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Datasets from which wildlife contact networks of epidemiological importance

can be inferred are becoming increasingly common. A largely unexplored facet

of these data is finding evidence of spatial constraints on who has contact

with whom, despite theoretical epidemiologists having long realized spatial

constraints can play a critical role in infectious disease dynamics. A graph

dissimilarity measure is proposed to quantify how close an observed contact

network is to being purely spatial whereby its edges are completely deter-

mined by the spatial arrangement of its nodes. Statistical techniques are also

used to fit a series of mechanistic models for contact rates between individuals

to the binary edge data representing presence or absence of observed contact.

These are the basis for a second measure that quantifies the extent to which

contacts are being mediated by distance. We apply these methods to a set of

128 contact networks of field voles (Microtus agrestis) inferred from mark–

recapture data collected over 7 years and from four sites. Large fluctuations

in vole abundance allow us to demonstrate that the networks become increas-

ingly similar to spatial proximity graphs as vole density increases. The average

number of contacts, kkl, was (i) positively correlated with vole density across

the range of observed densities and (ii) for two of the four sites a saturating

function of density. The implications for pathogen persistence in wildlife

may be that persistence is relatively unaffected by fluctuations in host density

because at low density kkl is low but hosts move more freely, and at high

density kkl is high but transmission is hampered by local build-up of infected

or recovered animals.
1. Introduction
There is growing interest among disease ecologists in elaborating contact net-

works in wildlife populations and the likely consequences for the spread of

pathogens or parasites [1–8]. Theoretical studies have, in particular, shown that

(i) pathogens tend to spread rapidly and easily on networks containing small

numbers of highly connected individuals and (ii) if those highly connected indi-

viduals can be targeted for either vaccination or removal then it becomes easier to

prevent an outbreak or mitigate its effects [9]. Hence, a focus of recent studies has

often been the detection of high individual heterogeneity in numbers of contacts,

and whether characteristics such as age, sex or size might be used to predict which

individuals have the highest numbers of contacts. By contrast, analyses that quan-

tify spatial constraints on who has contact with whom have largely been absent,

even though spatial constraints are capable of critically affecting infectious disease

dynamics [10,11]. Craft et al.’s [3] study of contacts between prides of Serengeti

lions is an exception, but the approach is highly tailored to the unique datasets

arising from the Serengeti Lion Project. Here we propose two approaches:

(i) graph dissimilarity measures that quantify how close an observed network

is to being a proximity graph (i.e. one in which the edges of a network are
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purely determined by the spatial arrangement of the nodes)

and (ii) maximum-likelihood approaches to quantify spatial

constraints and judge between competing network models.

Finally, we fit a class of good-get-richer network models

[12,13] that incorporate and quantify both spatial constraints

and individual heterogeneity. We apply all of these approaches

to a set of 128 contact networks constructed from a large mark–

recapture dataset on field voles (Microtus agrestis) collected

over a 7-year period.

The role of spatial constraints in determining the dynamics

of infectious disease is particularly pertinent for territorial

animal populations, where the question arises as to whether

territoriality offers a level of protection from disease outbreaks.

In territorial populations, two animals may normally have con-

tact only if their home ranges overlap, with exceptions arising

from rare long distance dispersal events or nomadic individ-

uals. Infectious diseases of such populations must overcome

what is effectively a spatial barrier if they are to spread and

persist; transmission must occur frequently enough to escape

local build-up of infected and recovered animals and avoid

fade-out. Such spatial effects can be understood to slow an

epidemic down in the same way as clustered contact patterns,

or the presence of short loops in networks [14]. The effect is that

infectious individuals are more likely to have neighbours that

are in the recovered state, and also neighbours that are infected,

which they may then ‘compete’ with for the few remaining sus-

ceptibles. In such circumstances, the use of epidemiological

theory based on random mixing of hosts overestimates the abil-

ity of the pathogen to spread, undermining, for example, the

use of the basic reproduction number, R0, to predict threshold

conditions for outbreaks. This has been well illustrated for

the occurrence of epizootics of sylvatic plague (Yersinia pestis
infection) in populations of great gerbils (Rhombomys opimus)

in Central Asia [15,16].

More generally, the concern of epidemiologists with con-

tact networks can be interpreted as an acknowledgement that

the transmission of infection occurs at the individual level but

its epidemiological consequences are played out at the popu-

lation level, and that it is important to understand how the

two are related [17]. In particular, it would be valuable to

understand whether certain contact structures translate into

the canonical density- and frequency-dependent transmission

functions or into variants of these and intermediates between

them that have been proposed (e.g. [18,19]). Here, therefore,

we also explore these connections, as data from the same

field vole system have previously been analysed to identify

and interpret the transmission function for cowpox virus

transmission that best fits population-level data [18].
2. Material and methods
2.1. Trapping data and field sites
The study took place in Kielder Forest, a man-made spruce forest

occupying 620 km2, situated on the English–Scottish border

(558130 N, 28330 W). Field voles inhabit grassy clear-cuts that rep-

resent 16–17% of the total area, but are completely absent from

forested areas that isolate the clear-cuts. Clear-cuts range in size

from 5 to 100 ha. Field vole populations at Kielder fluctuate cyclically

with a 3–4 year period [20]. Voles were trapped in four similar-sized

clear-cuts, in two areas of the forest approximately 12 km apart,

between May 2001 and March 2007. In the Kielder catchment,

Kielder Central Site (KCS) and Plashett’s Jetty (PLJ) are situated
4 km apart. In the Redesdale catchment, Black Blake Hope (BHP)

and Rob’s Wood (ROB) are 3.5 km apart. Thus, these four popu-

lations were far enough apart, with sufficient forest between them,

to be considered as effectively independent replicates.

Populations were trapped in ‘primary’ sessions every 28 days

from March to November, and every 56 days from November to

March. Each site had a permanent 0.3 ha live-trapping grid con-

sisting of 100 Ugglan Special Mousetraps (Grahnab, Marieholm,

Sweden), in optimal habitat dominated by Deschampsia cespitosa,

Agrostis tenuis and Juncus effusus. Traps were set at 5 m intervals

and baited with wheat and carrots. Traps were pre-baited with a

slice of carrot and a few grams of oats 3 days before each trap-

ping session, set at approximately 18.00 on the first day and

checked five times (referred to ‘secondary’ sessions; a ‘primary

session’ thus refers to a cluster of five ‘secondary’ sessions) at

roughly 12 h intervals starting and ending at dawn and dusk,

respectively. Individual animals were identified using subcu-

taneous microchip transponders (AVID plc, East Sussex, UK)

injected under the skin at the back of the neck. Mass, sex and

reproductive status (assigned according to the external appear-

ance of reproductive organs) were recorded at the time of first

capture in each primary session. Estimates of total population

size were derived in program MARK using Huggin’s closed

capture model within a robust design [21].

We formed networks from the mark–recapture data by sup-

posing each vole trapped was a node of a spatial network.

A spatial location for each node was determined as the average

position of the traps it was caught in, with trap location weighted

by the number of times the vole was caught in that trap. This

follows the practice of other wildlife epidemiologists working

with similar data [1–8]. An edge was inserted into the network

whenever two voles were caught in at least one common trap

over the primary trapping sessions being considered. Thus,

multiple edges are avoided and the degree of a node (the

number of edges connected to it) can be interpreted as the

number of unique contacts a vole has over the period of obser-

vation. There is potentially an important difference between

the rate of contact that includes repeated contacts between the

same individuals and the rate at which new contacts are made,

and we note that it is also possible to form networks that do

include repeated contacts and hence multiple edges. We note

that there are a number of other constructions possible from

these data that would form slightly different sets of networks.

One could be more ‘strict’ about what constitutes indirect contact

by having weighted edges (number of traps in common) and

then thresholding on the weights to produce simple networks.

There are also many ways to define the spatial location of the

node set, using either a subset of the trap locations or a different

measure of central tendency.

Exploratory work indicated that the contact networks based on

a single primary trapping session have no, or very few, edges when

the vole densities are low. So that we could consider how the net-

works varied with population density we considered combining

trapping sessions to form the networks. Voles are sometimes

seen in only one trapping session and then never again, but for

much of the time a vole is seen in two or more consecutive trapping

sessions. Two trapping sessions hence provided a better basis to

define a geographical location for each vole (more trap locations)

and defined more edges so that even at the lowest vole densities

the networks had a reasonable number of edges. When three (or

more) trapping sessions are combined (see the electronic sup-

plementary material for a comparison) an edge can represent

anything from a vole visiting a trap two months after another

did, or a vole visiting a trap the next night. We therefore chose to

form networks from pairs of consecutive trapping sessions. At

each site, there were 64 trapping sessions, and hence 32 networks

were formed for each of the four sites, with each network derived

from a consecutive pair of primary trapping sessions and each

http://rsif.royalsocietypublishing.org/
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trapping session appearing in only one network. This set of 128

networks represents a range of contact patterns, occurring at

different times of the year and at different vole densities.

2.2. Basic graph measures
For each of the 128 contact networks, we calculated the mean

degree, kkl to estimate the average rate of contact, and the

coefficient of variation (CV) of the degree distribution. We

tested whether there was more support from the data for a

linear, a þ bN, versus a power relationship, a þ cN1/a (a . 1),

between kkl and vole density to see if there was evidence that

contact rate was a saturating function of density. We used

adjusted R2 to account for the difference in the number of

parameters between the competing models.

2.3. Proximity graph dissimilarity measures
The networks inferred from the mark–recapture data consist of

a point pattern of nodes, and a set of undirected edges. As a

measure of how spatially constrained a contact network is, we

propose below two normalized measures of dissimilarity. They

are both counts of the edge differences between the observed

contact network and a proximity graph constructed from the

point pattern of nodes of the observed contact network [22].

A proximity graph has an edge between two nodes if particular

geometric requirements are met, and hence are entirely induced

by the underlying point pattern. Here we consider proximity

graphs based on the geometric requirement that two nodes are

within some set distance, 1. Varying this threshold distance pro-

duces a family of graphs, indexed by 1. Low dissimilarity values

then indicate that the observed graph is close to what would be

expected if contacts between individuals were made purely on

the basis of proximity, as measured by Euclidean distance.

More formally, let P1 be the proximity graph P1 ¼ fV, L, fg
where V is the set of nodes, L the set of edges and a mapping

f : L!V � V, where f : vi � vj if sij � 1, and where sij is the

Euclidean distance between nodes i and j belonging to V. We

next denote the adjacency matrix for P1 by A*, having elements

a�ij which take a value of 1 when an edge exists between node i
and node j and 0 otherwise. Also, we denote the observed net-

work of interest by G, having adjacency matrix A with

elements aij and distance matrix S (the matrix of distances, sij).

We can then define

d1(G) ¼
X
i,j

jaij � a�ijjjsij � 1j, (2:1)

where j.j denotes absolute value. The formula counts differences

between the adjacency matrix of the observed graph and the

adjacency matrix of the proximity graph P1. A difference indi-

cates either that an edge in G is missing from P1 or an edge in

P1 is missing from G. Edge differences are weighted by the

linear factor jsij 2 1j so that an edge missing from between two

nodes that are very close together contributes more to the dissim-

ilarity measure than an edge missing from two nodes that are

about 1 distance away. Similarly, edges longer than 1 that are

in G but not in P1 contribute more the longer they are. That is,

as long edges are (by definition) not a feature of this type of

proximity graph, their presence in the observed graph represents

a strong dissimilarity.

Next, we normalize the weighted sum of differences, because

such a sum will be affected by the size of the network (the

number of elements of the adjacency matrix increases as n2)

and we would like to make comparisons between graphs of

unequal size. We do so by dividing by the sum of weights, the

jsij 2 1j, for all possible pairs of nodes. This is equivalent to

counting up the weighted differences between the proximity

graph and its complement (which has the same set of nodes as

G with the same spatial arrangement and has an edge between
two nodes if and only if the corresponding edge is missing in

G). This gives

�d1(G) ¼
P

i,jjaij � a�ijjjsij � 1jP
i,jjsij � 1j : (2:2)

Let the value of 1 that minimizes �d1(G) be 1*. This gives

0 � �d1� (G) � 1 as a simple measure of dissimilarity between the

observed spatial graph, G, and the family of proximity graphs

induced by the observed point pattern of G. For simplicity of

exposition, we refer to �d1� (G) as D.

There are clearly other possible choices for the weighting

used in equation (2.1), the determination of 1* and the normali-

zation. For example, an unweighted version of D, which we

will denote Du, is given by finding the value of 1 that minimizes

�d1(G) ¼
P

i,jjaij � a�ijj
1
2 n(n� 1)

, (2:3)

where the denominator in equation (2.2) becomes the number

of possible edges in the graph. Du has the advantage of having

a very simple interpretation. It is the fraction of entries in the

adjacency matrix that are ‘wrong’ in the sense of being dif-

ferent to the corresponding entry for the closest proximity

graph (closest being defined by the value of 1 that minimizes

equation (2.3)). In either case, weighted or unweighted, a value

of 0 indicates that G is in fact a proximity graph where the

topology is entirely determined by the spatial arrangement of

the nodes.

As a non-network measure of how spatially restricted the

voles were, we used trap locations to calculate a distance devi-

ation for each node (vole) in each network (see the electronic

supplementary material for details), representing the observed

spatial variance of an individual vole over the two trapping ses-

sions. We investigated how the distribution of distance deviation

changes with population density, and how the average distance

deviation for three categories of voles (large male, small male

and female; see below) changes with population density.

2.4. Model fitting
The second approach we propose is to fit simple models for the

rate of contact between two voles given the distance between

them to the observed binary edge data (presence or absence of

an edge). The simplest model (herein referred to as model 0) pro-

poses that the rate of contact, kij, between any two voles in the

network (node labels i and j ) is constant; this is equivalent to

the random-mixing assumption where every vole is equally

likely to make contact with every other vole:

kij ¼ c: (2:4)

We set the time unit to be the time period over which the data

used to construct the network was collected, so c is to be inter-

preted as the number of contacts per sampling period.

To quantify whether and to what degree spatial constraints

play a role in determining the contact rates of voles, we also

considered the model

kij ¼ ce�lSij , (2:5)

where sij is the Euclidean distance between nodes i and j, and c
and l are constants. We will subsequently refer to the model rep-

resented by equation (2.5) as model 1. The magnitude of l

determines the scale over which the spatial constraints operate,

such that for positive values the contact rate between two voles

will decline in a negative exponential manner as the distance

between them increases. A value of l close to 0 indicates support

for a random network. By contrast, high values of l indicate that

the probability of an edge (contact) declines sharply with the dis-

tance between nodes. For example, recalling that traps are spaced

5 m apart, a l value of 2 indicates that each additional 5 m

http://rsif.royalsocietypublishing.org/
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between the locations of two voles decreases the rate of contact

by an order of magnitude (approx. exp(22)).

Finally, to investigate whether there was support for individual

heterogeneity in our data, we considered two additional models

(referred to as model 2 and model 3, respectively) that belong to

the class of good-get-richer network models proposed by Caldarelli

et al. [12]. The first of these models incorporates both spatial

constraints and individual heterogeneity in the rate of contact

by allocating each individual a ‘fitness’ value (denoted xi). In this

context, these values represent the tendency for an individual to

apparently seek out or avoid contact. Rather than estimating indi-

vidual ‘fitness’ values, we defined subgroups of animals based

on size and sex (these were large males, small males and females)

and allocated a value to each subgroup, respectively, denoted by

subscripts M, m and F. We hence considered the model

kij ¼ ce�lSij (xi þ xj) ¼ (ci þ cj)e
�lSij , (2:6)

where ci [ {cM, cm, cF}. This model, referred to as model 2, allows

the different groups to behave differently with respect to an overall

propensity for contact, i.e. for a fixed distance kij/ (ciþ cj). How-

ever, the inhibiting effect of distance on this propensity for

contact is the same for all possible pairings fi, jg since l is a

constant. We hence also considered

kij ¼ ce�(liþlj)Sij , (2:7)

where li [ {lM, lm, lF}, as model 3. This model allows the

groups to vary in how inhibited contacts are by distance.

For all four models, the probability of observing an edge

between hosts i and j, denoted by pij, can be related to the rate

of contact by assuming that the number of contacts between i
and j over the period of observation has a Poisson distribution

with intensity kij. The probability of observing at least one contact

is then 1 minus the zero term in the Poisson distribution, giving,

pij ¼ 1� e�kij : (2:8)

We fitted model 0 and model 1 in R [23] using a binary generalized

linear model (GLM) with a ‘complementary log–log’ link (having

functional form log(2log(1 2 p))). In the case of models 2 and 3,

these cannot be fitted using GLM although a roughly equivalent

model is possible (see the electronic supplementary material).

To fit models 2 and 3, we further define aij as an element of

the adjacency matrix for the contact network of interest, n as the

size of the network, V ¼ f(i, j )jaij ¼ 1g, and V0 as the comple-

ment of V. Model parameters can then be estimated using

maximum-likelihood where the likelihood is

L ¼
Y

(i,j)eV

(1� e�kij )
Y

(i,j)eV0
(e�kij ): (2:9)

We used the simulated annealing algorithm that is included

in the function optim in R [23] to maximize the log likelihood

[24]. We note that when comparing model 1 with model 2, it

can be seen that model 2 degenerates to model 1 when cM ¼

cm ¼ cF ¼ 1/2c, and similarly model 3 degenerates to model 1

when lM ¼ lm ¼ lF ¼ 1/2l. We took advantage of this by

using the optimal parameter values from model 1 to set initial

values for the simulated annealing algorithm (when fitting

model 2 and model 3). For some networks with low numbers

of individuals, the algorithm used by the function optim failed

to converge to a lower likelihood or the model was a worse fit.

We fitted models 0–3 to each of the 128 networks separately.

We also pooled the data and combined the 128 networks to test for

effects of vole density and site on the slope and intercept of a

binary GLM. In all cases and all statistical fitting methods, we used

Akaike’s Information Criterion corrected for small sample sizes

(AICc) to judge the relative performance of the models. All analyses

were conducted using the statistical software package R [23].

Finally, model 1 was fitted to equivalent random networks to

better understand how estimates of c and l, and especially l, might
be affected by the way the networks were constructed. This is a

concern because the spatial location of each vertex and the edges

drawn between the nodes are derived from the same data (the

location is the average of the trap locations a vole was caught in;

edges are inferred when two voles are caught in the same trap).

This was done for only one of the observed networks, KCS,

September–October 2003 (a medium-sized network having 73

nodes). To generate ‘equivalent’ random networks comparable

to an observed network consisting of n nodes and m edges, we

generated equivalent random trap data for n voles. The actual

trap data take the form of an incidence matrix, with 100 columns

corresponding to the 100 trap locations, and the number of rows

equal to n. It was not unusual for individual voles to be found in

the same trap more than once and so the entries of the incidence

matrix are the number of times a particular vole was caught in a

particular trap. In generating equivalent random trap data, the

sum of each row (the number of voles) was conserved but

the trap locations for the voles were randomized. The equiva-

lent random networks were generated from the equivalent

random trap data in the same way as the observed networks

were generated from the actual trapping data.
3. Results
3.1. Vole contact networks
The 128 networks varied dramatically in size from 11 to 264

nodes. The networks were typically well connected in the

sense that there was usually a single large component and a

small number of isolated nodes or very small components

(see electronic supplementary material, figure S1). Two

examples, both from KCS, are shown in figure 1, one derived

from trapping in winter from 13 November 2001 to 20 January

2002 and the other from trapping in summer from 28 June 2002

to 26 July 2002 when vole density was higher. The same data

are displayed as spatial graphs (figure 1a,b, each node has coor-

dinates) and non-spatial graphs (figure 1c,d, spatial locations

are ignored).

3.2. Basic graph measures
Scatter plots of the mean degree and the CV of the degree dis-

tribution, versus estimated vole density, are shown for all sites

in figures 2 and 3. Mean degree (figure 2) was positively corre-

lated with estimated population size. For two of the four sites, a

power relationship (where kkl is a saturating function of den-

sity) performed better (as measured by adjusted R2) than a

linear relationship. The scatterplots of the CV at sites BHP

and ROB (figure 3a,b) show that for vole densities larger than

approximately 50 voles per hectare, the CV drops to values

not much larger than 1. For the other two sites, PLJ and KCS,

the scatterplots show an absence of points in the upper right

triangle of the axes, indicating high values of the CV are not

observed at high densities. For all sites, the scatterplots indicate

there is more heterogeneity in numbers of contacts at lower

densities than at higher densities (figure 3).

3.3. Proximity graph dissimilarity measures
Figure 4 and electronic supplementary material, figure S9,

show that for all four sites the dissimilarity measures, D
and Du, tend to take lower values at higher vole population

densities, indicating that the networks tended to become

closer to proximity graphs. All four scatterplots have an

absence of points in the upper right triangle of the axes,

http://rsif.royalsocietypublishing.org/
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indicating that at higher densities vole contacts tended to be

more like what would be expected on the basis of proximity

alone: voles were more likely to interact with others closest to

them, rather than being ‘selective’ in their contacts. However,

while there was an absence of high values at high densities,

there was no such absence of low values at low densities,

indicating that at low population density some contact net-

works were very similar to proximity graphs and others

were relatively dissimilar. The results for spatial variance

quantified as distance deviation, a non-network measure of

spatial restriction (see the electronic supplementary material),

also show that voles reduce the spatial extent of their move-

ments at higher densities (electronic supplementary material,

figures S5 and S6). This is also consistent with the relation-

ship between 1* and population density (see electronic

supplementary material, figure S10) where again there is an

absence of high values of 1* at high population densities.
3.4. Model fitting
The values of l—obtained when the model given by equation

(2.5) was fitted to each of the 128 networks—were positively

correlated with vole population density, indicating once

again that the spatial scale over which voles were likely to

interact with others decreased with density (see figure 5).
The relationship between l and D is shown in electronic sup-

plementary material, figure S8. The values of l when the

same statistical model that was fitted for the observed net-

works was fitted to 100 equivalent random networks were

substantially less than the estimated l value for the observed

network: the average estimated l for the equivalent random

networks was 0.36 (s.d. 0.022) while the l for the actual

network was 1.69.

The results of the model fitting for the set of networks

derived from site KCS and having at least 50 nodes are

shown in table 1. The relative performance of the four

models is measured using AICc. There is a uniformly sharp

drop in AICc for model 1 compared with model 0, indicating

strong support from the data for spatial proximity of nodes

determining edges in these networks. For the majority of the

networks, there was support for model 2 or 3 over model 1,

and more often support for model 3 over model 2. Of the

nine networks where model 1 had the greatest support,

seven provided near-equivalent support for a more complex

model (DAICc , 2): five for model 3 and two for model 2. Over-

all, therefore, there was support for the good-get-richer models

that allowed large males, small males and females to differ in

their overall propensity for contact (model 2) or in the degree

to which distance discouraged contact (model 3). More often

it was the latter. This overall picture was consistent across the
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four sites. When the data were pooled at the site level and a

GLM similar to models 2 and 3 (see the electronic supplemen-

tary material) was fitted to the data all factors were highly

significant, providing further evidence that the three categories

of voles that we identified (female, small male and large male)

are behaving differently and these behavioural differences do

further explain the absence or presence of edges in the

networks.

When the edge data of all 128 networks was pooled the

effect of density on the slope of the model and the effect

of site on the intercept were both highly significant (see the

electronic supplementary material). The results also show

that the vole populations at two of the sites, ROB and BHP,

perceive distance in more similar ways than any other pair-

ing. Interestingly, the two similar sites are also those for

which there was evidence that mean degree was a saturating

function of population density.

Finally, the fitted good-get-richer model 3 indicated that

for 19 of the networks large males were less discouraged

by distance than either small males or females, and for the

remaining four networks the small male class was the least

discouraged by distance. On these same four occasions, the

results for model 2 indicated that the small males had an

overall greater propensity for contact. The female class

was always the most discouraged by distance and almost
always had the lowest propensity for contact (there were

two exceptions).
4. Discussion
Overall, the results for our field vole system suggest that as

population density increases, the mean numbers of contacts,

kkl, increases, and also that for at least two of the sites this

increasing function saturates at the highest densities. In par-

allel with this, as density increases, voles are more likely to

interact simply with those closest to them (lower values of

D and Du) and the scale of spatial constraint increases

(higher values of l). We emphasize that l and the graph

dissimilarities measure different things—the parameter l

indicates the degree to which distance between voles acts as

a deterrent for contact while D and Du indicate the similarity

to a proximity graph without specifying that 1 be small or

large—though in this dataset l and D are tightly related at

higher densities and more loosely related for lower densities

(see electronic supplementary material, figure S8). There was

an absence of high values of l at low values of vole density,

indicating voles always took advantage of the ‘extra’ space,

but this spreading out sometimes meant low values of D
and sometimes not. At high vole densities though, the contact
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networks always became close to proximity graphs. They also

became ‘tighter’ proximity graphs (lower values of 1*), with

average distance deviation displaying much the same pattern

as the other measures of spatial constraint.

The consistency of the relationships between the measures

of spatial constraint and population density together paint a

convincing picture that vole territories are shrinking with

population density and becoming more strictly adhered to.

The two dissimilarity measures D and Du both capture this

effect. For this dataset, there in fact appears to be little

difference between the two. Hence, while the underlying

logic for the weighted version of the dissimilarity measure

might be attractive, the additional complexity introduced

by the weighting may be unnecessary.

The results here on contact rates increasing with density,

but saturating at higher densities, are consistent with the find-

ings of Smith et al. [18], and later Hu et al. [19], who worked

with infection data from the same four natural populations of

field voles over the same time period for cowpox virus, a patho-

gen transmitted by direct contact. We note that the contact

networks we analyse are derived from trapping data and

hence edges between individuals do not indicate direct contact,

only that they shared the same trap at least once. The networks,

therefore, are arguably most relevant to indirectly transmitted

pathogens rather than directly transmitted pathogens such as

cowpox. The correlation between indirect and direct contacts
between voles is hard to predict and may depend on the age

and sex of the animals involved. While two voles that share

the same space are more likely to come into direct contact,

behaviour will play an important role and some animals may

actively avoid each other. However, the similarity between

the results here and from studies of cowpox transmission

may suggest that in this system there is a broad positive corre-

lation between indirect and direct contacts, with both showing

a similar relationship with density. Smith et al. [18] estimated

the relationship between density and direct host contact rate

by fitting the output of differential equation models to time-

series data on cowpox virus infection. They concluded that

the contact rate over the year as a whole is a saturating function

of field vole density, best modelled as intermediate between

density- and frequency-dependence.

Smith et al. [18] further noted that such nonlinearity is

consistent with a variety of plausible mechanisms, such as

heterogeneity in the host–contact network (with a higher pro-

portion of low-contact hosts at higher densities), or the limiting

time available for contacts to be made (such that contact rate

cannot keep pace with increasing density), or simply changes

in the behaviour of individuals with population density (e.g.

with individuals becoming more territorial at higher densities,

and only contacting those on territory borders). One key

benefit of studies such as those conducted here is that they

may shed light on the mechanistic (individual-level) basis for
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these population-level phenomena. In the present case, hetero-

geneity in contact rate decreased rather than increased at

higher densities and so is unlikely to have contributed to the

saturating curve. Our analysis adds nothing to considera-

tions of time limitation, but we believe that the nature of vole

contacts, passing one another in shared runways in the grass,

itself makes it unlikely that they ever reach a position where

there is simply no more time for further contact with con-

specifics. The tendency, however, for voles to make contacts

throughout the population at lower densities does indeed

make it likely, when density is low, that contact rate will increase

with density: the classic basis for density-dependent trans-

mission [25]. Whereas space-constrained contacts at higher

densities are akin to territorial behaviour and the consequent

tendency to contact only territorial neighbours, whose numbers

are relatively independent of density overall (classic frequency-

dependence). Our results therefore suggest that the transmission

function lying ‘between’ density- and frequency-dependence

selected by the analysis in Smith et al. [18] is generated by con-

tacts being closer to density-dependence at low densities and

closer to frequency-dependence at high densities.

Even so, while a transition to frequency-dependence might

be a good description of how the numbers of contacts changes

with density, the tendency to contact only territorial neighbours

implies that the spatial distribution of contacts also changes with

density. At higher densities then, there is a more severe departure
from the random-mixing assumption that underpins the dif-

ferential equation models used by Smith et al. [18]. As spatial

constraints on contacts increase there will be a stronger local

saturation effect: infected individuals will be more often

surrounded by recovered or already infected individuals.

Hence, part of the explanation for the ‘transitioning’ phenomena

at the population level may be that the fitted differential equation

models underestimate the contact rate (as a function of density)

in order to avoid overestimating the force of infection on the

remaining susceptible portion of the population.

As well as the mean number of contacts increasing with

population density, we observed that the level of individual

variation in contact rate also decreases. It is well known

that the variance of the degree distribution of a contact net-

work enters calculations for the basic reproduction number

in a nonlinear way, and that

R0 ¼ r0 1þ kk2l
kkl2

� �
,

where r0 is defined to be the basic reproduction number if there

was no heterogeneity in the numbers of contacts, and where

the sharp brackets represent averages over the degree distri-

bution, P(k) [9]. Note that this equation does not take into

account the effects of any clustering in the network and the

quantity kk2l=kkl2 is the CV of the degree distribution. For the

field vole populations, the data show that r0 increases with
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density (owing to increases in the average number of contacts)

and hence R0 too, but two other things also happen that

would reduce R0 or reduce the force of infection on the sus-

ceptible part of the population: (i) the CV decreases (the

networks become increasingly homogeneous), and (ii) the net-

works become more spatial. Hence, our data imply that there

may be a cancellation effect for R0, and more generally for patho-

gen transmission, whereby an increase in contact rate (and hence

increase in transmission) owing to higher densities is at least par-

tially ‘cancelled out’ by a decrease in individual heterogeneity

and an increase in the spatial constraints on the contacts of the

voles. This would predict that the spread of pathogens on

these vole contact networks could be relatively insensitive to

fluctuations in host density, and hence suggests an additional

hypothesis as to whyabundance thresholds operating in wildlife

disease systems are rarely detected [26].

The good-get-richer models which divided the population

into a large male class, a small male class and a female class

were broadly supported by the vole data and suggested

mature males were more likely to make contact with conspeci-

fics than other groups of voles. The four networks (from KCS)

for which this was not true show that the small male class

instead had the greatest propensity for contact and was less

constrained by distance. These networks may correspond to

trapping at times of the year where young males are dispers-

ing and seeking to establish their own territory. Overall,
these patterns add to the growing number suggesting that

large males may be particularly important in the transmission

of infection because they are ‘super-contactors’ (e.g. [7]).

Data for determining animal contact networks are collected

through a wide range of techniques (for a review see [3]), but

most often animals must be captured and tagged, meaning

that the contacts observed are between animals based within

the same finite area. Hence, datasets will inevitably exclude

long-range contacts that arise, for example, from dispersal move-

ments of maturing animals, and are unlikely to include contacts

with nomadic individuals moving through the study area, tend-

ing to overestimate spatial constraints. However, Craft et al. [2]

concluded that for the network of Serengeti lions, the presence

of nomadic individuals had marginal epidemiological impact,

especially for pathogens with short infectious periods. This sup-

ports our contention that even with rare long distance events,

spatial analyses of contact networks are worthwhile and spatial

constraints may play an important role.

The results here suggest that we stand to gain three things

from constructing well-defined network measures of spatial

constraint. First, we are able to infer that our animal contact

networks are indeed spatial. Values of D and l can be com-

pared with networks from randomized equivalent trapping

data to show that the observed network has significantly

higher values (it is necessary to randomize the trapping

data, rather than the edges of the observed network, if trap
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Table 1. AICc values for the four statistical models fitted to networks consisting of at least 50 individuals, for the site KCS. Model 0 represents the simplest
case wherein the rate of contact is the same constant value (see equation (2.1)) for all pairs of individuals, equivalent to the random-mixing assumption. Model
1 represents a simple model wherein the rate of contact decreases with distance between individuals. Models 2 and 3 are similar, respectively given by
equations (2.5) and (2.6) in the main text, both allow the parameters of Model 1 to vary between small males, large males and females, thus accounting for
some heterogeneity in the vole population. The lowest AICc value is highlighted in boldface, as well as any other AICc values for which the difference in AICc
from that for the best model is less than 2.

network
no.
voles

model 0
(constant)

model 1
(spatial)

model 2
(spatial 1 heterogeneity1)

model 3
(spatial 1 heterogeneity2)

2 50 589 327 329 327

3 84 1105 625 628 624

4 65 1008 582 579 571

6 87 256 145 148 137

7 149 2459 1282 1279 1275

8 124 2825 1369 1358 1352

9 141 2621 990 991 991

10 125 1149 529 530 525

11 164 3124 1432 1407 1386

12 242 3527 1740 1726 1718

13 219 6659 3234 3203 3208

14 232 5208 1970 1969 1969

15 141 1967 770 768 762

18 64 403 202 184 187

23 96 614 339 326 335

24 141 2754 1589 1527 1517

25 107 2107 944 944 935

26 81 707 334 338 336

28 77 1272 742 736 740

29 98 407 245 245 252

30 135 1449 856 854 858

31 98 1043 459 461 459

32 69 518 293 295 296
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locations are used to allocate individuals a spatial position

and define edges). Second, we gain a means of quantifying

differences between two or more contact networks and so a

basis for comparing different sites, species or times of year.

Third, the measures lay the basis for mathematical descrip-

tions of wildlife contact networks which could be used to

generate theoretical networks representing host populations

at much larger spatial scales, more relevant to real wildlife

populations.
Data accessibility. The authors are happy to make the original data avail-
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