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REALIZING HOMOLOGY CLASSES UP TO COBORDISM

MARK GRANT, ANDRÁS SZŰCS, AND TAMÁS TERPAI

Abstract. It is known that neither immersions nor maps with a fixed finite
set of multisingularities are enough to realize all mod 2 homology classes in
manifolds. In this paper we define the notion of realizing a homology class up
to cobordism; it is shown that for realization in this weaker sense immersions
are sufficient, but maps with a fixed finite set of multisingularities are still
insufficient.

1. Introduction

In 1949 Steenrod [4] posed the following question: given a homology class h of
a space X , does there exist a closed manifold V and a continuous map f : V → X
such that f∗[V ] = h, where [V ] is the fundamental class of V ? Thom’s famous
result answers the question affirmatively if h is a Z2-homology class, and shows
that for integral homology the answer in general is negative. It is a natural further
question whether f can be chosen to be “nice” if X itself is a smooth manifold. For
example, can it be always an embedding or an immersion? If not, then can f be
chosen to have only mild singularities?

For embeddings Thom himself gave some necessary and sufficient conditions.
From these conditions it is not hard to deduce that there are Z2-homology classes
of codimension 2 not realizable by embeddings in some manifolds.

In [5] it was shown that for any k > 1 there is a manifold M (of dimension
approximately 4k) and a cohomology class α ∈ Hk(M ;Z2) such that the Poincaré
dual of α cannot be realized by an immersion. Moreover it was shown there that for
any k > 1 singular maps of finite complexity (see Section 3 for the precise definition)
are insufficient to realize all codimension k homology classes in manifolds.

Therefore in order to obtain positive answers it is natural to relax the notion of
“realization of a homology class”. The relaxed version we use will be “realization
up to cobordism”. For this purpose we define the cobordism group of pairs (Mn, α)
where Mn is a closed smooth n-manifold and α ∈ Hk(M ;Z2) for a fixed k.

Definition: Given two pairs (Mn, α) and (Nn, β) we say that they are cobor-

dant if there is a pair (Wn+1, γ) such that Wn+1 is a compact (n + 1)-manifold
with boundary ∂W = M ⊔N and γ ∈ Hk(W ;Z2) is a cohomology class such that
γ|M = α and γ|N = β.

Remark: The obtained group of pairs is clearly isomorphic to Nn(K(Z2, k)),
the nth bordism group of the Eilenberg-MacLane space K(Z2, k).

Definition: Let F be a class of smooth maps (for example, embeddings, im-
mersions, or singular maps of some given complexity). We say that a pair (M,α)
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is F-realizable if there exist a closed manifold V and a map f : V → M such that
f ∈ F and f∗[V ] is Poincaré dual to α. We say that (M,α) is F-realizable up to

cobordism if there is an F -realizable pair (N, β) cobordant to (M,α).
We show that this relaxation allows to give a positive answer in the case of

immersions but for singular maps of finite complexity the answer remains negative.

2. Realization by immersions

Theorem 1. Any pair (M,α) is realizable by immersions up to cobordism.

For conciseness, (co)homology coefficients Z2 will be omitted and K will stand
for K(Z2, k).

In what follows, MO(k) denotes as usual the Thom space of the universal
vector bundle over BO(k), and for any space X we denote by ΓX the space
Ω∞S∞X = limN→∞ ΩNSNX . Recall that ΓMO(k) is the classifying space of
codimension k immersions, in particular, the group of cobordism classes of codi-
mension k > 0 immersions into a fixed closed manifold P (where cobordisms are
codimension k immersions into P × [0, 1]) is isomorphic to the group of homotopy
classes [P,ΓMO(k)].

It is well-known that ΓMO(k) is stably equivalent to a bouquet that contains
MO(k) (i.e. there is a space Y such that ΓMO(k) ∼=

stably
MO(k) ∨ Y ). Hence

H∗(MO(k)) embeds naturally into H∗(ΓMO(k)). In particular the Thom class
uk ∈ Hk(MO(k)) can be considered (uniquely, since Y is known to be 2k − 1-
connected) as a cohomology class of ΓMO(k). Denote by u the corresponding
map into K, that is, u : ΓMO(k) → K has the property that u∗(ιk) = uk, where
ιkl ∈ Hk(K) is the fundamental class.

Alternatively, we may use the universal property of the functor Γ that is as
follows ([2, p. 39.], [6, pp.42–43.]): for any map f : X → Y from a compactly
generated Hausdorff space X to an infinite loop space Y there is a homotopically

unique extension f̂ : ΓX → Y that is an infinite loop map. Applying this property
to uk yields the map u.

For any P the map uP
∗

: [P,ΓMO(k)] → [P,K] induced by u associates to (a
cobordism class of) an immersion the Poincaré dual of the homology class repre-
sented by the immersion.

This shows that Theorem 1 has the following equivalent reformulation:

Theorem 1
′
. The map u : ΓMO(k) → K induces an epimorphism of the bordism

groups in any dimension. That is, for any n

u∗ : Nn(ΓMO(k)) → Nn(K)

is onto.

Proof: It is well-known ([3]) that there is an isomorphism H∗(X ;Z2) ⊗ N∗ →
N∗(X), natural in X , defined by taking a representative [α̂ : Mα → X ] ∈ N∗(X)
for all elements α of a basis of H∗(X) and mapping

∑

j αj ⊗ [Nj ] to
∑

j [α̂j ◦ prj :

Mαj
× Nj → X ], where prj : Mαj

× Nj → Mαj
is the projection. Hence a map

induces epimorphism of the (unoriented) bordism groups if and only if it does so
in the Z2-homology groups.

For later use, recall that for any space X the ring H∗(ΓX) is a polynomial ring
(multiplication being the Pontryagin product) in variables xλ, yI,λ, where {xλ}λ is
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a homogeneous basis of H∗(X) and yI,λ are further variables defined using Kudo-
Araki operations as yI,λ = QIxλ (their precise description will be unimportant in
our argument).

In order to show that

u∗ : H∗(ΓMO(k)) → H∗(K)

is onto it is enough to show that the composition

ϕ
def
: H∗(MO(k))

(uk)∗
→ H∗(K)

p
→ Q(H∗(K)) = H∗(K)/µ

(

H∗(K)⊗H∗(K)
)

is onto, where µ : H∗(K)⊗H∗(K) → H∗(K) is the multiplication map and p is the
natural projection onto the quotient group of indecomposables. Indeed, assume that
ϕ is onto and for all j choose elements in Hj(K) such that they form a (linear) basis

in Hj(K)/µ
(

Hj(K)⊗Hj(K)
)

. It is easy to see by induction on j that the chosen

elements generate H∗(K) multiplicatively and hence the subring of H∗(ΓMO(k))
generated by the preimages of these elements is mapped onto the entire H∗(K)
(here we use that u∗ is a ring homomorphism, since u is an infinite loop map).

Hence to prove Theorem 1 we have to show that ϕ : H∗(MO(k)) → QH∗(K)
is onto. This is equivalent to the dual homomorphism ϕ∗ being injective. By [7,
Proposition 3.10.], the dual of QH∗(K) is PH∗(K), the submodule of primitive
elements of the Hopf algebra H∗(K). This latter group is known to be

PH∗(K) = Z2

〈

SqIιk : I admissible of excess e(I) ≤ k
〉

,

the vector space over Z2 freely generated by the SqIιk (see eg. [1, p. 23.]). The
dual of H∗(MO(k)) is H∗(MO(k)) and can be identified with the ideal generated
by wk in Z2[w1, . . . , wk] (wk corresponds to the Thom class uk). The map ϕ∗ maps
ιk to uk and then to wk, and commutes with the action of the Steenrod algebra,
allowing to calculate the image of ϕ∗.

Finally, we need to show that the set
{

SqI(wk) : I is admissible with e(I) ≤ k
}

is linearly independent in the ideal (wk) ⊂ Z2[w1, . . . , wk]. This is the immediate
consequence of [8, Remark 2.4.] that shows that the Steenrod algebra acts freely
unstably on wk in H∗(BO(k)), and this finishes the proof of Theorem 1. �

3. Non-realizability up to cobordism by singular maps of finite
complexity

Recall some definitions from singularity theory that are necessary for the formu-
lation of Theorem 2.

Definition: Fix a natural number k ≥ 1 and consider equivalence classes of
germs η : (Rn−k, 0) → (Rn, 0), n ≥ k, up to left-right equivalence and stabilization,
that is, we consider η to be equivalent to η × idR1 : (Rn−k+1, 0) → (Rn+1, 0). An
equivalence class is called a (codimension k) local singularity (even if its rank is
maximal).

Definition: A multisingularity is a finite multiset (set with elements equipped
with multiplicities) of local singularities.

Definition: Let f : M → N be a smooth map such that for any y ∈ N the
preimage f−1(y) is a finite set. For y ∈ N and f−1(y) = {x1, . . . , xm} let

[

fxj

]

denote the local singularity class of the germ f at xj . The multiset {[fx1
] , . . . , [fxm

]}
is called the multisingularity of f at y.
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Definition: Let τ be a set of multisingularities. The map f is said to be a
τ-map if its multisingularity at any point y ∈ N belongs to τ .

Theorem 2. Let τ be any finite set of multisingularities of codimension k > 1
stable maps and let F be the class of τ-maps. Then the class F is insufficient for

realizing up to cobordism all codimension k homology classes in manifolds. That is,

for any k > 1 there is a pair (M,α) with M a smooth manifold and α ∈ Hk(M)
such that (M,α) is not F-realizable up to cobordism.

Proof: The proof given in [5, Theorem 1.3.] for non-realizability of homologies by
τ -maps also proves the stronger statement of Theorem 2. In that proof there was a
classifying space Xτ for τ -maps (analogously to ΓMO(k) being the classifying space
for immersions). Xτ has a single nonzero element in its first nontrivial (reduced) co-
homology group, Hk(Xτ ), which can be called the Thom class uτ : Xτ → K. If any
pair (M,α) could be realizable up to cobordism by τ -maps, then the map uτ would
induce an epimorphism (uτ )∗ : N∗(Xτ ) → N∗(K) between the unoriented bordism
groups or, equivalently, between the homology groups (using the same argument as
in the proof of Theorem 1). But [5] shows that for any sufficiently high dimension
j (under the assumption that k > 1) we have dimZ2

Hj(Xτ ) < dimZ2
Hj(K), hence

(uτ )∗ : Hj(Xτ ) → Hj(K) cannot be surjective. �

Remark: In particular, embeddings or immersions with self-intersection multi-
plicity bounded by a fixed number are insufficient for realizing all homology classes
in manifolds even up to cobordism.
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