CrossMark

data reports

CRYSTALLOGRAPHIC COMMUNICATIONS

OPEN access

Crystal structure of catena-poly[[trimethyltin(IV)]-µ-2-(2-nitrophenyl)acetato- $\kappa^2 O:O'$]

Muhammad Danish,^a Muhammad Nawaz Tahir,^b* Sana Iftikhar,^a Muhammad Asam Raza^a and Muhammad **Ashfag**^a

^aDepartment of Chemistry, Institute of Natural Sciences, University of Gujrat, Gujrat 50700, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan. *Correspondence e-mail: dmntahir_uos@yahoo.com

Received 27 January 2015; accepted 30 January 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title one-dimensional coordination polymer, $[Sn(CH_3)_3(C_8H_6NO_4)]_n$, the Sn^{IV} atom is coordinated by three methyl C atoms and two carboxylate O atoms (one symmetry generated), resulting in an almost regular SnC₃O₂ trigonal pyramid. The C atoms occupy the equatorial sites and the O atoms occupy the axial sites. In the ligand, the dihedral angles between the benzene ring and the pendant acetate and nitro groups are 57.7 (1) and 36.9 (3) $^{\circ}$, respectively. The bridging ligand leads to [010] chains in the crystal, with adjacent metal atoms related by a 2_1 screw axis. A weak $\pi - \pi$ interaction exists between the centroids of symmetry-related benzene rings at a distance of 3.9131 (19) Å.

Keywords: crystal structure; one-dimensional coordination polymer; trimethyltin(IV) complex; π - π interaction.

CCDC reference: 1046314

1. Related literature

For related structures see: Tahir et al. (1997a,b); Tariq et al. (2013); Yang et al. (2009); Wen et al. (2009); Danish et al. (2015).

2. Experimental

2.1. Crystal data $[Sn(CH_3)_3(C_8H_6NO_4)]$ $M_r = 343.93$ Monoclinic, C2/c a = 12.6068 (5) Å b = 9.9798 (4) Å c = 22.7581(9) Å $\beta = 100.174 \ (2)^{\circ}$

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan SADABS (Bruker, 2005) $T_{\rm min} = 0.532, \ T_{\rm max} = 0.631$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.057$ S = 1.103070 reflections

Z = 8Mo $K\alpha$ radiation $\mu = 1.82 \text{ mm}^{-1}$ T = 296 K $0.40 \times 0.32 \times 0.28 \text{ mm}$

V = 2818.25 (19) Å³

11546 measured reflections
3074 independent reflections
2734 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.022$

157 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Sn1-C3	2.114 (3)	Sn1-O1	2.1970 (18)
Sn1-C2	2.120 (3)	Sn1-O2 ⁱ	2.359 (2)
Sn1-C1	2.121 (3)		
Symmetry code: (i	$-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$		

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7359).

References

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Danish, M., Tahir, M. N., Iftikhar, S., Raza, M. A. & Ashfaq, M. (2015). Acta Cryst. E71, m59–m60.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tahir, M. N., Ülkü, D., Ali, S., Masood, T., Danish, M. & Mazhar, M. (1997a). Acta Cryst. C53, 1574–1576.
- Tahir, M. N., Ülkü, D., Danish, M., Ali, S., Badshah, A. & Mazhar, M. (1997b). Acta Cryst. C53, 183–185.
- Tariq, M., Ali, S., Shah, N. A., Muhammad, N., Tahir, M. N., Khalid, N. & Khan, M. R. (2013). Polyhedron, 57, 127–137.
- Wen, L., Yin, H. & Li, W. (2009). Acta Cryst. E65, m1261.
- Yang, M., Yin, H., Wen, L., Li, W. & Wang, D. (2009). Acta Cryst. E65, m35.

supporting information

Acta Cryst. (2015). E71, m52-m53 [doi:10.1107/S205698901500198X]

Crystal structure of *catena*-poly[[trimethyltin(IV)]- μ -2-(2-nitrophenyl)acetato- $\kappa^2 O:O'$]

Muhammad Danish, Muhammad Nawaz Tahir, Sana Iftikhar, Muhammad Asam Raza and Muhammad Ashfaq

S1. Comment

The tin complex (I), (Fig. 1) is in continuation of synthesizing various metal complexes with (2-nitrophenyl)acetic acid. In this context, we have reported the cobalt complex namely "Tetraaquabis((2-nitrophenyl)acetato-O) cobalt(II)" (Danish *et al.*, 2015).

The crystal structures of *catena*-Poly[[trimethyltin(IV)]- μ -2-(2-chlorophenyl) acetato] (Wen *et al.*, 2009), *catena*-[bis-(μ 2–3-(2- fluorophenyl)-2-methylprop-2-enoato)-hexamethyl-di-tin] (Tariq *et al.*, 2013), *catena*-poly[[trimethyltin(IV)]- μ -2-(3-thienyl)acetato] (Yang *et al.*, 2009), *catena*-((μ 2–2-(3-benzoylphenyl)propanoato-)- trimethyl-tin(iv)) (Tahir *et al.*, 1997*a*), {2-[(2,3-Dimethylphenyl)amino] benzoato-*O*:*O*'} trimethyltin(IV) (Tahir *et al.*, 1997*b*) have been published which are related to the title compound due to coordination around the tin.

The Sn atom has a distorted trigonal bipyramidal geometry. The basal plane consists of three methyl groups and the apical position are occupied by the O-atoms of two carboxylate ligands. The Sn atom is 0.1082 (20) Å out of the equatorial plane towards the more strongly bound O1 atom. The Sn—O bond lengths are significantly different [Snl–O1 2.197 (2) and Snl–O2 2.359 (2) Å]. In the asymmetric unit the acetato moiety *A* (O1/C4/C5/O2), benzene ring *B* (C6–C11) are planar with r.m.s. deviation of 0.0020 and 0.0059 Å, respectively. The dihedral angle between A/B is 57.727 (115)°. The nitro group is oriented at a dihedral angle of 36.896 (298)° with the benzene ring. The molecules form one-dimensional polymeric chains (Fig. 2) running along the crystallographic *b*-axis. There exist a π - π interaction between Cg1···Cg1ⁱ [i = 1 - x, -y, -z] at a distance of 3.9131 (19) Å, where Cg1 is the centroid of benzene ring.

S2. Experimental

The silver salt (1.44 g, 0.01 M) of 2-nitrophenyl acetic acid was suspended in 50 ml chloroform in a round bottom flask equipped with condenser and magnetic stirrer. Trimethyltin chloride (0.995 g, 0.01 M) in 5 ml of chloroform was added under inert atmosphere and reflux the reaction mixture for 4 h. The reaction mixture was allowed to cool to room temperature and stayed overnight then filtered. The residue was washed with chloroform and collected. It was concentrated on rotary evaporated and kept for crystallization. Colourless prisms were obtained after a week.

S3. Refinement

The H atoms were positioned geometrically (C—H = 0.93—0.97 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and x = 1.2 for other H-atoms.

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Fragment of an [010] chain in the structure of the title compound.

catena-poly[[trimethyltin(IV)]- μ -2-(2-nitrophenyl)acetato- $\kappa^2 O:O'$]

Crystal data [Sn(CH₃)₃(C₈H₆NO₄)] $M_r = 343.93$ Monoclinic, C2/c a = 12.6068 (5) Å b = 9.9798 (4) Å c = 22.7581 (9) Å $\beta = 100.174$ (2)° V = 2818.25 (19) Å³ Z = 8

F(000) = 1360 $D_x = 1.621 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2734 reflections $\theta = 1.8-27.0^{\circ}$ $\mu = 1.82 \text{ mm}^{-1}$ T = 296 KPrism, white $0.40 \times 0.32 \times 0.28 \text{ mm}$ Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.80 pixels mm ⁻¹ ω scans Absorption correction: multi-scan <i>SADABS</i> (Bruker, 2005) $T_{min} = 0.532, T_{max} = 0.631$	11546 measured reflections 3074 independent reflections 2734 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -16 \rightarrow 15$ $k = -12 \rightarrow 12$ $l = -29 \rightarrow 29$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.057$ S = 1.10 3070 reflections 157 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0174P)^2 + 4.9157P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.74 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.53 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.69602 (2)	0.44371 (2)	0.23090 (2)	0.04257 (7)	
01	0.61758 (15)	0.28730 (18)	0.17044 (8)	0.0471 (4)	
O2	0.72746 (19)	0.1326 (2)	0.21529 (9)	0.0624 (6)	
03	0.6779 (3)	0.4159 (3)	0.04647 (14)	0.1042 (10)	
O4	0.7472 (2)	0.2230 (3)	0.07130 (12)	0.0876 (8)	
N1	0.6705 (3)	0.2954 (3)	0.05335 (12)	0.0681 (8)	
C1	0.6587 (3)	0.3576 (3)	0.30997 (13)	0.0573 (7)	
H1A	0.5941	0.3052	0.3003	0.086*	
H1B	0.6480	0.4275	0.3373	0.086*	
H1C	0.7170	0.3011	0.3281	0.086*	
C2	0.5890 (3)	0.5844 (3)	0.18216 (15)	0.0633 (8)	
H2A	0.5272	0.5954	0.2010	0.095*	
H2B	0.5664	0.5527	0.1421	0.095*	
H2C	0.6250	0.6690	0.1813	0.095*	
C3	0.8483 (3)	0.4203 (4)	0.20539 (16)	0.0690 (9)	
H3A	0.8964	0.3757	0.2367	0.104*	

H3B	0.8770	0.5068	0.1984	0.104*	
H3C	0.8406	0.3679	0.1695	0.104*	
C4	0.6539 (2)	0.1693 (3)	0.17451 (12)	0.0464 (6)	
C5	0.6056 (3)	0.0706 (3)	0.12693 (13)	0.0569 (8)	
H5A	0.6640	0.0225	0.1137	0.068*	
H5B	0.5639	0.0056	0.1450	0.068*	
C6	0.5342 (2)	0.1286 (3)	0.07277 (11)	0.0444 (6)	
C7	0.4315 (3)	0.0782 (3)	0.05457 (13)	0.0535 (7)	
H7	0.4080	0.0084	0.0761	0.064*	
C8	0.3627 (3)	0.1280 (4)	0.00569 (14)	0.0617 (8)	
H8	0.2946	0.0907	-0.0056	0.074*	
C9	0.3944 (3)	0.2319 (4)	-0.02628 (15)	0.0684 (9)	
H9	0.3480	0.2656	-0.0593	0.082*	
C10	0.4947 (3)	0.2861 (3)	-0.00945 (14)	0.0641 (8)	
H10	0.5163	0.3580	-0.0305	0.077*	
C11	0.5636 (2)	0.2338 (3)	0.03875 (12)	0.0490 (6)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.04503 (11)	0.04110 (11)	0.04012 (11)	-0.00067 (8)	0.00347 (7)	0.00225 (8)
O1	0.0541 (11)	0.0384 (10)	0.0459 (10)	0.0023 (8)	0.0006 (8)	-0.0024 (8)
O2	0.0797 (15)	0.0481 (12)	0.0518 (12)	0.0101 (11)	-0.0096 (11)	0.0010 (9)
O3	0.116 (2)	0.093 (2)	0.104 (2)	-0.0586 (19)	0.0209 (18)	0.0090 (17)
O4	0.0527 (14)	0.133 (3)	0.0780 (17)	-0.0086 (16)	0.0135 (13)	-0.0147 (17)
N1	0.0668 (19)	0.086 (2)	0.0540 (16)	-0.0253 (17)	0.0186 (14)	-0.0068 (15)
C1	0.0634 (19)	0.0589 (18)	0.0512 (17)	0.0007 (15)	0.0141 (14)	0.0050 (14)
C2	0.066 (2)	0.0493 (17)	0.068 (2)	0.0012 (15)	-0.0085 (16)	0.0092 (15)
C3	0.0542 (19)	0.085 (2)	0.070 (2)	-0.0089 (17)	0.0177 (16)	-0.0059 (18)
C4	0.0551 (16)	0.0409 (14)	0.0416 (14)	-0.0017 (12)	0.0039 (12)	0.0019 (11)
C5	0.073 (2)	0.0393 (15)	0.0527 (17)	0.0006 (14)	-0.0041 (14)	-0.0015 (12)
C6	0.0546 (16)	0.0384 (13)	0.0396 (13)	-0.0023 (12)	0.0066 (12)	-0.0056 (11)
C7	0.0619 (18)	0.0480 (16)	0.0519 (16)	-0.0125 (13)	0.0139 (14)	-0.0047 (13)
C8	0.0505 (17)	0.074 (2)	0.0588 (19)	-0.0074 (16)	0.0050 (14)	-0.0105 (17)
C9	0.071 (2)	0.076 (2)	0.0523 (18)	0.0025 (18)	-0.0070 (16)	0.0032 (17)
C10	0.084 (2)	0.0593 (19)	0.0479 (17)	-0.0088 (18)	0.0076 (16)	0.0102 (15)
C11	0.0508 (16)	0.0533 (16)	0.0429 (14)	-0.0090 (13)	0.0088 (12)	-0.0046 (12)

Geometric parameters (Å, °)

Sn1—C3	2.114 (3)	С3—НЗА	0.9600
Sn1—C2	2.120 (3)	C3—H3B	0.9600
Sn1—C1	2.121 (3)	C3—H3C	0.9600
Sn1—O1	2.1970 (18)	C4—C5	1.510 (4)
Sn1—O2 ⁱ	2.359 (2)	C5—C6	1.507 (4)
O1—C4	1.261 (3)	C5—H5A	0.9700
O2—C4	1.245 (3)	С5—Н5В	0.9700
O2—Sn1 ⁱⁱ	2.359 (2)	С6—С7	1.383 (4)

O3—N1	1.219 (4)	C6—C11	1.393 (4)
O4—N1	1.218 (4)	C7—C8	1.376 (4)
N1—C11	1.465 (4)	С7—Н7	0.9300
C1—H1A	0.9600	C8—C9	1.367 (5)
C1—H1B	0.9600	С8—Н8	0.9300
C1—H1C	0.9600	C9—C10	1.366 (5)
C2—H2A	0.9600	С9—Н9	0.9300
C2—H2B	0.9600	C10—C11	1.375 (4)
C2—H2C	0.9600	С10—Н10	0.9300
C3—Sn1—C2	117.01 (14)	Sn1—C3—H3C	109.5
C3—Sn1—C1	122.46 (14)	НЗА—СЗ—НЗС	109.5
C2—Sn1—C1	119.75 (13)	НЗВ—СЗ—НЗС	109.5
C3—Sn1—O1	94.58 (11)	O2—C4—O1	122.8 (3)
C2—Sn1—O1	88.20 (10)	O2—C4—C5	119.7 (3)
C1—Sn1—O1	95.78 (10)	O1—C4—C5	117.5 (2)
$C3$ — $Sn1$ — $O2^{i}$	85.57 (12)	C6—C5—C4	116.3 (2)
$C2$ — $Sn1$ — $O2^{i}$	84.62 (10)	С6—С5—Н5А	108.2
$C1$ — $Sn1$ — $O2^{i}$	90.86 (10)	С4—С5—Н5А	108.2
O1—Sn1—O2 ⁱ	172.00 (7)	С6—С5—Н5В	108.2
C4—O1—Sn1	120.00 (17)	С4—С5—Н5В	108.2
C4—O2—Sn1 ⁱⁱ	143.50 (19)	H5A—C5—H5B	107.4
O4—N1—O3	123.7 (3)	C7—C6—C11	115.7 (3)
O4—N1—C11	118.1 (3)	C7—C6—C5	119.8 (3)
O3—N1—C11	118.2 (3)	C11—C6—C5	124.4 (3)
Sn1—C1—H1A	109.5	C8—C7—C6	122.3 (3)
Sn1—C1—H1B	109.5	С8—С7—Н7	118.9
H1A—C1—H1B	109.5	С6—С7—Н7	118.9
Sn1—C1—H1C	109.5	C9—C8—C7	120.2 (3)
H1A—C1—H1C	109.5	С9—С8—Н8	119.9
H1B—C1—H1C	109.5	С7—С8—Н8	119.9
Sn1—C2—H2A	109.5	С10—С9—С8	119.6 (3)
Sn1—C2—H2B	109.5	С10—С9—Н9	120.2
H2A—C2—H2B	109.5	С8—С9—Н9	120.2
Sn1—C2—H2C	109.5	C9—C10—C11	119.7 (3)
H2A—C2—H2C	109.5	С9—С10—Н10	120.1
H2B—C2—H2C	109.5	C11—C10—H10	120.1
Sn1—C3—H3A	109.5	C10—C11—C6	122.5 (3)
Sn1—C3—H3B	109.5	C10—C11—N1	116.6 (3)
НЗА—СЗ—НЗВ	109.5	C6-C11-N1	120.9 (3)
Sn1 ⁿ —O2—C4—O1	156.5 (2)	C8—C9—C10—C11	1.3 (6)
Sn1 ⁿ —O2—C4—C5	-24.2 (5)	C9—C10—C11—C6	-1.8(5)
Sn1—O1—C4—O2	6.9 (4)	C9—C10—C11—N1	178.8 (3)
Sn1—O1—C4—C5	-172.5 (2)	C7—C6—C11—C10	0.8 (4)
02	-167.8 (3)	C5-C6-C11-C10	-178.2 (3)
01	11.6 (4)	C/C6C11N1	-179.7 (3)
C4—C5—C6—C7	-127.1 (3)	C5—C6—C11—N1	1.2 (4)

C4—C5—C6—C11	51.9 (4)	O4—N1—C11—C10	-143.4 (3)
C11—C6—C7—C8	0.5 (4)	O3—N1—C11—C10	36.1 (4)
C5—C6—C7—C8	179.6 (3)	O4—N1—C11—C6	37.2 (4)
C6—C7—C8—C9	-1.0 (5)	O3—N1—C11—C6	-143.3 (3)
C7—C8—C9—C10	0.0 (5)		

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2; (ii) -x+3/2, y-1/2, -z+1/2.