data reports

CrossMark

CRYSTALLOGRAPHIC COMMUNICATIONS

Crystal structure of 8-hydroxyquinolinium 2-carboxy-6-nitrobenzoate monohydrate

M. Divya Bharathi,^a G. Ahila,^a J. Mohana,^a G. Chakkaravarthi^{b*} and G. Anbalagan^{a*}

^aDepartment of Physics, Presidency College, Chennai 600 005, India, and ^bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India. *Correspondence e-mail: chakkaravarthi_2005@yahoo.com, anbu24663@yahoo.co.in

Received 17 March 2015; accepted 20 March 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title hydrated salt, $C_9H_8NO^+ \cdot C_8H_4NO_6^- \cdot H_2O$, the deprotonated carboxylate group is almost normal to its attached benzene ring [dihedral angle = 83.56 (8)°], whereas the protonated carboxylate group is close to parallel [dihedral angle = 24.56 (9)°]. In the crystal, the components are linked by N-H···O and O-H···O hydrogen bonds, generating [001] chains. The packing is consolidated by C-H···O and π - π [centroid-to-centroid distances = 3.6408 (9) and 3.6507 (9) Å] interactions, which result in a three-dimensional network.

Keywords: crystal structure; 8-hydroxyquinolinium; 2-carboxy-6-nitrobenzoate; hydrogen bonding; π - π interactions.

CCDC reference: 1055171

1. Related literature

For the biological activity of quinoline derivatives, see: Font *et al.* (1997); Sloboda *et al.* (1991). For similar structures, see: Castañeda *et al.* (2014); Kafka *et al.* (2012); Li & Chai (2007).

2. Experimental

OPEN a ACCESS

```
2.1. Crystal data
```

C₉H₈NO⁺·C₈H₄NO₆⁻·H₂O $M_r = 374.30$ Monoclinic, P_{2_1}/c a = 14.4283 (5) Å b = 13.8196 (5) Å c = 8.0483 (3) Å $\beta = 101.441$ (2)°

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.968, *T*_{max} = 0.977

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.176$ S = 1.027431 reflections 260 parameters 5 restraints $V = 1572.89 (10) \text{ Å}^3$ Z = 4Mo K\alpha radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 295 K $0.26 \times 0.22 \times 0.18 \text{ mm}$

58922 measured reflections 7431 independent reflections 4272 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O3^{i}$	0.89(1)	2.00(1)	2.8112 (16)	151 (2)
$O5-H5A\cdots O8^{ii}$	0.82(1)	1.78(1)	2.5928 (18)	171 (3)
O7−H7···O3 ⁱⁱⁱ	0.84(1)	1.82 (1)	2.6482 (15)	168 (2)
$O8-H8B\cdots O4$	0.83(1)	2.07 (1)	2.8683 (17)	163 (2)
O8−H8A···O4 ⁱⁱ	0.83(1)	2.01(1)	2.8288 (18)	170(2)
$C11 - H11 \cdots O1^{iv}$	0.93	2.42	3.295 (2)	156
$C12-H12\cdots O6^{i}$	0.93	2.48	3.343 (2)	155
$C16-H16\cdots O2^{v}$	0.93	2.52	3.413 (2)	160

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x, -y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}$, $z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1; (v) x, y, z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

Acknowledgements

The authors thank SAIF, IIT Madras for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7385).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Castañeda, R., Antal, S. A., Draguta, S., Timofeeva, T. V. & Khrustalev, V. N. (2014). Acta Cryst. E70, 0924–0925.

- Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Discov. 14, 259-272.
- Kafka, S., Pevec, A., Proisl, K., Kimmel, R. & Košmrlj, J. (2012). Acta Cryst. E68, o3199-o3200.
- Li, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o2857-o2859.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860.
 Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2015). E71, o261-o262 [doi:10.1107/S205698901500571X]

Crystal structure of 8-hydroxyquinolinium 2-carboxy-6-nitrobenzoate monohydrate

M. Divya Bharathi, G. Ahila, J. Mohana, G. Chakkaravarthi and G. Anbalagan

S1. Chemical context

The quinoline nucleus is found in many synthetic and natural products having a wide range of pharmacological activities such as anti-viral (Font *et al.*, 1997), and anti-inflammatory (Sloboda *et al.*, 1991) activities.

S2. Structural commentary

We herewith report the crystal structure of the title compound (I), (Fig.1). The asymmetric unit of the title compound consists of $C_9 H_8 N O^+$ cation, $C_8 H_4 N O_6^-$ anion and a water molecule. The geometric parameters of the title compound are comparable to the reported structures [Castañeda *et al.*, 2014; Kafka *et al.*, 2012; Li & Chai (2007)]. The benzene ring (C1–C6) of anion makes the dihedral angle of 58.18 (6)° with the quinolinium ring (C9–C12/N2/C13–C17) of cation.

S3. Supramolecular features

The molecular structure is stabilized by weak intramolecular N—H···O and O—H···O hydrogen bonds (Table 1). The crystal structure is formed by weak intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 & Fig. 2) by linking the adjacent anions and cations by bridging water molecules through O—H···O hydrogen bonds into infinite two-dimensional network along [1 0 0] plane. The crystal structure is further stabilized by weak C—H··· π (Table 1) and π – π [Cg1···Cg1ⁱ = 3.6507 (9); Cg2···Cg2ⁱⁱ = 3.6507 (9)Å; (i) -x,1-y,1-z; (ii) x,1/2-y,1/2+z; Cg1 and Cg2 are the centroids of the rings (C1—C6) and (N2/C12/C11/C10/C9/C13)] interactions.

S4. Synthesis and crystallization

The title compound was synthesized by taking at 1:1 ratio of 8-hydroxyquinoline and of 3-nitrophthalic acid was dissolved in a mixed solvent of methanol and water. The salt was formed while adding the base instanstaouly. The solution was stirred for about 2 h to get a homogenous solution. The solution was filtered off and kept aside for slow evaporation at room temperature which yields single crystals suitable for X-ray diffraction.

S5. Refinement

C-bound H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms for O atoms were located from Fourier map and refined with O—H = 0.82 (1)Å and Uiso(H) = 1.5Ueq(O). H atom for N atom was located from Fourier map and refined freely with N—H = 0.88 (1)Å.

The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.

Figure 2

The packing of (I), viewed down c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

8-Hydroxyquinolinium 2-carboxy-6-nitrobenzoate monohydrate

Crystal data

C₉H₈NO⁺·C₈H₄NO₆⁻·H₂O $M_r = 374.30$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.4283 (5) Å b = 13.8196 (5) Å c = 8.0483 (3) Å $\beta = 101.441$ (2)° V = 1572.89 (10) Å³ Z = 4 F(000) = 776 $D_x = 1.581 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9900 reflections $\theta = 2.8-33.4^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.26 \times 0.22 \times 0.18 \text{ mm}$ Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.968, T_{\max} = 0.977$	58922 measured reflections 7431 independent reflections 4272 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 36.1^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -23 \rightarrow 23$ $k = -19 \rightarrow 22$ $l = -13 \rightarrow 12$
Refinement $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=$	Consultant store site la setione differences Fourier
Least-squares matrix: full	man
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from
$wR(F^2) = 0.176$	neighbouring sites
<i>S</i> = 1.02	H atoms treated by a mixture of independent
7431 reflections	and constrained refinement
260 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0619P)^2 + 0.9848P]$
5 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -0.38 \text{ e A}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.17265 (9)	0.48978 (9)	0.55989 (18)	0.0237 (2)	
C2	0.13410 (10)	0.48988 (10)	0.70682 (19)	0.0262 (3)	
C3	0.06506 (11)	0.42272 (12)	0.7270 (2)	0.0331 (3)	
Н3	0.0403	0.4238	0.8252	0.040*	
C4	0.03290 (11)	0.35481 (12)	0.6037 (2)	0.0370 (4)	
H4	-0.0117	0.3091	0.6203	0.044*	
C5	0.06716 (11)	0.35508 (12)	0.4557 (2)	0.0339 (3)	
Н5	0.0449	0.3108	0.3702	0.041*	
C6	0.13531 (10)	0.42230 (10)	0.43632 (19)	0.0267 (3)	
C7	0.24827 (10)	0.56315 (10)	0.53939 (18)	0.0249 (3)	
C8	0.16432 (11)	0.56359 (11)	0.84160 (19)	0.0294 (3)	
C9	0.46422 (11)	0.34368 (10)	0.87844 (19)	0.0288 (3)	
C10	0.53122 (13)	0.40133 (12)	0.8201 (2)	0.0377 (4)	
H10	0.5225	0.4680	0.8125	0.045*	
C11	0.60883 (13)	0.36137 (14)	0.7744 (2)	0.0424 (4)	

H11	0.6521	0.4002	0.7341	0.051*
C12	0.62252 (11)	0.26245 (14)	0.7886 (2)	0.0390 (4)
H12	0.6752	0.2346	0.7575	0.047*
C13	0.48139 (9)	0.24333 (10)	0.89029 (18)	0.0247 (3)
C14	0.41699 (10)	0.18003 (10)	0.94525 (19)	0.0284 (3)
C15	0.33963 (11)	0.21885 (13)	0.9934 (2)	0.0364 (3)
H15	0.2978	0.1785	1.0346	0.044*
C16	0.32192 (13)	0.31850 (15)	0.9818 (2)	0.0432 (4)
H16	0.2680	0.3428	1.0140	0.052*
C17	0.38181 (13)	0.38061 (12)	0.9246 (2)	0.0390 (4)
H17	0.3685	0.4465	0.9160	0.047*
N1	0.16655 (10)	0.42040 (10)	0.27386 (18)	0.0337 (3)
N2	0.56126 (9)	0.20732 (9)	0.84612 (17)	0.0305 (3)
H2	0.5741 (15)	0.1450 (8)	0.866 (3)	0.047 (6)*
O1	0.22455 (12)	0.47889 (11)	0.24810 (18)	0.0545 (4)
O2	0.13344 (13)	0.35960 (13)	0.1701 (2)	0.0684 (5)
O3	0.33312 (7)	0.53639 (8)	0.57868 (15)	0.0318 (2)
O4	0.22067 (8)	0.64521 (8)	0.49029 (15)	0.0326 (2)
O5	0.09894 (10)	0.57856 (11)	0.93152 (18)	0.0465 (3)
H5A	0.1152 (18)	0.6216 (15)	1.002 (3)	0.070*
O6	0.23875 (9)	0.60562 (10)	0.86357 (17)	0.0435 (3)
O7	0.43930 (9)	0.08565 (8)	0.94455 (17)	0.0378 (3)
H7	0.3990 (13)	0.0519 (15)	0.981 (3)	0.057*
O8	0.13275 (9)	0.78915 (10)	0.66412 (16)	0.0392 (3)
H8A	0.1644 (15)	0.8061 (18)	0.7569 (18)	0.059*
H8B	0.1616 (16)	0.7423 (13)	0.635 (3)	0.059*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0214 (5)	0.0215 (5)	0.0289 (6)	0.0023 (4)	0.0070 (5)	0.0021 (5)
C2	0.0244 (6)	0.0266 (6)	0.0286 (7)	0.0001 (5)	0.0074 (5)	0.0023 (5)
C3	0.0308 (7)	0.0365 (8)	0.0344 (8)	-0.0042 (6)	0.0123 (6)	0.0047 (6)
C4	0.0300 (7)	0.0364 (8)	0.0457 (9)	-0.0096 (6)	0.0101 (7)	0.0028 (7)
C5	0.0298 (7)	0.0321 (7)	0.0395 (8)	-0.0067 (6)	0.0064 (6)	-0.0041 (6)
C6	0.0244 (6)	0.0262 (6)	0.0304 (7)	0.0012 (5)	0.0076 (5)	-0.0007(5)
C7	0.0269 (6)	0.0238 (6)	0.0262 (6)	-0.0013 (5)	0.0109 (5)	-0.0016 (5)
C8	0.0323 (7)	0.0301 (7)	0.0269 (7)	0.0003 (5)	0.0084 (5)	0.0024 (5)
C9	0.0337 (7)	0.0212 (6)	0.0294 (7)	0.0003 (5)	0.0014 (5)	0.0015 (5)
C10	0.0465 (9)	0.0239 (7)	0.0395 (8)	-0.0065 (6)	0.0006 (7)	0.0066 (6)
C11	0.0365 (8)	0.0441 (9)	0.0449 (10)	-0.0124 (7)	0.0041 (7)	0.0152 (8)
C12	0.0267 (7)	0.0467 (9)	0.0441 (9)	-0.0008 (6)	0.0088 (6)	0.0120 (7)
C13	0.0249 (6)	0.0221 (6)	0.0264 (6)	-0.0004 (4)	0.0034 (5)	0.0023 (5)
C14	0.0289 (7)	0.0256 (6)	0.0303 (7)	-0.0042 (5)	0.0052 (5)	0.0017 (5)
C15	0.0316 (7)	0.0420 (9)	0.0371 (8)	-0.0043 (6)	0.0103 (6)	0.0004 (7)
C16	0.0377 (8)	0.0510 (10)	0.0427 (9)	0.0119 (7)	0.0126 (7)	-0.0041 (8)
C17	0.0446 (9)	0.0305 (7)	0.0415 (9)	0.0111 (7)	0.0072 (7)	-0.0023 (7)
N1	0.0339 (7)	0.0353 (7)	0.0334 (7)	-0.0031 (5)	0.0103 (5)	-0.0067 (5)

supporting information

N2	0.0281 (6)	0.0267 (6)	0.0368 (7)	0.0031 (4)	0.0069 (5)	0.0071 (5)	
01	0.0734 (10)	0.0545 (8)	0.0431 (7)	-0.0271 (7)	0.0301 (7)	-0.0107 (6)	
O2	0.0782 (11)	0.0794 (12)	0.0555 (9)	-0.0402 (9)	0.0328 (8)	-0.0384 (8)	
O3	0.0249 (5)	0.0287 (5)	0.0439 (6)	0.0004 (4)	0.0122 (4)	-0.0032 (4)	
O4	0.0375 (6)	0.0241 (5)	0.0365 (6)	0.0007 (4)	0.0084 (5)	0.0031 (4)	
O5	0.0434 (7)	0.0575 (8)	0.0442 (7)	-0.0089 (6)	0.0222 (6)	-0.0169 (6)	
O6	0.0428 (7)	0.0496 (7)	0.0410 (7)	-0.0147 (6)	0.0153 (5)	-0.0122 (6)	
O7	0.0393 (6)	0.0232 (5)	0.0537 (7)	-0.0050 (4)	0.0161 (5)	0.0044 (5)	
08	0.0429 (7)	0.0397 (7)	0.0361 (6)	0.0043 (5)	0.0104 (5)	0.0014 (5)	

Geometric parameters (Å, °)

C1—C6	1.392 (2)	C11—C12	1.383 (3)
C1—C2	1.4030 (19)	C11—H11	0.9300
C1—C7	1.5222 (18)	C12—N2	1.318 (2)
С2—С3	1.394 (2)	C12—H12	0.9300
С2—С8	1.489 (2)	C13—N2	1.3655 (18)
C3—C4	1.378 (2)	C13—C14	1.4097 (19)
С3—Н3	0.9300	C14—O7	1.3437 (18)
C4—C5	1.377 (2)	C14—C15	1.362 (2)
C4—H4	0.9300	C15—C16	1.400 (3)
С5—С6	1.384 (2)	C15—H15	0.9300
С5—Н5	0.9300	C16—C17	1.362 (3)
C6—N1	1.4654 (19)	C16—H16	0.9300
С7—О4	1.2404 (17)	C17—H17	0.9300
С7—ОЗ	1.2577 (17)	N1—O1	1.2106 (18)
C8—O6	1.2028 (19)	N1—O2	1.2137 (19)
C8—O5	1.3142 (19)	N2—H2	0.889 (9)
C9—C10	1.403 (2)	O5—H5A	0.823 (10)
C9—C13	1.4085 (19)	O7—H7	0.841 (9)
C9—C17	1.410 (2)	O8—H8A	0.828 (10)
C10-C11	1.363 (3)	O8—H8B	0.829 (10)
C10—H10	0.9300		
C6—C1—C2	116.16 (12)	C10-C11-C12	119.32 (15)
C6—C1—C7	123.58 (12)	C10-C11-H11	120.3
C2—C1—C7	120.21 (12)	C12—C11—H11	120.3
C3—C2—C1	120.61 (14)	N2—C12—C11	120.37 (16)
C3—C2—C8	118.90 (13)	N2—C12—H12	119.8
C1—C2—C8	120.46 (12)	C11—C12—H12	119.8
C4—C3—C2	121.06 (14)	N2—C13—C9	119.16 (13)
С4—С3—Н3	119.5	N2-C13-C14	119.89 (13)
С2—С3—Н3	119.5	C9—C13—C14	120.94 (13)
C5—C4—C3	119.59 (14)	O7—C14—C15	126.44 (14)
C5—C4—H4	120.2	O7—C14—C13	115.32 (13)
C3—C4—H4	120.2	C15—C14—C13	118.23 (14)
C4—C5—C6	118.98 (15)	C14—C15—C16	121.17 (15)
C4—C5—H5	120.5	C14—C15—H15	119.4

С6—С5—Н5	120.5	C16—C15—H15	119.4
C5—C6—C1	123.52 (14)	C17—C16—C15	121.51 (16)
C5—C6—N1	116.10 (13)	C17—C16—H16	119.2
C1—C6—N1	120.38 (12)	C15—C16—H16	119.2
O4—C7—O3	125.72 (13)	C16—C17—C9	119.08 (15)
O4—C7—C1	116.86 (12)	C16—C17—H17	120.5
O3—C7—C1	117.37 (12)	С9—С17—Н17	120.5
O6—C8—O5	124.10 (15)	01—N1—O2	122.38 (15)
O6—C8—C2	124.14 (14)	O1—N1—C6	119.10 (13)
O5—C8—C2	111.75 (13)	O2—N1—C6	118.52 (14)
C10—C9—C13	117.26 (14)	C12—N2—C13	122.68 (14)
C10—C9—C17	123.74 (14)	C12—N2—H2	119.6 (14)
C13—C9—C17	119.00 (14)	C13—N2—H2	117.5 (14)
C11—C10—C9	121.17 (15)	C8—O5—H5A	110.8 (19)
C11—C10—H10	119.4	С14—О7—Н7	110.7 (17)
С9—С10—Н10	119.4	H8A—O8—H8B	105 (2)
C6-C1-C2-C3	2.4 (2)	C9-C10-C11-C12	-1.1 (3)
C7—C1—C2—C3	-179.76 (13)	C10-C11-C12-N2	-0.1 (3)
C6-C1-C2-C8	-175.78 (13)	C10—C9—C13—N2	0.3 (2)
C7—C1—C2—C8	2.0 (2)	C17—C9—C13—N2	-179.84 (14)
C1—C2—C3—C4	0.0 (2)	C10-C9-C13-C14	-179.04 (14)
C8—C2—C3—C4	178.20 (15)	C17—C9—C13—C14	0.8 (2)
C2—C3—C4—C5	-2.1 (3)	N2-C13-C14-O7	-2.0 (2)
C3—C4—C5—C6	1.7 (3)	C9—C13—C14—O7	177.38 (14)
C4—C5—C6—C1	0.8 (2)	N2-C13-C14-C15	177.96 (14)
C4—C5—C6—N1	-178.24 (15)	C9—C13—C14—C15	-2.7 (2)
C2-C1-C6-C5	-2.9 (2)	O7—C14—C15—C16	-177.32 (17)
C7—C1—C6—C5	179.40 (14)	C13—C14—C15—C16	2.8 (2)
C2-C1-C6-N1	176.16 (13)	C14—C15—C16—C17	-1.0 (3)
C7—C1—C6—N1	-1.6 (2)	C15—C16—C17—C9	-1.0 (3)
C6-C1-C7-O4	96.24 (16)	C10-C9-C17-C16	-179.12 (17)
C2-C1-C7-O4	-81.38 (17)	C13—C9—C17—C16	1.0 (2)
C6—C1—C7—O3	-85.96 (18)	C5-C6-N1-O1	178.42 (16)
C2—C1—C7—O3	96.42 (16)	C1-C6-N1-O1	-0.7 (2)
C3—C2—C8—O6	157.79 (16)	C5-C6-N1-O2	-2.0 (2)
C1—C2—C8—O6	-24.0 (2)	C1—C6—N1—O2	178.93 (17)
C3—C2—C8—O5	-23.5 (2)	C11—C12—N2—C13	1.5 (3)
C1—C2—C8—O5	154.77 (14)	C9—C13—N2—C12	-1.6 (2)
C13—C9—C10—C11	1.0 (2)	C14—C13—N2—C12	177.75 (15)
C17—C9—C10—C11	-178.83 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N2—H2···O3 ⁱ	0.89(1)	2.00(1)	2.8112 (16)	151 (2)
O5—H5 <i>A</i> ···O8 ⁱⁱ	0.82(1)	1.78 (1)	2.5928 (18)	171 (3)
O7—H7···O3 ⁱⁱⁱ	0.84 (1)	1.82 (1)	2.6482 (15)	168 (2)

supporting information

O8—H8 <i>B</i> ···O4	0.83 (1)	2.07 (1)	2.8683 (17)	163 (2)
O8—H8A····O4 ⁱⁱ	0.83 (1)	2.01 (1)	2.8288 (18)	170 (2)
C11—H11···O1 ^{iv}	0.93	2.42	3.295 (2)	156
C12—H12…O6 ⁱ	0.93	2.48	3.343 (2)	155
C16—H16····O2 ^v	0.93	2.52	3.413 (2)	160

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) *x*, -*y*+3/2, *z*+1/2; (iii) *x*, -*y*+1/2, *z*+1/2; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*, *y*, *z*+1.