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Abstract
The prerequisite for our understanding of many complex networked systems lies in the reconstruction

of network structure from measurable data. Although binary-state dynamics occurring in a broad class of

complex networked systems in nature and society and has beenintensively investigated, a general frame-

work for reconstructing complex networks from binary states, the inverse problem, is lacking. Here we

offer a general solution to the reconstruction problem by developing a data-based linearization approach for

binary-state dynamics with linear, nonlinear, discrete and stochastic switching functions. The linearization

allows us to convert the network reconstruction problem into a sparse signal reconstruction problem that can

be resolved efficiently and credibly by convex optimizationbased on compressed sensing. The completely

data-based linearization method and the sparse signal reconstruction constitutes a general framework for

reconstructing complex networks without any knowledge of the binary-state dynamics occurring on them

in an extremely efficient and robust manner. Our framework has been validated by several different kinds

of binary-state dynamics in combination with a large numberof artificial and real complex networks. A

universal high reconstruction accuracy is achieved in spite of the measurement noise and missing data of

partial nodes. Our approach opens a new route to the inverse problem in complex networked systems with

binary-state dynamics and improves our ability to fully understand and control their emergent dynamics in

a comprehensive way.
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I. INTRODUCTION

Complex networked systems consisting of dynamical units with binary states are common in
nature and society [1]. Each unit can be in one of two possiblestates, e.g., active or inactive in
neuronal and gene regulatory networks [2, 3], cooperate or defect in networks associated with
evolutionary games [4], susceptible or infected in epidemic spreading on social and technological
networks [5, 6], two competing opinions in communities withsocial networks [7], etc. The inter-
actions among units often exhibit complex structure and units switch their states in a stochastic
manner that depends on the states of their neighbors, which jointly account for a variety of emer-
gent phenomena, such as the outbreak of epidemic spreading [8], cooperation among selfish indi-
viduals [9], oscillation in many biological systems [10], big blackout and financial crisis [11, 12],
and phase transitions in many scenarios [13].

A variety of models have been introduced to explore binary-state dynamics occurring on com-
plex networks [14, 15]. Representative models include voter models for competition of two opin-
ions [16], stochastic propagation models for epidemic spreading [5], rumor propagation and adop-
tion of new technologies [17], cascading failure models forcrisis events [11], Ising spin models
for paramagnetic phase transition [18], and evolutionary games for cooperation and altruism [4].
At present, general approaches based on pair approximations and approximate master equations
have been provided to theoretically investigated the binary-state dynamics and deepen our under-
standing of the effect of network structure on the emergent phenomena [19].

Our goal here is to address the inverse problem of binary-state dynamics on complex networks,
i.e., network reconstruction based solely on binary states. This is a fundamental problem for ex-
ploring binary-state dynamics on complex networks, because networks play a deterministic role in
many collective dynamics [20]. Much evidence has demonstrated that reductionism is no longer
available for complex networked systems, raising the need for exploring a complex networked
system as a whole rather than reducing it into independent components [21]. Network reconstruc-
tion is necessary for studying many systems in that a direct measure of interaction structure is
often not applicable and alternatively, one has to rely on measurable data of binary states to infer
network topology [22]. Although the importance of network reconstruction has been increasingly
recognized and some effective approaches and tools have been developed [22–34], a general re-
construction framework for complex networks with binary-state dynamics is lacking. The task is
extremely challenging because of the following reasons. (i) The switching probability of a node
depends on the states of neighbors according to a variety of functions for different systems, in-
cluding linear, nonlinear, piecewise and stochastic functions. In particular, if the function or the
form that governs the switching probability is unknown, it will be very difficult to solve the recon-
struction problem. (ii) Structural information is hidden in the binary states of nodes in an unknown
manner and the solution space is extremely high, rendering brute-force enumeration of all possi-
ble network configuration impossible. (iii) The presence ofmeasurement noise, missing data and
the stochastic effect in the switching probability raises the need for developing a robust method
against internal and external noisy effects.

To overcome these obstacles, we develop a generally available and robust framework for recon-
structing complex networks based solely on binary states ofnodes in the absence of the knowledge
of switching function. The key to our success lies in the development a general data-based method
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for linearizing switching functions from binary observation. The data-based linearization method
is generally applicable to nonlinear and piecewise stochastic switching functions. The task of re-
constructing the whole network is then decomposed into infer local structures centered at each
nodes. By exploiting the natural sparsity of complex networks, we employ the Lasso [35] to iden-
tify neighbors of each nodes from sparse binary data contaminated by noise. We articulate the
underlying mechanism that enables the linearization by applying our method to several typical
linear, nonlinear and piecewise binary-state dynamics occurring on many model and real complex
networks. We found a universal high reconstruction accuracy from using relative small amounts
of measurement contaminated by noise. With respect to its extremely high accuracy, efficiency
and robustness against noise and missing information, our approach goes much beyond conven-
tional methods in information theory and statistic physics, such as transfer entropy and maximum
likelihood estimation that are useful for inferring network structure to some extent. Our approach
offers a promising prospect of generally solving the inverse problem of network reconstruction
from binary-state time series. The solution for the inverseproblem is of paramount importance in
understanding the dynamical behaviors of a large number of complex networked systems in nature
and society [36]. Consequently, effective control strategies may be devised to guide the dynamics
towards desired states by combining recently developed theory for controlling complex networked
systems [37–40].

II. RESULTS

Binary-state dynamics. We consider some representative binary-state models on complex
networks for modeling many physical, social and biologicaldynamics [19]. The dynamics
of these models are characterized by switching functionsF (m, k) and R(m, k), wherek is
the number of neighbors andm is the number of active neighbors. The switching functions
determine the probability of a node to flip from0 to 1 and from1 to 0, respectively. The switching
functions could be in linear, nonlinear, piecewise, bounded and stochastic for characterizing many
dynamical processes occurring on complex networks, constituting a broad classes of binary-state
dynamics. Despite the difference among the switching functions, a common feature is that a
node’s switching probability depends on the number of its active neighborsm and the number of
its neighbors (degree)k. The switching functions of different models are shown in Table I. The
detailed description of the models is presented in Methods.

Data-based linearization of switching functions by a merging process. Our goal is to de-
velop a general framework to reconstruct network structurefrom binary states of nodes without
knowing the specific dynamical function. The key lies in the establishment of a universal data-
based linearization of switching functions from the commonfeature of the binary-state dynamics.
Specifically, the number of active neighbors at timet can be expressed as

mi(t) =

N
∑

j=1,j 6=i

aijsj(t), (1)

whereaij = 1 if node i andj are connected andaij = 0 otherwise, andsj(t) captures the state
of nodej in time stept and can be obtained directly from the nodal states. We can generally
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TABLE I: Switching functions of binary-state dynamic models on complex networks. F (m,k) is the

probability that a node turns from0 to 1 while R(m,k) is the probability of a node flipping from1 to

0. k is the node’s degree.m is the number of the node’s neighbors with state1. The models and the

other parameters are introduced in Methods. Values of the parameters used in simulations are listed in

Supplementary Table I.

Model F (m,k) R(m,k)

Voter m
k

k−m
k

Kirman c1 + dm c2 + d(k −m)

Ising Glauber
1

1 + eβ(k−2m)/k

eβ(k−2m)/k

1 + eβ(k−2m)/k

SIS 1− (1− λ)m µ

Game
1

α+ eβa(k−m)/k

1

α+ eβbm/k

Language s(mk )
α (1− s)(k−m

k )α

Threshold







0 if m 6 Mk

1 if m > Mk

0

Majority vote















Q if m < k/2

1/2 if m = k/2

1−Q if m > k/2















1−Q if m < k/2

1/2 if m = k/2

Q if m > k/2

formulate the switching probabilityP 01
i (t) of nodei from 0 to 1 at time stept to be

P 01
i (t) = F (mi(t), ki) = F

(

N
∑

j=1,j 6=i

aijsj(t), ki

)

, (2)

whereF is a general monotonous function and can characterize different dynamical models listed
in Table I and beyond.

Note that in Eq. (2),aij captures the network structure and is to be inferred. However, it is
an extremely challenging problem, because that in Eq. (2), only node statesj(t) is measurable,
whereas the constantki, P 01

i (t) and the form ofF are all unknown. Here, the unknown of the
function F leads to the main difficulty in the recovery ofaij. Thus, we propose a data-based
merging process to linearizeF , i.e.,

F ∼ ci ·
N
∑

j=1,j 6=i

aijsj(t) + di, (3)

whereci anddi are constants of nodei. Insofar as the linearization is realized, it is possible to
solveaij . It is worth of nothing that the linearization approach is highly nontrivial and is funda-
mentally different from that in canonical nonlinear science, because the mathematical formula of
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F is unavailable and could be nonlinear, discrete and piecewise function. The completely data-
based linearization is our main contribution to the networkreconstruction problem. Accompanied
by linearization through a merging process, the probability P 01

i (t) is estimated as well according
to the law of large numbers, enabling the solution ofaij exclusively from binary time series.

In particular, as shown in Fig. 1(a), we first pick out all the time steps withsi(t) = 0 because the
switching probabilityP 01

i (t) is only reflected in the flipping behavior starting from state0. Then
we choose proper base strings from these time steps to represent different states of the system (see
Methods and Fig. 1b for detailed procedure). For each chosenbase string, we set a threshold∆
of the normalized Hamming distance between strings to select a set of subordinate strings that
belong to each base string (how to choose the threshold is detailed in Supplementary Information
Section 2). Then we use the average ofsj(t) to represent the state of nodej and the average
of si(t + 1) to estimate the switching probabilityP 01

i (t) of nodei according to the law of large
numbers. This yieldsP 01

i (t) ≈ 〈si(t̂ + 1)〉. The whole process (as schematically illustrated in
Fig. 1) finally leads to the linearization ofF and a linear relationship

〈si(t̂+ 1)〉 ≈ ci ·

N
∑

j=1,j 6=i

aij〈sj(t̂)〉+ di, (4)

wheret̂ denotes the time of base string and〈·〉 denotes the average over all timet of subordinate
string subject tôt of base string. The effect of constantki is incorporated into the linear coefficient
ci and interceptdi. In the linear formula (4), it is not necessary to deriveci, aij anddi separately,
but inferci × aij as a whole (ifi andi are not connected,ci × aij = 0; otherwise, nonzero value
of ci × aij stands for a link). As we will show,di can be reproduced but does not useful for our
reconstruction.

Figure 2 exhibits some representative examples to validatethe linearization effect. Four
dynamics, including two continuous and nonlinear switching functions, and two discontinuous
and piecewise functions, are presented. We see that the switching functionsF with different
dynamic parameter values are indeed linearized, which allows us to reconstruct network structure
in the linearized system (4) through distinguishing between zero and nonzero values of the
reconstructedci × aij . Compared to the originalF , the range ofm in the linearized function
considerably shrinks induced by the merging process, whichpartially accounts for the general
feasibility of the data-based linearization for the continuous nonlinearF , as shown in Fig. 2(a)(b).
For the discrete piecewise function in Fig. 2(c),(d), a theoretical explanation of data-based
linearization is provided in Supplementary Sec. I.

Reconstruction of local structure based on the Lasso. Equation (4) allows us to infer the neigh-
bors of nodei from M different base time, e.g.,̂t1, · · · , t̂M and their subordinate times. Specifi-
cally, with respect tôt1, · · · , t̂M , Eq. (4) can be expressed in the matrix formYi = Φi ×Xi (see
Methods for a detailed matrix form), where vectorYi and matrixΦi can be constructed completely
from binary time series without relying on any other information and vectorXi is to be solved for
revealing neighbors ofi. In particular, the natural sparsity of complex networks ensures that on
average the number of neighbors for a node is much smaller than the network sizeN , implying
thatXi is sparse with a large fraction of null elements and the number of nonzero elements is
actually the node degreeki with ki ≪ N . We thus exploit the sparsity ofXi to reconstructXi
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FIG. 1: Schematic illustration of data-based linearization from a merging process. (a) The original

Binary-state time series. Dark blue square denotes1 state and white square denotes0 state.s−i(t) consists

of sj(t) for all j 6= i. Only strings withsi(t) = 0 as highlighted by green frames contain useful information

for reconstruction. Thus, we pick out time step withsi(t) = 0 and relevantsi(t+1). (b) Method of choosing

bases. We first construct a network where vertices denote strings ofs−i(t) with si(t) = 0 (green squares)

and edges are weighted by normalized Hamming distanceH between strings. We then eliminate edges

whose weight is smaller than a threshold∆. By setting another thresholdσ, we select out the topσ × N

vertices with larger degree (yellow squares), and remove the other vertices and their edges. Finally, we pick

out the vertices with smaller degree (red squares) according to the number of base stringsnt̂ needed for

reconstruction. (c) Selection of subordinate strings subject to a based. We take t1 as a basêt1. We calculate

H betweens−i(t1) and other stringss−i(t), and sort out time steps satisfyingH[s−i(t1), s−i(·)] < ∆ in

this set. (d) Establishing average node states. We calculate the average value
〈

s−i(t̂)
〉

to represent the state

of the base set, and the average value
〈

si(t̂+ 1)
〉

to linearize the switching probabilityP 01
i (t), see Eq. (4)

and Eq. (5). The average values are in blue. In a similar fashion, we obtain a series of̂tM and the associated

average values for reconstructing network structure by employing the lasso to solveYi = Φi × Xi (see

Methods for details).

by employing the Lasso [35], a convex optimization method for sparse signal reconstruction. The
Lasso by incorporating an L1-norm and an error control term enables a reliable reconstruction of
Xi from small amounts of data, giving rise to efficient and robust reconstruction of local structures.
(more details of the Lasso are presented in Methods). In a similar fashion, we can reconstruct the
local structure of all nodes from the same set of data measurement, accounting for the sparse data
requirement. The whole network can be recovered by simply assembling all local structures of
nodes.
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FIG. 2: Data-based linearization for nonlinear and piecewise binary-state dynamics. Linearization of

the switching probability functionFk,m for (a) Ising model, (b) evolutionary Game, (c) Threshold model

and (d) Majority model. The grey lines represent Eq. (2) withFk,m for the models, wherek is the node’s

degree andm is the number of active neighbors. Data points are the results of data-based linearization

from time series and corresponding to linear Eq. (4). For thelinearized function,m is obtained from
∑N

j=1,j 6=i aij〈sj(t̂)〉 and the function value is obtained via
〈

si(t̂+ 1)
〉

. Each color of data points represents

a set of subordinate strings whose base string hasm active neighbors. The colors of data points demon-

strate that bases with differentm are necessary to produce a linear function with sufficient range ofm for

reconstruction, which justifies the base selection based onnormalized Hamming distance in Fig. 1. For

both nonlinear and piecewise switching function, linear function in the form of Eq. 4 is generated by the

data-based linearization method, which is the key to the successful network reconstruction. The data points

are obtained from an ER random network withN = 100 and 〈k〉 = 6. More details of the data-based

linearization can be seen in Supplementary Information Section 1.

III. NUMERICAL VALIDATION

We explore various dynamics on ErdösCRényi random (ER) [41], scale-free(SF) [42], small-
world(SW) [43] and several empirical networks. For implementing network reconstruction, only
states of nodes in different time steps are recorded and used, without any other knowledge of
switching dynamics and network structure. To qualify the performance of reconstruction, we em-
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ploy two standard indices: the area under the receiver operating characteristic curve (AUROC) and
the area under the precision-recall curve (AUPR) [44] (see Supplementary Section II for the defi-
nitions of AUROC and AUPR). Because the links of each node areactually identified separately,
the AUROC and AUPR are calculated for each node, and we use themean index values over all
nodes to measure the performance of reconstructing the whole network.

Figure 3 illustrates the reconstruction performance. Specifically, Fig. 3a shows the element
valuesxij in the reconstructed neighboring vectorxi of all nodes for SW and SF network with
Voter model. xij corresponding to links are generally greater than those of null connections.
Given a cut-off in the the gap between two groups of points in Fig. 3a, links and null connections
can be separated, leading to the reconstruction of the wholeSW network and most nodes in SF
networks. In SF networks, the neighbors of hubs are more difficult to be fully reconstructed,
which is because of two facts: (i) in general the linearization is better for smaller node degrees,
as exhibited in Fig. 2; (ii) the reconstruction based on the Lasso requires smaller amounts of
data and offers better accuracy for sparserXi associated with smaller degree nodes. Hub nodes
because of the violation of the two requirements are hard to be fully reconstructed. However, a vast
majority of nodes other than hubs can be still precisely reconstructed, giving rise to high accuracy
of the whole network. The reconstruction results for SW networks and SF networks are shown in
Fig. 3(b) and (c), respectively.

We explore how the number of base stringst̂ affects the reconstruction accuracy. We define
nt̂ as the number of̂t divided by the network sizeN to quantify relative amounts of base strings.
As shown in Fig. 3d-g, receiver operating characteristic (ROC) curve and precision-recall (PR)
curve show better performance asnt̂ increases for both SW and SF network, implying that high
accuracy can be achieved from sufficient amounts ofnt̂. Figure 3h,i shows the AUROC and
AUPR as functions ofnt̂ for SW and SF network respectively. We see that due to the advantage
of the Lasso for dealing with sparse vectors, nearly perfectreconstruction is achieved afternt̂

exceeds a relatively small value, e.g.,0.4. Reconstruction results for the other dynamic models
are exhibited in Supplementary Fig. 2. The length of time series is also significant for evaluating
reconstruction efficiency. We investigate the AUROC and AUPR as functions of normalized length
of time series for various dynamics on ER, SF and SW network (see Supplementary Fig. 3). We
find that high reconstruction accuracy can be achieved from relatively small amounts of time series
and the normalized length of time series needed to ensure0.95 AUROC and AUPR decreases as
N increases. These results indicate the high efficiency of ourmethod and it is scalable for dealing
with large networks.

We systematically apply our method to a variety of model and real networks in combination
with the eight binary-state dynamics (see Table II), findingextremely high AUROC and AUPR
for all combinations. We also investigated how representative network properties influence recon-
struction performance, such asN and the average node degree〈k〉 (see Supplementary Fig. 4,5).
In practice, time series are usually contaminated by noise,and the data of some nodes may be lost
or inaccessible, which call for the robustness to against the obstacle. We test the robustness of our
method in more realistic situation. Specifically, we imposenoise on the time series by randomly
flipping a fraction of binary states in time seriesnf (errors in time series), and assume the exis-
tence of a fraction of missing nodesnm to mimic inaccessible nodes, as shown in Table III. We
take Voter, Game, and Majority model as representative examples of linear, nonlinear and piece-
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FIG. 3: Reconstruction performance. (a) Reconstructed values in the neighboring vectorxi of all nodes

on SW and SF network with Voter model, whereN = 100, 〈k〉 = 6, nt = 15000 andnt̂ = 80. The

red dashed line represents the threshold for determining whether a reconstructed value is considered to be

linked or not (a value larger then the threshold will be deemed a link). The correctly reconstructed links

(true positive), falsely reconstructed links (false positive) and missing links (false negative) are in dark blue,

red and light blue points, respectively, while true negative links are in yellow. (b, c) Visualization of the

reconstructed the SW and SF network, respectively. The color of reconstructed links are the same as that of

the data points in (a). We see that missing links (false negative) in the SF network are more than that in the

ER network. (d, e) ROC curve of reconstructed values for SW and SF network using different normalized

amount of basesnt̂. (f, g) PR curve of reconstructed values for SW and SF networkusing different amount

of nt̂. (h, i) AUROC and AUPR as functions of the normalized number of basesnt̂ for SW and SF network.

TABLE II: AUROC and AUPR for various dynamics in combinationwith model and empirical networks.

Details of parameter values in dynamics are shown in Supplementary Table 1. The network size and mean

degree of ER, SF and SW network areN = 500 and 〈k〉 = 6 andnt of time series used is6 × 104.

Information of empirical networks is shown in Supplementary Table 2 andnt of time series used is1.5×104.
AUROC/AUPR Voter Kirman Ising SIS Game Language Threshold Majority

ER 1.000/0.983 0.999/0.954 1.000/0.982 0.997/0.960 0.999/0.981 0.995/0.934 1.000/0.988 1.000/0.986
SF 0.992/0.959 0.985/0.920 0.998/0.976 0.984/0.924 0.988/0.951 0.986/0.925 0.986/0.985 0.999/0.980
SW 1.000/0.988 1.000/0.982 1.000/0.988 1.000/0.988 1.000/0.988 1.000/0.986 0.994/0.979 1.000/0.987

Dolphins 1.000/0.916 0.997/0.908 0.999/0.911 0.978/0.867 0.993/0.900 0.985/0.870 0.991/0.890 1.000/0.913
Football 0.999/0.884 1.000/0.898 0.999/0.899 0.999/0.884 0.996/0.882 0.992/0.859 0.918/0.637 0.999/0.896
Karate 0.997/0.856 0.969/0.838 0.981/0.836 0.954/0.823 0.984/0.839 0.960/0.803 0.971/0.810 0.996/0.847
Leader 1.000/0.838 0.991/0.912 0.991/0.823 0.968/0.789 0.990/0.818 0.966/0.780 0.970/0.760 0.998/0.832

Polbooks 0.999/0.912 0.991/0.829 0.998/0.908 0.932/0.779 0.986/0.888 0.978/0.857 0.971/0.858 0.999/0.913
Prison 1.000/0.936 0.999/0.896 1.000/0.935 0.992/0.915 0.981/0.909 0.991/0.909 0.999/0.931 1.000/0.935

Santa Fe 0.998/0.967 0.990/0.933 1.000/0.969 0.982/0.937 0.997/0.965 0.996/0.959 0.994/0.961 1.000/0.970

wise dynamics. Strikingly, we find that high AUROC and AUPR remains even in the presence of
10% measurement noise or30% inaccessible nodes, providing strong evidence for the robustness
of our framework against measurement noise and inherent limits in accessing all nodes or missing
data. More detailed results associated with Table III, i.e., AUROC and AUPR as functions ofnf

andnm, are displayed in Supplementary Fig. 6,7.
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TABLE III: Robustness against noise and missing data. AUC and AUPR for Voter, Game, and Majority

model on ER, SF and SW networks for measurement noisenf = 10% and the fraction of inaccessible nodes

nm = 30%, respectively. The network sizeN = 500 and mean degree〈k〉 = 6. The length of time series

used is6× 104. Details of parameter values in dynamics are shown in Supplementary Table 1.

nf = 10% nm = 30%

AUROC/AUPR Voter Game Majority Voter Game Majority

ER 0.995/0.938 0.955/0.707 0.991/0.864 1.000/0.985 0.999/0.983 1.000/0.988

SF 0.983/0.903 0.954/0.800 0.990/0.894 0.995/0.968 0.991/0.957 0.995/0.984

SW 1.000/0.984 0.976/0.741 0.994/0.874 1.000/0.988 1.000/0.988 1.000/0.988

IV. DISCUSSION

We have developed a general framework for addressing the challenging problem of recon-
structing complex networks with binary-state dynamics, only from binary time series without any
knowledge of switching function and structural information. Our main contribution lies in the de-
velopment of a universal data-based linearization approach, which offers a general solution to the
reconstruction of neighborhood of nodes for linear, nonlinear and discrete stochastic nodal dynam-
ics. The task of reconstructing the whole network can thus bedecomposed into the reconstruction
of local structure centered at each node. The entire networkcan be recovered by simply assem-
bling all local structures. The natural sparsity of real complex networks allows us to deal with the
local reconstruction as a sparse signal reconstruction problem that can be addressed by employing
the Lasso, a convex optimization method, from using a quite small amount of binary data. The
optimization is also robust against measurement noise and missing data because of our limited
accessibility to all nodes. The data-based linearization approach and the optimization based on
the Lasso thus constitutes a general and purely data-based framework for reconstructing complex
networks exclusively from binary time series, which is lacking prior to our current work. Our
framework has been validated by using a variety of binary-state dynamic models in combination
with a number of model and real complex networks. A generallyhigh reconstruction accuracy has
been achieved for all the studied cases, from using relatively small amounts of binary data con-
taminated by noise and the loss of partial data. These results suggest that potential applications
of our framework in a wide range can be expected and addressing the inverse problem eventually
will remarkably deepen our understanding of many complex networked systems with binary-state
dynamics in nature and society.

Although our framework provides promising prospective of solving the inverse problem, some
challenging problems remain. For example, although our framework is generally available for
different types of switching function in binary-state dynamics, it may fail for non-monotonous
function or non-Markovian dynamics. This is due to the factsthat for the former cases, the data-
based linearization is invalid because of the violation of one-to-one correspondence between the
switching probability and active neighbors; for the latter, the merging process is inapplicable.
Moreover, our framework is incapable of inferring interaction strength between nodes, especially
in the presence of noise and missing observation. Despite these open questions, our framework
provide significant insight into the inverse problem of complex networked systems with binary-
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state dynamics and may motivate further effort in the pursuit of eventually solving the inverse
problem completely.

V. METHODS

Models of binary-state dynamics. The voter model [16] assumes that a node randomly chooses
one of its neighbors’ states in each time step. If the total number of a node’s neighbor isk and
m among them are active, then the probability it becomes active ism/k while the probability of
becoming inactive is(k − m)/k. In the majority-vote model[45], a node tends to align with the
major state of its neighbors, but with a probabilityQ of misalignment.

In the Kirman’s ant colony model [46], nodes transfer from state0 to 1 with the probability
Fk,m = c1 + dm when there arem active neighbors, and change back from1 to 0 with the rate
Rk,m = c2 + d(k −m) correspondingly. The parametersc1 andc2 quantify the individual action
that is independent to the states of neighbors, while the parameterd represents the the action of
copying from neighbors.

Ising model [18] is a classical model delineating magnetic spins, where each node is either in
spin-up or spin-down state. The switching is adopted with a certain form of probability, driving
the system to minimization of the Hamiltonian. Here we choose the transition rates in Glauber
dynamics [47] as shown in Table I. The parameterβ stands for a combination of temperature and
ferromagnetic-interaction parameter.

The SIS model [5] describes a disease-spreading dynamics with infection and recovery. Each
susceptible individual contracts disease from each of its infected neighbors at a rateλ. Thus, a
susceptible node withm infected neighbors has the probability(1− λ)m of remaining susceptible
at each time step, leading to the infection rate1 − (1 − λ)m. Meanwhile, the recovery rate of a
infected node isµ in every moment of time.

The game model [4] comes from the game theory. When embeddingon networks, each node is
occupied by a player, and the two states stand for different strategies. Each player plays with each
of his/her neighbors using one chosen strategy in each time step. According to the game theory,
the profit of a rational playeri when playing with a neighborj can always be characterized by a

payoff matrix
s1 s2

s1
s2

(

a

0

0

b

)

wherea andb are game parameters. Different games can be produced

by adjustinga andb. The payoff of a player is the sum of profits with all his/her neighbors. A
player switches the strategy with a probability depending on the payoff it may gain in the next
round under the current circumstance, as shown in Table I. Parameterα qualifies the willing of an
individual changing his/her mind according to the strategies of their neighbors, andβ is associated
with the influence of expected payoffs.

For the language model [48], the two states denote differentlanguage choices of a person.
Transitions from the primary language to another occur proportionally to the fraction of speakers
in the neighbors with the powerα, multiplied by the parameters or1−s according to the respective
language.

The threshold model [49] is a deterministic model. A certainthresholdMk, which may be
a function of the node’s degree, is set to each node. In each time step, a node turns to active if
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the number of its active neighborm exceeds the thresholdMk, and no recovery transformation is
permitted.

Procedure of choosing bases. Theoretically, a base string should not be chosen arbitrarily. On
the one hand, if a base string is too special to find its subordinate strings, the estimation of the
switching probability via the average will deviate from thetrue value. On the other hand, if the
bases resemble each other closely, little differences in the switching probabilities will lead to
difficulty in reconstruction, because of the small range in the linearized function. To choose the
most proper bases among all available strings, we propose a method to select base strings in the
network composed of base strings. For an arbitrary nodei, we first construct a network where
vertices represent strings composed ofsj(t)(j 6= i) at different time steps whensi(t) = 0 and
edges are weighted by normalized Hamming distance between strings. We then eliminate edges
whose weight is smaller than the threshold∆. The remaining edges indicate sufficient similarity
between vertices. By setting another thresholdσ, we extract a subnetwork where only the top
σ×N vertices with larger degree are preserved, while other vertices and their edges are removed.
In this way, all remaining strings have relatively sufficient amount of subordinate strings similar to
them. Finally, we pick out the vertices with smaller degree according to the data requirement, so
that the selected base strings will sufficiently different.Figure 1b shows the process of choosing
base, and see Supplementary Information Sec. I for detailedparameter values and discussion.

The Lasso for reconstructing xi from yi = Φi × xi. Using our method of pretreating data,yi

andΦi can be collected and calculated solely from the time series.Thus the problem of recovering
the nodei’s links has been converted into reconstructing a vectorxi from a linear measurement
yi = Φi × xi:













〈

si(t̂1 + 1)
〉

〈

si(t̂2 + 1)
〉

...
〈

si(t̂M + 1)
〉













=













1
〈

s1(t̂1)
〉

· · ·
〈

si−1(t̂1)
〉 〈

si+1(t̂1)
〉

· · ·
〈

sN (t̂1)
〉

1
〈

s1(t̂2)
〉

· · ·
〈

si−1(t̂2)
〉 〈

si+1(t̂2)
〉

· · ·
〈

sN (t̂2)
〉

...
...

...
...

...
...

...

1
〈

s1(t̂M )
〉

· · ·
〈

si−1(t̂M )
〉 〈

si+1(t̂M )
〉

· · ·
〈

sN (t̂M )
〉









































di

ci · ai1
...

ci · ai,i−1

ci · ai,i+1

...

ci · aiN





























. (5)

Note thatxi is usually sparse since the number of the neighbors of nodei is much less than the
network scaleN in most systems. The sparsity ofxi satisfies the prerequisite of the Lasso [35], a
convex optimization method, which fittingly solves our reconstruction problem. The problem the
Lasso addresses is to optimize

min
xi

{ 1

2M
‖Φixi − yi‖

2
2 + λ‖xi‖1

}

, (6)

where‖xi‖1 =
∑N

j=1,j 6=i |xij | is theL1 norm ofxi assuring the sparsity of solution, the least square
term‖Φixi − yi‖

2
2 provides robustness of the solution against noise in data.λ is a nonnegative

regularization parameter which affects performance of reconstruction according to the sparsity of
networks, and can be determined by cross-validation method[50](see Supplementary Information
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Session 2). A striking advantage of using the Lasso is thatM , i.e., the number of bases needed
is much less than the length ofxi. And for each base of each node, the strings included can
be collected and calculated from only one set of data sampling in time series, ensuring relatively
sparse data requirement. After vectorxi is reconstructed, the direct neighbors of nodei correspond
to the nonzero elements in it. In the same manner, we uncover the neighbors of all other nodes,
yielding the full structure of the network by simply matching the neighbors of all nodes.
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