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Abstract
Xenografts -as simplified animal models of cancer- differ substantially in vasculature and

stromal architecture when compared to clinical tumours. This makes mathematical model-

based predictions of clinical outcome challenging. Our objective is to further understand dif-

ferences in tumour progression and physiology between animal models and the clinic.

To achieve that, we propose a mathematical model based upon tumour pathophysiology,

where oxygen -as a surrogate for endocrine delivery- is our main focus. The Oxygen-Driven

Model (ODM), using oxygen diffusion equations, describes tumour growth, hypoxia and

necrosis. The ODM describes two key physiological parameters. Apparent oxygen uptake

rate (k0
R) represents the amount of oxygen cells seem to need to proliferate. The more oxy-

gen they appear to need, the more the oxygen transport. k0
R gathers variability from the vas-

culature, stroma and tumour morphology. Proliferating rate (kp) deals with cell line specific

factors to promote growth. The KH,KN describe the switch of hypoxia and necrosis. Retro-

spectively, using archived data, we looked at longitudinal tumour volume datasets for 38

xenografted cell lines and 5 patient-derived xenograft-like models.

Exploration of the parameter space allows us to distinguish 2 groups of parameters.

Group 1 of cell lines shows a spread in values of k0
R and lower kp, indicating that tumours

are poorly perfused and slow growing.Group 2 share the value of the oxygen uptake rate

(k0
R) and vary greatly in kp, which we interpret as having similar oxygen transport, but more

tumour intrinsic variability in growth.

However, the ODM has some limitations when tested in explant-like animal models,

whose complex tumour-stromal morphology may not be captured in the current version of

the model. Incorporation of stroma in the ODM will help explain these discrepancies. We

have provided an example. The ODM is a very simple -and versatile- model suitable for the

design of preclinical experiments, which can be modified and enhanced whilst maintaining

confidence in its predictions.
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Author Summary

Tumour-bearing animal models of cancer are needed to discover new drugs to treat can-
cer. We aim in this article to capture—through mathematics- some underlying phenom-
ena of tumour growth in animals. We propose a set of equations that, despite being very
simple, describe tumour growth, hypoxia and necrosis. Cells under low oxygen levels
change into a stress state called “hypoxia”, which will ultimately lead to tissue death, also
known as “necrosis” and “apoptosis”. Hypoxic cells undergo a variety of changes which
impact tumour growth, development, metastasis and -most importantly- response to ther-
apy. Hence, oxygen distribution is important. We simulate oxygen profiles to locate hyp-
oxic and necrotic tumour regions. Finally, this mathematical model allows us to compare
and classify animal models from a grounded and physiological perspective, rather than a
more convenient and empirical one. This will help us understand how well (or poorly) ani-
mal tumours mimic tumours in patients. The simplicity of our mathematical model allows
us to obtain more information out of the same animal sets without any further experi-
ments, hopefully saving time, money and animal usage.

Introduction
Mathematical modelling of biological systems is a powerful tool to contrast hypotheses, thus
enhancing our ways to interpret the often very complex data generated in drug discovery. In
cancer, mathematical modelling has been widely applied to describe both clinical and in vivo
preclinical tumours [1–3], however translation of animal data into the clinic remains still as a
challenging task [4].

Mechanistic mathematical models of cancer endeavour to understand biological phenom-
ena beyond its mere description. These models are based upon the gathering of cross-disciplin-
ary knowledge of the biological system in question. For example, to understand vessel
perfusion, you may need histological data, blood flow data and even evidence of the tumour
mechanics, plus a collection of assumptions [5,6]. Some of these models also include simple
drug effects [7] and more complex transient-stage drug models [8]. Also, some recent in silico
models have been applied to clinical data [9], though being often insufficiently translatable
across preclinical and clinical settings. Agent-based in silicomodels of tumour growth and pro-
liferation of vessels and lymph are useful to identify vessel architectures and their mechanisms
of progression [10,11], but, hitherto their validation using experiments are difficult.

The tumour microenvironment differs substantially between animal models and the clinic.
This has been shown to be a key factor for the lack of success in clinical outcome prediction
[12]. More specifically tumour-stroma interaction is said to be the main cause for tumour pro-
gression and metastasis [12]. Further, some in silicomodelling techniques, based on agent-based
and game theory between stromal-tumour cell populations have recently been discussed and
contrasted in vitro [13], although again with no insight towards animal-clinical translation.

Tumour pathophysiology
We hypothesise connecting tumour-stromal morphology to growth is an important step to
enable a description of the differences in preclinical and clinical tumours. In this first step, we
consider an avascular tumour analogous to a tumour nest surrounded by stroma, which is a
common morphology found in xenografted tumours. We hypothesise, that stromal and
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vascular phenotypes and morphologies influence delivery of nutrient and oxygen, and thereby
tumour growth [14–15].

Many novel therapeutic approaches endeavour to tackle cancer by systemic exposure to
agents (~chemotherapy). These approaches include encapsulation of small molecules (nano-
medicine), biologics, personalised therapy, immune therapy, antiangiogenics and many more.
Clinical outcome predicted from some of these therapeutic approaches tested in animals is
especially poor, mostly due to the poor understanding of differences in tumour pathophysiol-
ogy; e.g. antiangiogenic and nanomedicines [16–18]. Today only a handful of these drugs are
in the clinic [18], despite the very promising results observed in animals.

The tumour growth Oxygen-Driven Model (ODM)
Oxygen is an important molecule, whose uptake, utilisation, diffusion and metabolism in cells
have been thoroughly studied from a biological point of view [19–22]. A number of researchers
have simulated oxygen profiles along with other key aspects of tumour progression, like micro-
environment and biomechanics [23], also in a multiscalar manner [11]. Some of these mathe-
matical models have been validated in vivo [24]. However, this validation is demanding and
the results are unsuitable to be applied extensively in a drug discovery setting.

We aim for an in silico tumour growth model which describes aspects of the tumour patho-
physiology, with an emphasis on oxygen delivery as a surrogate for other molecules coming
from the vasculature. The mathematical model should contain information on hypoxic and
necrotic regions. Nonetheless, the key aspect is the comparability across animal models and to
the clinic. Its simplicity allows a concise estimation of the parameters with small data sets and
will be the first step to a deeper understanding of how stroma, vasculature and tumour interact
in preclinical biological models.

ODM development
The starting point of this in silicomodel stems from previous radial models [25], combined
with observations and models made on the relationship between oxygen and proliferation rates
[23,26,27]. In vitro doubling times are substantially shorter than in vivo [28] and clinical [29]
doubling times, which can be attributed to restricted delivery of nutrient and oxygen in vivo.
We also believe mathematical models do not fully exploit the potential of the data, by being
overly complex and having unidentifiable parameters [27]. In this sense, we developed an in sil-
icomodel evolving from large models of hypoxia, using geometric features of tumours and sim-
ple physical equations. More information on the development of the ODM and some further
investigations are explained in detail in the S1 Text.

Results

The ODM’s Mathematical Formulation

Table 1. Variable and parameter glossary.

Symbol Name Units Description

Vi Tumour volume cm3 Tumour volume of each tumour layer

VH
i Hypoxic volume cm3 Volume of tumour layer being hypoxic

VN
i Necrotic volume cm3 Volume of tumour layer being necrotic

VT Tumour volume cm3 Total tumour volume (VT = ΣiVi)

VTo Initial tumour volume cm3 Total tumour volume at experiment start

(Continued)
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In silicomodel assumptions
We considered some common assumptions as a starting point, based on the literature:

• Tumour shape: spherical. In order to simplify the spatial discretisation the tumour is taken as
one dimensional, where r, the radius is the only spatial variable [7,25].

• O2 transport occurs by molecular random walk monotony, i.e. diffusionally. There is no con-
vection (flow is nearly stationary Re< 1) or active transport (no intermembrane active oxy-
gen transporters). Hereby Fick’s law of molecular transport is applicable [30].

• Time scale: O2 diffusion (~1min-1) occurs on a faster timescale than cell division (~1day-1),
where oxygen has reached steady state between each cell division.[31].

• Homogeneous tissue: constant diffusion (Fick’s diffusion constant remains 1.9x10-6cm2/s, as
for (H+) [32], see also epithelial transmissibility of Oxygen 5.3x10-11(cm2.mlO2)/(s ml
mmHg) [33] and 3x10-10(cm2 mlO2)/(s ml mmHg)[34]). This assumption has been imple-
mented in many mathematical models including [35].

• Extracelullar matrix (ECM) is the paracellular connective tissue assumed to have oxygen par-
tial pressure of breast cancerous epithelial tissue, i.e. 60mmHg [36]. This parameter is a mere
orientation which implies a large variability between subjects and tissue origin, varying from
30 to 104 mmHg for functional epithelium [37].

• Blood flow accessibility occurs from the whole surrounding matrix of the tumour, from the
subcutaneous side of a xenograft and from the underlying hypervascularised adipose tissue.

• Proliferation correlates with oxygen levels, given that the efficiency of aerobic energy produc-
tion is 36 to 2 compared to the anaerobic glycolysis, even though there is a large upregulated
transport of glucose towards cytosol [38].

Table 1. (Continued)

Symbol Name Units Description

rT Proportional to Tumour
radius

cm rT ¼ VT
1=3

i Layer # -

n # of Layers -

PO2 ;i
Oxygen Pressure mmHg Oxygen levels in each layer

PO2

max Blood Oxygen Levels mmHg Maximum blood oxygen levels at tumour periphery

t Time day Time elapsed after beginning of experiment

kp Proliferation rate (day
mmHg)-1

Rate at which cells divide. Cell-type dependent

kR
0 Apparent oxygen

uptake rate
cm-1

Apparent oxygen needed for cells to divide: kR
0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

kR=D
p � 3=4pð Þ1=3; because this expression always

appears as a product with rT, we include the 3=4pð Þ1=3 to reduce computational burden and the
presentation of the equations

kR Oxygen uptake rate day/cm3 Oxygen needed for cells to divide

D Diffusion coefficient cm2/day Ease of oxygen to diffuse

KH Hypoxia constant mmHg Sharpness of hypoxic switch

KN Necrosis constant mmHg Sharpness of necrotic switch

doi:10.1371/journal.pcbi.1004550.t001

Oxygen-Driven Tumour Growth Model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004550 October 30, 2015 4 / 20



Mathematical formulation
As highlighted above, the ODM aims to describe the growth of xenografted tumours based
upon their pathophysiology. The structure of the model will be described in depth hereafter,
for which a graphical display is presented (see Fig 1A). Likewise, a sketch of the different steps
of the iterative process is shown in Fig 1B. The S1 Text gives a historical perspective of the
model and its evolution from previous models.

The ODM is composed of one non-linear differential equation (replicated in n number of
concentric shells) –to describe tumour growth- and 2 algebraic equations –to describe the par-
titions of hypoxia and necrosis. The main assumption of the ODM is that oxygen drives
growth in a proportional manner (see Eq (11)). Unlike for somatic tissue, tumours also create
their own growth factors and cytokines locally [39]. However, tumour progression is associated
with aerobic glycolysis [39,40], where blood is the only route of acquisition of oxygen. For that
reason, the ODM is oxygen-centric.

The main equation relies on the physics of oxygen diffusion in porous media, for which first
Fick’s and mass conservation laws were applied. Considering steady state, first order oxygen
uptake by cells, spherical geometry and diffusivity independent of the position, these equations
summarise in

d2PO2

dr2
¼ kR

D
PO2; ð1Þ

where kR is the oxygen uptake rate, D diffusion coefficient, Po2 oxygen tension and r radius. Let

us consider boundary conditions dPO2
dr

jr¼0 ¼ 0 and PO2jr¼rT
¼ PO2

maxðrTo; rTÞ, where PO2max is

the oxygen tension at peripheral tissues. Here, oxygen at the tumour boundary depends on ini-

tial tumour radius rTo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Voðt ¼ 0Þ3

q
and tumour radius at time t, rT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ViðtÞ3

q
; t > 0.

Now, we solve by the substitution of variables method, where z ¼ dPO2
dr

is an auxiliary variable,

Fig 1. The ODM. (A) ODM sketch. (B) ODM iteration block diagram. In each iteration, we calculate radius, oxygen profile and update the volume. Hypoxia
and necrosis are then calculated heuristically as proportions of the total volume.

doi:10.1371/journal.pcbi.1004550.g001
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thus Eq (1) results in two first order ODEs,

dPO2

dr
¼ z; ð2Þ

dz
dr

¼ kR
D
PO2: ð3Þ

Integrating this with the set boundary conditions we obtain,

PO2
¼ C � e�

ffiffiffiffiffiffiffi
kR=D

p
�rð1þ e2

ffiffiffiffiffiffiffi
kR=D

p
�rÞ; ð4Þ

C ¼ PO2
maxðrTo; rTÞ

e�
ffiffiffiffiffiffiffi
kR=D

p
�rT ð1þ e2

ffiffiffiffiffiffiffi
kR=D

p
�rT Þ

: ð5Þ

If we now define the apparent oxygen uptake rate as, kR
0 ¼ ffiffiffiffiffiffiffiffiffiffi

kR=D
p

and remembering the
expression for the hyperbolic cosine, cosh(x) = (ex+e−x)/2, we can simplify it into

PO2
¼ PO2

maxðrTo; rTÞ �
coshðkR 0 � rÞ
coshðkR 0 � rTÞ

: ð6Þ

The tumour is considered to have a spherical shape, and we discretise space by dividing the
tumour into n spherical shells, labelled by the index i (see Fig 2). The dynamics at each shell
are described by its separate set of equations, hence the Eqs (11–14) are labelled by the shell
index i. Nevertheless, this spatial discretisation is far from trivial. In this case, we chose our spa-
tial discretisation to minimise the error between the spatial distribution of oxygen and assum-
ing constant concentration in each shell. For that reason, we discretised at exponentially
-rather than linearly- distributed radii as Fig 2 suggests.

Hereby, the drop of oxygen is constant for the whole tumour at any given time. We achieve
that by dividing the total drop of oxygen at a given time (DPO2;Total ¼ PO2jrT � PO2jr¼0) by the

Fig 2. Spatial discretisation. (A) comparison between linear (top) and exponential spatial discretisation (bottom). (B) example of spatial discretisation of 1–5
shells with constant oxygen drop.

doi:10.1371/journal.pcbi.1004550.g002
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number of shells (n),

DPO2;i ¼
DPO2;Total

n
; t; 8i: ð7Þ

Now, solving for Eqs (7) and (6) we obtain the following expression for the oxygen drop

DPO2;i ¼
PO2

maxðrTo; rTÞ
n

1� 1

coshðkR 0 � rTÞ
� �

: ð8Þ

Since the oxygen relationship is now linear with i, the oxygen at each consecutive shell can
be defined from inside-to-outside or outside-to-inside. We arbitrarily chose to add up shells
from the innermost shell, resulting in

PO2;i ¼ PO2ðr ¼ 0Þ þ i � DPO2;i

¼ PO2
maxðrTo; rTÞ �

1

coshðkR 0 � rTÞ
þ i
n

1� 1

coshðkR 0 � rTÞ
� �� �

: ð9Þ

Now, the concentration of the oxygen at the tumour boundary was considered to reduce
with the exposed surface area of the spherical tumour,

PO2
maxðrTo; rTÞ ¼ PO2

max � VTo=VT

� �2=3

; ð10Þ

with VTo ¼
P

Viðt ¼ 0Þ, VT ¼ P
ViðtÞ and oxygen at tumour periphery Po2

max. Eqs (9) and
(10) give the final equation for oxygen diffusion (Eq (12)).

Hypoxia and necrosis arise as a direct consequence of insufficient oxygen distribution [41].
We consequently describe them as “smooth switches” [42], described by saturable (sigmoid,
or “S” shaped) functions (similar to Michaelis-Menten equations, Eqs (13) and (14)). This
means that at a particular oxygen concentration, cells will become stressed (hypoxia), which
at a further stage will become necrotic. This is not set as a threshold (step (Heaviside) func-
tion) but as a smooth probabilistic process, so that at any point in the tumour there is a non-
zero probability to find any type of cell: normoxic, hypoxic or necrotic. For more information
on the derivation of the equations please see S1 Text. Also, a Matlab code script can be found
in S2 Text.

Summary of main equations
The main ODM equations derived from Eqs (1–10) are summarised below,

dVi

dt
¼ kp � PO2 ;i

� Vi; ð11Þ

PO2;i ¼
PO2

max

n � coshðkR0 � rTÞ
VTo=VT

� �2=3

ðn� iþ i � coshðkR 0 � rTÞÞ; ð12Þ

VH
i ¼ PO2 ;i

KH þ PO2 ;i

� Vi; ð13Þ

VN
i ¼ PO2 ;i

KN þ PO2 ;i

� Vi: ð14Þ

Oxygen-Driven Tumour Growth Model
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These equations are sufficient to describe the ODM, which is represented graphically in Fig
1A. The volume of each tumour shells (Vi) is calculated via Eq (11), which is the equation gov-
erning tumour growth, while Eq (12) is used to calculate the oxygen profile across the tumour
shells. The volume of the total tumour is the arithmetic sum of the shells, (VT = SiVi). Last, Eqs
(13) and (14) are twin expressions to calculate volumes of hypoxic and necrotic regions respec-
tively. A quick reference guide to the mathematical notation can be found in Table 1.

Tumour division is controlled by kp and the oxygen levels, which are calculated in the radial
direction for each time step. As a consequence, regions of low oxygen are hypoxic; regions of
no oxygen are necrotic.

The ODM fits growth curves, hypoxia and necrosis data identifiably
To validate the ODM, we used data published by Benjamin Ribba et al. [5] (see Fig 3A). In this
manuscript Ribba and colleagues developed an Odinary Differential Equation (ODE) logistic
model addressing necrosis, hypoxia, vessels and proliferating fractions. For the validation, they
utilised a single study of 15 athymic mice implanted subcutaneously with HT29 cells (Fig 3A).
Tumours were frequently measured and two to three mice were euthanized weekly for immu-
nohistochemical (IHC) analysis (necrosis and hypoxia) [5].

Our model prediction results are similar to those obtained by Ribba et al. The parameter val-
ues denoted reasonable standard errors (see Table 2). We assessed the identifiability through
the collinearity index (g ¼ 1

sLast
) and condition number (k ¼ s1

sLast
), where σlast,σ1 are the largest

and smallest values of the diagonal of the factorised normalised sensitivity matrix (see S1 Text

and [43]). Briefly, the sensitivity matrix (S) will be normalised (~S ¼ S � ~y�~Y
) and then factorised

(~S ¼ U � S � VT), which diagonal of the factorised matrix (diag(S)) contains the elements σLast,
σ1. The values of collinearity index and condition number show that the system is locally iden-
tifiable (see S1 Text), are below the set thresholds (see Table 2). The rank of the Fisher Informa-
tion Matrix (FIM) is 4, which means that all 4 parameters are practically identifiable (Table 2).
Finally, the cost function or objective function (OF) was defined as a least-squares weighed

Fig 3. Complete model fit ODM. (A) Results of the fit with data (extracted from paper by Ribba’s group [5]). The plot contains information for tumour volume,
hypoxia and necrosis for colon carcinoma cell line HT29. (B) Model fit for a data set containing IHC information on HIF1α for hypoxia at end of study point for
MCF7 tumours.

doi:10.1371/journal.pcbi.1004550.g003
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sum between necrotic, hypoxic and proliferating regions,

minVOF ¼
P

t

X
r
ð ~V t;r � Vt;rÞ

�
Nr

ð15Þ

Where ~V t;r and Vt,r represent the estimated and measured volumes at each time point t and at

each tumour region r = {T,H,N}. Nr is the number of data points available for each region. In
the tables the residual is expressed as the solution of Eq (15).

This data fit demonstrated that the ODM describes, with sufficient accuracy, the hypoxic
and necrotic regions. However, in practice these data sets are difficult to obtain, because it
requires the sacrifice of animals at each time point in order to harvest the tumour for histologi-
cal analysis.

Online imaging studies of hypoxia using PET tracers can efficiently record multiple time
points [44] of hypoxia, however, they depend upon immobilisation of the animal and are
expensive. To meet economic requisites, some studies are designed to obtain one single hyp-
oxia measurement per tumour at the end of study. One time point is not sufficient to fit a
model with confidence. Nevertheless, it can provide an estimate of the parameter range. As an
in house example, we used a study in the breast cell line MCF7 with a single end-of-study hyp-
oxic point (from HIF1α staining). The ODM fits the data identifiably even though the data set
has been substantially reduced (see Table 2 and Fig 3B).

Faster vs Slower Growing Xenografts differ in growth rate, necrosis,
vessels and stroma
Motivated by the observed doubling times in different models (xenograft ~1week, explant
~weeks and human ~months or years), we divided the cell lines into Faster and Slower Grow-
ing Xenografts (FGX and SGX respectively, see Fig 4A–4D). The growth rate was windowed by
dividing the ranges of tumour growth across all cell lines and dividing it into SGX<0.05cm3/
day and FGX>0.05cm3/day. Fits to xenograft data were better than in explants (Fig 4A and
4B). Note that the last data point presented in Fig 4B shows a logistic trend. This behaviour is
captured in the ODM by means of the oblique asymptote dictated by the parameters kp and kR

0,
however there are restrictions to the complete saturation (see model in S1 Text for a more
diverse model).

We investigated the relationship between pathophysiology and growth rate in Colo205 as a
SGX (Fig 4D) and Calu6 as a FGX (Fig 4C). In general, more stroma is recruited in SGX and
necrosis appears further away from the vessels (Fig 4C and 4D). Mean vessel density (MVD),
vessel and lumen area in Calu6 showed reduced values compared to Colo205 (Fig 4E), suggest-
ing there is a relationship between pathophysiology and growth rate in xenografts, also
observed across explants and the clinic (Fig 6C).

The growth patterns of forty two cell lines and five explant-like models
are described by different ODM parameter values
After validation of the ODM dynamics with rich datasets, we explored a larger range of cell
lines with restricted data. We fitted the ODM to control data from 38 cell lines from various
pre-existing projects (see Table 3). However, in this case, hypoxia and necrosis data were not
available, therefore we fixed the parameters θf = {KH,KN} 2 <2 to the values observed in Fig 3
(the system would be insensitive to the parameters and thus non identifiable). Our selected

subset of parameters is then ŷ ¼ fkp; k0
Rg 2 <2, which will provide an idea of the variable inter-

play between delivery and cell line intrinsic factors over a series of models.

Oxygen-Driven Tumour Growth Model
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Parameter values for the proliferating rate lie in the range kp = 0.0001–0.0043mmHg−1�day−1
and in the range k

0
R ¼ 2� 17cm�1 for the oxygen uptake rate (see Fig 5A). Standard errors are

always comparable to the parameter values, suggesting that there is inter-animal variability. In
those cases a mixed effects model would be advisable.

Fig 4. Growth curve fit for 2 example xenografts. Panels (A-B) show fits of the model for Calu6 and Colo205. The plots also include simulation of hypoxia
and necrosis. (A) is a faster proliferating tumour model (Calu6) and (B) grows slightly slower (Colo205). (C-D) CD31 IHC staining in Calu6 and Colo205
respectively. (E) summary data of CD31 for both tumour models.

doi:10.1371/journal.pcbi.1004550.g004
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Fig 5. Results of parameter estimates. (A) Parameter space (kp-k
0
R) for different tissue of origin lines. (B) Same as (A) but divided into Fast, Medium, Slow

and Very Slow Growth Xenografts. (C) Parameter space for explant-like tumour models.

doi:10.1371/journal.pcbi.1004550.g005

Table 2. Parameter results (kP, k
0
R, KH, KN) for the ODMmodel for Ribba et al. [5]. Data and MCF7 with

hypoxic endpoint.

Ribba 2010 MCF7

kp (mmHg x day)-1 0.0058 0.0027

SE(kp) (mmHg x day)-1 0.0041 0.0027

k0
R

cm-1 13.37 7.54

SEðk 0
RÞ cm-1 2.39 1.90

KH mmHg 25.9 13.8

SE(kH) mmHg 54.0 27.3

KN mmHg 20.2 -

SE(kN) mmHg 3.8 -

Rank - 312 342

Y - 49 35

k - 4 3

Residual - 0.18 0.09

doi:10.1371/journal.pcbi.1004550.t002

Oxygen-Driven Tumour Growth Model
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We note the collinearity index and condition number are well within the identifiable range.
Residual errors show appropriate goodness of fit. We identified a posteriori 2 groups of param-
eters within the dashed boxes. Group 1 parameters cluster in the lower range of kp and demon-

strate a wider spread over k
0
R, this group contains the slowest growing cell lines. Besides, k

0
R

Table 3. Parameter results (kp and k0
R) for the ODMmodel in xenografts. Confidence intervals for each parameter are specified as well as the rank of the

FIM (as a measure of the number of identifiable parameters), the collinearity index (Identifiable if γ<10), the condition number (Indentifiable if κ<1000) and the
normalised residual. Cell lines denoted by * are unidentifiable and cell lines denoted by # are arguably identifiable.

kp SE(kp) k0
R SEðk0

RÞ ΔV κ γ Rank Residual
(mmHg x day)-1 (mmHg x day)-1 cm-1 cm-1 cm3/day - - - -

Repr. Sys. Lung Calu6* 0.0001 0.0018 5.06 <0.01 0.10 529500 17874 2 0.20

Colon Colo205 0.0005 0.0014 3.17 2.24 0.03 46 9 2 0.10

Lung H460 0.0041 0.0035 13.38 3.08 0.14 135 10 2 0.30

H1975# 0.0013 0.0020 6.05 2.21 0.05 43 21 2 0.06

H3255 0.0001 0.0012 2.83 17.08 0.03 6 3 2 0.02

A2058 0.0005 0.0030 6.26 16.02 0.07 8 4 2 0.07

PC9 0.0003 0.0008 8.23 41.11 0.03 3 1 2 0.15

A549b 0.0001 0.0026 3.22 22.90 0.06 11 2 2 0.03

Breast HCC1954# 0.00005 0.0004 1.40 2.40 0.06 19 15 2 0.01

Cervix ME180# 0.0003 0.0014 3.20 3.39 0.03 14 21 2 0.02

Gastrointestinal Gastric SNU5# 0.0004 0.0011 3.35 2.32 0.04 56 17 2 0.04

SGC31 0.0002 0.0015 6.59 34.59 0.05 8 4 2 0.03

SGC37 0.0005 0.0031 8.51 46.99 0.01 9 1 2 0.15

SGC70 0.0008 0.0045 11.64 28.99 0.05 13 2 2 0.21

SGC71 0.0005 0.0043 7.46 29.73 0.08 11 2 2 0.08

SGC100 0.0002 0.0041 3.06 53.31 0.08 7 1 2 0.02

SGC161# 0.0005 0.0016 3.33 2.63 0.04 31 28 2 0.02

SGC181# 0.0005 0.0019 2.69 2.58 0.03 35 32 2 0.01

SGC184# 0.0002 0.0028 4.22 5.70 0.03 89 19 2 0.03

MKN45# 0.0006 0.0013 4.03 2.49 0.05 64 18 2 0.03

HS746T 0.0007 0.0050 9.68 36.93 0.04 9 1 2 0.15

Colon MC38# 0.0043 0.0047 17.19 3.94 0.13 93 15 2 0.11

Lovo 0.0009 0.0040 14.87 26.75 0.24 10 2 2 0.23

HCT116 0.0002 0.0029 4.93 40.20 0.11 10 1 2 0.07

HT29# 0.0011 0.0021 4.30 2.23 0.06 84 16 2 0.04

Other Skin A375# 0.0022 0.0018 11.71 2.88 0.06 139 12 2 0.19

Bladder MGHU3# 0.0035 0.0036 7.81 1.99 0.09 77 12 2 0.26

Kidney RCC47 0.0002 0.0003 6.85 3.47 0.00 4 11 2 0.51

786O# 0.0004 0.0007 4.68 2.31 -0.01 33 14 2 0.06

Blood KMS11 0.0002 0.0022 5.85 35.80 0.07 11 1 2 0.08

Lymph HT1080 0.0030 0.0028 8.52 1.98 0.07 78 10 2 0.36

Ri1 0.0002 0.0027 3.32 34.28 0.07 6 1 2 0.06

RS411 0.0003 0.0024 12.42 25.71 0.12 16 2 2 0.18

OCLy10* >100 - >100 - 0.03 >10000 >1000 2 0.04

OCLy19 0.0002 0.0044 4.17 25.02 0.12 17 2 2 0.04

A20 0.0003 0.0004 7.31 2.55 0.01 14 5 2 0.57

Mouse CT26 0.0003 0.0032 3.07 33.56 0.03 9 2 2 0.09

Stem cell ECB1 0.0001 0.0011 1.63 27.49 0.04 4 1 2 0.04

doi:10.1371/journal.pcbi.1004550.t003
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parameter values in Group 2 are found dispersed around an average of 12 cm-1, whereas kp
demonstrates large range of values; we identify this group with the faster growing cell lines (Fig
5B). However, the tissue of origin showed not to be predictive of the tumour growth rate.

Regrouping the cell lines in terms of growth rates, we found that kp is often the main driver

of growth speed, whereas k
0
R seem to vary across a range of values. The medians for both

parameters are 0.0023 mmHg-1 day-1 and 16.0 cm-1 respectively.
The explants used here and the cell line Calu3 present with a stromal vessel (SV) phenotype

(as described by Smith and co-workers [15]), thus we referred to them as explant-like models
in the present manuscript. This phenotype is more complex than typical xenografts (Tumour
Vessel phenotype [15]) and more reliably resembles the stromal complexity the clinical carci-
nomas of interest, where a mature vasculature surrounded by pericytes and myofibroblasts is
commonly found. The explant-like tumours range kp = 1–7�10−4�day−1�mmHg−1 (in the range

of very slow growing xenografts) and k
0
R ¼ 0:9� 7:8cm�1(similar to the xenografts, see Fig

5D) with the exception of colon 1.
As an exception, some cell lines (Calu6 and OCLy10) were not practically identifiable (see

Table 3); other cell lines were poorly identifiable (786O, A375, MGHU3, HT29, MC38,
MKN45, SGC161, SGC181, SGC184, ME180, H1954, H1975). This was partly because of the
quality and quantity of the data (some of these datasets include only 2 data points or contain

Fig 6. Growth curve fit for explants. (A) Growth curve fit for 4 explant models, 2 for squamous lung carcinoma and 2 for colorectal carcinoma. The
xenografted cell line Calu3 shows very similar behaviour to explant models. (B) Comparison between Calu6 and Calu3 lung cell lines; a squamous lung
cancer explant; and clinical tumour material analyses. The bar chart shows the proportions of microvessel density (MVD) in area (quantified from CD31),
necrosis (quantified from Hematoxylin & Eosin staining) and stroma (alpha smooth muscle actin (αSMA) positive staining). (C) Images of the different tumour
models stained for αSMA and counter-stained with hematoxylin.

doi:10.1371/journal.pcbi.1004550.g006
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experimental errors). Parameter values are within ranges observed for the other cell lines, but
the confidence intervals are very wide.

ODM does not always succeed in describing the growth pattern of
tumours with more complex pathophysiologies
In an effort to extend the application of the model, we applied the ODM to five explant-like
models. These models can be very heterogeneous in pathophysiology, an effect that may also be
evident in the growth curves. Results of the model-data fit are acceptable, but generally worse
than in xenografts (Fig 6A). However, lung 2 explant is poorly fitted on a point by point basis.

At this stage, growth curves alone are insufficient to understand pathophysiological differ-
ences between preclinical and clinical models. We stained tissue sections of the following
tumours: Calu6 (n = 8), Calu3 (n = 7), one squamous cell lung cancer explant (n = 28) and squa-
mous cell lung clinical cancers (n = 12) from AstraZeneca databanks. Both cell lines are derived
from non-small cell lung cancer. We observed that the microvessel density (MVD) increases
steadily from 0.4% in Calu6 to 4% in clinical tumours. We also looked at the tumour-associated
stromal cells (stained with αSMA), i.e. pericytes and myofibroblasts. These are the main stromal
cells contributing positively to tumour development. We highlight the 0.8% of αSMA staining
in Calu6 versus a range between 10–17% in the other models (Fig 6B), over 1 order of magni-
tude lower (also observed in Fig 6C). Lastly, the appearance of necrosis decreases from Calu6 to
clinical tumours, with the exception of Calu3. This analysis of histological data (Fig 6) allows us
to identify that even if the growth curves are similar, the tumour composition might play an
important role in the tumour behaviour and treatment. Further, the very large standard error

observed in Table 4 for k
0
R, demonstrate that the complex growth dynamics introduced by the

tumour microenvironment are captured by the oxygen uptake rate (k
0
R).

Introduction of stroma in the ODMmay be used to describe tumour-
stroma interaction
As showed in the histological data (Fig 6), clinical tumours have a complex microenvironment,
very different to the xenografts. One of the main differences observed is the tumour stroma. There-
fore, we adapted the model by adding one compartment for the formation of stroma (Fig 7A).

Initially, the stroma is recruited from distant sites of the body and is partly triggered by the
immune response. The connection between the desmoplastic (stroma formation) and angio-
genic (blood vessel formation) reactions has been identified in a series of animal models and
clinical metastases [45], but not accurately understood. As a first approximation, we assumed
that stroma by default carries vessels. Also, cancers trigger an inflammatory response, quickly
recruiting cells from distant sites of the body [40], similar to a “wound that never heals”.
Hence, we considered that the stroma is recruited proportionally to the volume of the “wound/

Table 4. Parameter results (kp and k0
R) for the ODMmodel in explant-like tumours.

kp SE(kp) k0
R SEðk0

RÞ ΔV κ γ Rank Residual
(mmHg x day)-1 (mmHg x day)-1 cm-1 cm-1 cm3/day - - - -

Calu3 0.0001 0.0014 0.90 64.90 0.0007 10 11 2 <0.01

Lung 1 0.0003 0.0021 5.38 71.27 0.0005 6 1 2 0.10

Lung 2 0.0001 0.0003 4.78 2.45 0.0008 12 42 2 0.01

Colon 1 0.0007 0.0023 7.86 38.37 8.711 7 8 2 0.04

Colon 2 0.0001 0.0009 1.88 54.24 0.0096 9 3 2 0.03

doi:10.1371/journal.pcbi.1004550.t004
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cancer” (VT) with proportionality constant ks. This assumption requires thorough biological
support and refinement.

The stroma also triggers a modification in the proliferation rate kp(mmHg−1�day−1), which
turns into kPG(mmHg−1 �day−1 �cm−3) = kP�kG. This assumption stems from one of the hall-
marks of cancer, stating that tumour-associated stroma provides the key paracrine signals for
tumour development [46]. With these modifications, the model Eq (11) becomes Eq (16),
while Eq (17) is added.

dVi

dt
¼ kPG � PO2 ;i

� Vi � VS ð16Þ

dVS

dt
¼ kS �

X
Vi ð17Þ

We fitted this model to the Calu3 data explant, showing very good fit (parameters for hyp-
oxia and necrosis remain fixed). Stroma constituted around 30% of the tumour volume in the
prediction. However, this is a marginally identifiable case with very wide confidence intervals
(Table 5).

Discussion
We have demonstrated that large data sets for hypoxia and necrosis along with tumour volume
are uniquely fitted with 4 parameters. This is a small number compared to other models, e.g. 6
parameters in the model by Ribba et al. [5]. In practice, data sets may not be as rich, having

Fig 7. ODM adaptation. (A) Sketch of the ODMmodel (oxygen dependent, left) as described here plus a single compartment (Stroma) (VS, oxygen
independent, right). Where kS is the stroma recruitment constant and kG is the growth enhancement constant. (B) Example of cell line fit for Lung 1 explant
model. Tumour volume over time and hypoxia at end of study are presented. Also a simulation of necrosis is presented.

doi:10.1371/journal.pcbi.1004550.g007

Table 5. Parameter results (kPG, k
0
R, kS) for the ODMmodel for Lung 1 explant model data.

kPG SE(kPG) k0
R SEðk0

RÞ ks SE(kS) Rank γ κ Residual

(mmHg x day x cm3)-1 cm-1 mmHg
- - - -

0.005 0.154 23.7 84.9 0.07 0.05 3 85 16122 0.04

doi:10.1371/journal.pcbi.1004550.t005
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reduced number of time points describing hypoxia. However, we typically find end-of-study
analysis of hypoxia and necrosis, which can be uniquely identified (Fig 3B), but arguably used.
To date, most models found in preclinical oncology are either empirical or implement non-
allocated compartments to describe hypoxic/necrotic regions. In the ODM, the calculated con-
tinuous spatial oxygen distribution dictates growth, hypoxia and necrosis, key physiological
parameters. This may be easily extrapolated to drug studies.

Growth rates increase in a quasi-monotonic fashion from the clinic, through to explants,
into xenografts. Typically, slower proliferating tumours develop more stroma and the vascula-
ture is more mature (Fig 6C). These tumours are, in general, also less necrotic. This is, although
a generalisation based on a few observations. Though, we hypothesise this could apply to many
cell lines, this has not been fully explored yet and we encourage other scientists to investigate it.

We have aimed for a more informative model using pathophysiological assumptions, how-
ever, the interpretation of the parameters can be further discussed. We postulate that the
model parameters signify:

KH, KN—hypoxia and Necrosis switch constant. These constants account for the variability in
the transition to hypoxia and necrosis;

kp—proliferation rate constant: natural frequency of cell division, in other words an in vivo
expression of the in vitro doubling time (free of delivery burdens). We expect kp to capture
genetic properties of the cell to commit to the cell cycle;

k
0
R—oxygen uptake rate: oxygen needed by each cell to divide. In our definition k

0
R should cap-

ture the microenvironment characteristics. It may also account for angiogenesis, in other

words the “apparent oxygen reach”. In short, k
0
R angiogenic values (1–70 cm

-1) are much
lower than the avascular hypothetical calculations (~200–400 cm-1 (Table 2)). This means
that oxygen appears to reach further than reported in the literature. This may be identified
with angiogenesis (see Fig F in S1 Text).

Since both parameters describe different aspects of the tumour physiology, we have aimed
to group the parameter space according to the sensitivity of both parameters, finding only very
weak associations and no differential affinity to organ of origin (e.g. lung) or cell type (e.g.
carcinoma).

On the one hand, Group 1 with a range of values of k
0
R and low kp, suggests that microenvi-

ronment plays a major role in the development of these tumours. Also, their growth rates are
slow. Similarly, explants demonstrate almost identical parameter values, being indicative of
growth, but not of physiology.

On the other hand, Group 2 with a k
0
R mean very close to the median values, indicates that

most medium to fast proliferating cell lines are better perfused and the tumour matrix is mainly
a mixture of sparse stromal and vascular cells. From our experience, these fast growing cells
trigger angiogenesis faster, but the immaturity of the vessels, combined with the competition
for space of the fast growing cells, leads to occluded vessels, which trigger unexpected necrosis
(IHC example shown on Fig E in S1 Text). These observations need to be revisited and sup-
ported with further evidence.

Explant-like models, which more closely model clinical pathophysiology, provided poor fits
to the ODM (Fig 6A). We suggest incorporating stroma and vasculature in the model to
address this problem. Evidence indicates that slower growing models, such as explant-like (also
referred as SV) tumours, rely on the recruitment of stroma to grow, followed by reduced necro-
sis and significantly greater MVD (as elucidated by the results, Fig 6B and 6C). The ODM
assumes a simple spherical morphology, which can mimic semi-vascular tumour nests in
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explant-like tumours. In future versions, we will capture stromal morphology from IHC images
and describe it spatially in a 3D version of the ODM. Despite the actual limitations of the
ODM so far, xenografts are properly described. The ODM, being a very simple model, captures
several aspects of the tumour pathophysiology in xenografts, namely proliferating rate, blood
effective perfusion, hypoxia and necrosis. However, the ODM fails to describe explant models
fully. This will be amended in more advanced versions of the ODM, which will mimic complex
tumour-stromal interactions. This will increase our understanding of animal models, thereby
enhancing preclinical decision making and pharmacokinetic and pharmacodynamic (PKPD)
predictions in humans.

Materials and Methods

Ethics statement
All studies were conducted in accordance with UK Home Office legislation, the Animal Scien-
tific Procedures Act 1986 (ASPA) and with AstraZeneca Global Bioethics policy. The analysis
in this paper is retrospective, utilising control/untreated animals of different oncology projects
within AstraZeneca between 2004 and 2013. All experimental studies have gone through the
AstraZeneca Ethical Review Process. All tumour volumes, animal weights and welfare were
maintained within the margins fixed by UK and European regulations. No data was generated
specifically for this manuscript.

Animals and cell lines
We used data from 38 xenografted cell lines implanted in the SCID and nude mice of both
sexes. Briefly, 1 x 106 to 1 x 107 human cancer cells, with or without Matrigel, were implanted
subcutaneously on the mouse flank. Tumour volumes were calculated from bisecting calliper
measurements using the prolate spheroid approximation formula [47]. Tumours were mea-
sured 1–3 times weekly.

Parameter estimation
The optimisation was done with a least-square multiple start global optimiser. The 150 initial
estimates for the simulation were selected randomly within a feasible parameter space by the
latin hypercube rule.

Differential-Algebraic Equation (DAE) solver
We solved our deterministic model Eqs (11–14) with a marquart-leuven integrator for stiff ode
solvers (matlab, ode15s). The Jacobian was calculated by direct analytical derivation of the
DAEs.

Sensitivity methods
We analysed all possible aspects of the model comparing and contrasting its structural and
practical identifiability, testing a variety of scenarios. We applied a Taylor Series approach to
evaluate structural identifiability [27,48] to ensure that there was a unique correspondence
between model parameter values and the model prediction over time. For practical identifiabil-
ity, we applied a model-based method calculating collinearity index and condition number
[43], broadly validated for various mathematical biology applications [49]. The standard errors
were calculated with the covariates (diagonal of the covariance matrix, where Co = FIM−1),
being Co the covariance matrix and FIM the Fisher Information Matrix (FIM = S−1 × S).
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PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004550 October 30, 2015 17 / 20



Histopathology and image processing
The morphologies of explants and clinical tumours were determined from formalin-fixed par-
affin-embedded tissue sections. The tumour sections were then stained for CD31, αSMA, CC3
or HIF1α, counter-stained with Carazzi’s hematoxylin, and subsequently scanned. Images have
been colour deconvoluted to highlight the main features (stroma and epithelium). Finally, the
images were quantified with Aperio Microarrays, Genie and ColorDeconvolution algorithms.

Software and hardware
We used a Windows 7, Intel Exon (R) CPU E5-26200@ 2 x 2 GHz with Matlab 2013b (Math-
works, Massachusetts, USA) and the global optimisation toolbox.

Supporting Information
S1 Text. Remarks on the mathematical formulation of the model and extra comments to
the results.
(PDF)

S2 Text. Script with the ODE model.
(M)

Acknowledgments
We acknowledge Lucas Dias Fernandes and Dr Nicolas Rubido from the University of Aber-
deen and Dr Neil Evans from the University of Warwick for the broad discussions on the
mathematics.

Author Contributions
Conceived and designed the experiments: JADSM APSM JWTY. Performed the experiments:
JIH. Analyzed the data: JADSM. Contributed reagents/materials/analysis tools: JADSM JIH.
Wrote the paper: JADSM JIH JWTY APSM.

References
1. Bernard A, Kimko H, Mital D, Poggesi I. Mathematical modeling of tumor growth and tumor growth inhi-

bition in oncology drug development. Expert opinion on drug metabolism & toxicology. 2012; 8
(9):1057–69.

2. Roose T, Chapman SJ, Maini PK. Mathematical models of avascular tumor growth. Siam Review.
2007; 49(2):179–208.

3. Araujo R, McElwain D. A history of the study of solid tumour growth: the contribution of mathematical
modelling. Bulletin of mathematical biology. 2004; 66(5):1039–91. PMID: 15294418

4. Stroh M, Duda D, Takimoto C, Yamazaki S, Vicini P. Translation of Anticancer Efficacy From Nonclini-
cal Models to the Clinic. CPT: pharmacometrics & systems pharmacology. 2014; 3(8):e128.

5. Ribba B, Watkin E, Tod M, Girard P, Grenier E, You B, et al. A model of vascular tumour growth in mice
combining longitudinal tumour size data with histological biomarkers. European Journal of Cancer.
2011; 47(3):479–90. doi: 10.1016/j.ejca.2010.10.003 PMID: 21074409

6. Frieboes HB, Wu M, Lowengrub J, Decuzzi P, Cristini V. A computational model for predicting nanopar-
ticle accumulation in tumor vasculature. PloS one. 2013; 8(2):e56876. doi: 10.1371/journal.pone.
0056876 PMID: 23468887

7. Evans ND, Dimelow R, Yates J. Modelling of tumour growth and cytotoxic effect of docetaxel in xeno-
grafts. Computer methods and programs in biomedicine. 2014; 114(1):e3–e13.

8. Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, et al. Predictive pharmacokinetic-
pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anti-
cancer agents. Cancer research. 2004; 64(3):1094–101. PMID: 14871843

Oxygen-Driven Tumour Growth Model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004550 October 30, 2015 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004550.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004550.s002
http://www.ncbi.nlm.nih.gov/pubmed/15294418
http://dx.doi.org/10.1016/j.ejca.2010.10.003
http://www.ncbi.nlm.nih.gov/pubmed/21074409
http://dx.doi.org/10.1371/journal.pone.0056876
http://dx.doi.org/10.1371/journal.pone.0056876
http://www.ncbi.nlm.nih.gov/pubmed/23468887
http://www.ncbi.nlm.nih.gov/pubmed/14871843


9. Yankeelov TE, Atuegwu N, Hormuth D, Weis JA, Barnes SL, Miga MI, et al. Clinically relevant modeling
of tumor growth and treatment response. Science translational medicine. 2013; 5(187):187ps9–ps9.
doi: 10.1126/scitranslmed.3005686 PMID: 23720579

10. Wang Z, Butner JD, Kerketta R, Cristini V, Deisboeck TS, editors. Simulating cancer growth with multi-
scale agent-based modeling. Seminars in cancer biology; 2014: Elsevier.

11. Macklin P, McDougall S, Anderson AR, Chaplain MA, Cristini V, Lowengrub J. Multiscale modelling
and nonlinear simulation of vascular tumour growth. Journal of mathematical biology. 2009; 58(4–
5):765–98. doi: 10.1007/s00285-008-0216-9 PMID: 18781303

12. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nature medi-
cine. 2013; 19(11):1423–37. doi: 10.1038/nm.3394 PMID: 24202395

13. Wu A, Liao D, Tlsty TD, Sturm JC, Austin RH. Game theory in the death galaxy: interaction of cancer
and stromal cells in tumour microenvironment. Interface Focus. 2014; 4(4):20140028. doi: 10.1098/
rsfs.2014.0028 PMID: 25097749

14. Delgado SanMartin JA, Hare JI, Yates JWT, Barry ST. Tumour stromal morphology impacts nanomedi-
cine cytotoxicity in patient-derived xenografts. Nanomedicine: Nanotechnology, Biology, and Medicine.
2015; 11(5): 1247–1252.

15. Smith NR, Baker D, Farren M, Pommier A, Swann R, Wang X, et al. Tumor stromal architecture can
define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res. 2013; 19(24):6943–56.
doi: 10.1158/1078-0432.CCR-13-1637 PMID: 24030704

16. Augustin H. Translating angiogenesis research into the clinic: the challenges ahead. 2014.

17. Sengupta S. Clinical translational challenges in nanomedicine. MRS Bulletin. 2014; 39(03):259–64.

18. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, et al. Challenges
and key considerations of the enhanced permeability and retention effect for nanomedicine drug deliv-
ery in oncology. Cancer research. 2013; 73(8):2412–7. doi: 10.1158/0008-5472.CAN-12-4561 PMID:
23423979

19. Nelander S, WangW, Nilsson B, She QB, Pratilas C, Rosen N, et al. Models from experiments: combi-
natorial drug perturbations of cancer cells. Molecular systems biology. 2008; 4(1).

20. Chen J, Layton AT, Edwards A. A mathematical model of O2 transport in the rat outer medulla. I. Model
formulation and baseline results. American Journal of Physiology-Renal Physiology. 2009; 297(2):
F517–F36. doi: 10.1152/ajprenal.90496.2008 PMID: 19403646

21. Tyson JJ, BaumannWT, Chen C, Verdugo A, Tavassoly I, Wang Y, et al. Dynamic modelling of oestro-
gen signalling and cell fate in breast cancer cells. Nature Reviews Cancer. 2011; 11(7):523–32. doi: 10.
1038/nrc3081 PMID: 21677677

22. Shackney SE, Shankey TV. Cell cycle models for molecular biology and molecular oncology: exploring
new dimensions. Cytometry. 1999; 35(2):97–116. PMID: 10554165

23. Tindall M, Please C, Peddie M. Modelling the formation of necrotic regions in avascular tumours. Math-
ematical biosciences. 2008; 211(1):34–55. PMID: 18082225

24. Frieboes HB, Smith BR, Chuang Y-L, Ito K, Roettgers AM, Gambhir SS, et al. An integrated computa-
tional/experimental model of lymphoma growth. PLoS computational biology. 2013; 9(3):e1003008.
doi: 10.1371/journal.pcbi.1003008 PMID: 23555235

25. Evans ND, Dimelow R, Yates J, editors. Modelling of tumour growth and cytotoxic effect of taxotere in
xenografts. Biological and Medical Systems; 2012.

26. Vaupel P, Schlenger K, Knoop C, Höckel M. Oxygenation of human tumors: evaluation of tissue oxygen
distribution in breast cancers by computerized O2 tension measurements. Cancer research. 1991; 51
(12):3316–22. PMID: 2040005

27. Evans ND, Chapman MJ, Chappell MJ, Godfrey K. Identifiability of uncontrolled nonlinear rational sys-
tems. Automatica. 2002; 38(10):1799–805.

28. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, et al. LNCaPmodel of human
prostatic carcinoma. Cancer Res. 1983; 43(4):1809–18. PMID: 6831420

29. Usuda K, Saito Y, Sagawa M, Sato M, Kanma K, Takahashi S, et al. Tumor doubling time and prognos-
tic assessment of patients with primary lung cancer. Cancer. 1994; 74(8):2239–44. PMID: 7922975

30. Popel AS. Theory of oxygen transport to tissue. Critical reviews in biomedical engineering. 1988; 17
(3):257–321.

31. Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a
bridge to the clinic. Investigational new drugs. 1999; 17(4):343–60. PMID: 10759402

32. Fatt I, Giasson CJ, Mueller TD. Non-steady-state diffusion in a multilayered tissue initiated by manipula-
tion of chemical activity at the boundaries. Biophysical journal. 1998; 74(1):475–86. PMID: 9449348

Oxygen-Driven Tumour Growth Model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004550 October 30, 2015 19 / 20

http://dx.doi.org/10.1126/scitranslmed.3005686
http://www.ncbi.nlm.nih.gov/pubmed/23720579
http://dx.doi.org/10.1007/s00285-008-0216-9
http://www.ncbi.nlm.nih.gov/pubmed/18781303
http://dx.doi.org/10.1038/nm.3394
http://www.ncbi.nlm.nih.gov/pubmed/24202395
http://dx.doi.org/10.1098/rsfs.2014.0028
http://dx.doi.org/10.1098/rsfs.2014.0028
http://www.ncbi.nlm.nih.gov/pubmed/25097749
http://dx.doi.org/10.1158/1078-0432.CCR-13-1637
http://www.ncbi.nlm.nih.gov/pubmed/24030704
http://dx.doi.org/10.1158/0008-5472.CAN-12-4561
http://www.ncbi.nlm.nih.gov/pubmed/23423979
http://dx.doi.org/10.1152/ajprenal.90496.2008
http://www.ncbi.nlm.nih.gov/pubmed/19403646
http://dx.doi.org/10.1038/nrc3081
http://dx.doi.org/10.1038/nrc3081
http://www.ncbi.nlm.nih.gov/pubmed/21677677
http://www.ncbi.nlm.nih.gov/pubmed/10554165
http://www.ncbi.nlm.nih.gov/pubmed/18082225
http://dx.doi.org/10.1371/journal.pcbi.1003008
http://www.ncbi.nlm.nih.gov/pubmed/23555235
http://www.ncbi.nlm.nih.gov/pubmed/2040005
http://www.ncbi.nlm.nih.gov/pubmed/6831420
http://www.ncbi.nlm.nih.gov/pubmed/7922975
http://www.ncbi.nlm.nih.gov/pubmed/10759402
http://www.ncbi.nlm.nih.gov/pubmed/9449348


33. Harvitt DM, Bonanno JA. Re-evaluation of the oxygen diffusion model for predicting minimum contact
lens Dk/t values needed to avoid corneal anoxia. Optometry & Vision Science. 1999; 76(10):712–9.

34. Fatt I, Shantinath K. Flow conductivity of retina and its role in retinal adhesion. Experimental eye
research. 1971; 12(2):218–26. PMID: 5119356

35. Baish JW, Stylianopoulos T, Lanning RM, KamounWS, Fukumura D, Munn LL, et al. Scaling rules for
diffusive drug delivery in tumor and normal tissues. Proceedings of the National Academy of Sciences.
2011; 108(5):1799–803.

36. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvi-
ronment of human tumors: a review. Cancer research. 1989; 49(23):6449–65. PMID: 2684393

37. Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia and cancer. Journal of molecular medicine. 2007;
85(12):1301–7. PMID: 18026916

38. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature Reviews Cancer. 2004;
4(11):891–9. PMID: 15516961

39. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008; 134(5):703–7. doi: 10.
1016/j.cell.2008.08.021 PMID: 18775299

40. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57–70. PMID: 10647931

41. Lyng H, Sundfør K, Rofstad EK. Oxygen tension in human tumours measured with polarographic nee-
dle electrodes and its relationship to vascular density, necrosis and hypoxia. Radiotherapy and oncol-
ogy. 1997; 44(2):163–9. PMID: 9288845

42. Kirouac D, OnsumM. Using network biology to bridge pharmacokinetics and pharmacodynamics in
oncology. CPT: pharmacometrics & systems pharmacology. 2013; 2(9):e71.

43. Ioslovich I, Gutman P-O, Seginer I. Dominant parameter selection in the marginally identifiable case.
Mathematics and Computers in Simulation. 2004; 65(1):127–36.

44. Dubois L, Landuyt W, Haustermans K, Dupont P, Bormans G, Vermaelen P, et al. Evaluation of hypoxia
in an experimental rat tumour model by [(18)F]fluoromisonidazole PET and immunohistochemistry. Br
J Cancer. 2004; 91(11):1947–54. PMID: 15520822

45. Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van den Heuvel E, et al. Liver metasta-
ses from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmopla-
sia. The Journal of pathology. 2001; 195(3):336–42. PMID: 11673831

46. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–74. doi:
10.1016/j.cell.2011.02.013 PMID: 21376230

47. Delgado San Martin J, Worthington P, Yates J. Non-invasive 3D time-of-flight imaging technique for
tumour volume assessment in subcutaneous models. Laboratory Animals. 2014:0023677214562653.

48. Pohjanpalo H. System identifiability based on the power series expansion of the solution. Mathematical
biosciences. 1978; 41(1):21–33.

49. López C, Diana C, Barz T, Peñuela M, Villegas A, Ochoa S, et al. Model-based identifiable parameter
determination applied to a simultaneous saccharification and fermentation process model for bio-etha-
nol production. Biotechnology progress. 2013; 29(4):1064–82. doi: 10.1002/btpr.1753 PMID:
23749438

Oxygen-Driven Tumour Growth Model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004550 October 30, 2015 20 / 20

http://www.ncbi.nlm.nih.gov/pubmed/5119356
http://www.ncbi.nlm.nih.gov/pubmed/2684393
http://www.ncbi.nlm.nih.gov/pubmed/18026916
http://www.ncbi.nlm.nih.gov/pubmed/15516961
http://dx.doi.org/10.1016/j.cell.2008.08.021
http://dx.doi.org/10.1016/j.cell.2008.08.021
http://www.ncbi.nlm.nih.gov/pubmed/18775299
http://www.ncbi.nlm.nih.gov/pubmed/10647931
http://www.ncbi.nlm.nih.gov/pubmed/9288845
http://www.ncbi.nlm.nih.gov/pubmed/15520822
http://www.ncbi.nlm.nih.gov/pubmed/11673831
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://dx.doi.org/10.1002/btpr.1753
http://www.ncbi.nlm.nih.gov/pubmed/23749438

