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RESEARCH ARTICLE Open Access

Combining laboratory and mathematical
models to infer mechanisms underlying
kinetic changes in macrophage
susceptibility to an RNA virus
Andrea Doeschl-Wilson1* , Alison Wilson1, Jens Nielsen2, Hans Nauwynck3, Alan Archibald1 and Tahar Ait-Ali1

Abstract

Background: Macrophages are essential to innate immunity against many pathogens, but some pathogens also
target macrophages as routes to infection. The Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is an
RNA virus that infects porcine alveolar macrophages (PAMs) causing devastating impact on global pig production.
Identifying the cellular mechanisms that mediate PAM susceptibility to the virus is crucial for developing effective
interventions. Previous evidence suggests that the scavenger receptor CD163 is essential for productive infection of
PAMs with PRRSV. Here we use an integrative in-vitro–in-silico modelling approach to determine whether and how
PAM susceptibility to PRRSV changes over time, to assess the role of CD163 expression on such changes, and to
infer other potential causative mechanisms altering cell susceptibility.

Results: Our in-vitro experiment showed that PAM susceptibility to PRRSV changed considerably over incubation
time. Moreover, an increasing proportion of PAMs apparently lacking CD163 were found susceptible to PRRSV at
the later incubation stages, thus conflicting with current understanding that CD163 is essential for productive
infection of PAMs with PRRSV. We developed process based dynamic mathematical models and fitted these to the
data to assess alternative hypotheses regarding potential underlying mechanisms for the observed susceptibility
and biomarker trends. The models informed by our data support the hypothesis that although CD163 may have
enhanced cell susceptibility, it was not essential for productive infection in our study. Instead the models promote
the existence of a reversible cellular state, such as macrophage polarization, mediated in a density dependent
manner by autocrine factors, to be responsible for the observed kinetics in cell susceptibility.

Conclusions: Our dynamic model–inference approach provides strong support that PAM susceptibility to the PRRS
virus is transient, reversible and can be mediated by compounds produced by the target cells themselves, and that
these can render PAMs lacking the CD163 receptor susceptible to PRRSV. The results have implications for the
development of therapeutics aiming to boost target cell resistance and prompt future investigation of dynamic
changes in macrophage susceptibility to PRRSV and other viruses.
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Background
Alveolar macrophages are primary effectors of innate
immunity against respiratory pathogens [1]. Some path-
ogens however target alveolar macrophages to initiate
infections that produce severe disease in humans and
livestock [2–4]. Alveolar macrophages are not homoge-
neous, and may vary in their response to pathogens [5, 6].
Identifying the cellular mechanisms that alter the suscepti-
bility of these cells to the pathogen in question is crucial
for developing effective interventions.
This question is particular relevant for Porcine Repro-

ductive and Respiratory Syndrome (PRRS), one of the
most devastating pig diseases worldwide caused by the
PRRS virus (PRRSV) [6]. PRRSV is a 15 kb positive-strand
RNA virus of the Arterivirdidae, order Nidovirales family
that infects subpopulations of porcine alveolar macro-
phages (PAMs) [6]. The PRRSV replication cycle in PAMs
is relatively short, namely between 12 and 18 h post infec-
tion [7, 8]. Regardless of the strain genotype and patho-
genicity, the virus produces a rapid increase towards peak
virus load at around 5–10 days post infection, followed by
a more gradual decline until clearance at 3 to 10 weeks
post infection [9–11]. Previous studies have demonstrated
substantial inter-host variation in the rate of post-peak
decline [12]. Understanding the underlying factors con-
trolling the rate of virus load decline after peak levels
have been reached would be highly desirable for the de-
velopment of intervention strategies. However, to date
it is still a mystery what causes the virus load decline in
the first place.
In the absence of the typical contenders for reducing

virus load within a host, it has been postulated that change
in the permissiveness of resident PAMs to PRRSV over
the time course of infection may be responsible for the
observed post-peak virus load decline [13, 14]. Indeed,
previous in-vitro studies have shown that susceptibility of
freshly isolated PAMs increases within 4 days of culture
[8, 15]. However, it is not known whether the suscepti-
bility of PAMs can also decline, and what may modu-
late this trend.
Three cell molecules have been shown to play an im-

portant role in the productive PRRSV infection of mac-
rophages: Heparan sulphate, involved in PRRSV binding
(e.g. [16, 17]), Sialoadhesin (CD169), involved in virus
binding and internalisation [18], and the scavenger re-
ceptor CD163, found to be essential for viral uncoating
[19]. Neither Heparan sulphate nor Sialoadhesin [20] are
essential for productive PRRSV infection of macrophages,
but gain-of-function experiments have found CD163 to be
both necessary and sufficient to render a variety of
non-susceptible cell lines competent for PRRSV infec-
tion [21, 22]. Hence, altered CD163 expression with
time could contribute to changes in PRRSV susceptibil-
ity at the single cell level.

Measuring changes in susceptibility of alveolar mac-
rophages to pathogens over the time course of infection
in-vivo is challenging. In-vitro experiments, in contrast,
allow close inspection of cellular properties in con-
trolled environmental settings. When coupled with in-
silico models via statistical inference, novel insights into
dynamic properties and underlying mechanisms of key
infection characteristics that are difficult to measure
empirically (such as change in host cell susceptibility)
can be obtained (e.g. [23, 24]). In this study we combine
in-vitro and in-silico infection models to determine
whether and how the susceptibility of cultured PAMs
to PRRSV changes over time and to examine possible
functional modulation of CD163. In particular, we develop
process based mathematical models to evaluate alternative
hypotheses about the role of CD163 in PRRSV infection
dynamics that emerge from our in-vitro experiment, and
by fitting the models to the experimental data, infer the
nature of potential cellular processes underlying the ob-
served susceptibility trends of PAMs.
The iterative workflow adopted in this study is out-

lined in the schematic diagram of Fig. 1. The paper is
organised accordingly as follows. In the Methods section
we describe the in-vitro experiment and the statistical
data analysis, as well as the fitting and selection process
adopted for the process based mathematical models.
The Results section starts with a description of the key
experimental findings. Based on these, two alternative
hypotheses for the underlying cellular processes mediat-
ing PAM susceptibility over time emerged (denoted as
Hypothesis H1 and H2 in Fig. 1), which were further ex-
plored in subsequent in-vitro experiments (referred to as
H1a-H1c and H2a in Fig. 1). The combined results then
led to the development of two distinct mathematical
models (denoted as mathematical model A & B in Fig. 1)
representing alternative mechanisms underlying the ob-
served changes in cell susceptibility and bio-marker
dynamics. Finally, we fit the models to the data (i.e. link
the top and bottom boxes in Fig. 1) to infer the nature
of the potential dynamic processes regulating PAM sus-
ceptibility to the PRRS virus over time. In the Discussion
section we compare our findings with existing evidence
from other studies of the regulation of PAM susceptibility
to PRRSV and other viruses. We conclude by pointing out
the implications of our findings for future research in
within host infection dynamics.

Methods
In vitro experiment and statistical analysis
We monitored the trajectories of virus infection together
with CD163 marker dynamics of PAMs extracted from
eight healthy pigs from three separate experimental
batches with different genetic backgrounds,to sample di-
verse responses. Batches 1 and 3 comprised 3 pigs and
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batch 2 comprised two pigs. The PAMs were extracted via
broncho-alveolar lung lavage, as described in Additional
file 1. Cells harvested from each pig were assigned to one
of two different culture replicates with one replicate sub-
jected to infection with a European type I PRRSV strain
(UK H2 PRRSV; multiplicity of infection above 3) and the
other replicate subjected to mock-infection with the
equivalent volume of growth medium.
To assess changes in PAM susceptibility and CD163

expression, cells in each replicate were distributed into
separate cultures each comprising 5 × 106 cells with
corresponding incubation periods of 0, 1, 2, 4, 6, 8 and
9 days (or, more precisely, for 4, 28, 52, 100, 148, 196
and 220 h post extraction from freezer), respectively,
before either PRRSV or mock infection. For batch 1,
only 5 incubation days were used (omitting days 4 and
8). Measures obtained from the cell media at each in-
cubation time indicated that pH, glucose and lactate
concentration, and essential amino acids were stable
within the 9 incubation days. Furthermore, cell viabil-
ity in every culture was above 80 %, providing a suffi-
cient amount of viable cells in each culture to quantify
changes in PAM susceptibility and CD163 expression.

Immediately prior to (mock) infection, the growth
medium was removed. One hour post infection, the
virus/medium was removed and the growth medium
was replaced, and each culture was left for further 18 h
to allow for productive infection with one round of virus
replication [8, 18, 26]. The 18 h infection period together
with a multiplicity of infection above three in all cultures
ensured that all susceptible cells had sufficient exposure
to the virus and that infected cells could be reliably
detected in the subsequent flow cytometry [26, 27]. After
18hpi, cells were washed, fixed where appropriate (BD
Cell Fix, BD Biosciences) and viable cells were stained
with monoclonal antibodies to assess they had been in-
fected with PRRSV (SDOW17-FITC, Rural Technologies)
and/or expression of CD163 (CD163-PE, clone 2A10/
11, AbDseroTec) using flow-cytometry as described in
Additional file 1.
The experiment provided for every individual pig lon-

gitudinal measures of i) the proportions of CD163 posi-
tive cells from the mock infected samples, and for the
infected samples, the proportions of (ii) non-infected
CD163 positive cells, (iii) non-infected CD163 negative
cells, (iv) infected CD163 positive cells and (v) infected

Fig. 1 Schematic diagram of the work-, information- and decision flow adopted in this study
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CD163 negative cells, obtained at seven (five for pigs from
batch 1) sampling times Ti + 18 h, where Ti = i × 24 + 4 h,
i = {0, 1, 2, 4, 6, 8, 9}, represent the different cell incuba-
tion times prior to (mock) infection. Statistical analyses of
observed and predicted trends in PAM susceptibility and
in the cell surface expression of CD163 were performed
using linear mixed models implemented with the SAS
proc mixed (SAS 9.3) with proportions of infected cells
and/or cells classified as CD163 positive (negative) as re-
sponse variables. The statistical models included batch, in-
fection type (mock or PRRSV infection) and incubation
day, and all significant interactions as fixed effects, and pig
within batch as random effect. Normality checks on the
model residuals were carried out to ensure the validity of
using proportions as response variables.

Mathematical models
Modelling approach
The experiment produced alternative hypotheses with
regards to the role of CD163 in the infection dynamics
and for the underlying dynamic processes (see Fig. 1
and Results section). To investigate these further, we
developed alternative deterministic mathematical models
representing diverse sets of dynamic processes and their
interactions underlying the observed time trends in cell
susceptibility and biomarker expression.
For the model building the principle of Ockham’s razor

was applied, i.e. the aim was to develop the simplest
models possible requiring the minimum set of assump-
tions, biological processes and variables necessary that can
reproduce the experimental results with identifiable model
parameters. Simultaneous to minimising the set of model
processes and variables, we maximised model flexibility by
allowing the rates of the biological processes to be poten-
tially cell state dependent. This allowed us to test statisti-
cally the role of CD163 and other factors in the infection
dynamics. Furthermore, to avoid bias processes that were
common in alternative models (e.g. decay rates and dens-
ity dependent effects) were represented by the same math-
ematical functions.
Dynamic processes were represented by systems of

first order ordinary differential equations (ODEs) with
initial conditions (IC) specified by the experimental
conditions. Solutions for the model variables over time
were obtained using Matlab’s numerical ode45 solver
(www.mathworks.com).

Model fitting and identifiability analysis
A differential evolutionary algorithm with a weighted least
squares fit statistics (population size 12, amplification
factor F = 0.4 for mutant generation, cross-over constant
0.5, minimum number of generations 500,000) [27, 28]
was used to fit the alternative mathematical models to the
data. Given that the pigs in these experiments came from

different genetic backgrounds, the models were fit to data
(combining all samples) from each individual pig separ-
ately rather than to all pigs pooled (thus considering each
pig as a random sample from different populations). This
allowed us to assess whether the same model provides a
consistently better fit for all eight individuals and to simul-
taneously gain insight into the underlying mechanisms re-
sponsible for the observed differences in time trends in
susceptibility and biomarker expression between individ-
ual animals and batches. All experimental data outlined in
(i) to (v) above were included in the fitting criteria. The
final model parameter values were chosen based on the
best weighted least squares fit of the models to the data,
i.e. the differential evolutionary algorithm minimised the
root mean square difference (RMSj) between the data and
the model predictions for each individual pig j, given by

RMSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5nj

X
k¼1

5 Xnj

i
yjki−ŷjki
� �2s

ð1Þ

Where yjki refers to the i’th measurement of measure k
(associated with (i) to (v) as defined above) for individual
j, nj is the number of time points Ti at which measure-
ments (i) to (v) were available for individual j, and, and
ŷjki are the corresponding model predictions.
To ensure convergence to the global (rather than

local) optimum parameter combination, the differential
evolutionary algorithm was run three times with differ-
ent sets of starting values for each model parameter.
The fitting process was terminated when convergence
was achieved (i.e. parameter estimates for each individual
differed by less than 5 % over 1000 subsequent iterations
and by less than 10 % between different computational
replicates). In the rare case (i.e. one pig) where conver-
gence was not achieved within 1,000,000 iterations, the
search parameters of the computational algorithm were
modified to allow for more extensive search through the
parameter space and, after using the solution after
1,000,000 iterations corresponding to the best model fit as
new starting values, the algorithm was run for another
100,000 iterations.
By definition, mechanistic models representing processes

that are difficult to measure are often over-parameterized
resulting in poorly identifiable or non-identifiable model
parameters [29, 30]. Poor identifiability manifested itself in
convergence issues during model fitting and ambiguous
parameter estimates or infinite confidence intervals [30].
The two strategies adopted to overcome identifiability
problems consisted of (i) restricting the number of model
parameters by choosing mathematical functions with the
fewest parameters, and (ii) partitioning the model parame-
ters into subsets of parameters to be estimated from the
data and subsets of parameters fixed at a priori values,
ensuring that the remaining parameters are identifiable.
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Parameter subset selection was done by calculating param-
eter importance based on sensitivity analysis and calcula-
tion of collinearity indices to assess near-linear dependence
of parameter subsets, and by iteratively performing estima-
tion on selected subsets until convergence was achieved
[29], as outlined in detail in Additional file 2.

Model comparison and validation
To statistically compare the fits of alternative mathemat-
ical models, the Bayesian Information Criterion (BIC) was
calculated for every model and every pig according to

BICj ¼ dj ln
RSSj
dj

� �
þm ln dj

� � ð2Þ

Where RSSj is the sum of squared residuals (i.e. RSSj =
nj RMSj

2) for individual j, and m and dj are the number
of model parameters and data points (dj = 5nj), respect-
ively. Thus, a smaller BIC corresponds to a better model
fit. Additional statistics used for model comparison in-
cluded for every individual j, the (i) coefficient of determin-
ation Radj, j

2, adjusted for the number of model parameters
to compensate for overfitting, calculated as

R2
adj;j ¼ max 0; 1−

dj−1
� �
————
dj−m
� � 1−R2

j

� � !
ð3Þ

Where Rj
2 is the square of the correlation coefficient

between the observed and predicted data for individual j,
(ii) the prediction root mean square error RMSj defined
in (1), and the total bias Biasj calculated as the sum
of bias in each of the five model fit criteria outlined
above:

Biasj ¼ 1
5nj

X
k¼1

5 Xnj

i
yjki−ŷjki
� �

ð4Þ

Furthermore, in order to test whether a simpler model
with reduced number of parameters provided a statisti-
cally significant superior fit than the more complex model,
a log-likelihood ratio test with threshold p < 0.05 was used
by transforming the BIC difference between two models
into the log-likelihood ratio test statistics as outlined in
[12]. Note that the log-likelihood ratio test can only be
applied to nested models and could thus not be used to
statistically compare models representing different bio-
logical processes underlying the infection dynamics.
To provide insight into the predictive ability of each

mathematical model, the parameter estimates of one
predictor individual at a time, obtained by fitting the
mathematical models to the data of this predictor, were
used to predict the dynamic trends in cell susceptibility
and CD163 expression of the seven other individuals
(validation set) at the observation times Ti. The discrep-
ancy between the model predictions based on predictor

individual l and the observations for validation individ-
ual j were then assessed using the summary statistics
RMS, Radj

2 and total Bias as defined above, with predic-
tions and observations from the corresponding predictor
and validation individuals, e.g.

RMSlj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5nlj

X
k¼1

5 Xnlj

i
yjki−ŷlki
� �2s

where yjki refers to the i’th measurement of measure k
for the validation individual j and ŷlki refers to the corre-
sponding model predictions for individual j obtained by
parameter estimates for the predictor individual l and nlj
is the number of time points Ti at which measurements
(i) to (v) were available for individuals l and j.

Results
In-vitro experiment
PAM susceptibility changes over time and is not mirrored
by changes in the expression of CD163
Susceptibility of PAMs to PRRSV changed considerably
over incubation time in all samples and batches (Figs. 2
and 3a). The actual trends differed substantially between
individuals (Fig. 2) and also between batches (Fig. 3), as in-
dicated by a significant batch by incubation day interaction
in the statistical linear mixed model (p < 0.0001). Common
to all individuals and batches, PAM susceptibility was low-
est at day 0, with less than 10 % of cells becoming infected.
For batches 1 and 2, susceptibility had increased consider-
ably by day 1 to least square mean peak levels around
32 % (SE = 5.1 %) and 59 % (SE = 6.3 %), respectively,
where it plateaued for several days before reducing to con-
siderably lower levels at the later incubation stages (Fig. 3a).
For batch 3, in contrast, PAM susceptibility to PRRSV
increased more gradually and only reached its peak level at
day 6, where over 80 % of cells had become infected. In
contrast to batches 1 and 2, susceptibility in batch 3
remained high at the later incubation days with least
square mean values consistently above 70 % (Fig. 3a).
The percentage of PAMs expressing CD163 on the cell

surface showed an overall declining trend with increasing
incubation time (Fig. 3b). The rates and levels of decline
differed between batches and infection groups, as shown
by statistically significant batch × day and group × day in-
teractions in the statistical model (p < 0.0001). Batch 3,
which had the highest overall PAM susceptibility (Fig. 3a),
had the lowest percentage of CD163 positive cells (Fig. 3b).

The relationship between host cell susceptibility and CD163
expression is complex
The observed discrepancy between the time trends in
susceptibility and in the expression of CD163 (Figs. 2
and 3) indicates that changes in host cell susceptibility
to PRRSV was not fully regulated by CD163, alluding
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thus to a complex relationship between CD163 and
PAM susceptibility. In particular, at incubation day 0,
the vast majority of PAMs expressed CD163 (Fig. 3b),
but less than 10 % of cells had become infected (Fig. 3a).
In contrast, on day 6 of batch 3, the majority of cells did
not express CD163 at detectable level yet 80 % of cells
had become infected. Indeed, in all infected replicates,
there was an apparent increasing tropism of PRRSV
towards cells that seemingly lacked the receptor as incu-
bation time increased (Figs. 2d and 3c).
The significant infection group × day interaction in the

statistical models for CD163 kinetics indicates different
kinetic trends in these biomarkers between PRRSV- and
mock infected samples. Indeed, at the early incubation
stages, expression of CD163 tended to be higher in the

PRRSV infected compared to mock infected samples,
whereas at the later incubation stages, the opposite was
true (Fig. 3b). These results suggest that CD163 not only
influences PAM susceptibility to PRRSV, but also PRRSV
infection may also influence the kinetics of CD163
expression or shedding.

Hypotheses and mathematical models emerging from the
in-vitro studies
Our observations stand in apparent conflict with evidence
from static gain of function experiments that CD163 is
essential for productive infection of PAMs with PRRSV
[21, 22]. The following two alternative hypotheses
emerged, which were further explored with subsequent
in-vitro experiments and with the help of mathematical

Fig. 2 Experimental data and predictions of mathematical models A and B. Experimental data for 8 pigs from 3 batches (B1–B3) are depicted in
red circles, and corresponding predictions from the mathematical models A and B are shown in blue and black lines, respectively. (a & b)
percentage of non-infected PAMs classified as CD163 positive (a) and CD163 negative (b), respectively; (c & d) percentage of infected PAMs
classified as CD163 positive (c) and CD163 negative (d), respectively. For model B, equal switching rates for CD163 positive and CD163 negative
cells was assumed as this corresponded to the best statistical fit
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models of infection and biomarker dynamics as outlined
below (see also workflow in Fig. 1).

Hypothesis H1 and corresponding mathematical model A:
CD163 is essential for PRRSV infection, but escaped
detection by the mono-clonal antibodies
There are several potential reasons why CD163 may
have escaped detection by the monoclonal antibodies in
our experiment. Firstly, the monoclonal antibodies
(mABs) used for CD163 detection only bind to receptors
on the cell surface. However, some PAMs may have
expressed CD163 internally rather than on the cell
surface, and may thus have been erroneously classified
as CD163 negative in the flow cytometry. PRRSV co-

localises with CD163 in the early endosomes [31], indi-
cating that expression of CD163 inside the cell rather
than on the cell surface is critical for permissiveness.
Thus some of the PAMs classified as CD163 negative
may have been indeed susceptible to PRRSV if they
expressed the receptor internally (Hypothesis H1a,
Fig. 1). Alternatively, the CD163 receptor may have
undergone changes in its functional form over prolonged
incubation periods thus escaping detection with the
mABs if these changes occured in the mAB binding do-
main (Hypothesis H1b, Fig. 1). Such form changes may
indeed explain the increase of infected cells classified as
CD163 negative predominantly observed at the later
incubation stages. Finally, PAMs classified as CD163

Fig. 3 Susceptibility and CD163 dynamics. Batch specific least square mean (LSM) percentages and standard errors obtained from the
experimental data (a–c) and from the predictions of model B (d–f) obtained by linear mixed model analysis. Batches 1 and 3 consisted of three
biological replicates (i.e. cells from three different pigs), and batch 2 comprised two biological replicates. The estimates refer to the proportion of
PAMs classified as infected (a & d), CD163 positive (b & e), and CD163 positive within the set of infected cells (c & f), after incubation for 0, 1, 2, 4,
6, 8 and 9 days, respectively, before PRRSV (infected) or mock-infection (control). Estimates refer to 18 h post (mock) infection. Predictions refer to
refined model B with assumption AS1 (i.e. switching rates independent of CD163, σ1,max = σ2,max = σmax)

Doeschl-Wilson et al. BMC Systems Biology  (2016) 10:101 Page 7 of 17



negative at the observation time 18 hpi may have
expressed the receptor at the time of infection, but may
have shed the receptor or the mAB binding domain within
the 18 h (mock) infection period, thus also escaping detec-
tion due to the time lag between infection and observation
(Hypothesis H1c). To assess these hypotheses, additional
in-vitro experiments (described in Additional file 3) were
carried out using additionally available PAMs from pigs in
some experimental batches. The results of these small
scale experiments do not support hypotheses H1a&b that
CD163 was present at the time of cell screening but had
escaped detection by the mABs used in the main experi-
ment (Tables A and B in Additional file 3). However, the
percentage of CD163 positive cells was found significantly
lower at 18 hpi compared to 0 hpi (Table C in Additional
file 3), thus indicating potential shedding or form change
in the CD163 receptor within the 18 h infection period.
Furthermore, the differences were more pronounced in
the infected than in the mock infected samples, and at
later incubation stages, indicating that both PRRSV infec-
tion and prolonged incubation may promote receptor
shedding or form changes. Based on the combined experi-
mental evidence we developed mathematical model A
outlined below to further investigate hypothesis H1c, ac-
cording to which CD163 is indeed essential for productive
infection of PAMs with PRRSV, but had escaped detection
due to shedding or form changes of the receptor over the
18 h infection period (Fig. 1).
Model A, illustrated in Fig. 4, assumes that CD163 is

essential for productive PRRSV infection, but that shed-
ding of the receptor or the mAB binding domain within
the 18 h infection period may be responsible for the high

prevalence of infected CD163 negative cells that was ob-
served 18 hpi in some samples (Figs. 2d and 3c). Accord-
ing to model A, PAMs can have one of three states prior
to infection (or during mock infection): a priori CD163
negative, CD163 positive and CD163 negative after shed-
ding of the receptor or the mAB binding domain. Let C−,
C+denote the number of PAMs that lack or express
CD163 on the cell surface, respectively, and C+− denote
the number of cells that were CD163 positive at one stage,
but have shed the receptor or the mAB binding domain
within the observation period. Thus C+ cells correspond
to CD163 positive cells in the experimental observations,
and C− and C+− cells together correspond to CD163 nega-
tive cells. It was assumed that C− cells differentiate into
C+cells at constant rate d and that C+ cells shed the recep-
tor or the mAB binding domain at a rate r1. To reproduce
the observed increase in the proportion of cells classified
as CD163 negative over the later incubation stages
(Fig. 3b), it was assumed that all cells generate, at a con-
stant rate pP, signalling molecules P with decay rate sP, and
that these impact on receptor shedding in a cumulative,
density dependent manner, as represented by the
Michaelis-Menten function r1 Pð Þ ¼ r1P

f rþP , with asymptote

r1 and the constant fr denoting the half-saturation concen-
tration. Non-infected cells were assumed to decay at con-
stant rates m−, m+ and m+−, respectively. In model A, only
C+ cells are susceptible to PRRSV. To accommodate the
low susceptibility of PAMs at incubation day 0 observed
in our experiment (Figs. 2c, d and 3a, c), which is a well-
known artefact of in-vitro infection experiments with fro-
zen PAMs and considered as an intrinsic property of the
in-vitro environment [15], the infection rate b(Q) of C+

Fig. 4 Schematic figure of model A. Components in blue, green and purple refer to the cell types and biological processes represented at all
stages in the experiment (i.e. prior and post infection with PRRSV or mock agent). Components in red show additional cell types and processes
after introduction of PRRSV into the cell cultures. C− and C+ represent PAMs without/with the CD163 receptor on the cell surface, respectively,
while C+− represent cells that have shed the CD163 receptor. Only C+ cells are assumed susceptible to PRRSV. Cells indicated with ‘*’ denote
infected cells. See main text for more detailed description of the model, Additional file 4 for the mathematical representation of the model, and
Additional file 5 for a description of the model parameters
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cells was also modelled as b Qð Þ ¼ bmaxQ
f bþQ with maximum

infection rate bmax and half saturation concentration fb of
compound Q which is assumed to be generated by the
PAMs at a rate pQ and to have decay rate sQ. The
Michaelis-Menten function was chosen for the infection
rate due to its mathematical properties allowing a fast rise
to a constant maximum infection rate bmax. Infected C+

(denoted C+
* ) cells were assumed to shed the receptor at

rate r2 Pð Þ ¼ r2P
f rþP . Thus, if r1 ≠ r2 the shedding rate of

CD163 differs between infected and non-infected cells.
For example, infected cells may be more prone to shed-
ding CD163 or the mAB binding domain than non-
infected cells. Finally, infected cells can be either CD163
positive (C+

* or negative (C+ −
* ), with respective decay rates

a+ and a+−.
The mathematical representation of Model A and

the corresponding initial conditions are provided in
the Additional file 4. Model parameters are listed in
Additional file 5. Identifiability analysis revealed con-
founding between the rates of cellular processes depend-
ing on the compounds with the production and decay
rates of these compounds. Therefore, production and
decay rates were set to the arbitrary value of 0.5 in the
model fitting process, which ensured identifiability of the
remaining model parameters (see Additional file 2).

Hypothesis H2 and mathematical model B: CD163 is not
essential for PRRSV infection. Instead, another (not yet
identified) component controls PAM susceptibility to PRRSV,
and CD163 may or may not be related to this
The alternative hypothesis builds upon recent evidence
that susceptibility of host cells to PRRSV may be more
complex than conveyed by the susceptibility biomarker
CD163 alone and may partly depend on other cellular
entry mediators [32]. Indeed, we assessed the role of one
such established susceptibility biomarker, i.e. CD169
(also known as Sialoadhesin or SIGLEC1) [18–20], in
additional in vitro-experiments (see Additional file 6).
However, the experimental results provide little support
for a significant role of CD169 alone or combined with
CD163 on the observed susceptibility trends (see
Additional file 6). To our knowledge no other molecular
marker that could explain the observed susceptibility
trends has been identified to date. However, there is
accumulating evidence that macrophage susceptibility to
PRRSV or other viruses is characterised by a transient
and reversible cellular state [15, 33, 34]. In line with
these observations, we developed mathematical model B,
in which host cell susceptibility was defined by a reversible
cellular state ‘M’, which is controlled by components
generated by the PAMs themselves (Fig. 5). In contrast to
model A, model B assumes that CD163 is not essential
for infection with PRRSV. In the absence of concrete

evidence, the model incorporates both assumptions that
expression of CD163 may or may not be related to the
susceptibility state ‘M’. For example, CD163 may directly
enhance switching into a susceptible state, or the develop-
ment of CD163 may be regulated by the same compo-
nents that render cells permissive to the virus.
Thus according to model B, prior to infection (or during

mock infections) PAMs can be classed into four categor-
ies: CD163 negative and non-susceptible, CD163 positive
and non-susceptible, CD163 negative and susceptible, and
CD163 positive and susceptible. Let C−M−, C+M−, C−M+

and C+M+ denote the number of cells in these respective
categories and μ1,μ2,μ2, and μ4 their respective decay rates.
C−M− cells differentiate into C+M− cells at constant rate
δ1, and C−M+ differentiate into C+M+ at a rate δ2. Thus,
δ1 ≠ δ2 would imply that differentiation from CD163 nega-
tive into CD163 positive cells depends on the susceptibil-
ity state M. Similar to model A, it is assumed that cells
generate, at a constant rate γ, signalling molecules F (e.g.
plasma proteins, transmembrane proteins, coagulation
factors, enzymes or enzyme inhibitors) with decay rate ω
that affect host cell permissiveness. Specifically, in model
B, the density of these molecules in the medium is as-
sumed to determine the susceptibility of PAMs to the
virus. If the density of molecules F is low, susceptible M+

cells switch to a non-susceptible state at rate σ1+−(F) and
σ2+−(F) for CD163 negative and CD163 positive cells, re-
spectively. For high density F, non-susceptible M− cells
switch to a susceptible state (M+) at respective rates σ1−
+(F) and σ2−+(F). The switching rates are represented by
symmetric sigmoidal logistic functions:

σ i−þ Fð Þ ¼ σ i;max
1

1þ exp −ε F−FTð Þð Þ and

σ iþ− Fð Þ ¼ σ i;max 1−
1

1þ exp −ε F−FTð Þð Þ
� �

where i = 1,2 represents CD163 negative and CD163
positive cells, respectively. Thus, as illustrated in the
bottom right panel of Fig. 5, for F below the threshold
FT, the rates σi−+(F) of change from a non-susceptible to
a susceptible state M− to M+ are close to zero, whilst the
rates σi−+(F) from susceptible M+ to non-susceptible M−

are at their maximum σi,max. When F exceeds a thresh-
old FT, the reverse happens: switching of cells from
non-susceptible M- into susceptible state M+ occurs at
maximum rates σi − +(F) = σi,max, whereas the opposite
switch from susceptible to non-susceptible states occurs
at rates close to zero. The constant ε determines how
gradual the susceptibility state changes as F approaches
FT. Note that σ1,max ≠ σ2,max corresponds to different
switching rates for CD163 positive and negative cells.
In model B, only M+ cells are assumed susceptible to

PRRSV. After introduction of PRRSV into the cultures
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at times Ti, (with subscript i representing different incu-
bation times) C−M+ cells become infected at rate β1 and
C+M+ cells become infected at rate β2. Thus, β2 > β1 > 0
would imply that expression of CD163 on the cell sur-
face is not essential, but enhances PAM susceptibility.
Note that in contrast to model A, density dependent in-
fection rates were not required in model B to reproduce
the initial increase in cell permissiveness between the first
incubation days, as susceptibility is controlled by the
density dependent ‘M’ state in model B. Infected C−M+*
and C+M+* cells decay at rates α3 and α4, respectively.
The mathematical representation of Model B and the

corresponding initial conditions are provided in the
Additional file 4. To ensure parameter identifiability pro-
duction and decay rates were set to the arbitrary value of
0.5, and the parameter ε regulating the switching rate was
set to the arbitrary value of 0.1 in model B for the model fit-
ting (see Additional file 2). Thus, Model A contained 14
and model B contained 16 independent model parameters
with unknown values (listed in Additional file 5).

Inference of biological mechanisms underlying observed
changes in cell susceptibility
The model results support hypothesis H2–CD163 was not
essential for PRRSV infection
To infer which of the two proposed mathematical
models has greater support from the experimental data,
Models A and B were fitted to the data from the main

in-vitro experiment as outlined in the Methods section.
The computational algorithm used for model fitting led
to a unique solution for all pigs for both models A and
B, implying that in both cases the parameter values
corresponding to the closet model fits to the data could
be identified. Figure 2 shows that both models fit the
majority of data reasonably well. However, the visual in-
spections (Fig. 2) and the model fit statistics (Table 1)
provide an overwhelming support for model B, which
not only produces a closer fit to the wide spectrum of
kinetic profiles for all cell characteristics specified in the
fitting criterion (Fig. 2), but also for the emerging prop-
erties (i.e. batch specific kinetic trends in susceptibility
and CD163 expression) not directly included in the
fitting criterion (Fig. 3). The superior fit of model B
cannot be attributed to the greater number of parame-
ters in model B, as the BIC criterion (Eq. 2) and the
adjusted coefficient of determination Radj

2 penalise over-
parameterisation and a consistently superior fit was still
achieved when model B was reduced to the same or
even lower number of parameters than model A (by set-
ting some parameters equal as outlined below and
shown in Additional file 7).
Table 2 shows the parameter estimates for model B for

each individual pig together with thestandard errors de-
rived from the approximate covariance matrix of the esti-
mate (Additional file 2). With a few exceptions, estimated
parameter values associated with different pigs were of

Fig. 5 Schematic figure of model B. Components in blue and green refer to the cell types and biological processes represented at all stages of the
experiment (i.e. prior and post infection with the PRRS virus or the mock agent). Components in red show additional cell types and processes after
introduction of the virus into the cell cultures. C− and C+ represent PAMs without/with the CD163 receptor on the cell surface, and M− and M+

represent the non-susceptible and susceptible state, respectively. Cells indicated with ‘*’ denote infected cells. The bottom right panel illustrates the
dependence of the switching rates σi+− and σi−+ on the compound F (for parameter values FT = 1000, ε = 0.1, σmax = 0.9). See main text for more
detailed description of the model, Additional file 4 for the mathematical representation of the model, and Additional file 5 for a description of the
model parameters
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similar order of magnitude, and parameter estimates var-
ied more between than within batches as would be
expected due to genetic differences (Table 2). In cases
where the parameter estimates differed substantially be-
tween pigs (e.g. the differentiation rate δ1) the standard
errors were large, indicating a high degree of uncertainty
in the parameter estimate.
Table 3 shows the predictive abilities for models A and

B as assessed by the Radj
2 statistics, averaged over all indi-

viduals from the same batch in the predictor and valid-
ation set, respectively (e.g. the value associated with
predictor set batch 1 and validation set batch 2 is the aver-
age Radj

2 between individuals l and j, with individuals l
from batch 1 and individuals j from batch 2). When pre-
dictions are within the same experimental batch (diagonal
values in Table 3), model B has consistently considerably
higher predictive ability than model A (average Radj

2 for
models B and A are 0.65 (sd = 0.22) and 0.34 (sd = 0.40),
respectively). When prediction and validation sets refer to
different batches, both mathematical model have no pre-
dictive ability (Radj

2 = 0). This is expected as cells from
different batches originate from different pig breeds that
are likely to differ in PAM composition, susceptibility and
transition rates represented in the models. However, it is
important to point out that a poor predictive value of a
model for specific fixed parameter values does not
imply that the model provides a poor data fit for all
parameter values, as was shown earlier (see e.g. Fig. 2).
Similar results were found for the other statistics RMS
and total Bias (see Additional file 8).
In summary, the in-vitro and in-silico results together

point to CD163 not being essential for PRRSV infection in
our experiment. Instead, the close fit of model B to the
multi-dimensional data and the realistic and consistent par-
ameter estimates provide support for the hypothesis that
PAM susceptibility to PRRSV is defined by a reversible state
that is regulated in a density dependent manner by signal-
ling molecules or other unknown autocrine substances.

Relationship between CD163 and the inferred susceptibility
state M
In principle, the parameter estimates obtained for model
B can provide further insights into the nature of the
inferred susceptibility state M and its relationship with
the CD163 receptor. For example, consistently greater
values for β2 than β1 would suggest that CD163 en-
hances susceptibility. However, caution is advised when
interpreting individual parameter estimates as there is
some degree of inter-dependence between different
parameters (see collinearity indices in Additional file 2).
Rather than inspecting individual parameter values we
therefore tested whether simpler models consisting of
fewer parameters would provide a similarly good fit by
exploring the following assumptions:

(AS1): The switching rate between the susceptibility
states M− and M+ is independent of CD163
(i.e. σ1,max = σ2,max = σmax)

(AS2): PAM susceptibility to PRRSV is independent of
CD163 (i.e. β1 = β2 = β)

(AS3): The differentiation rate from a CD163 negative
to CD163 positive state is independent of the
susceptibility state M (i.e. δ1 = δ 2 = δ)

(AS4): The cellular decay rates are independent of
CD163 and M (i.e. μ1 = μ2 = μ3 = μ4 = μ and
α3 = α 4 = α)

These assumptions were implemented into model B
individually and in combination, and corresponding par-
ameter estimates were obtained using the same fitting
procedure as above. As the alternative models are
nested, the log-likelihood ratio test could be applied to
determine whether a particular model provides a signifi-
cantly superior fit over another model. Based on the fit
statistics, the model incorporating the first assumption
(AS1) resulted in the model of best fit for all eight pigs.
Compared to the full model B, the reduced model (AS1)

Table 1 Comparison of the fits of mathematical models A and B to the experimental data

Pig (Batch) Nr data points RMS model A RMS model B BIC model A BIC model B Radj
2 model A Radj

2 model B Bias model A Bias model B

1 (1) 25 0.088 0.026 −31.9 −58.4 0.87 0.99 0.071 0.005

2 (1) 25 0.068 0.024 −27.4 −55.8 0.91 0.98 0.003 0.055

3 (1) 25 0.070 0.036 −36.9 −46.1 0.92 0.97 −0.027 0.008

4 (2) 35 0.178 0.090 −29.4 −50.0 0.42 0.86 0.284 −0.035

5 (2) 35 0.135 0.048 −37.8 −69.1 0.43 0.92 0.276 −0.008

6 (3) 35 0.194 0.133 −26.7 −38.1 0.07 0.53 0.415 −0.033

7 (3) 35 0.196 0.111 −26.4 −43.8 0.11 0.73 0.689 −0.002

8 (3) 35 0.205 0.107 −25.1 −44.9 0.08 0.73 0.541 −0.034

RMS (Root Mean Square difference), BIC (Bayesian Information Criterion), Radj
2 and total Bias were calculated according to Eqs. (1) to (4), respectively. Nr data points

is the number of incubation periods for each experimental replicate (5 for batch 1 and 7 for batches 2 and 3) multiplied by five corresponding to the five fitting
criteria ((i) the proportions of CD163 positive cells from the mock infected samples, and for the infected samples, the proportions of (ii) non-infected CD163 posi-
tive cells, (iii) non-infected CD163 negative cells, (iv) infected CD163 positive cells and (v) infected CD163 negative cells, respectively). For model B, equal switching
rates for CD163 positive and CD163 negative cells (i.e. AS1 described below) were assumed as this produced the model of best fit (see section below)
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produced a statistically significantly better fit than the
original model for six out of eight pigs (p < 0.05). Thus,
according to the model, the presence of CD163 has no
direct effect on the rate at which cells switch between
susceptible and non-susceptible states.
With regards to AS2, i.e. whether or not CD163 en-

hances susceptibility, the picture is less clear. According
to the model fit statistics, the model allowing for CD163
dependent infection rates (β1 ≠ β2) provided a signifi-
cantly superior fit over the model assuming no effect of
CD163 on infection rates (β1 = β2) for only three out of
the eight pigs (pigs 1, 4 and 5) (see Additional file 6).
However, there was no systematic relationship between

Table 2 Estimated parameter values (with standard errors) for model B, assuming σ1,max = σ2,max = σmax

Pig Pig 1 Pig 2 Pig 3 Pig 4 Pig 5 Pig 6 Pig 7 Pig 8

Batch (B)/Parameters B1 B1 B1 B2 B2 B3 B3 B3

δ1 3.5E-5 2.4E-5 0.0027 0.0094 0.079 0.108 0.0633 1.0E-4

(0.007) (0.015) (0.006) (0.0075) (0.011) (0.020) (0.002) (0.003)

δ2 0.0041 0.053 0.049 0.0030 0.0061 0.011 0.0057 0.0047

(0.001) (0.034) (0.006) (0.0009) (0.0017) (0.011) (0.021) (0.024)

σmax 0.17 0.015 0.022 0.072 0.0056 1.0E-5 1.0E-9 5.1E-11

(0.11) (0.013) (0.012) (0.004) (0.0089) (0.0065) (0.0012) (0.0049)

FT 1.5E6 5.5E6 7.4E6 1.8E6 1.4E6 1.0E6 8.3E5 7.1E6

(3.1E5) (5.3E6) (6.1E5) (2.6E5) (2.5E5) (6.3E6) (3.3E7) (5.3E7)

μ1 0.0021 0.015 0.014 0.003 0.022 0.028 0.086 0.11

(0.026) (0.003) (0.002) (0.015) (0.028) (0.031) (0.005) (0.021)

μ2 0.144 0.036 0.031 0.15 0.20 0.135 0.14 0.11

(0.0052) (0.012) (0.014) (0.006) (0.039) (0.050) (0.014) (0.018)

μ3 4.9E-4 0.073 0.012 0.0030 3.5E-6 3.1E-7 1.0E-8 1.7E-10

(6.5E-4) (0.019) (0.045) (0.0015) (5.7E-5) (0.0017) (0.023) (0.026)

μ4 0.0070 0.014 0.0046 0.011 0.015 0.038 0.029 0.033

(0.0015) (0.052) (0.014) (0.0009) (0.0049) (0.022) (0.020) (0.014)

c1 0.00048 0.024 0.061 0.0089 0.0030 0.66 0.91 0.33

(0.00044) (0.13) (0.170) (0.023) (0.0056) (0.19) (0.044) (0.065)

c2 0.68 0.47 0.58 0.44 0.51 0.059 1.4E-5 0.58

(0.05) (0.44) (0.063) (0.058) (0.11) (0.12) (0.040) (0.037)

c3 0.099 0.50 0.36 0.34 0.22 0.040 0.012 0.011

(0.008) (0.19) (0.48) (0.015) (0.010) (0.012) (0.004) (0.003)

β1 0.94 0.99 1.00 0.54 0.31 0.20 0.24 0.21

(0.10) (2.89) (1.50) (0.030) (0.019) (0.022) (0.015) (0.044)

β2 0.76 0.18 1.00 1.00 0.40 0.29 0.31 0.37

(0.025) (0.18) (0.54) (0.042) (0.070) (0.12) (0.054) (0.080)

α3 0.63 0.98 1.00 0.53 0.77 0.40 0.36 0.31

(0.38) (0.03) (0.04) (0.0097) (0.017) (0.031) (0.017) (0.027)

α4 0.53 0.05 0.092 0.38 0.39 0.28 0.32 0.26

(0.064) (0.023) (0.113) (0.023) (0.058) (0.101) (0.024) (0.023)

Parameter values are given up to two significant digits. Standard errors were derived from the covariance matrix of the weighted least square estimates as
described in Additional file 2

Table 3 Predictive ability of models A and B, assessed by the
Radj
2 statistics, averaged over all individuals from the predictor
and validation batches

Model A Model B

Validation set Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3

Predictor set

Batch 1 0.74 0 0 0.80 0 0

Batch 2 0 0.34 0 0 0.75 0

Batch 3 0 0 0.31 0 0 0.39
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β1 and β2 that was common to all pigs and sensitivity es-
timates for some of the pig specific infection rates β1
and β2 were wide and overlapped for the majority of pigs
(i.e. all except pigs 1 and 5) implying a large degree of
uncertainty in these parameters (Table 2). Thus, the
available data do not provide conclusive evidence on
whether or not CD163 enhances susceptibility of PAMs
to PRRSV.
Assumption AS3 resulted in significantly poorer model

fits for all pigs, although the general trends were still
captured reasonably well (Additional file 7). This would
suggest that differentiation rates for CD163 are not inde-
pendent of the cellular state M, as would also be sup-
ported by the distinct sensitivity intervals for the
differentiation rates δ1 and δ2. Finally, assumption AS4
resulted in a substantially poorer model fit for all pigs
(p < 0.05) indicating that mortality rates depend partly
on CD163 and M. However, we could not detect a uni-
form pattern in the parameter estimates across all 8 pigs
in support of the hypothesis that a particular cellular
state has a systematic influence on either cell differenti-
ation or longevity (Table 2).

Underlying causes for temporal changes in CD163
prevalence and in susceptibility to PRRSV
Figure 3 shows that model B reproduces the key charac-
teristics of the in-vitro experiment, including the batch
dependent non-linear trend in cell susceptibility to
PRRSV (Fig. 3a, d), the consistent decline in the propor-
tion of CD163 positive cells with time (Fig. 3b, e), and
the decrease in tropism of the virus to CD163 positive
cells over time (Fig. 3c, f ). The mathematical model
sheds some light on the potential causes for the ob-
served heterogeneity between the experimental batches
consisting of different pig breeds as differences in par-
ameter estimates were generally larger between batches
than between pigs within the same batch (Table 2). One
striking difference between parameter estimates associ-
ated with batch 3 to those of batches 1 and 2 is the ex-
tremely low value for the maximum rate σmax

controlling the rate at which cells switch between non-
susceptible (M−) and susceptible (M+) states (Table 2).
This would imply that samples from batch 3 changed
their susceptibility state less frequently than samples
from other batches. Since a relatively large proportion of
cells in batch 3 were initially non-susceptible (i.e. M− as
indicated by c1 + c2 > 0.5, these parameter values would
explain why for batch 3 susceptibility increased at a rela-
tively slow rate, but remained high once cells had
switched from the non-susceptible M− to the susceptible
M+ state (Fig. 3a, d). The apparent decline of CD163
positive cells within the subset of infected cells over in-
creasing incubation time that was most pronounced in
batch 3 (Fig. 3c, e) could be explained by the combination

of two factors, i.e. the slow decline in the percentage of
susceptible CD163 negative cells (due to relatively low
decay rate μ3), and the fact that susceptibility is only par-
tially controlled by CD163 in model B.
In summary, the model suggests that changes in PAM

susceptibility to PRRSV over time are likely the result of
several cellular processes interacting rather than caused
by one single process alone. In particular, moderate dif-
ferences in the initial composition of cells and in cell
state dependent differentiation, activation and decay
rates can generate a large inter-pig variation in kinetic
susceptibility and biomarker trends, as observed in the
in-vitro experiment.

Discussion
Changes in host target cell susceptibility to an infec-
tious agent can drastically alter the within-host in-
fection dynamics and outcome of infection [35, 36].
However, dynamic changes in host cell composition
throughout infection are difficult to inspect in vivo.
Our in-vitro studies revealed that susceptibility of in-
cubated PAMs to PRRSV can indeed change substan-
tially over time, even in the absence of the virus and
immune response. Surprisingly, the well-established
susceptibility biomarker CD163 emerged as an unreli-
able indicator for change in cell susceptibility in our
study. Indeed, our process-based models informed by
the experimental data do not support the view that
CD163 is essential for productive infection of PAMs
with PRRSV [19–22]. Instead, models in which sus-
ceptibility is a reversible cellular state that is mediated in
a density dependent manner by autocrine factors, provide
a significantly superior fit to the multi-variate data than
models imposing CD163 as essential component for
susceptibility.
Mathematical models have proved a powerful tool to

infer biological processes that are difficult to monitor ex-
perimentally [23, 24, 27, 36–38]. Validation of mathem-
atical models requires however data of sufficient quality
to discriminate between alternative possible model as-
sumptions. The multi-dimensional longitudinal mea-
sures of various cell characteristics generated in our
controlled laboratory environment proved sufficiently in-
formative for discriminating between alternative hypoth-
eses surrounding the role of CD163 in PRRSV
infections. Indeed, model B (CD163 not essential for in-
fection) unanimously produced a close and a statistically
superior fit over alternative model A (CD163 essential
for infection) to the multi-variate data profiles for all
eight pigs, and led to realistic and consistent estimates
for the model parameters. Our initial mathematical
models also included the dynamics of the additional
biomarker CD169, for which experimental measure-
ments were collected, but for which double staining with

Doeschl-Wilson et al. BMC Systems Biology  (2016) 10:101 Page 13 of 17



virus antibodies was not possible in our experiment (see
Additional file 6). The information obtained from this
single staining alone proved insufficient for inferring the
effect of CD169 on cell susceptibility, and this was
clearly reflected by the lack of convergence of the fitting
algorithm.
Convergence of the computational algorithm towards

plausible parameter estimates and the corresponding
tight model fit to the multi-variate data profiles provides
statistical support that our mathematical model (i.e.
refined model B) is a valid representation of the cell sus-
ceptibility and CD163 biomarker dynamics. Neverthe-
less, a tight model fit to experimental data alone does
not prove that the model and all incorporated assump-
tions are correct. For example, without evidence for the
contrary, we adopted the simple model assumption that
the reversible susceptibility state is mediated in a density
dependent manner by signalling molecules or other per-
missiveness altering substances that are produced by all
cells at equal and constant rates. This is in line with the
well-established fact that macrophages secrete a broad
range of biologically active substances into their local
milieu including enzymes; enzyme inhibitors; plasma
proteins such as complement components, coagulation
factors, and apolipoprotein E [39]. These factors regulate
the functions of other cells such as interferon, interleukin
1, mitogens, and angiogenesis factor. The real process is
likely to be more complex and may require the presence
of other cellular receptors or compounds. For example,
toll-like receptors (TLRs) are known to play an important
role in pathogen recognition of host cells and the produc-
tion of antiviral cytokines [40, 41]. However, devising
more complex models unaccompanied by informative
data would not produce relevant novel insights.
Although we sought to determine generic mechanisms

influencing PAM infection dynamics that are common
to all pigs, our mathematical models were fitted to data
from each individual animal separately. This way we
could incorporate differences between individuals or
batches due to genetic or environmental factors by im-
posing minimal constraints on the model parameter
values [38]. This approach allowed us to test whether
our models are able to reproduce the observed between
pig variation in the multi-variate temporal patterns and
simultaneously generate common key characteristics
such as the observed apparent increase in tropism of
PRRSV towards CD163 negative cells.
Although our inference approach could not determine

the exact relationship between CD163 expression and
the reversible susceptibility state of PAMs, it indicates
that these two characteristics may not be independent.
This inter-dependence could cause confounding and
potential difficulties for disentangling cause and effect
in experimental data. Indeed, in experimental studies

increased levels of infection are often correlated with
increased expression of CD163 [21, 22, 42]. Further-
more, gain of function experiments report a strong
relationship between CD163 expression and PAM sus-
ceptibility after 1 or 2 incubation days [19–22]. Our
models however demonstrate that even if susceptibility
was not directly controlled by CD163, the majority of
infected cells could still be CD163 positive as a by-
product of several interacting processes (Fig. 3d). Such
inter-dependence between cell state (e.g. activation, mat-
uration and polarization) and CD163 expression has been
previously demonstrated [33, 43, 44].
It is long known that external stimuli for differenti-

ation and reversible activation of porcine alveolar mac-
rophages can alter their susceptibility to PRRSV [15]. In
a similar experiment to ours (although with a different
PRRSV type), Gaudreault et al. [8] also found an in-
crease in PAM permissiveness to PRRSV within 3–4 in-
cubation days and established that new mRNA synthesis
of the cultured cells played an important role in this
observed increase. The authors proposed that an anti-
inflammatory cytokine environment might facilitate
mRNA synthesis and thus infection [8]. Our model is in
line with this hypothesis and would further suggest that
mRNA synthesis depends on the cytokine environment
in a dose dependent manner.
Accumulating evidence points to a critical role of

macrophage polarization into classically activated
(M1) or alternatively activated (M2) cells in the re-
sponse of cells and immune components to pathogens
[33, 34, 43, 44]. Recently, macrophage polarization
has also been implicated in controlling PRRSV infec-
tion [45]. Polarization is transient and highly revers-
ible [46]. It can be induced by diverse environmental
stimuli, including cytokines produced by host cells as
well as pathogens, and leads to different types of
macrophage phenotype and function [34]. For ex-
ample, it has been shown that polarization can alter
macrophage susceptibility to HIV-1 infection [44]. Al-
though little is known about the causal relationship
between CD163 and macrophage polarization and
resulting functions, polarization and expression of
CD163 are clearly confounded. Alveolar macrophages
from healthy mice and human lungs have been found
to be predominantly M2 with high levels of ex-
pression of CD163 [44]. Some studies even consider
CD163, together with other receptors and chemo-
kines, as important determinants for discriminating
between M1 and M2 polarization, as M2 cells gener-
ally express high levels of CD163 whereas M1 cells
express low levels of this receptor [43]. Whether and
how CD163 and macrophage polarization in combin-
ation affect mRNA synthesis and the permissiveness
of PAMs to PRRSV is currently not known, but is
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reminiscent of previous work showing that PAMs
isolated from different pig breeds harbouring different
pro-inflammatory transcriptional states also differed in
susceptibility to PRRSV [25, 26]. In summary, our
model would clearly support the hypothesis of a cyto-
kine mediated, transient and reversible macrophage
polarization regulating the susceptibility of PAMs to
PRRSV.
To our knowledge, this is the first study that elicits

how PAM susceptibility to PRRSV can change over time
in a closed restricted culture environment. Future stud-
ies with more diverse virus strains are needed to test the
validity of our results for other PRRSV strains and in-
vivo. Evidence suggests that different PRRSV strains may
give rise to different cellular response mechanisms [47].
The in-vivo response is also likely to be mediated by
many factors, including the virus, by-stander cells and
immune components, which are not represented in the
in-vitro system [13, 48, 49]. Furthermore, in vivo macro-
phages are likely to cover a continuous spectrum of
activation phenotypes rather than two discrete polarized
states as implied in our model [34], which may affect cell
susceptibility and CD163 expression. Future studies
using diverse PRRSV strains should therefore assess how
PRRSV infection or specific immune components, rather
than incubation, affects the susceptibility of resident
non-infected macrophages and CD163 expression.
A recent in vivo gene editing experiment reports that

pigs that lacked functional CD163 were fully resistant to
a virulent North American PRRSV strain, with the virus
unable to replicate in the alveolar macrophages of these
pigs [50]. At first sight these findings appear contradict-
ory to our findings. However, apart from obvious breed
and virus strain differences, one fundamental discrep-
ancy between this and our study is that all PAMs and
precursor cells in the gene-edited pigs lacked functional
CD163 through an edited mutation in exon 7. In con-
trast, PAMs in our study were derived from pigs with
heterogeneous macrophage populations, where macro-
phages that did not express CD163 had the potential to
differentiate into CD163 positive cells. One would ex-
pect that gene edited enforced manipulation of a par-
ticular CD163 pathway acting on cells of all maturity
stages affects cell permissiveness to a virus differently
than the natural cellular processes acting on incubated
PAMs from wild-type pigs. Our study has therefore im-
portant implications for the development of vaccines or
therapeutics that target CD163 expression in resident
macrophages of pigs, as our findings would imply that
simply reducing CD163 expression may not necessar-
ily protect cells from infection with PRRSV. Clearly,
further studies are needed to decipher the exact role
of CD163 on host cell permissiveness to various PRRSV
strains.

Conclusions
The quantitative evidence produced by our dynamic
model inference approach allowed us to discriminate be-
tween alternative hypotheses surrounding the underlying
processes controlling dynamic changes in host cell sus-
ceptibility to an important virus. Using this approach we
inferred that the susceptibility of alveolar macrophages
is most likely a reversible state that may be mediated in
a density dependent manner by compounds generated
by the target cells themselves. The previously identified
susceptibility bio-marker CD163 appears to have only
played a secondary role in the observed infection dy-
namics. Macrophage polarization is one potential mech-
anism that has been shown to control host cell
susceptibility to viruses and which would match the
model inferred cell characteristics, but its role in infec-
tion dynamics related to PRRSV and other viruses still
needs to be further established for the development of
novel drug targets.
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