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Prion diseases are infectious neurodegenerative disorders characterised by accumulations of abnormal
prion glycoprotein in affected tissues. Following peripheral exposure, many prion strains replicate upon
follicular dendritic cells (FDC) in lymphoid tissues before infecting the brain. An intact splenic marginal
zone is important for the efficient delivery of prions to FDC. The marginal zone contains a ring of specific
intercellular adhesion molecule-3-grabbing non-integrin related 1 (SIGN-R1)-expressing macrophages.
This lectin binds dextran and capsular pneumococcal polysaccharides, and also enhances the clearance of
apoptotic cells via interactions with complement components. Since prions are acquired as complement-
opsonized complexes we determined the role of SIGN-R1 in disease pathogenesis. We show that tran-
sient down-regulation of SIGN-R1 prior to intravenous prion exposure had no effect on the early accu-
mulation of prions upon splenic FDC or their subsequent spread to the brain. Thus, SIGN-R1 expression
by marginal zone macrophages is not rate-limiting for peripheral prion disease pathogenesis.
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© 2016 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Prion diseases (or transmissible spongiform encephalopathies)
are a unique group of subacute, fatal, infectious neurodegenerative
disorders. During prion disease, aggregations of PrP%, an abnor-
mally folded isoform of the host cellular prion glycoprotein (PrP®)
accumulate in affected tissues (Prusiner, 1982). Prion infectivity
co-purifies with PrP5¢ and is considered to constitute the major
component of the infectious agent (Bolton et al., 1982; Legname
et al, 2004; Wang et al., 2010). Once prions reach the central
nervous system (CNS) they cause extensive neuropathology which
is characterised by the deposition of PrP5¢, extensive neurode-
generation and vacuolation (spongiosis), as well as reactive glial
responses in both astrocytes and microglia.

Many natural prion diseases including natural sheep scrapie,
bovine spongiform encephalopathy in cattle, chronic wasting
disease in cervids, and variant Creutzfeldt-Jakob disease (vC]D) in
humans, are acquired by peripheral exposure, such as oral con-
sumption of food or pasture contaminated with prions. In humans,
accidental iatrogenic prion transmission has also occurred. For

Abbreviations: CNS, central nervous system; FDC, follicular dendritic cell; IHC,
immunohistochemistry; IV, intravenous; MARCO, macrophage receptor with col-
lagenous structure; MZ, splenic marginal zone; PET.,, paraffin-embedded tissue; PK,
proteinase K; PrP, prion protein; SIGN-R1, specific intercellular adhesion molecule-
3-grabbing non-integrin related 1; vCJD, variant Creutzfeldt-Jakob disease

* Corresponding author.

E-mail address: neil. mabbott@roslin.ed.ac.uk (N.A. Mabbott).

http://dx.doi.org/10.1016/].virol.2016.08.005
0042-6822/© 2016 The Authors. Published by Elsevier Inc. All rights reserved.

example, in the UK four cases of vCJD have been reported in re-
cipients of blood or blood products derived from vCJD-infected
donors (Health Protection Agency, 2009; Llewelyn et al., 2004;
Peden et al., 2004; Wroe et al., 2006). After peripheral exposure
the prions often accumulate and replicate upon the surfaces of
PrP€-expressing follicular dendritic cells (FDC) within the B-cell
follicles of secondary lymphoid tissues (McCulloch et al., 2011).
The replication of prions upon FDC is critical for their efficient
transmission to the nervous system, termed neuroinvasion (Mab-
bott et al., 2000; Montrasio et al., 2000). Once the prions have
been amplified on FDC above the threshold required to achieve
neuroinvasion (Mabbott, 2012) they subsequently infect periph-
eral nerves within the secondary lymphoid tissues, and spread
along fibres of both the sympathetic and parasympathetic nervous
systems to enter the CNS were they ultimately cause neurode-
generation (Beekes and McBride, 2007; Glatzel et al., 2001;
McBride et al., 2001; Prinz et al., 2003).

FDC are large, tissue-fixed, non-motile, stromal-derived cells
that reside within the B-follicles (Heesters et al., 2014; Krautler
et al.,, 2012). A thorough understanding of the cellular and mole-
cular mechanisms which facilitate the efficient delivery of prions
from the site of exposure to FDC will help identify novel targets for
therapeutic or prophylactic intervention. FDC characteristically
trap and retain native antigen on their surfaces in the form of
immune complexes, consisting of antigen-antibody and/or opso-
nizing complement components (Fang et al., 1998; Heesters et al.,
2014; Taylor et al., 2002). The marginal zone (MZ) surrounding the
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white pulp regions in the spleen contains a channel of sinus-lining
cells through which the blood percolates on its way to the red pulp
(Mebius and Kraal, 2005). Attached to this network are specific
populations of macrophages and B cells which continually survey
the blood-stream for pathogens, antigens and apoptotic cells.
These cell populations also regulate the efficient delivery of blood-
borne antigens and immune-complexes to the FDC within the
splenic B-cell follicles (Arnon et al., 2013; Cinamon et al., 2008;
Ferguson et al., 2004; You et al., 2011). Indeed, the delivery of
blood-borne antigens to FDC by MZ B cells is impaired in the ab-
sence of MZ macrophages (You et al., 2011). An intact MZ is also
important for the efficient delivery of prions to FDC in the spleen
(Brown et al., 2012; Brown and Mabbott, 2014).

The outer layer of the MZ contains a continuous ring of specific
intercellular adhesion molecule-3-grabbing non-integrin related 1
(SIGN-R1/CD209b)-expressing MZ macrophages (Kang et al,
2003). This transmembrane C-type lectin plays an important role
in the uptake of dextran (Kang et al., 2003) and capsular pneu-
mococcal polysaccharides (Kang et al., 2004). The prion protein is
highly glycosylated, and modifications to the glycosylation status
can dramatically alter the ability of certain prion strains to infect
splenic FDC (Cancellotti et al., 2010). We have also shown that
SIGN-R1-expressing MZ macrophages rapidly acquire fluores-
cently-labelled prion-specific PrP5¢ after IV injection (Bradford
et al.,, 2014). MZ macrophages also mediate the clearance of
apoptotic cells through interactions between SIGN-R1 and com-
plement component Clq (Prabagar et al., 2013). Prions are also
trapped and retained on the surfaces of FDC (Klein et al., 2001;
Mabbott and Bruce, 2004; Mabbott et al, 2001; Michel et al,
2012a, 2013; Zabel et al., 2007) and acquired by mononuclear
phagocytes such as conventional dendritic cells in association with
complement component C1q (Flores-Lagnarica et al., 2009; Michel
et al,, 2012b). Since, SIGN-R1 plays an important role in the uptake
of blood-borne polysaccharide antigens, and MZ macrophages aid
the delivery of certain antigens to FDC in B-cell follicles, a well-
characterised in vivo method of antibody-mediated SIGN-R1
down-regulation (Gonzalez et al., 2010; Kang et al., 2004, 2003)
was used here to test the hypothesis that SIGN-R1-expression in
MZ macrophages plays an important role in intravenous (IV) prion
disease pathogenesis.

2. Materials and methods
2.1. Mice and transient SIGN-R1 down-regulation

Age and sex-matched C57BL/6] mice (Charles River Labora-
tories, Harlow, UK) were used throughout this study and main-
tained under specific pathogen-free conditions. To transiently
down-regulate SIGN-R1 expression in vivo, mice were injected IV
with 100 pg of hamster anti-mouse SIGN-R1 monoclonal antibody
(mAb; clone 22D1, eBioscience, Hatfield, UK) as described (Gon-
zalez et al., 2010; Kang et al., 2006, 2004). A parallel group of mice
were treated with 100 pg of purified, isotype-matched, non-spe-
cific hamster IgG (eBioscience) as a control (termed control-Ig,
hereinafter). All studies and regulatory licences were approved by
the University of Edinburgh's ethics committee and carried out
under the authority of a UK Home Office Project License.

2.2. Prion exposure and disease monitoring

Twenty four hours after antibody treatment, mice were in-
fected with a limiting dose of ME7 scrapie prions by IV injection
with 20 pl of a 0.1% (weight/volume) brain homogenate prepared
from mice with terminal prion disease. Some mice were culled 35
d after prion exposure and spleens taken for further analysis. The

remaining mice were observed for signs of clinical prion disease
and culled at a standard clinical end-point as described (Brown
et al., 2012). Clinical prion disease diagnosis was confirmed by the
histopathological assessment of vacuolation (spongiform pathol-
ogy) in the brain (Fraser and Dickinson, 1968). For the construction
of lesion profiles, haematoxylin and eosin (H&E)-stained brain
sections were scored for the presence and severity (scale 0-5) of
prion-disease-specific vacuolation in nine grey matter brain areas:
G1, dorsal medulla; G2, cerebellar cortex; G3, superior colliculus;
G4, hypothalamus; G5, medial thalamus; G6, hippocampus; G7,
septum; G8, cerebral cortex; G9, forebrain cerebral cortex.

2.3. Immunohistochemical (IHC) analysis

For the detection of prion disease-specific PrP (PrPY) in brains
and spleens, tissues were first fixed in periodate-lysine—paraf-
ormaldehyde fixative and embedded in paraffin wax. Sections
(6 um in thickness) were deparaffinized, and pre-treated to en-
hance the detection of PrP¢ by hydrated autoclaving (15 min,
121 °C), and subsequently immersion in 98% formic acid (McBride
et al,, 1992). Spleen sections were then immunostained with 1B3
PrP-specific polyclonal antiserum (Farquhar et al., 1989), and brain
sections were immunostained with mouse anti-PrP-specific mAb
(clone 6H4; Prionics, Schlieren-Zurich, Switzerland). Paraffin-em-
bedded tissue (PET) immunoblot analysis was used to confirm that
the PrP¢ detected by IHC was prion disease-specific, proteinase K
(PK)-resistant PrP5¢ (Schulz-Schaeffer et al., 2000). For the detec-
tion of FDC in periodate-lysine—paraformaldehyde-fixed spleens,
deparaffinized sections were first pretreated with Target Retrieval
Solution (Dako, Glostrup, Denmark) and subsequently im-
munostained with rat anti-mouse CD21/35 (clone 7G6; BD Bios-
ciences, Oxford, UK). For the detection of microglia, deparaffinised
brain sections were immunostained with rabbit anti-allograft in-
flammatory factor 1 (AIF1/Ibal; Wako Chemicals GmbH, Neuss,
Germany), and astrocytes were detected using rabbit anti-glial fi-
brillary acidic protein (GFAP; Dako). To detect FDC and macro-
phages, spleens were flash frozen at the temperature of liquid
nitrogen and sections (10 um in thickness) were cut on cryostat
and immunostained with the following antibodies: FDC were de-
tected using rat anti-mouse CD35 mAb (clone 8C12; BD Bios-
ciences); marginal metallophilic macrophages were detected using
rat anti-mouse sialoadhesin/CD169 mAb (clone MOMA-1; Bio-Rad
AbD Serotec, Oxford, UK); MZ macrophages were detected using
hamster anti-mouse SIGN-R1 mAb (clone 22D1), rat anti-mouse
SIGN-R1 mAb (clone ER-TR9; Bio-Rad AbD Serotec) or rat anti-
mouse MARCO (clone ED31; Bio-Rad AbD Serotec).

For light microscopy, biotin-conjugated species-specific sec-
ondary antibodies (Stratech, Soham, UK) were subsequently ap-
plied, and immunolabelling was revealed using horseradish per-
oxidase-conjugated to the avidin-biotin complex (Vector Labora-
tories, Peterborough, UK) and visualised with 3,3’-diaminobenzi-
dine (DAB; Sigma, Poole, UK). Sections were counterstained with
haematoxylin to detect cell nuclei. For fluorescence microscopy,
species-specific secondary antibodies coupled to Alexa-Fluor 488,
Alexa-Fluor 594 or Alexa-Fluor 647 dyes were used (Invitrogen,
Paisley, UK). Sections were mounted in fluorescent mounting
medium (Dako) and examined using a Zeiss LSM5 or LSM710
confocal microscopes (Zeiss, Welwyn Garden City, UK). Image
analyses were performed using Zen (Zeiss) or Image] software
(http://imagej/nih.gov/ij) on a minimum of six animals per group
and six observations per animal, for 72 individual images analysed
per comparison.

2.4. In vivo assessment of antigen trapping

Twenty four hours after antibody treatment mice were
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passively immunized by IV injection with either 100 ul of pre-
formed peroxidase—anti peroxidase (PAP) immune complexes
(Sigma) (Brown et al., 2012; McCulloch et al., 2011) or fluorescein
isothiocyanate (FITC)-labelled 70 kDa dextran (Sigma) (Kang et al.,
2003). Spleens were collected 24 h after injection. PAP immune
complexes were visualised by IHC using AlexaFluor 488-con-
jugated goat anti-rabbit IgG. The magnitude of the FDC-associated
PAP immune complexes in spleens from each group was then
determined using Image] software as described (Brown et al.,
2012). Spleens from 6 mice from each group were analysed. Ty-
pically from each spleen, 4 sections were studied, and on each
section, data from 3 randomly chosen 1000- by 1000-um fields of

A SIGN-R1

(detected using

mAb ER-TR9) MARCO

control Ig

anti-SIGN-R1 mAb
(treated using
mAb 22D1)

o

FITC-dextran

¥ -

control Ig

anti-SIGN-R1 mAb

view were collected.
2.5. Immunoblot detection of PrP5

Brain homogenates (10% weight/volume) were prepared in
NP40 lysis buffer (1% NP40, 0.5% sodium deoxycholate, 150 mM
NaCl, 50 mM TrisHCL [pH 7.5]) and incubated at 37 °C for 1 h with
20 ug/ml PK. Digestions were halted by addition of 1 mM phe-
nylmethylsulfonyl fluoride. Samples were then subjected to elec-
trophoresis through 12% Tris-glycine polyacrylamide gels (Nupage,
Life Technologies) and transferred to PVDF membranes by semi-
dry blotting. PrP was detected using anti-mouse PrP-specific mAb

SIGN-R1/MARCO SIGN-R1/CD169

FITC-dextran/MARCO

Fig. 1. Transient down-regulation of SIGN-R1 on MZ macrophages. Panel A. Mice were injected IV with anti-SIGN-R1-specific mAb 22D1 or control Ig and spleens collected
24 h later. In spleens from control Ig-treated mice (upper row) MZ macrophages expressing SIGN-R1 (green, detected with anti- SIGN-R1 mAb clone ER-TR9) and MARCO
(red) were readily detected in the MZ. SIGN-R1 expression on MZ macrophages was down-regulated in the spleens of anti-SIGN-R1 mAb-treated mice (lower row). Anti-
SIGN-R1 mAb treatment did not affect the expression of CD169 on the marginal metallophilic macrophages (blue, right-hand panels). Panel B. Twenty four hours after
antibody treatment mice were injected IV with FITC-70 kDa dextran (FITC-dextran, green) and spleens collected 24 h later. MZ macrophages (MARCO™ cells, red) in the
spleens of anti-SIGN-R1 mAb-treated mice were unable to retain FITC-dextran (lower row). Dotted lines indicate the boundary of the MZ. n=6 mice/group.
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7A12 (Yin et al., 2007) followed by horseradish peroxidase-con-
jugated goat anti-mouse antibody (Jackson Immunoresearch) and
visualised chemiluminescence (BM Chemiluminescent substrate
kit, Roche, Burgess Hill, UK).

2.6. Statistical analysis

Statistical analyses were performed using Minitab 16 software
(Minitab Ltd., Coventry, UK). Survival times after prion exposure
and immunofluorescence analysis quantification data were tested
for equal variances and analysed by two-sample t-test. Vacuolation
profile data were analysed via analysis of variance and grouped via
Tukey's post hoc testing. Data are presented as mean + SEM.
P < 0.05 was accepted as significant.

3. Results
3.1. Transient down-regulation of SIGN-R1 on MZ macrophages

To determine the contribution of SIGN-R1 in prion disease
pathogenesis, the expression of this receptor on MZ macrophages
was transiently down-regulated prior to IV prion exposure (Gon-
zalez et al., 2010; Kang et al., 2006, 2004). Mice (n=6/group) were
injected IV with anti-SIGN-R1-specific mAb 22D1 and spleens
collected 24 h later. A parallel group of mice received an isotype
matched, non-specific hamster IgG as a control (control Ig). To
avoid the possibility that treatment with anti-SIGN-R1-specific
mAb 22D1 might mask epitopes on SIGN-R1 in the spleens of
treated mice, an alternative SIGN-R1-specific mAb (rat anti-mouse
SIGN-R1 mADb clone ER-TR9) was used for IHC analysis. In the
spleens of control Ig-treated mice SIGN-R1-expressing MZ mac-
rophages were readily detected in the outer layer of the MZ
(Fig. 1A). IHC analysis also confirmed that these MZ macrophages
co-expressed high levels of macrophage receptor with collagenous
structure (MARCO; Fig. 1A, upper right-hand panel). In contrast,
the expression of SIGN-R1 on MZ macrophages was dramatically
down-regulated in the spleens of anti-SIGN-R1 mAb-treated mice
(Fig. 1A, lower row). Indeed, consistent with previous reports
(Gonzalez et al., 2010; Kang et al., 2006, 2004) SIGN-R1 expression
was transiently undetectable in the spleen after anti-SIGN-R1 mAb
treatment. This effect was not due to depletion of the MZ mac-
rophages, as the expression of MARCO on these cells was un-
affected (Fig. 1A). Anti-SIGN-R1 mAb treatment did not affect the
expression of CD169 (sialoadhesin) on the marginal metallophilic
macrophages in the inner layer of the MZ (Fig. 1A, lower right-
hand panels), confirming that the effects of treatment were spe-
cific to the MZ macrophages.

The uptake of the dextran polysaccharides by MZ macrophages
is mediated by SIGN-R1 (Kang et al., 2006, 2004). As anticipated
the MZ macrophages in the spleens of control Ig-treated mice
were able to trap 70 kDa FITC-dextran after IV injection (Fig. 1B,
upper row). In contrast, the MARCO-expressing MZ macrophages
in the spleens of anti-SIGN-R1 mAb-treated mice were unable to
acquire and trap dextran (Fig. 1B, lower row). These data confirm
that anti-SIGN-R1 mAb treatment transiently down-regulates
SIGN-R1 expression in MZ macrophages. Previous studies show
that the anti-SIGN-R1 mAb treatment as used here causes a se-
lective, prolonged but transient down-regulation of SIGN-R1 ex-
pression on MZ macrophage for approximately 5-15 days (Kang
et al., 2004).

3.2. Effect of SIGN-R1 down-regulation on FDC

Since the replication of prions upon PrP%-expressing FDC is
obligatory for their efficient neuroinvasion (Mabbott et al., 2000;

Montrasio et al.,, 2000), we determined the effect of SIGN-R1
down-regulation on FDC status. FDC characteristically express high
levels of complement receptor 1 (CR1/CD35) and PrP¢ (McCulloch
et al,, 2011; Zabel et al., 2007). IHC and morphometric analysis
suggested there was no observable difference in the size of the
FDC networks in spleens from control-Ig and anti-SIGN-R1 mAb
treated mice (Fig. 2A and B). The expression of PrP® upon the FDC
was also similar in spleens from mice from each treatment group
(Fig. 2A and C).

To determine whether SIGN-R1 down-regulation affected im-
mune complex retention on FDC, control Ig- and anti-SIGN-R1-
treated mice (n=6/group) were passively immunized by IV in-
jection with preformed PAP immune complexes, and the presence
of FDC-associated immune complexes analysed by IHC 24 h later.
High levels of PAP-containing immune complexes were detected
in association with CD35-expressing FDC in the spleens of mice
from each group (Fig. 2D). However, morphometric analysis sug-
gested a small but significant increase in the magnitude of im-
mune complex trapping on FDC in the spleens of anti-SIGN-R1-
treated mice (P < 0.0001, two-sample t-test, n=36 FDC/group;
Fig. 2E). Together, these data show that transient SIGN-R1 down-
regulation does not adversely affect FDC status and function.

3.3. Effect of SIGN-R1 down-regulation on prion accumulation in the
spleen

Within 35 days of IV prion exposure high levels of prion-spe-
cific PrPS¢ accumulate upon splenic FDC and are maintained for the
duration of the infection (Brown et al.,, 2012). Here, mice were
injected IV with ME7 scrapie prions 24 h after treatment with ei-
ther control Ig- or anti-SIGN-R1 mAb. The mice were injected with
a limiting dose of prions (20 pl of a 0.1% scrapie brain homogenate)
as in our previous study (Brown et al., 2012), to avoid the possi-
bility that dose of prions administered was sufficiently high en-
ough to by-pass the requirement for replication within the spleen
prior to neuroinvasion. Spleens from 4 mice from each group were
collected 35 days later and the effects of SIGN-R1 down-regulation
on the early accumulation of PrP5¢ on FDC determined. As antici-
pated, PrPY accumulation upon FDC was readily detected in
spleens from control Ig-treated mice (Fig. 3A). PET immunoblot
analysis confirmed the PrP¢ detected by IHC was prion disease-
specific, relatively PK-resistant, PrP¢ (Fig. 3A). In spleens from
anti-SIGN-R1 mAb-treated mice similar levels of FDC-associated
PrP5¢ were also detected (Fig. 3A). Furthermore, at the terminal
stage of disease, high levels of PrP5¢ were maintained upon FDC in
the spleens of mice from each treatment group (Fig. 3B). These
data show that SIGN-R1 down-regulation did not impede the ac-
cumulation of PrP5¢ upon FDC in the spleen.

3.4. Effect of SIGN-R1 downregulation on prion disease susceptibility

We next determined the effect of SIGN-R1 down-regulation on
disease duration after IV prion exposure. Control Ig- or anti-SIGN-
R1-treated mice were injected IV with ME7 scrapie prions (n=38/
group) and monitored for the clinical signs of prion disease. Re-
gardless of antibody treatment, all mice in each treatment group
succumbed to clinical prion disease with similar survival times:
control Ig-treated mice 262 +7 d; anti-SIGN-R1 treated mice
261 + 7 d (P=0.903, two sample t-test). Histopathological analysis
confirmed that the brains from all the clinically-affected control
Ig- or anti-SIGN-R1 mAb-treated mice displayed the characteristic
PrP? accumulation, astrogliosis and microgliosis associated with
terminal infection with ME7 scrapie prions (Fig. 4A). Immunoblot
analysis confirmed that similar levels of prion disease-specific
PrP5¢ were present in the brains of the clinically-affected mice
from each treatment group (Fig. 4B). Furthermore, the distribution
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Fig. 2. Transient down-regulation of SIGN-R1 on MZ macrophages does not adversely affect FDC status. Panel A. IHC analysis suggested there was no observable difference in the
expression of CR1/CD35 (red) or cellular PrP (blue) in FDC in spleens from anti-SIGN-R1 mAb- or control Ig-treated mice. Panels B and C. Morphometric analysis confirmed that the
magnitude of the CR1/CD35- and PrP“-specific immunostaining observed in the spleens from the anti-SIGN-R1 mAb or control Ig mice was similar. Panel D. Mice were injected IV
with anti-SIGN-R1-specific mAb 22D1 or control Ig, and 24 h later passively immunized with preformed PAP immune complexes (n=6 mice/group). Twenty four hours after
treatment the presence of immune complexes (PAP, green) upon FDC (CR1/CD25* cells, red) was determined by IHC. Panel E. Morphometric analysis suggested the amount of PAP
trapped on the surfaces of the FDC in the spleens of anti-SIGN-R1 mAb-treated mice was significantly greater when compared to control Ig-treated mice (P < 0.0001).
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Fig. 3. Transient down-regulation of SIGN-R1 on MZ macrophages on does not impair the accumulation of PrPS upon FDC in the spleen. Mice were injected IV with anti-
SIGN-R1- mAD or control Ig and 24 h later injected IV with ME7 scrapie prions. Spleens were collected 35 days after IV prion injection (Panel A) or at the terminal stage of
disease (Panel B). At each time point abundant prion disease-specific PrP (PrP¢, brown, left-hand column) accumulated in association with FDC (CD21/35™" cells, brown,
middle column) in the spleens of mice from each treatment group. Analysis of adjacent sections by PET immunoblot analysis confirmed the presence of prion-disease
specific, relatively proteinase K-resistant PrP> (black, right-hand column).

and severity of the spongiform pathology (vacuolation) was also 4. Discussion

similar in the brains of the clinically-affected, control Ig- or anti-

SIGN-R1 mAb-treated mice (Fig. 4C). These data clearly show that An intact splenic MZ is important for the efficient delivery of
SIGN-R1 down-regulation did not significantly influence survival certain antigens and prions to FDC (Brown et al., 2012; Brown and

time, disease susceptibility or the development of neuropathology Mabbotﬁ 2014;.%‘_1&";10“ et ali, 2008; Eou et al, ?g“ﬁ' The MZ
after IV prion exposure. macrophages within the outer layer of the MZ specifically express

high levels of the lectin SIGN-R1. This lectin mediates the uptake of
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Fig. 4. Transient down-regulation of SIGN-R1 on MZ macrophages at the time of IV prion infection does affect the development of neuropathology in the brain at the
terminal stage of disease. Mice were injected IV with anti-SIGN-R1 mAb or control Ig and 24 h later injected IV with ME7 scrapie prions (n=8 mice/group). Brains were
collected at the terminal stage of disease. Panel A. Histopathological analysis showed large accumulations of prion disease-specific PrPY (brown, upper row), reactive
astrocytes expressing GFAP (brown, second row), active microglia expressing AlF1/Ibal (brown, third row) and spongiform pathology (H&E, bottom row) in brains of all
terminally-affected control Ig-treated (left-hand column) and anti-SIGN-R1 mAb-treated (right-hand column) mice. Sections were counterstained with haematoxylin to
detect cell nuclei (blue). Panel B. Inmunoblot analysis of brain tissue homogenates confirmed the presence of high levels of prion-specific, relatively proteinase K (PK)-
resistant PrPS¢ within the brains of mice from each treatment group. Samples were treated in the presence (+) or absence (—) of PK before electrophoresis. After PK
treatment, a typical three-band pattern was observed between molecular mass values of 20-30 kDa, representing unglycosylated, monoglycosylated, and diglycosylated
isomers of PrP (in order of increasing molecular mass). Panel C. The severity and distribution of the spongiform pathology (vacuolation) within the brains of all terminally-
affected mice from each treatment group was similar. The severity of the vacuolation in each brain was scored on a scale of 1-5 in the following grey matter regions: G1,
dorsal medulla; G2, cerebellar cortex; G3, superior colliculus; G4, hypothalamus; G5, thalamus; G6, hippocampus; G7, septum; G8, retrosplenial and adjacent motor cortex;
G9, cingulate and adjacent motor cortex.
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dextran (Kang et al., 2003) and bacterial capsular polysaccharides
(Kang et al., 2004), and also aids the clearance of apoptotic cells
through interactions with complement component C1q (Prabagar
et al, 2013). Since a diverse range of pathogens including HIV
(Geijtenbeek and van Kooyk, 2003), ebola virus (Simmons et al.,
2003), Mycobacterium tuberculosis (Geijtenbeek et al., 2003), and
Leishmania amastigotes (Colmenares et al., 2002) appear to exploit
DC-SIGN (the human homologue of SIGN-R1) to infect host
mononuclear phagocytes and/or suppress immune responses, we
hypothesised that SIGN-R1 might also mediate the uptake of
prions by MZ macrophages. When macrophages are depleted prior
to prion exposure, the accumulation of prions in the spleen is
enhanced (Beringue et al., 2000). In the absence of SIGN-R1 ex-
pression it is plausible that prion accumulation in the spleen and
subsequent neuroinvasion would be enhanced, due to decreased
sequestration of prions from the blood by MZ macrophages. Cer-
tain antigens which have been trapped by MZ macrophages are
subsequently acquired by MZ B cells which deliver them the FDC-
containing B-cell follicles by MZ B cells (Cinamon et al., 2008; You
et al,, 2011). This activity is reduced in the absence of MZ macro-
phages (You et al., 2011). Thus, alternatively, prion accumulation in
the spleen and subsequent neuroinvasion might be impaired, due
to the less efficient shuttling of prions to FDC.

Here, SIGN-R1-expression was down-regulated in vivo on MZ
macrophages using a well-characterised mAb-mediated method
(Gonzalez et al., 2010; Kang et al., 2004, 2003), and the influence
this had on IV prion disease pathogenesis determined. As antici-
pated, the MZ macrophages in these mice were unable to capture
blood-borne dextran particles. However, transient down-regula-
tion of SIGN-R1 had no effect on the early accumulation of prions
upon splenic FDC or the subsequent spread of disease to the CNS.
Thus, SIGN-R1 expression by MZ macrophages is not rate-limiting
for peripheral prion disease pathogenesis. Our data do not exclude
a role for MZ macrophages in the initial uptake and processing of
prions in the spleen, only that SIGN-R1 expression in these cells is
dispensable for this activity. The majority of the cell populations
within the mammalian immune system, including mononuclear
phagocytes, express cellular PrP¢ (Mabbott and Bradford, 2015).
However, the replication of prions upon splenic FDC is unaffected
in mice in which PrP€ is expressed only in FDC (McCulloch et al.,
2011), indicating that PrP€ is itself unlikely to be a major uptake
receptor for prions on MZ macrophages.

Although the duration of the SIGN-R1 down-regulation on MZ
macrophages was transient, we consider it unlikely that a more
prolonged deficiency in SIGN-R1 would significantly influence the
early stages of prion disease pathogenesis in the spleen. Immune
complexes and complement-opsonized antigens are acquired by
MZ macrophages and delivered to FDC within hours of IV injection
(Fig. 2) (Cinamon et al., 2008; Kang et al., 2004, 2003). We have
also shown that fluorescently-labelled PrP>¢ is rapidly acquired by
SIGN-R1-expressing MZ macrophages in vivo within 1h of IV in-
jection, with smaller amounts already detectable on FDC in the B
cell follicles (Bradford et al., 2014). Furthermore, the transient
depletion of CD11c* mononuclear phagocytes for approximately
2-4 days dramatically reduces peripheral prion disease suscept-
ibility (Cordier-Dirikoc and Chabry, 2008; Raymond et al., 2007).
Previous studies show that anti-SIGN-R1 mAb-treatment causes a
selective, prolonged, but transient down-regulation of SIGN-R1
expression on MZ macrophages in vivo for approximately 5-15
days (Kang et al., 2004). Together, these observations imply that
the duration of the SIGN-R1 down-regulation was more than
sufficient to study the potential role of SIGN-R1 expression on MZ
macrophages in the early accumulation of prions in the spleen.

MZ B cells can acquire certain antigens from MZ macrophages
and mediate their delivery to the FDC (Cinamon et al., 2008; Kang
et al.,, 2003; You et al., 2011). Our data revealed a small but

significant increase in the magnitude of PAP immune complexes
trapped on the surfaces of FDC in the spleens of anti-SIGN-R1
mAb-treated mice. This is implied that in the transient absence of
SIGN-R1 expression, fewer immune complexes were sequestered
by MZ macrophages enabling a greater amount to be shuttled to
FDC.

In summary, although SIGN-R1 plays an important role in the
uptake of certain polysaccharides, complement-opsonized apop-
totic cells and a diverse range of microbial pathogens, our data
clearly show that SIGN-R1 expression in MZ macrophages is dis-
pensable for the efficient delivery of prions to FDC in the spleen
and the subsequent spread of infection to the CNS. A thorough
understanding of the cellular and molecular factors within the MZ
which regulate the transfer of prions to FDC will aid identification
of novel targets for prophylactic intervention in these currently
untreatable, devastating, neurodegenerative diseases.
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