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Abstract: 

Thalidomide is a teratogenic drug that caused horrific birth defects when 
prescribed as an antiemetic to pregnant women in the 1960’s. The most 
stereotypical defect is symmetrical limb malformations such as phocomelia, 
though ear, eye and internal organ defects are also observed. Thalidomide 
was consequently withdrawn from the market. However, Thalidomide has 
since been shown to have many beneficial anti-inflammatory and 
immunomodulatory effects and is therefore used in a regulated manner in 
the treatment against cancers and inflammatory disorders. Sadly, new 

cases of babies affected by thalidomide are being born in Brazil, likely due 
to medicine sharing. The mechanisms of how thalidomide causes a wide 
range of embryonic malformations are becoming clearer; thalidomide is 
thought to act through molecules such as cereblon and tubulin and also 
affect blood vessel development and cell death, resulting in teratogenesis. 
Fully understanding the molecular events induced by thalidomide is 
essential if we are to develop a safe but clinically relevant form of the drug.  
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Abstract 1 

Thalidomide is a teratogenic drug that caused horrific birth defects when prescribed 2 

as an antiemetic to pregnant women in the 1960’s. The most stereotypical defect is 3 

symmetrical limb malformations such as phocomelia, though ear, eye and internal 4 

organ defects are also observed. Thalidomide was consequently withdrawn from the 5 

market. However, Thalidomide has since been shown to have many beneficial anti-6 

inflammatory and immunomodulatory effects and is therefore used in a regulated 7 

manner in the treatment against cancers and inflammatory disorders. Sadly, new 8 

cases of babies affected by thalidomide are being born in Brazil, likely due to 9 

medicine sharing. The mechanisms of how thalidomide causes a wide range of 10 

embryonic malformations are becoming clearer; thalidomide is thought to act through 11 

molecules such as cereblon and tubulin and also affect blood vessel development 12 

and cell death, resulting in teratogenesis. Fully understanding the molecular events 13 

induced by thalidomide is essential if we are to develop a safe but clinically relevant 14 

form of the drug.  15 

 16 

 17 

Key Words 18 

angiogenesis, cell death, Cereblon, reactive oxygen species, time sensitive window, 19 

mechanisms of teratogenesis, chicken embryo, zebrafish embryo 20 

 21 

 22 

Key Concepts 23 

• Thalidomide was used between 1957 and 1961 as a ‘safe’ treatment 24 

for morning sickness, but was withdrawn after it was found to cause 25 

severe birth defects. 26 

• Thalidomide has since been shown to possess anti-inflammatory, 27 

antiangiogenic and anti-proliferative properties. 28 
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• Thalidomide is now used, under strict regulations, to treat human 1 

inflammatory disorders and cancer. 2 

• Thalidomide causes embryonic damage in a short time-sensitive 3 

window between day 20 and 36 post-fertilisation in humans. 4 

• Thalidomide causes damage to the majority of the body tissues, 5 

amongst the most common and stereotypical damage is to the limbs. 6 

• Effects of thalidomide can vary dependent on the species exposed, 7 

some species being more sensitive to the drug than others. 8 

• Evidence supports blood vessels as a primary target of thalidomide.  9 

• Possible other pathways involved in thalidomide-induced embryopathy 10 

are oxidative stress induction, cell death and binding to Cereblon. 11 

• Cereblon acts as a target of thalidomide for treatment of multiple 12 

myeloma in adult humans. 13 

  14 
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1 History of Thalidomide 1 

 2 

Thalidomide [a-(N-phthalimido) glutaramide] was synthesised by Chemie 3 

Grunenthal, in Germany,  and introduced onto the market in 1957 as a “safe”, non-4 

addictive, over-the-counter sedative (Vargesson, 2015). The drug was marketed 5 

across 46 countries and was also sold as an effective antiemetic for pregnant 6 

women suffering morning sickness (Franks et al., 2004; Vargesson, 2009; 7 

Vargesson, 2013; Vargesson, 2015).  8 

Following the release of thalidomide, reports of an increase in the occurrence of 9 

severe and rare birth defects began surfacing (McCredie, 2009; Vargesson, 2013; 10 

Vargesson, 2015). The most striking defect was phocomelia of the limbs (where 11 

distal structures of the limb remain whereas proximal structures are lost or reduced), 12 

though some babies presented with amelia (no limb structures exist). A wide range 13 

of damage to the limbs could be observed as well as damage to many other body 14 

systems (see Section 3) (Lenz and Knapp, 1962; Ruffing, 1977). Damage to the 15 

ears, eyes, genitalia, heart, gastrointestinal tract and kidneys was also reported 16 

(Smithells and Newman, 1992; Vargesson, 2009; Vargesson, 2013; Vargesson, 17 

2015). The range and severity of damage to many babies across Europe confused 18 

clinicians at the time. It was not till two clinicians, McBride in Australia and Lenz in 19 

Germany, independently concluded in 1961 that the children with these birth defects 20 

were born to mothers who had consumed thalidomide (McBride, 1961; Lenz, 1962; 21 

Lenz, 1988). The drug was withdrawn from the worldwide market on 30 Nov 1961 22 

(Matthews and McCoy, 2003; Vargesson, 2013). The consumption of thalidomide 23 

during pregnancy was confirmed as the cause of birth defects since there was an 24 

almost complete loss of such defects from 1962 onwards (Lenz, 1988; Smithells and 25 

Newman, 1992; Vargesson, 2013; Vargesson, 2015). However, it is estimated that at 26 

least 10,000 children were born with deformities resulting from thalidomide exposure 27 

(Smithells and Newman, 1992; Vargesson, 2009). Thalidomide was not approved for 28 

use in America during the 1957-1962 thalidomide disaster: Dr Frances Kelsey, 29 

working for the US Food and Drug Administration (FDA), doubted its safety after 30 

reports of peripheral neuropathy in patients (Matthews and McCoy, 2003; Franks et 31 

al., 2004; Vargesson, 2013; Vargesson, 2015). If thalidomide had been released in 32 
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the US, there may have been a significantly higher number of cases of birth defects, 1 

as seen in Europe, Canada, Australia and Japan.  2 

Thalidomide underwent a rebirth in 1965 after studies proved its effectiveness as a 3 

treatment for erythema nodosum leprosum (ENL), a complication of leprosy 4 

(Sheskin, 1965). Following this, thalidomide was licensed in Mexico, Brazil and later 5 

in the US for the use in the treatment of ENL (Franks et al., 2004) and in 2006 for 6 

treatment of multiple myeloma (MM) (Latif, 2012).  7 

Programs now administer the use of thalidomide under strict guidelines where 8 

women prescribed the drug are required to use birth control and take regular 9 

pregnancy tests. When these guidelines are followed, no occurrence of thalidomide 10 

embryopathy has been reported (Uhl et al., 2006). However, tragically, in Brazil, 11 

children are still being born with thalidomide embryopathy where the drug is used to 12 

effectively treat leprosy. This is likely due to a culture of sharing medicines as a 13 

result of people living so far away from hospitals, misinterpretation of the drug, and 14 

pregnant women taking it whilst suffering from leprosy (Vianna et al., 2013; 15 

Vargesson, 2013). Considering the beneficial properties of thalidomide there is the 16 

possibility of increased use and a concern for a further potential increase in the 17 

frequency of thalidomide-induced birth defects. Despite research efforts the 18 

mechanisms of thalidomide-induced embryopathy are not fully understood. 19 

Continuing research is vital in the mission to synthesise a safe, clinically relevant 20 

form which is non-teratogenic, i.e. does not cause birth defects. 21 

2 Biochemistry of thalidomide 22 

 23 

Thalidomide is a derivative of the non-essential amino acid glutamic acid (Franks et 24 

al., 2004). The structure consists of a glutarimide ring, pthalimido ring and contains 25 

an asymmetric carbon atom (Figure 1). The presence of the chiral carbon allows 26 

thalidomide to exist in two, interchangeable states, or enantiomers (S(-)) and R(+)), 27 

within the body. One state is thought to be the causative ‘teratogenic’ state (S(-)), 28 

and the other the ‘sedative’ state (R(+)). Since the drug can switch states within the 29 

body, it is not conceivable to prescribe just the ‘safe’, ‘sedative’ version. Thalidomide 30 

can broken down in to its active state by the liver enzyme cytochrome P450 and has 31 
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a half-life of 6-12 hours. Thalidomide can also rapidly hydrolyse in bodily fluids 1 

(Franks et al., 2004; Vargesson, 2009; Vargesson, 2013; Vargesson, 2015). 2 

2.1 Pharmacological Properties of Thalidomide 3 

Further research in to the mechanism of thalidomide action has revealed a wide, 4 

diverse range of functions. As well as being anti-inflammatory and 5 

immunomodulatory, thalidomide is also anti-angiogenic and has anti-proliferative 6 

activities (D’Amato et al., 1994; El-Aarag et al., 2014). Through these properties 7 

thalidomide has been identified as an effective treatment for a number of adult 8 

conditions. Indeed since the discovery in 1965 that thalidomide can be beneficial as 9 

an anti-inflammatory drug to treat ENL, studies have recognised its clinical purpose 10 

as treatment for multiple myeloma (MM), cancers, Behcet’s disease, gastrointestinal 11 

disorders, rheumatological disorders, hereditary hemorrhagic terangiectasia (HHT), 12 

lupus, idiopathic pulmonary fibrosis, HIV and diabetic retinopathy (Franks et al., 13 

2004; Vargesson, 2013; Vargesson, 2015). 14 

2.1.1 Antiangiogenic actions 15 

Thalidomide has the ability to inhibit angiogenesis, the formation of new and 16 

remodelling blood vessels. This action was first reported by using rabbit and rodent 17 

cornea assays to show that thalidomide inhibits fibroblast growth factor (FGF)-18 

induced angiogenesis (D’Amato et al., 1994). In chicken embryos thalidomide 19 

inhibits nitric oxide (NO), an important molecule for endothelial cell function and 20 

protection of blood vessels (Siamwala et al., 2012; Majumdar et al., 2009; 21 

Tamilarasan et al., 2006; see also DOI: 10.1002/9780470015902.a0003390.pub2). NO 22 

is required for normal limb development since it promotes angiogenesis and reduces 23 

oxidative stress, therefore inhibition by thalidomide leads to limb malformations. 24 

Indeed, thalidomide affected chicken and zebrafish embryos can be rescued by NO 25 

(Siamwala et al., 2012). Additionally, thalidomide inhibits NO-induced endothelial cell 26 

migration as well as interfering with normal actin polymerisation patterns. This 27 

prevents cells forming tubes, thereby inhibiting angiogenesis at the cellular level 28 

(Tamilarasan et al., 2006; Vargesson, 2013; Vargesson, 2015).  29 

Thalidomide also induces degradation of Tumor Necrosis Factor-α   (TNFα) mRNA, 30 

a pro-angiogenic cytokine, suggesting another mechanism by which thalidomide 31 
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inhibits angiogenesis (Moreira et al., 1993). Thalidomide has been demonstrated to 1 

reduce the vascular hemorraging and malformations in patients suffering from HHT 2 

by inhibiting angiogenesis and through recruitment of mural cells, known to decrease 3 

endothelial cell migration and proliferation, causing early maturation of blood vessels 4 

(Lebrin et al., 2010; Figure 2). In zebrafish embryos, thalidomide reduces VEGF 5 

receptor function (Yabu et al., 2005; Vargesson, 2013; Vargesson, 2015). In chicken 6 

embryos, exposure of early blood vessels to thalidomide results in a breakdown of 7 

vascular formation (Tamilarasan et al., 2006). Antiangiogenic analogs of thalidomide, 8 

as opposed to anti-inflammatory analogs, cause limb defects (Therapontos et al., 9 

2009). The antiangiogenic actions of the drug make it a promising therapeutic agent 10 

for the treatment of tumours, since it can prevent their early vascularisation 11 

(Therapontos et al., 2009). 12 

2.1.2 Anti-proliferative actions 13 

The anti-proliferative effects of thalidomide are independent of its immunomodulatory 14 

activities in hematologic malignancies. Thalidomide reduces proliferation of 15 

cancerous MM cells that are resistant to standard chemotherapy (Melcherd and List, 16 

2007). Myeloma cells are targeted by thalidomide through several mechanisms 17 

including activation of antitumor immunity and exertion of antiangiogenic effects. The 18 

treatment of MM patients with thalidomide improves their survival rate, but the exact 19 

way in which thalidomide achieves this is not fully understood. Current studies are 20 

pointing to a molecular pathway targeted by thalidomide to combat MM which 21 

involves Cereblon, Ikaros and Aiolos proteins. Cereblon is part of an E3 ubiquitin 22 

ligase complex with the proteins Damaged DNA binding protein 1 (DDB1), Cullin-4A 23 

(CUL4A), and regulator of Cullin1 (Roc1). This complex tags proteins with ubiquitin, 24 

labelling them for proteolysis, and is therefore important for the regulation of protein 25 

expression (Stewart, 2014; Ito et al., 2010; Ito et al., 2011). After binding to 26 

thalidomide, Cereblon protein is inactivated, resulting in the rapid ubiquitination and 27 

degradation of Ikaros and Aiolos. Both proteins are transcription factors that in 28 

normal conditions regulate T and B cell development. High degradation of Ikaros and 29 

Aiolos increase the Interleukin-2 (IL) levels and decreases TNFα levels (Stewart, 30 

2014) (Figure 2). In addition, a correlation exists between low amounts of Cereblon 31 

in MM cells, clinical drug resistance and poor survival outcomes (Schuster et al., 32 

2014; Stewart, 2014). Thalidomide reduces expression of TNFα, NF-κB, IL -6 and -8 33 
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and Vascular Endothelial Growth Factor (VEGF) proteins which are related to tumour 1 

cell survival, proliferation, inhibition of apoptosis and resistance to therapy (Latif et 2 

al., 2012).  3 

 4 

 5 

2.1.3 Anti-inflammatory actions 6 

Thalidomide exhibits immunomodulatory and anti-inflammatory effects through TNFα 7 

mRNA degradation, Nuclear Factor-kappa-B (NF-κB) regulation and 8 

Cyclooxygenase-2 (COX2) inhibition (Moreira et al., 1993; Vargesson, 2015). 9 

Inducing TNFα mRNA degradation supresses the activation of interleukins and 10 

cytokines by monocytes and macrophages. ENL patients present with high levels of 11 

TNFα, which reduce with thalidomide treatment (Sampaio, 1993; Vargesson, 2013). 12 

The effects of thalidomide on TNFα is beneficial when treating other autoimmune 13 

diseases which arise through an overproduction of inflammatory cytokines (Latif et 14 

al., 2012). A key regulator of the expression of cytokines, including TNFα, is 15 

transcription factor NF-κB. Thalidomide selectively blocks TNFα and hydrogen 16 

peroxide-induced NF-κB activation, interfering with TNFα expression and other 17 

inflammatory molecules such as IL-8 (Majumdar et al., 2002). Cytokine COX-2, 18 

involved in both inflammatory response and cancer growth, is also suppressed by 19 

thalidomide (Melcherd and List, 2007).  20 

In addition to these actions which are the basis for some of thalidomide’s clinical 21 

applications the drug can also induce cell death (Knobloch et al., 2007) as well as 22 

reactive oxygen species (ROS) (Parman et al., 1999). The multiple and varied 23 

actions of the drug, in part, explain why it has been so difficult to determine the 24 

precise mechanism underlying thalidomide induced teratogenesis. As we will see 25 

current viewpoints favour the antiangiogenic action of the drug as a major cause of 26 

teratogenesis. 27 

3 Thalidomide Embryopathy: What damage does thalidomide cause? 28 

 29 

3.1 Thalidomide acts in a time sensitive window  30 
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Thalidomide induces damage to the embryo in a time-sensitive window between 1 

days 20 and 36 post-fertilization (Figure 3) (Vargesson, 2009; Vargesson, 2015). 2 

The timing of damage was determined through interviews with mothers who had 3 

taken thalidomide, providing data to identify a correlation between when thalidomide 4 

was taken and the resulting malformations (Lenz and Knapp, 1962; Ruffing, 1977; 5 

Smithells and Newman, 1992). Since the symptoms of typical morning sickness 6 

coincide with a period of rapid development and embryogenesis, thalidomide was 7 

taken at a time when countless cell divisions, growth, migration, differentiation and 8 

organogenesis are occurring. Exposure to thalidomide interfered with major 9 

developmental events, triggering the defects seen in thalidomide embryopathy 10 

(Vargesson, 2013). Miscarriage results if the drug is taken before the time-sensitive 11 

window (Vargesson, 2015), however it is not known whether exposure to thalidomide 12 

after day 36 results in obvious embryonic defects. The babies identified for study and 13 

maternal interview had mainly outward, visible defects and so if damage was only 14 

obvious later in life, it was not noted. Therefore exposure to thalidomide after the 15 

time-sensitive window may not be harmless. Some reports suggest it would be rare 16 

for any embryo to be unharmed following consumption of just one tablet (Smithells 17 

and Newman, 1992). Indeed, it is estimated that one 50mg tablet is sufficient to 18 

cause birth defects in at least 20-50% of embryos exposed to thalidomide during the 19 

time-sensitive window (McBride, 1961; Lenz, 1962; Smithells and Newman, 1992; 20 

Vargesson, 2009; Vargesson, 2013; Vargesson, 2015) 21 

3.2 Thalidomide Embryopathy 22 

Although almost any organ can be affected by thalidomide, the type of malformations 23 

observed are dependent on the day of thalidomide intake (Table 1; Figure 3) (Lenz 24 

and Knapp, 1962; Ruffing, 1977; Smithells and Newman 1992; Vargesson, 2015). 25 

The multi-tissue damage seen is referred to as thalidomide embryopathy (Table 1) 26 

where bilateral, symmetrical limb malformation is the most stereotypical defect, but 27 

many other body systems are damaged too (Newman, 1986; Smithells and 28 

Newman, 1992). Furthermore, thalidomide embryopathy has also been termed 29 

thalidomide syndrome, as the damage seen is a collection of damage often occurring 30 

independently in other human conditions (Newman, 1986; Smithells and Newman, 31 

1992; Vargesson, 2009; Vargesson, 2013) (see also DOI: 32 

10.1002/9780470015902.a0025686). 33 
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3.2.1 Limb Damage 1 

Phocomelia is the most striking limb malformation associated with thalidomide 2 

embryopathy, the most severe form of which being the absence of any long bones. 3 

The majority of thalidomide survivors have limb defects, ranging from amelia (no 4 

limb) to triphalangeal thumb and including radial dysplasia, and phocomelia. The 5 

majority of limb anomalies seen in thalidomide survivors are reduction events and 6 

typically bilateral in nature (Table 1). The thumb is the first bone to be affected, 7 

followed by the radius, humerus and ulna (Lenz and Knapp, 1962; McCredie, 2009; 8 

Smithells and Newman, 1992; Vargesson, 2013). Lower limb defects are less 9 

commonly seen. Shoulder and hip joints can, be weaker in thalidomide survivors and 10 

the hip and pubic bones may be missing (Vargesson, 2013).  11 

3.2.2 Ear and Eye Damage 12 

Ears and eyes develop around the same time as the limbs in the embryo and so are 13 

targeted during the thalidomide time-sensitive window (Figure 3). Complete absence 14 

of the eyes, small eyes and poor vision are all reported defects. Unlike limb defects, 15 

eye defects can occur unilaterally. Ear defects usually occur bilaterally and in 16 

conjunction with eye defects and facial palsies. Malformations range from absence of 17 

the ear (anotia), resulting in deafness, to elements of the outer ear remaining 18 

(microtia) (Vargesson, 2013; Vargesson, 2015). 19 

3.2.3 Facial and Neural Damage 20 

Facial muscles and nerves can be damaged by thalidomide and lead to facial palsy 21 

or asymmetry. A stereo-typical sign of thalidomide exposure is an enlarged facial 22 

naevus at birth, usually on the forehead, though this is no longer visible by three 23 

years of age (Vargesson, 2013). Irregular teeth, cleft palate and small noses are 24 

additional defects seen in thalidomide survivors. A second consequence of nerve 25 

damage by thalidomide during development is an increased occurrence of epilepsy 26 

and autism later in life (Smithells and Newman, 1992; Miller et al., 2005).  27 

3.2.4 Internal Organ Damage 28 

The frequency of internal organ defects is difficult to define since they are not 29 

obviously apparent and may not present during childhood. Only the most noticeable 30 
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defects will have been recorded during the 1960s. The heart, kidney, gastrointestinal 1 

and urinary tracts and genitalia can all be affected by exposure to thalidomide (Lenz 2 

and Knapp, 1962; Ruffing, 1977; Smithells and Newman, 1992). Heart malformations 3 

can occur with pulmonary stenosis and patent duct arteriosus and are thought to be 4 

the main cause of miscarriages or postnatal deaths suffered after intake of 5 

thalidomide. Kidney defects include rotated, hypoplastic and ectopic kidneys. Internal 6 

and external genital defects as well as urinary tract defects are also seen. Testicular 7 

absence or malformations in males and abnormalities of the uterus in females are 8 

known defects (Lenz and Knapp, 1962; Ruffing, 1977; Smithells and Newman, 1992; 9 

Vargesson, 2013; Vargesson, 2015). 10 

The true scale of the number of affected embryos and/or the range of defects caused 11 

by thalidomide may never be known since many malformed babies will have not 12 

survived to birth, or died shortly after (Smithells and Newman, 1992; Vargesson, 13 

2013; Vargesson, 2015). Furthermore, the criteria for diagnosis of thalidomide 14 

embryopathy was established in the 1960’s based upon the most severely affected 15 

children (Lenz and Knapp, 1962; Ruffing, 1977; Smithells and Newman, 1992). It is 16 

possible that children born without the classical thalidomide embryopathy phenotype 17 

and therefore not considered damaged by thalidomide could have had some 18 

embryonic malformations internally and perhaps late onset disorders. Certainly 19 

analysis and follow up of affected children was done very differently in the 1960’s 20 

than if the disaster had occurred today.  21 

4 How does Thalidomide Cause Damage To The Embryo? 22 

 23 

4.1 Thalidomide effects are species dependent 24 

Initial studies by Grunenthal, who invented and marketed the drug, tested 25 

thalidomide on rodents, where no defects were detailed or described. Questions 26 

remain about the precise testing carried out, but Grunenthal say they carried out 27 

testing that was typical of the day. The drug was considered safe and approved for 28 

use. After thalidomide was withdrawn from the market it was actually found to act in 29 

many species including humans, primates, rabbits, marsupials, zebrafish and 30 

chickens (Stephens, 2009; Vargesson, 2013).  31 
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Rodents are sensitive to thalidomide but much less so than other organisms, and are 1 

affected by much higher doses (DiPaolo et al., 1964; Parkhie and Webb, 1983; 2 

Vargesson, 2013). The reason for this species sensitivity difference is unclear. 3 

Thalidomide is able to inhibit angiogenesis in mice and rat aortic ring cultures, so 4 

although rodents are not insensitive to the drugs mechanisms, there may be aspects 5 

such as different rates of metabolism which offer them protection (Lu et al., 2004). 6 

Indeed, incubation of thalidomide with rodent liver cytochrome enzymes results in 7 

lower angiogenic activity than if incubated with human or rabbit enzymes (Marks et al 8 

2002). Clearance of the drug is also much faster in mice compared to humans, so 9 

teratogenic forms may not exist for as long (Lu et al., 2004; Vargesson, 2013). 10 

Differences in the length of gestation between rodents and humans could also be a 11 

factor in predisposition of sensitivity to thalidomide.  12 

Among the mammals, primates are considered the best model to study thalidomide 13 

embryopathy giving phenotypes that most similarly reflect those seen in humans 14 

(Ema et al., 2010; Vargesson, 2013; Vargesson, 2015). However primates present 15 

ethical and practical challenges including low offspring numbers, long gestation 16 

times and are costly to work with. Studies in non-human primates have shown 17 

characteristic limb reduction malformations, ranging from amelia to phocomelia, and 18 

defects in the tail and genitalia (Ema et al., 2010). Rabbit model studies identified a 19 

range of defects similar to those found in humans, including limb and internal organ 20 

defects (Fratta, 1965). Rabbits are therefore one of the most reliable models used to 21 

demonstrate the teratogenic effects of thalidomide. Regarding non-mammalian 22 

models, thalidomide is toxic to Xenopus and exposure causes teratogenic effects 23 

(Fort et al., 2000). Chicken and zebrafish embryos are excellent for studying 24 

thalidomide embryopathy since they develop rapidly and provide easy access to 25 

follow development (Stephens, 2009; Vargesson, 2009; Vargesson, 2013). Since 26 

these models are perfect for drug screening studies, the effect of thalidomide upon 27 

their development is well established making these animal models excellent for the 28 

study of thalidomide teratogenicity. In the chicken embryo, thalidomide causes limb 29 

and eye defects (Knobloch et al., 2007; Stephens, 2009; Therapontos et al., 2009; 30 

Ito et al., 2010; Mahony et al., 2013; Siamwala et al., 2012). In Zebrafish, embryonic 31 

fins and eyes are affected (Ito et al., 2010, Mahony et al., 2013; Yabu et al., 2005). In 32 

humans thalidomide affects the development of embryos in a time-sensitive manner. 33 
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This is also true for other animals, so embryos will be most sensitive to thalidomide 1 

during a particular window of development (Stephens, 2009; Therapontos et al., 2 

2009; Ito et al., 2010; Mahony et al., 2013). Thalidomide also exhibits intra-species 3 

specificity; of eight dizygotic twin pairs examined during the 1960s thalidomide 4 

disaster in Brazil, only four pairs were born with the same malformations (Schmidt 5 

and Salzano, 1980). Drug distribution, metabolism and the genetic background of 6 

each species, strain or individual must be taken in account.  7 

 8 

4.2 Morphological and Molecular Actions of Thalidomide Teratogenicity 9 

More than 30 theories attempting to explain the mechanisms of thalidomide 10 

teratogenesis have been postulated since the 1960s, though most cannot be backed 11 

up with in-vivo evidence (Vargesson, 2009; Vargesson, 2015). These theories 12 

include actions on DNA, bone cells, integrins and many others. Explanations need to 13 

address the range of defects seen in thalidomide embryopathy and how the time-14 

sensitive window of exposure affects all tissues. Three of the most widely accepted 15 

theories are (i) the antiangiogenic action of the drug; (ii) the drugs ability to induce 16 

reactive oxygen species (ROS) and cell death; (iii) thalidomide binding to Cereblon. 17 

4.2.1 Blood Vessels as Targets of Thalidomide 18 

Blood vessels supply oxygen and nutrients to growing tissues so are essential for 19 

embryonic development. It is established that loss or disruption of blood vessels 20 

during embryogenesis can lead to death or embryonic malformations (Vargesson, 21 

2003; Vargesson, 2013). It was postulated that limb defects might be caused by the 22 

antiangiogenic effect of thalidomide (D’Amato et al., 1994). Indeed damage to 23 

vessels can cause limb defects in chicken embryos (Vargesson and Laufer, 2001; 24 

Vargesson, 2003; Vargesson, 2009). Studies in chicken embryos have further 25 

demonstrated that thalidomide affects angiogenesis even before the expression of 26 

some signalling molecules essential for limb development, such as FGFs 27 

(Therapontos et al., 2009). 28 

Thalidomide can be broken down in to various by-products, and a large number of 29 

structural analogs of thalidomide can be synthesised. This is invaluable to help 30 

understand drug function and actions and also determine which characteristic of the 31 
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drug is the cause of teratogenesis. The production of CPS49, an antiangiogenic 1 

analog, has shed light on the method of teratogenesis. Blood vessels are destroyed 2 

within one hour of exposure to CPS49 in an E2.5 chicken embryo, with phocomelia 3 

presenting 7 days later (Therapontos et al., 2009; Vargesson, 2009). Cell death is 4 

observed after application of CPS49, as well as loss of Fgf8 and Sonic Hedgehog 5 

(Shh) expression, both key regulators of limb development and outgrowth. 6 

Thalidomide has also been shown to induce cell death and cause the loss of limb 7 

signalling events in chicken embryos (Knobloch et al., 2007). Studies indicate that 8 

CPS49 destroyed newly forming vessels without a smooth muscle coat. Smooth 9 

muscle protects vessels and prevents angiogenesis. In-vitro studies demonstrated 10 

that smooth muscle negative vessels undergoing angiogenesis were destroyed but 11 

mature, smooth muscle positive vessels were unharmed (Theraponotos et al., 2009). 12 

CPS49 also disrupts blood vessels in zebrafish embryos and both CPS49 and 13 

thalidomide inhibit the actin cytoskeleton of vascular cells in-vitro (Therapontos et al., 14 

2009; Tamilarasan et al., 2006; Lebrin et al., 2010).   15 

4.2.2 Reactive Oxygen Species (ROS) and Cell Death 16 

The production of ROS in embryos causes oxidative stress, cell death and is 17 

upregulated in presence of thalidomide (Vargesson, 2013; Vargesson, 2015). 18 

Oxidative stress is required for cell-death-dependent thalidomide embryopathy; 19 

therefore this model could explain damage to limbs and other tissue. If thalidomide 20 

increases production of ROS, this will lead to cell death in affected tissues, causing 21 

defects. The function of redox-sensitive NF-κB is also affected by oxidative stress. 22 

NF-κB is a transcription factor important for limb development, and thalidomide 23 

diminishes its ability to bind to DNA promoter targets. This alters expression of Fgf8, 24 

Fgf10 and Bone Morphogenetic Proteins (BMP) (Hansen and Harris, 2004), 25 

important genes in the process of limb development. Indeed, it has been shown that 26 

thalidomide exposure results in upregulation of Bmp-4, -5 and -7 expression in 27 

chicken embryos (Knobloch et al., 2007). However, just how thalidomide induces 28 

ROS and/or cell death in a time-sensitive and tissue specific manner is unclear, 29 

though it could be a secondary effect to the loss of blood vessels. Considering that 30 

oxidative stress is a physiological process and occurs during embryogenesis, how it 31 

causes tissue specific damage is unknown. It is understood that NF-κB can 32 

negatively regulate BMP signalling which could explain, in part, why limbs are 33 
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affected by thalidomide through oxidative stress. How the other tissues are affected 1 

and how the range of damage is caused remains unclear. 2 

4.2.3 Cereblon and E3 Ubiquitin-ligase Complex  3 

Thalidomide is proposed to initiate teratogenesis by binding Cereblon, preventing 4 

establishment of the E3 ubiquitination complex and consequently causing mis-5 

regulation of developmental signalling molecules (Ito et al., 2010; Ito et al., 2011; 6 

Stewart et al., 2014; Vargesson, 2015).  7 

In adult humans the Cereblon (CRBN) gene, conserved in species including plants 8 

and invertebrates (Higgins et al., 2004), is expressed in several tissues such as the 9 

testis, spleen, liver, pancreas, lung and skeletal muscle (Xin et al., 2008). Cereblon 10 

was identified as a primary binding target of thalidomide (Ito et al., 2010), supported 11 

by results showing mutations preventing the binding between Cereblon and 12 

thalidomide suppressed limb loss in chicken embryos (Ito et al., 2010). In addition, 13 

through inhibiting the translation of Cereblon mRNA, in zebrafish embryos, some 14 

phenotypes were found that appeared similar to those seen in thalidomide treated 15 

embryos, though not with the range or severity of damage seen in human 16 

thalidomide embryopathy (Ito et al., 2010). Furthermore, Cereblon loss-of-function 17 

mice appear normal and unharmed (Lee et al., 2013). Data suggests a participation 18 

of Cereblon in thalidomide embryopathy; however how thalidomide binding to 19 

Cereblon causes the damage, the range of damage and in a time sensitive manner 20 

is unclear, as is the precise role/function of Cereblon in normal embryonic 21 

development.  22 

Thalidomide binding to Cereblon has been shown to mediate thalidomide’s beneficial 23 

anti-inflammatory and anti-myeloma actions in adult and diseased tissues (Figure 2). 24 

The downstream targets of Cereblon-Thalidomide binding relating to teratogenesis, 25 

however, are not known. 26 

4.2.3 Tubulin 27 

Through the use of an antiangiogenic thalidomide analog, 5HPP-33, biochemical and 28 

computational assays have shown the affinity of 5HPP-33 to bind tubulin. In addition, 29 

5HPP-33 causes depolymerisation of microtubules and affects rebuilding of mitotic 30 

spindles, interfering with the alignment of chromosomes at metaphase (Rashid et al., 31 
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2015). Changes in actin and microtubule cytoskeleton cause actin stress fibre and 1 

microtubule depolymerisation, altering cell migration and proliferation. Thalidomide 2 

exposure to human umbilical vein endothelial cells (HUVECs) results in a disruption 3 

of actin cytoskeleton (Tamilarasan et al., 2006), and CPS49 affects migration and 4 

cytoskeletal organisation of endothelial cells (Therapontos et al., 2009). 5 

These studies provide evidence that tubulin may be a target of thalidomide 6 

preventing angiogenesis, leading to cell death of tissues causing thalidomide 7 

teratogenesis.  8 

 9 

4.2.4 Soluble Guanyl Cyclase and Nitric Oxide 10 

Thalidomide has also been shown to potentially interact with soluble guanylyl 11 

cyclase (sGC). sGC stimulation by NO leads to production of cyclic guanosine 12 

monophosphate (cGMP) which is involved in several cellular processes, including 13 

apoptosis, vasodilation and blood flow increase through the control of vascular 14 

smooth muscle (Majumder et al., 2009, Siamwala et al., 2012). Experiments in 15 

HUVEC cultures showed that thalidomide exposure reduced cGMP levels, causing 16 

failure of angiogenesis. This phenotype can be reversed by inducing an increase in 17 

sGMP levels (Majumder et al., 2009).   18 

Moreover, thalidomide has been shown to exert effects through alterations in NO-19 

mediated endothelial cell migration and apoptosis (Tamilarasan et al., 2006, 20 

Siamwala et al., 2012). Assays in chicken embryos show increasing NO may rescue 21 

thalidomide teratogenicity (Tamilarasan et al., 2006, Majumder et al., 2009, 22 

Siamwala et al., 2012). 23 

4.2.5 Genetic Studies 24 

Many other gene expression patterns have been shown to be altered following 25 

thalidomide exposure in chicken, zebrafish and non-human primate studies 26 

including, for example, Shh, Fgf8 and Integrins (Vargesson, 2009; Vargesson, 2015). 27 

How these fit into the molecular pathway/s altered by thalidomide is unclear. 28 

Furthermore, studies looking at differential gene expression after direct thalidomide 29 

exposure have been carried out using microarray techniques in monkey embryos 30 
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and in human and mouse embryonic stem cells.  Expression levels of around 2000 1 

genes were found to be altered following thalidomide exposure including those 2 

involved in cell differentiation, development, metabolism, cytoskeleton organization, 3 

limb and heart development and the immune response (Gao et al., 2014; Gao et al., 4 

2015; Ema et al., 2010, Meganathan et al., 2012). Some of these changes may be 5 

primary, secondary or even tertiary. Indeed, the precise molecular pathway/s 6 

influenced by thalidomide remain to be fully determined. The possibility that there 7 

may be more than one direct molecular target and pathway affected by thalidomide 8 

is plausible. 9 

A genomic study, carried out in human thalidomide affected patients, aimed to 10 

assess if a potential genetic susceptibility to thalidomide embryopathy exists by 11 

analysing the endothelial Nitric Oxide Synthase gene in thalidomide survivors and 12 

non-thalidomide affected individuals. It was observed that alleles relating to a 13 

reduced production of NO are found more frequently in thalidomide subjects. This 14 

not only reinforces the involvement of NO in thalidomide embryopathy but also the 15 

role for angiogenesis in thalidomide teratogenesis (Vianna et al., 2013). 16 

5 Conclusion 17 

 18 

Despite numerous studies and recent advances in our understanding, the 19 

mechanisms that result in thalidomide embryopathy are still not completely known. 20 

Actions upon blood vessels, induction of cell death and involvement of several gene 21 

targets including Cereblon and tubulin are all involved. Just how thalidomide 22 

exposure causes changes in molecular pathways and any interrelation among these 23 

pathways is unclear. Indeed multiple pathways may be affected to cause the 24 

different tissue specific damage. Currently blood vessels as a primary target tissue of 25 

thalidomide, which locally induces ROS and cell death in affected tissues, is a 26 

strongly favoured teratogenic mechanism of action of thalidomide (Vargesson, 2013; 27 

Vargesson, 2015; Figure 4).  28 

Thalidomide was used to treat a range of conditions, including morning sickness, 29 

which typically occurs between week 4 and week 12 (although timing and severity 30 

can vary between women). Between weeks 4 and 9 major events in embryology 31 
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occur along with major cell signalling events, massive cell migration and tissue 1 

morphogenetic events. As we have outlined, angiogenesis and vascularisation is an 2 

essential step in tissue formation, outgrowth and maintenance. Smooth muscle 3 

negative vessels undergo rapid angiogenic changes and migration. Disruption of 4 

vessels or loss of vessels in forming tissues could result in cell death and localised 5 

ROS activity tissue loss with interrupted signalling devastating rapidly growing 6 

tissues and causing malformations. For example, phocomelia in the limbs could 7 

occur as vessels are prevented from vascularising the limb, which then starts to 8 

undergo cell death, loss of gene expression or gene misexpression. As the activity of 9 

the drug wears off, the remaining cells can be vascularised and undergo proliferation 10 

and the developing limb gene signalling pathways recover but as too few cells 11 

remain, only distal structures develop (Therapontos et al., 2009; Vargesson, 2009; 12 

Vargesson, 2015).  Appearance of secondary cell types and their development into 13 

tissues, for example nerves, muscles and bones, will then be altered as the limb 14 

tissue is malformed or even missing (Vargesson, 2013; Vargesson, 2015). 15 

By around week 9 the major tissues are formed and vasculature is also maturing 16 

through recruitment of smooth muscle, with reduced angiogenesis. Exposure to 17 

thalidomide does not appear to result in outwardly visible malformations after this 18 

stage. However, the fact that thalidomide acts in an antiangiogenic manner both in 19 

the early embryo and the adult suggests late embryonic exposure could damage 20 

physiological function of the internal organs as they mature and enlarge, since tissue 21 

expansion requires angiogenesis. The framework of thalidomide embryopathy as 22 

described above (Figure 4; and in further detail in Vargesson, 2015) is a good 23 

explanation for thalidomide-induced damage to the tissues. It can explain the range 24 

of damage and time sensitive nature of the induced damage. Malformations occur 25 

dependent upon the maturity of blood vessels and whether they are undergoing 26 

angiogenesis, and the chance of defects presenting is reduced as tissues and 27 

vessels mature (Therapontos et al., 2009; Vargesson and Laufer, 2001; Vargesson, 28 

2013; Vargesson, 2015).  29 

Challenges do remain, and these include to understand which molecular pathway, or 30 

multiple pathways, are affected by thalidomide to cause teratogenesis. We know 31 

several molecular targets of thalidomide, Cereblon and tubulin, and know many other 32 

gene profiles can be changed following thalidomide exposure. However, just how 33 
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thalidomide binding to these targets results in embryopathy is unclear. 1 

Understanding the molecular pathways and elucidating any other candidate targets 2 

may shed light on novel roles for genes and help to understand how birth defects 3 

can be prevented. In addition, determining if a form or analog of thalidomide can be 4 

produced with the clinical benefits (for example, an analog that will still treat leprosy) 5 

but without the side effect of birth defects, is a significant and essential challenge 6 

especially given the new generation of thalidomide affected children in Brazil (Beedie 7 

et al., In Press; Vargesson, 2015). Structural variants of thalidomide, for example, 8 

Lenalidomide and Pomalidomide, function slightly differently and are used clinically 9 

to treat inflammatory diseases and cancer, though with some species-specific 10 

teratogenic side-effects (Vargesson, 2013; Vargesson, 2015). Can a form of the drug 11 

be made or found that retains clinical relevance but without the drugs side-effects? 12 

Great strides in our understanding of thalidomide-induced embryopathy have been 13 

made in the recent few years. Thalidomide’s use for treating inflammatory disorders 14 

in adult humans has increased interest in the drug and other uses for it. In addition, 15 

folllowing the birth of recent thalidomide survivors in Brazil interest in determining the 16 

teratogenic mechanisms of the drug has also increased. Hopefully it will only be a 17 

matter of time before all the mechanisms this drug uses are finally determined and a 18 

safe form can be developed. 19 

 20 
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Table 1: A list of common defects seen in TE, the specific defects seen in each organ, and an explanation 

of each. Also listed are the time points at which thalidomide is taken that can result in each defect. 

Region 

Affected 

Specific Defects Seen Additional Time Point of Exposure 

(Days) 

Limb Reduced hand/footplate Digit effects Thumb aplasia: 21-26 

Triphalangeal thumb: 31-36 

 Amelia Complete absence of limb Upper limb: 24-29 

Lower limb: 27-31 

 Phocomelia Limb long bones are 

shortened or absent 

Upper limb: 24-33 

Lower limb: 28-33 

Limb 

Girdles 

Sharpened shoulder Acromioclavicular joint is more 

prominent  

 

 Hip joint / Pubic  bone  Hypoplasia  Hip dislocation: 23-34 

Femoral hip hypoplasia: 28-33 

Hip dysplasia: 20-24 

  Complete absence  

Eye Cataracts  20-24 

 Microphthlamia Congenital small eye 24-30 

 Anophthalmos Absence of eyeball  

 Poor vision   

 Aberrant lacrimation  20-26 

 Colobomas Derformity of iris and retina 24-26 

 Abnormalities in eye 

movement 

  

Ear Anotia Complete absence of outer 

ear, results in deafness 

20-24 

Inner ear defects: 24-33  

 Microtia Part of the outer ear remains 24-33 

Internal 

organs  

Heart Ventricular and atrial septum 

defects 

22-31 

  Pulmonary stenosis  

  Patent ductus arteriosus  

 Lung Lung malformation 29-32 

 Kidney Horseshoe, hypoplastic, 

rotated and ecoptic 

malformations 

Ectopic kidney: 24-29 

 Intestines Duodenum  Duodenal atresia: 20-33 

Duodenal stenosis: 27-34 

  Anal atresia Anal atresia: 27-29 

Rectal stenosis: 35-36 

  Gall bladder atresia 28-29 

  Pyloric stenosis 26-33 

 Urinary tract Bladder atresia 28-29 

 Genitals  In males: absence of testes or 

testicular abnormalities. 

Hypospadias 

Testicular agenesis: 31-33 

  In females: malformations of 

uterus and reproductive tract 

35-39 and 49-50 

Nerves and 

CNS 

Facial palsies Ear defects are associated 

with cranial nerve palsies 

Facial palsy: 20-26 

Cranial palsy: 21-23 

Adapted from Kim et al. 2011; Newman, 1986; Smithells and Newman, 1992; Ruffing, 1977; Vargesson, 

2009; Vargesson, 2015. 
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Figure Legends 1 

 2 

Figure 1: Structures of thalidomide and its analogs Thalidomide enantiomers R 3 

(+) and S(-) can interchange at physiological pH (asterisk indicates chiral centre). 4 

Figure 2: Therapeutic mechanisms of thalidomide in adults. Illustrated are the 5 

pathways through which thalidomide is thought to act in the treatment of HHT and 6 

Multiple Myeloma. (Adapted from Stewart, 2014; Lebrin et al., 2010) 7 

Figure 3: Thalidomide time-sensitive window. Chart indicates the period (days 8 

and weeks post-fertilisation) in which the most common defects occur. See also 9 

Table 1. (Adapted from Vargesson, 2015; Miller et al., 2005). 10 

Figure 4: Thalidomide and embryonic teratogenesis. Thalidomide has been 11 

shown to induce loss of blood vessels, increased cell death and reactive oxygen 12 

species resulting in embryonic damage. Thalidomide may cause teratogenesis 13 

through interaction with targets such as Cereblon, tubulin and/or sGC, interrupting 14 

blood vessel development and resulting in localised reactive oxygen species and cell 15 

death induction. 16 

 17 

 18 

 19 

  20 
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