variables, they are unbiased as they were obtained without 
imposing any restriction.  
 
In Figure 2 we depict both the estimated and implicit parameters of each of the 
nine weather variables. While the former parameters were obtained from the 
quadratic model with the full set of weather in Table 3, the implicit parameters 
were computed using the coefficients in Yu et al. (2009a) and assuming that 1=-
0.210 and 2=0.046 (see Table 6). The red points indicate the parameters that are 
statistically significant in Table 3. 
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Figure 2. Estimated and implicit weather parameters 

 

                                                 
25 This is trivial in the case of a unique composite. In this case the implicit parameter of any 
weather variable can be written in terms of other implicit parameters, in particular, as 
k=1(11/1k), k ≠1. 
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As mentioned earlier, some variables may be capturing not only their own effect 
but also the effect of other correlated variables, that in turn may have 
unexpected signs or magnitudes. This makes the interpretation of the individual 
effects difficult, but since they were obtained using an unbiased estimator, we 
can use each parameter estimate as a reference to shed light on the nature of the 
biases using weather composites. In particular, we hypothesize that biases would 
not be significant if the relative magnitude of all implicit parameters coincide 
with their estimated counterparts. In this case, all the points in Figure 2 should 
be located on the same radial line. Departures from this hypothetical line allow 
us to identify the “problematic” variables. 
 
Figure 2 shows that MINTEMP, HAIL, THUNDER and MAXTEMP are almost 
located on a radial line, suggesting that both estimation strategies, i.e. estimating 
the full set of weather parameters or using weather composites, rank similarly 
these four variables. Interestingly, most of them are weather variables with 
significant parameters in Table 3. Hence, we can postulate that the biases can be 
attributed to GALE, RAINFALL, AIRFROST, GROUDFROST and CONCRETE. The 
last three variables share a common characteristic: their implicit coefficients 
almost coincide with that of MINTEMP once we change its sign. This coincidence 
is likely explained by the fact that the correlation of each variable with MINTEMP 
is not only high but also quite similar, and for this reason they received similar 
weights.26 Given that these variables are below the reference line in Figure 2, 
their weights in the composites should be less negative, zero or even slightly 
positive. This seems to be reasonable as the variables AIRFROST, GROUDFROST 
and CONCRETE seek to measure the same atmospheric phenomenon, i.e. the 
number of days with temperatures below zero degrees. As using only one of 
them is sufficient to achieve this objective, the other two variables must not 
receive a significant weight. However, it appears that the statistical variable 
reduction techniques tend to equalize the weights of variables that are similarly 
correlated with one another or explained by common factors, without 
considering that with this “strategy” they are counting the same phenomenon or 
set of related phenomena several times. As a result of this, the phenomenon (i.e. 
days with temperature below zero degrees) that these variables capture is over-
weighted. Similar arguments apply to GALE and RAINFALL. They do not have a 
significant effect on costs. In this case the lack of significance is caused by the fact 
that they are correlated with HAIL, and hence their effect should have been 
captured by the parameter of HAIL. However, the statistical techniques tend 
again to allocate similar weights to a set of mutually correlated variables, falling 
in the double-counting problem mentioned above. 
 
The analysis above suggests the existence of a double-counting problem when 
weather composites are used. The nature of this problem seems to be the 
existence of variables that are highly or moderately correlated with one another, 
or explained by common factors. A possible remedy to this problem is variable 
selection, as the procedure used to reduce the regressors in the model tends to 
drop non-informative variables. The literature proposes several procedures for 

                                                 
26 In addition, the individual variance (not shown) of all of them, including MINTEMP, is mainly 
explained by common factors in more than 80%. 
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selection of variables (see, e.g., Liu and Wu, 1983). As mentioned earlier, no 
single procedure or selection criterion is overall preferred. However, the 
Stepwise procedure may be recommended as it is a speedy procedure in cases 
with many possible explanatory variables, and, at the same time, it is better than 
the two traditional selection procedures, i.e. forward selection and backward 
elimination procedures, since it considers more models.27  
 
This variable selection strategy that involves analysis of correlation among 
variables with the goal of choosing a set of variables that are not highly 
correlated with one another has also a long tradition in the Data Envelopment 
Strategy (DEA) literature. For instance, Lewin et al. (1982) and Jenkins and 
Anderson (2003) apply regression and correlation analysis to reduce the 
number of variables in the DEA model. Kittelson (1993) presents an iterative 
technique for building DEA models using statistical techniques. Wagner and 
Shimshak (2007) improve the procedures in DEA models by formalizing a 
Stepwise method. As in the parametric framework, their method suggests some 
simple rules for removing variables (backward elimination) or for adding 
variables (forward selection) in the DEA model, one at a time. 
 
In summary, the variable selection approach in general, and the Stepwise 
procedure in particular, seem to be better strategies to avoid collinearity 
problems than using the composites. However, a mixed strategy involving 
composites can be used. First, we identify subsets of variables that are highly 
correlated with one another and are likely to represent the same or related 
phenomena. In order to avoid double-counting we should use selection 
procedures to drop non-informative variables from the subsets of variables. 
Then, having repeated this selection for all subsets we can then use EFA or PCA 
to construct the composites from the remaining variables.  
 

4.4. Persistent and time-varying weather conditions, and 

instrumental variable estimates 

In this section we decompose the weather variables into persistent (i.e. average) 
weather conditions and temporal deviations from the average weather 
conditions, and using a simple framework analyze which weather component is 
most correlated with the quality variable. This allows us identify proper 
instruments to estimate consistently the cost function using IV or GMM 
estimators when weather data is not available. The quality of service variable in 
(22) may be correlated with both time-invariant and time-varying weather 
effects. As weather information is available in the present application, we 
propose using weather proxies for i and dit to determine which weather effect is 

                                                 
27 The stepwise regression procedure modifies the forward selection procedure in that each time 
a new variable is added to the model, the significance of each of the variables already in the 
model is re-examined. The stepwise regression procedure continues until no more variables can 
be added or removed. This procedure may lead to interpretable models. However, as 
Mittelhammer et al. (2000) pointed out, the results can be erratic as any single test used at any 
stage in the stepwise procedure are not indicative of the operating characteristics of the joint test 
represented by the intersection of all the individual tests used. 
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most correlated with the quality variable. In particular, we use the company 

specific average weather conditions (i.e. it

T

ti wTw 1)/1(  ) as proxy for the fixed 

effect and use the deviations from these average conditions as proxy for the 

time-varying effect (i.e. iitit www * ).  

 
The parameter estimates are shown in Table 7.  We use the simplest framework 
and estimate the linear specification of the model. As in the quadratic 
specification of the model, when we exclude weather variables the parameter of 
the CML is overestimated (i.e. the marginal cost of quality improvement is 
underestimated). However, the advantage of a simple linear model is that we 
only have one endogenous variable to instrument. We estimate this simple 
model with and without weather variables. As suggested in previous sections, we 
have only included four weather variables – i.e. Mintemp, Hail, Thunder and 
Concrete.28  
 
The first model in Table 7 is a linear model without weather variables (see also 
Table 3). The parameter estimate for CML is –0.185. We know from previous 
sections that this coefficient should be higher in absolute terms as CML is 
correlated with the error term ititit e . As expected, when we include 

iw and *

itw  as proxies for the overall weather effect, it, the parameter estimate for 

CML increases in absolute terms to 0.265. This value is quite similar to that 
obtained in previous sections (see Table 3) where we included wit to estimate the 
linear model, but using the full set of weather variables instead a subset of them. 
Since we control for the overall effect of weather on costs, we can assume that 
the “right” marginal cost of quality improvement is 0.265. 
 

Table 7. OLS estimates with fixed and temporal deviation weather variables 

 Model 1  Model 2  Model 3  Model 4  

  Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio 

Constant 243.98 60.85 243.98 68.89 243.98 64.01 243.98 64.91 

ENGY 7.174 6.74 7.918 6.29 8.051 6.48 7.232 6.97 

NETL 1.459 2.77 1.122 1.70 1.116 1.77 1.447 2.70 

EPR 4.083 14.22 4.611 14.26 4.132 15.26 4.534 13.31 

CML -0.180 -3.62 -0.265 -4.40 -0.265 -3.97 -0.181 -3.64 

Weather Variables No  
*

itw , iw   iw   
*

itw   

R-squared (%) 78.74  83.42  80.80  81.32  

Notes: Robust standard errors and t-ratios. We have used the following four weather 
variables: Mintemp, Hail, Thunder and Concrete. 

 
 

Models 3 and 4 estimate the same model using only iw  or *

itw as weather 

variables. It is noteworthy that the explanatory power (i.e. the R-square) of the 
average weather conditions (Model 3) is lower than that of the temporal 
departures of weather conditions from their respective average (Model 4). This 

                                                 
28 We have almost got identical results using the full set of weather variables as well. 
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means that temporal departures explain a higher portion of utilities’ cost 
variations than persistent differences in weather conditions among utilities. 
However, when we include 

iw in the model, the parameter estimate of CMLit 

again rises in absolute terms to 0.265, the assumed “right” value. This indicates 
that the quality variable is not correlated with the time-varying weather effect 

(that belongs to the error term). On the other hand, when we include *

itw in the 

model, the value of the estimated parameter of CML is in absolute terms 0.181 – 
i.e. close to that obtained when no weather variables are used. This result 
suggests that, although the explanatory power of temporal departures of 
weather conditions from their respective means is high, the quality variable is 
still correlated with error term. 
 
Several practical conclusions can be derived from the above results. First, the 

inclusion of *

itw  as explanatory variables does not allow us to eliminate the 

underlying endogeneity problem of the quality measure. Second, this 
endogeneity problem can be addressed using weather data from other periods of 
time if average weather conditions have not changed significantly. Third, we 
found that parameter biases are especially linked to persistent weather 
conditions. In technical terms, the above results indicate that while the 
permanent component of the weather effect is likely to be correlated with the 
quality variable, i.e. cov(CMLit,i)0, the latter is not correlated with the time-
varying weather component, i.e. cov (CMLit,dit)=0. In this context, the best 
strategy to instrument the endogenous variable CML, is using the differences of 
this variable as instruments.  
 
In Table 8 we show our GMM estimates of equation (29) using different 
instruments for the endogenous variable. In the first model (Model 5) we use the 
first lag of the quality variable as instrument. This would be a good instrument if 
cov(CMLit,i)=0 and cov(CMLit,dit) 0 which is not the case given the above 
results. Since this is not a good instrument, the estimated parameter for the 
quality variable is even lower in absolute terms than in the OLS model as 
expected. In addition, the goodness of fit of the first-stage regression is rather 
low, suggesting again that this is not a good instrument.29  
 

In Model 6 we replace CMLit by CMLit as instrument. This is an appropriate 
instrument when the quality variable is only correlated with the permanent 
weather effect, that is, cov(CMLit,i)0 and cov(CMLit,dit)=0, as the results in 
Table 7 seems to indicate. The goodness of fit of the first-stage regression 
increases notably and the parameter estimate of CMLit rises in absolute terms to 
0.240, a close value to the assumed “right” one. In order to test the validity of 
CMLit as instrument, we add a lag of this variable as a second instrument, and 
estimate the Model 7. The Hansen's J Test does not reject the null hypothesis that 
the model is well specified using the selected set of instruments. The parameter 
estimate of CMLit again rises in absolute terms to 0.270, almost the assumed 

                                                 
29 In the first-stage regression the endogenous variable (CMLit) is regressed against the selected 
set of instruments and other (exogeneous) cost determinants. 
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“right” value. Therefore, in case of the lack of data on weather conditions, an 
instrumental variable estimator as in Model 7 allows us to estimate consistently 
the coefficient of other relevant cost determinants.  
 

Table 8. GMM estimates 

 Model 5 Model 6 Model 7 

 Coef. t-ratio Coef. t-ratio Coef. t-ratio 

Constant 243.9 59.47 243.9 60.57 244.5 61.02 

ENGY 6.816 6.23 7.328 6.74 7.527 7.03 

NETL 1.238 2.01 1.548 3.02 1.575 3.08 

EPR 4.068 13.44 4.093 14.30 4.095 14.18 

CML -0.050 -0.39 -0.240 -3.03 -0.270 -3.34 

Instruments: CMLit-1 CMLit=CMLit-CMLit-1 CMLit, CMLit-1 

First-stage regression:       

R-sq. (%) 44.0 69.7 77.1 

Adjusted R-sq (%) 41.5 68.4 75.9 

Robust F(2,90) 9.982 22.553 43.099 

Test of overidentification:       

Hansen's J Test (d.f.)     0.989 (1) 

Notes: Robust standard errors and t-ratios. The Hansen's J Test is distributed as a Chi-
squared and the null hypothesis is that the model is well specified using the selected set of 
instruments. To carry out this test the number of instruments should be larger than the 
number endogenous variables. 
 

 

5. Conclusions 

This paper estimates the effect of weather conditions on the costs of electricity 
distribution networks using parametric techniques, and examines whether the 
use of statistical weather composites in cost (efficiency) analysis is theoretically 
and econometrically sound. Previous studies have used a two-stage approach to 
reduce the number of weather factors into a small number of variables for 
further analysis. We adopt a different approach and directly estimate the cost 
function and identify, by testing hypotheses about individual and joint 
significance of the weather parameter estimates, a subset of variables that by 
and large reflect the effects of the environmental conditions. This is a feasible 
strategy as our data set only includes nine weather variables. This short set of 
weather variables allowed us to test econometrically the theoretical restrictions 
that justify the use of weather composites. 
 
The first question that the present paper attempts to answer is: should weather 
conditions be included as determinants of distribution costs? The answer to this 
question is clearly positive for two reasons. One is that we have found a 
statistically significant effect of weather on costs. Another is that ignoring the 
effect of weather on distribution costs biases the parameter estimates of other 
relevant variables, including those that allow us to measure the marginal cost of 
quality improvements. As a result, in order to estimate consistently a cost 
function in the distribution networks, weather data should be gathered in order 
to get consistent estimates, or, in the absence of this information, an 
instrumental variable estimator should be used. 
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The second question that the paper attempts to answer is: how should weather 
data on a number of different weather factors be included in the analysis of 
distribution costs? Regarding the convenience of using statistical weather 
composites in the present application we found both evidence that theoretically 
supports using this type of composites, and evidence that suggests that EFA or 
the PCA is not able in practice to capture the real effect of weather conditions on 
costs and service quality. On the one hand, we found that the two-stage approach 
of using weather composites as cost determinants is theoretically acceptable as 
we cannot reject separability and a linear specification of the weather composite. 
On the other hand, we found that statistical weather composites do not have any 
cost effect even though some of their components indeed have a significant effect 
on costs. Moreover, the inclusion of these weather composites does not allow us 
to estimate consistently the marginal cost of quality of service improvements. 
 
Our results suggest the existence of a double-counting problem when weather 
composites are used, and hence we should interpret with caution empirical 
results that from statistical variable reduction techniques. We are, however, 
aware that the use of statistical variable reduction techniques may be useful 
when large sets of individual weather variables are available, at least to partially 
reduce the dimension problem to a manageable size. In these cases, our results 
suggest that, in order to reduce possible biased problems, the application of 
statistical techniques should be kept at a minimum or they should be applied 
after dropping non-informative variables from the data set. 
 
Overall our analysis suggests the use of variable selection methods, instead of 
compressing variables into few composites, as the procedures used to add or 
remove variables from the model tend to drop non-informative variables, 
avoiding in this manner the double-counting problem of the approach based on 
composites. Several variable selection methods have been proposed in both 
parametric (i.e. econometric) and non parametric (i.e. DEA) frameworks. Both 
strands of the literature highlight the advantages of the Stepwise procedure 
which is simultaneously quick in situations with many possible explanatory 
variables and more comprehensible than other procedures. 
 
We show that ignoring the effect of weather on distribution costs biases the 
parameter estimates of other relevant variables, such us those that allow us to 
measure the marginal cost of quality improvements. This endogeneity occurs as 
bad weather conditions tend to increase costs but also lead to lower quality 
services. For this reason, we also explored how to estimate consistently our 
relevant parameters when weather information is not available. In this sense, a 
significant finding is that parameter biases are strongly correlated with 
persistent (i.e. average) weather conditions, and hence, differences of the 
endogenous variables can be used as valid instruments when using IV or GMM 
estimators. 
 
Finally, we can draw some practical conclusions from our empirical exercises. 
We found that temporal departures from average weather conditions explain a 
higher portion of the utilities’ cost variations than persistent (i.e. average) 
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differences in weather conditions among utilities. In the context of incentive 
regulation and benchmarking of electricity networks, this suggests using a two-
stage approach to address the comparability of firms. First, the average weather 
conditions are computed from historical data. Next, regulators can direct their 
attention to the analysis of deviations from average weather conditions. We also 
found that using firm-specific average weather conditions is sufficient to obtain 
consistent estimates of other cost determinants. Hence, another conclusion is 
that if average weather conditions do not change significantly over time we can 
use weather data from a short period of time to estimate a cost function of a 
longer period. 
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