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Abstract

In light of current debates on global climate change it has become important to know more

on how large, roaming species have responded to environmental change in the past. Using

the highly variable mitochondrial control region, we revisit theories of Rangifer colonization

and propose that the High Arctic archipelagos of Svalbard, Franz Josef Land, and Novaia

Zemlia were colonized by reindeer from the Eurasian mainland after the last glacial maxi-

mum. Comparing mtDNA control region sequences from the three Arctic archipelagos

showed a strong genetic connection between the populations, supporting a common origin

in the past. A genetic connection between the three archipelagos and two Russian mainland

populations was also found, suggesting colonization of the Eurasian high Arctic archipela-

gos from the Eurasian mainland. The age of the Franz Josef Land material (>2000 years

before present) implies that Arctic indigenous reindeer colonized the Eurasian Arctic archi-

pelagos through natural dispersal, before humans approached this region.

Introduction

Climatic oscillations over the Quaternary (2.4 million years ago–present) have had a major

impact on the geographic distribution and genetic structure of species through population

extinctions and range shifts [1]. The demographic impact of range shifts alters the genetic

structure of populations by the elimination of populations and lineages, reduction in genetic

variation due to bottlenecks and founder events, as well as the spread of mutations by selection

and population expansion [2]. How individual populations respond to such changes varies

with their environmental tolerance, their ability to adapt [3] and their capacity to disperse to

accommodate the rate of environmental change [4]. Arctic landscapes pose a particular chal-

lenge for terrestrial mammals due to the vastness and the way that intermittent ice-cover,

oceans, and topography fragment the landscape. Furthermore, Arctic species are considered

particularly vulnerable to climate changes, as even small changes may result in immediate and

long-lasting effects [5].
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Reindeer and caribou (Rangifer tarandus) is a keystone species in the circumpolar North,

not only ecologically through the way they impact upon the plant cover [6], but also as a source

of subsistence to local residents and more recently as a focus for defining protected areas [7].

Fossil evidence shows that during the Pleistocene, Rangifer was distributed south of the ice

sheet in both Eurasia and in North America, and in the Beringia refugium encompassing the

Bering land bridge, Alaska, as well as large parts of Siberia [8]. Rangifer exhibit distinct mor-

phological adaptations to different environments, and populations have been subdivided into

various ecotypes according to their life-history strategies and ecological conditions such as the

woodland or boreal forest or sedentary form, the barren-ground or tundra or migratory form,

the mountain form, and the Arctic form [8]. The Arctic form, thought to be better adapted to

cold, open environments, is usually recognized by its small body size, with short rostrum and

legs, as well as a thicker, paler winter pelage [9]. The morphologically-based Arctic type is

made up of several populations: Svalbard reindeer (R.t platyrhynchus), distributed on the Sval-

bard archipelago, the North American Peary caribou (R.t pearyi) primarily distributed on the

Canadian Arctic archipelagos, and the recently extinct R.t eogroenlandicus, formerly distrib-

uted on Eastern parts of Greenland [10]. In the Arctic, also less morphologically distinct rein-

deer exists as those on Novaia Zemlia in northern Russia. Russian taxonomists classify the

reindeer inhabiting the Novaia Zemlia archipelago as members of the tundra type [11–15] and

have since 2001 been registered by the Russian Federation as a geographically isolated subspe-

cies (R.t. pearsoni) with a view to restoration [16, 17].

There has been a wide-ranging debate on the colonization routes and dispersal of Arctic

reindeer inhabiting the islands in the western Eurasian and North American Arctic [8, 9, 18,

19]. Mitochondrial DNA (mtDNA) has shown to be a highly useful marker to describe past

extinction and range expansions on near-present evolutionary time scales [20]. Based on con-

temporary- and ancient mtDNA, different refugia and colonization routes have been suggested

for a range of roaming terrestrial arctic species like the collared lemming (Dicrostonyx groen-
landicus) [21], reindeer (Rangifer tarandus) [19], the Arctic fox (Alopex lagopus) [22] and the

wolverine (Gulo gulo) [23]. Svalbard reindeer, Peary caribou and R.t eogroenlandicus have been

shown to comprise of mtDNA haplotypes signalling a common origin in an ancient Beringian

and/or Eurasian pre-glacial population [19]. Recent genetic studies of Novaia Zemlia reindeer

have demonstrated the same [14]. The fact that Peary caribou and R.t eogroenlandicus shared

certain mtDNA haplotypes, morphological similarities, as well as have been observed to

migrate from Ellesmere Island to North Greenland, provides convincing evidence for a North

American colonization route for these two subspecies [9]. However, the colonization route of

the existing archipelagic Svalbard and Novaia Zemlia reindeer populations has remained an

open question.

Svalbard reindeer are characterized by low genetic variability indicating isolation, possible

bottlenecks, and subsequent genetic drift as important population processes [24, 25]. The Sval-

bard population is characterized by three control region (CR) haplotypes which were previ-

ously thought to be unique to Svalbard [26]. However, the most common of these was also

found in northern Québec, supporting the idea that these reindeer might have colonized Sval-

bard from North America [19]. This idea found support in the previously reported similarities

in transferrin polymorphism between Svalbard reindeer and Peary caribou and with both hav-

ing some similarities with the American woodland caribou [27, 28]. A recent genetic survey of

wild reindeer populations on Novaia Zemlia have identified nine distinct CR haplotypes, with

six thought to be unique to the archipelago [29] and the others showing links both Westward

and Eastward. The population is further characterized to show low levels of variation com-

pared to mainland populations [29]. Grineve ͡tskiĭ[30] in 1883 first recorded two different

types of wild reindeer distributed on the Novaia Zemlia archipelago–one on the South Island
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and one on the North Island–and reported that local hunters identified a morphological simi-

larity between the latter and animals living on Svalbard. The existence of two separate “races”

on the archipelago was repeated by Sokolov [31]. These earlier observations spoke to a com-

mon colonization route for all High Arctic reindeer from Eurasia.

The idea that the wild reindeer on some of the Arctic archipelagos might have been geneti-

cally linked to the Eurasian mainland was first raised by Gravlund et al. [9] who found a CR

haplotype common on Svalbard in a sample from the wild reindeer population on western

part of the Taimyr peninsula. The Taimyr population is considered to be the largest wild rein-

deer population in Eurasia, covering the northern parts of central and partly western Siberia

[32]. An early published observation of a possible contemporary migration of a single reindeer

bull from Novaia Zemlia to Svalbard over the winter ice presented a possible route. Nøis [33]

speculated that Svalbard may have been colonized by reindeer from the Novaia Zemlia archi-

pelago, situated 770 km south east of Svalbard, using the Franz Josef Land group of islands as a

stepping stone [34]. The distance from the Franz Josef Land archipelago to Svalbard is approxi-

mately 400 km. Although there are no reindeer surviving on Franz Josef Land today, archaic

bones and antlers are widely distributed [9, 35]. Previous radiocarbon dating of reindeer ant-

lers sampled on the archipelago indicates that reindeer occupied Franz Josef Land as early as

~6000 years before present (YBP) [36].

A third account of the colonization of some of the High Arctic islands focusses on human-

instigated translocations. Resolving the question of possible human induced translocation is

important for the issue of introgression from domestic herds, a key parameter for classifying

protection status of populations. There is a relatively broad Russian language literature docu-

menting the human interest in wild reindeer, and the movement of reindeer herds between

islands in the Eastern Barents Sea in historic times [16, 37, 38]. These sources point to the

hunting of wild reindeer by Pomor or Viking coastal dwellers in Novaia Zemlia archipelago

from the 12th century onwards [39]. There is one record of domestic reindeer being translo-

cated to the islands by an academic expedition in 1896 [40], although local Nenets families liv-

ing on the South Island of Novaia Zemlia in the 19th century were recorded as living without

domestic reindeer [38]. There are well-documented attempts of the early Soviet authorities to

translocate up to 604 head of domestic reindeer from Kolguev Island between 1928 and 1933

[41]. There are also scattered references to wild reindeer migrating over the ice from the Sibe-

rian mainland to Novaia Zemlia [16, 37, 38]. Finally, translocation of domestic reindeer from

the Norwegian mainland to Svalbard, during expeditions taking place in 1872 and 1913, are

also documented [42]. However, there are no domestic reindeer on Novaia Zemlia or on Sval-

bard today.

Here, we use the highly variable CR to compare sequence data from contemporary reindeer

populations on Svalbard and Novaia Zemlia, with ancient samples from the now extinct popu-

lation on the Franz Josef Land archipelago. Despite the work done comparing Svalbard rein-

deer to the mainland Rangifer populations in both North America and Eurasia, there has been

a conspicuous lack of studies comparing the reindeer populations on each of these three neigh-

bouring archipelagos to each other–the clearest approach to discussing possible common colo-

nization routes. A genetic link between Svalbard, Novaia Zemlia and Franz Josef Land would

tell us if these archipelagic populations have a common origin and also help to answer the

question of whether or not the current distribution of the Arctic type is caused by natural dis-

persal or recent human induced dispersal of domestic reindeer. We also included sequence

data from reindeer on the nearest population of domestic reindeer situated on Kolguev Island

to test for introgression from domestic reindeer. Two wild mainland- and one wild island pop-

ulation from Russia were included to help answer the question of a possible biographical link

between the Arctic archipelagos and the Eurasian mainland.
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Material and Methods

Study populations

Blood-, muscle- and archaic antler samples were obtained from arctic populations on Svalbard

(n = 3, in addition to 24 sequences downloaded from GenBank), Novaia Zemlia (n = 20) and

Franz Josef Land (n = 15.) The Svalbard population was sampled at Nordenskiöld Land on

Spitsbergen and on Nordaustlandet. Wild reindeer samples from Novaia Zemlia were collected

on the South Island (Fig 1A, S2 Table). Archaic antlers were collected on Hooker- and Hays

islands on the Franz Josef Land group. Four of these samples were 14C dated (S1 Table). Skin-

and velvet samples were collected from wild reindeer on Belyi Island (n = 22), and from

domestic reindeer from Kolguev Island (n = 24). Belyi Island lies 430 km to the south and east

of Novaia Zemlia and directly North of the Iamal peninsula and has a distinct population of

wild reindeer [43, 44]. Kolguev Island lies 254 km Southwest of Novaia Zemlia and has sup-

ported Nenets domestic reindeer breeders [45] as well as a history of provisioning Novaia

Zemlia with domestic stock in the 19th and early 20th century. Sequences from two continental

wild reindeer populations, the Peza River Basin, Peza district, Arkhangelsk oblast’ (n = 6) and

the headwaters of the Pechora River in the Pechro-Ilychskii Nature Reserve, Komi Republic

(n = 10), were downloaded from GenBank and included in the analyses in order to test for pos-

sible gene flow between the mainland and the archipelagos (S2 Table). Additional sequences

from these populations were provided by the investigators (n = 13) [46, 47] (S2 Table). The

Fig 1. Sampling locations and phylogenetic network showing genealogical relationships in the CR

between reindeer populations. Map of Northern Eurasia, with focus on the Eurasian Arctic archipelagos, showing

the geographic origin of the samples (a) and a MJ network of the 122 CR sequences (400 bp) (b). Five previously

described haplotype clusters (Ic, Id, Ie, and II) [26, 69] are identified. The MJ network show haplotype sharing

between Svalbard (turquoise), Novaia Zemlia (green) and Pechora River (pink) within sub-cluster Ic. Including the

Franz Josef Land samples (asterisk) show that 13 of the 15 ancient samples sequenced were identical to the most

common haplotype found on Svalbard and on Novaia Zemlia. We also found one individual with a haplotype

belonging to sub-cluster Ie, and one haplotype that is unique for Franz Josef Land. The map (a) is printed here for

the first time under a CC BY license, with permission of the cartographer Allessandro Pasquini.

doi:10.1371/journal.pone.0165237.g001
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Peza River population is classified as a forest reindeer ecotype and the Pechora River popula-

tion as a forest-mountain reindeer ecotype [47]. To our knowledge, these populations have not

previously been compared with Eurasian arctic archipelagic populations.

Ethics statement

Blood and muscle samples from Svalbard were collected as part of the Man and the Biosphere

(MAB) project which started in 1978. The Svalbard MAB field project was coordinated by the

Norwegian Polar Institute (Norway’s central governmental institution for scientific research,

mapping and environmental monitoring in the Arctic and the Antarctic). Hunting permits of

reindeer within the Svalbard MAB field project was approved by the Governor of Svalbard.

Sampling of muscle-, skin- and velvet samples from Novaia Zemlia, Belyi Island and Kolguev

required no specific permits and was done under an ethics review for the ERC Arctic Domus

and performed under the ERC Arctic Domus ethics annex.

Muscle and skin samples of wild reindeer from Novaia Zemlia and Belyi Island were col-

lected from dead animals via subsistence hunting. The sampling was conducted by the autho-

rized managers of these populations, according to the regulations stated by the Ministry of

Nature Protection of the Russian Federation. Velvet samples from domestic reindeer on Kol-

guev Island was collected from dead animals during industrial slaughter. No animals were sac-

rificed for this study and the field work did not involve endangered or protected species.

DNA analyses of contemporary samples

Tissue samples were stored in ethanol (� 80%) or kept frozen until analysed, blood samples

were stored in EDTA. DNA extraction of muscle-, velvet- and skin samples was performed

using DNeasy Blood & Tissue Kit (Qiagen) following the manufactures protocol. DNA extrac-

tion from EDTA blood was carried out using DNeasy Blood & Tissue Kit (Qiagen) or by using

a boiling method for DNA extraction (SI).

A 503 base pair (bp) long fragment from the mitochondrial control region was amplified

using the forward primer RtCRF (5‘-AAT AGC CCC ACT ATG AGC ACCC-3‘) [19] and the

reverse primer RtCR-528 (5‘-TAG GTG AGA TGG CCC TGA AGA AA-3‘) [48]. Amplifica-

tion was performed using the following program: 95˚C for 2 min, 95˚C for 30 sec, 55˚C for 30

sec and 72 oC for 1 min (step 2–4 cycled 30 times) and finally 72 oC for 10 min. PCR reactions

were performed in 20 μl total volume using 1–2 μl DNA template, and with the following final

concentrations; 1X buffer, 1.5 mM MgCl2, 0.8 mM dNTPs, 5 pmol of each primer, 0.5 μg/μl

Bovine Serum Albumin (BSA), 0.5 U/μl AmpliTaq DNA polymerase (Applied Biosystems),

and dH2O to make up the remaining volume.

The samples were cleaned for unincorporated primers and nucleotides using Illustra Exo-

ProStar (GE Healthcare) diluted 10 times. Cycle sequencing was performed in a 10 μl reaction

volume, using BigDye v3.1 sequencing kit (Applied Biosystems) following manufacturer‘s rec-

ommendations. Purification was carried out using standard EDTA/EtOH precipitation. Capil-

lary electrophoresis and data analysis were performed with an ABI 3130xL- or 3500xL

instrument (Applied Biosystems). All sequences were sequenced in both directions and the

consensus sequences were aligned by ClustalW [49] and edited in MEGA v5.2 [50]. The

sequence alignment was trimmed to 400 bp to be aligned with sequences downloaded from

GenBank.

DNA analyses of ancient samples

DNA was extracted from antler powder using DNeasy Blood & Tissue kit (Qiagen) following

Bjørnstad and Røed [48]. Standard precautions for working with ancient samples were
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undertaken [51, 52]. All equipment and working surfaces were cleaned using sodium hypo-

chlorite, ethanol or UV-light. Samples were mechanically cleaned and the outer surface was

removed before drilling out the powder. To test for contamination, blank extraction and PCR

controls were used in each PCR reaction and only DNA sequences which could be replicated

from at least two independent amplifications of each primer pair were accepted.

From the ancient material a 266 bp fragment of the mtDNA control region was amplified

using the primer pair 259F/524R (5’–TGCCCCATGCTTATAAGCAAG–3’/ 5’–GTGAGATG

GCCCTGAAGAAA–’3), or by amplifying two overlapping amplicons of respectively 140 bp

with primers 259F and 398R (5’- CCTTTCTTGTCAACATGCGTA– 3’) and 178 bp with

primers 347 F (5’–TGCCCCATGCTTATAAGCAAG–3’) and 524R. PCR amplification and

sequencing were performed as in Bjørnstad and Røed [48]. The sequences were aligned by

ClustalW and edited in MEGA v5.2. The sequence alignment was trimmed down to 190 bp.

14C dating of ancient samples

For a verification of the time horizon, we 14C dated 4 antler samples from Franz Josef Land

which also amplified successful DNA (S1 Table). All 14C dates were calibrated using CALIB

6.1.1 [53] based on the data set IntCal13 [54]. The 14C dating of 4 of the 15 ancient samples

from Franz Josef Land all revealed an age of more than 2000 years (2468–3835 YBP, S1 Table),

suggesting that these samples are from wild, indigenous reindeer.

Statistical analyses

DNA polymorphism estimates (number of haplotypes, gene diversity and nucleotide diversity)

were calculated in DnaSP [55] for the contemporary populations, and for the data set includ-

ing the ancient antler samples. Genealogical relationships were examined by constructing a

Median Joining (MJ) network [56] using Network v4.6 (fluxus-engineering.com). BEAST

v1.8.0 [57] was used to construct a Bayesian phylogeny based on the haplotypes identified in

the dataset comprising the contemporary populations. We used the HKY G+I substitution

model and the substitution rate was set to 58.9%/Myr [58]. The analyses were run for 100 000

000 generations and 10% of the initial samples was removed as burn-in. Convergence was

assessed in TRACER [59] and the effective sample size for all parameters were above the gen-

eral recommendation (ESS> 200). We used Arlequin v.3.5 [60] to test for recent demographic

expansion of the sub-cluster dominating on the Arctic archipelagos by calculating the mis-

match distributions of pairwise nucleotide differences [61, 62], as implemented in Arlequin

and with 10 000 bootstrap replicates. For the same sub-cluster, Arlequin was used to calculate

the sum of squared deviations (SSD) to test if the observed distribution deviated significantly

from the expected under the population expansion model. The Harpending Raggedness index

[63] was calculated to check for demographic changes. A smooth morphology indicates a pop-

ulation expansion, whereas a ragged morphology indicates constant population size [63]. Arle-

quin was used to calculate Fu‘s Fs [64] and Tajima‘s D [65] to check for deviations from

neutrality. We used DnaSP to estimate a third neutrality test, the Ramos-Onsin’s and Roza’s

[66] R2 value, which may be more appropriate when dealing with small sample sizes. Haplo-

type frequencies in each of the seven populations were calculated in Arlequin.

Results

A total of 137 samples from seven populations were analyzed for the mitochondrial control

region, including 122 contemporary- and 15 ancient samples. The 400 bp long alignment,

comprising the contemporary populations, varied from low to relatively high levels of genetic

diversity with a total of 30 haplotypes, overall haplotype diversity (Hd) = 0.910, and nucleotide
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diversity (π) = 0.019 (Table 1). The Svalbard population exhibited the lowest level of variation

(Hd = 0.570, π = 0.002) showing 3 haplotypes. The Novaia Zemlia population showed an inter-

mediate level of genetic diversity (Hd = 0.632, π = 0.018) and in our study 5 haplotypes were

identified. The domestic population from Kolguev Island showed an intermediate level of hap-

lotype diversity and low levels of nucleotide diversity (Hd = 0.728, π = 0.009) and 6 haplotypes

were found. The wild population from Belyi Island exhibited relatively high levels of variation

(Hd = 0.814, π = 0.018) with 6 haplotypes identified. The two wild mainland populations from

the Peza and Pechora river basins also showed high levels of variation (Hd = 0.800, π = 0.018

and Hd = 0.978 π = 0.019, respectively) with 6 haplotypes found in the Peza population and 12

in the Pechora population (Table 1).

We identified four previously defined haplotype clusters denoted sub-cluster Ic, Id, Ie and

cluster II [26, 67, 68] (Fig 1B), all showing high support in the Bayesian phylogeny (posterior

probability� 99, S1 Fig), except sub-cluster Ic showing an intermediate level of support (pos-

terior probability = 71). In the present study, we found sub-cluster Ic to comprise the 3 haplo-

types previously found in Svalbard reindeer (n = 27), but also to include haplotypes found on

Novaia Zemlia (n = 12), the Pechora River (n = 3), the Peza River (n = 1) and Franz Josef Land

(n = 13) (Figs 1B and 2). Haplotypes in sub-cluster Id are commonly found in Russian domes-

tic reindeer, but have also been identified in wild reindeer from Taimyr [26]. In the current

study, we identified one haplotype belonging to sub-cluster Id in four wild reindeer from Belyi

Island (Figs 1B and 2). Ie haplotypes are also commonly found in Russian domestic reindeer

[26]. However, in the present study, Ie haplotypes were found in samples from Kolguev

(n = 12), Belyi Island (n = 1), Peza River (n = 2), Pechora River (n = 1), Novaia Zemlia (n = 2)

and Franz Josef Land (n = 1) (Figs 1B and 2). Finally, haplotypes in cluster II have previously

been known to dominate in Scandinavian domestic reindeer [69]. We found cluster II haplo-

types in wild reindeer from Peza River (n = 5), Novaia Zemlia (n = 6) and on Belyi Island

(n = 6) (Figs 1B and 2). One of the three cluster II haplotypes found in the current study is

identical to a cluster II haplotype commonly found in Scandinavia [26, 69].

Sub-cluster Ic appear to have experienced a recent population expansion as the mismatch

distribution analysis showed no significant deviation from the expected distribution under the

sudden expansion model (see S2 Fig). An expansion was further supported by a non-signifi-

cant Harpending Raggedness index (0.071, p = 0.600) and SSD value (0.010, p = 0.710). Finally,

Fu‘s Fs and Ramos-Onsins R2 were highly significant with Fs = 5.948 (p = 0.000) and R2 =

0.103 (p = 0.002) adding support for a demographic expansion for this sub-cluster. Tajima‘s D

was negative (-1.018), but not significant (p = 0.173). Date since expansion for sub-cluster Ic

Table 1. Geographic origin, status (wild/domestic) and polymorphism in the CR in the sampled reindeer populations. Sample size (N), number of

haplotypes (H), haplotype diversity (Hd) and nucleotide diversity (π) in the CR region for the 400 bp long fragment, and for the 190 bp long fragment including

all populations.

Geographic origin Status 400 bp 190 bp

N H Hd π N H Hd π
Svalbard, Norway Wild 27 3 0.570 0.002 27 1 0.000 0.000

Kolguev, Russia Domestic 24 6 0.728 0.009 24 6 0.728 0.013

Novaia Zemlia, Russia Wild 20 5 0.632 0.018 20 4 0.626 0.029

Belyi Island, Russia Wild 22 6 0.814 0.018 22 6 0.814 0.026

Pechora River, Russia Wild 14 12 0.978 0.019 14 10 0.956 0.027

Peza River, Russia Wild 15 6 0.800 0.018 15 6 0.800 0.030

Franz Josef Land, Russia Wild - - - - 15 3 0.257 0.009

Total - 122 30 0.910 0.019 137 24 0.820 0.027

doi:10.1371/journal.pone.0165237.t001
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was calculated to 5862 years before present (YBP) (95% CI: 535–10375) based on the mean

number of pairwise differences, τ (τ = 2.762).

The 190 bp long fragment, including all seven populations, showed high levels of variation

(Hd = 0.820, π = 0.027) and 24 haplotypes were identified. However, low levels of genetic vari-

ation was found in the ancient Franz Josef Land population (Hd = 0.257, π = 0.009) (Table 1).

Three haplotypes were found here, with one individual in sub-cluster Ie, 13 in sub-cluster Ic,

and one sample with a haplotype unique for Franz Josef Land (Figs 1B and 2).

Discussion

Our results show that the most common haplotype found on Svalbard is also the most com-

mon haplotype found among the contemporary wild population on the South Islands of

Novaia Zemlia and the extinct population on Franz Josef Land–suggesting that the population

history of wild reindeer on these High Arctic islands was tightly linked. The genetic similarity

between these archipelagic reindeer populations indicate gene flow and dispersal from a com-

mon source population, and supports the theory that all of these islands were likely colonized

from the Eurasian mainland. The hypothesis of an eastern colonization of the Arctic archipela-

goes is further supported by a genetic connection between the three archipelagic populations

and one individual from Pechora River (Komi Republic), who shared the most common

Fig 2. Frequencies of CR haplotype clusters in the sampled reindeer populations. Frequencies of haplotypes

belonging to sub-cluster Ic, Id, Ie and cluster II in all seven populations. Haplotypes that did not cluster with any of

the previously described clusters were placed in cluster I. Haplotype frequencies are calculated from the 400 bp

long fragment for all populations, except haplotype frequencies in the ancient material from Franz Josef Land, which

were calculated from the 190 bp long fragment. Haplotype frequencies show that Ic haplotypes are common on

Svalbard, Novaia Zemlia and in the ancient material from Franz Josef Land. Ic haplotypes are also found in the

Pechora- and Peza River populations, but are absent in the domestic reindeer population sampled on Kolguev.

doi:10.1371/journal.pone.0165237.g002
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haplotype found on Svalbard, Novaia Zemlia and Franz Josef Land. Also, three similar haplo-

types were observed in single samples from wild reindeer in both Pechora river basin and in

the Peza river basin. However, the presence of Ic haplotypes in the two mainland populations

could be the result of random haplotype survival from a common refugial population. More

extensive sampling of Russian wild reindeer, with a special emphasis on islands in northern

Siberia, would be necessary to clarify this further.

Natural- or human induced dispersal

Published radiocarbon dates of archaic bones collected on Franz Josef Land suggest that wild

reindeer populated the archipelago 6400–1300 YBP [36]. These results fit with the dates we

obtained for our own radiocarbon dated antler samples from the same islands (>2000 years).

Pollen studies of archaic reindeer pellets found in peat cores on Svalbard indicate that reindeer

colonized this archipelago between 6700 and 5000 YBP [70, 71]. The history of colonization of

Novaia Zemlia by reindeer for much of Holocene remains to be documented. However, geo-

morphologic studies suggest that by the time wild reindeer were present on Svalbard and

Franz Josef Land, Novaia Zemlia was also de-glaciated and therefore open for natural coloniza-

tion as well [72, 73]. The early colonization of Svalbard and Franz Josef Land, and the strong

genetic link found between the ancient Franz Josef Land samples and the contemporary popu-

lations on Svalbard and Novaia Zemlia, both imply that the Arctic reindeer type lived on all of

these archipelagos long before humans approached the region [74].

We did find one individual on Novaia Zemlia with a haplotype also found in reindeer on

Kolguev Island (sub-cluster Ie). This finding can be explained by the recent translocation of a

small number of domestic reindeer from Kolguev to Novaia Zemlia, between 1928 and 1931

[41]. The weak genetic connection found between the wild populations on Novaia Zemlia and

the present-day domestic population on Kolguev Island, together with the genetic similarities

found between Svalbard, Novaia Zemlia and Franz Josef Land, imply that the maternal genetic

structure of northern archipelagic reindeer populations, including present populations on

Novaia Zemlia and Svalbard, is mainly indigenous.

Post glacial colonization of Eurasian arctic archipelagos

Our results indicate an eastern colonization route of the Eurasian arctic archipelagos. The

Bering land refuge has traditionally been most widely discussed as a single origin point for var-

ious continental distributions of Rangifer [19, 75] as well as several other circumpolar species

[76]. However, recently there has been a discussion of the importance of the role of a lesser-

known set of refugia in the High Arctic of Western Siberia. Fedorov et al. [77] performed a cir-

cumpolar phylogeographic analysis of lemmings (Lemmus) questioning the centrality of the

traditional Beringian refuge for the post-glacial re-colonization of the Arctic. They demon-

strate how four different mtDNA linages of the circumpolar lemming (Lemmus) indicate

separation by glacial barriers, followed by post glacial colonization from refugia other than

Beringia. Shaefer et al. [78] in their recent review of North American mtDNA phylogeographic

analyses for multiple circumpolar species point to additional complexity of multiple “refugia

within refugia” within and between ice sheets. Salonen, Seppä [79] in their review of the paly-

nological literature for Western Siberia point to possible refuge located in the Pechora River

basin. The existence of alternative refugia, separated from Beringia, might be one explanation

for the unique genetic composition observed in Eurasian archipelagic reindeer. On the other

hand, our results suggest that there was a population expansion of sub-cluster Ic as recently as

5000–6000 YBP. This implies that the unique genetic composition of these Arctic reindeer

populations may have resulted from bottlenecking, isolation, and then subsequent expansion
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in the High Arctic well after the retreat of the ice, rather than isolation in alternative refugia

during the last glacial maximum (LGM). Further studies of the genetic structure in Russian

reindeer populations would help to answer this problem.

Post-glacial range shifts and the expansion of reindeer populations, as well as those of other

cold-adapted species, is probably connected to the major environmental changes taking place

in northern Eurasia during the Holocene [80]. Sea surface conditions in the southeastern

Barents Sea region reconstructed from dinoflagellate cyst assemblages, indicate a warm and

stable climate between 8000–5000 YBP [81]. These correlate well with other terrestrial and

marine records of climate conditions during this period [81], as well as estimates indicating

that the spruce (Picea) and birch (Betula) tree lines in northern Eurasia were located at least

150 km further North from their present location, and in the case of birch, may have reached

the seacoast [36, 79]. The expanding forest may have driven Arctic-adapted reindeer popula-

tions to migrate further north to seek open tundra landscapes. The warmer climate would

have facilitated growth of various vascular plants in the high arctic, thus expanding the food

base for reindeer on the Eurasian arctic archipelagos [71]. As mentioned above, there are anec-

dotal accounts of the movement of large-bodied reindeer from the Eurasian mainland to Sval-

bard in historic times [34], suggesting that such migrations between islands over the ice are

possible. This scenario is supported by the shared haplotypes held by wild reindeer in Taimyr

and in Svalbard by Gravlund and colleagues [9], and our own discovery of shared haplotypes

between the three arctic archipelagos and the mainland populations from the Peza and

Pechora River basins in the current study.

Concluding Remarks

Rangifer are in many ways a classic circumpolar species providing an important anchor to

the environmental history of the High Arctic, and also to the lives of local people. Contempo-

rary climate change would be expected to alter the distribution and demography of Rangifer
today as has been the case in the past. Mammals living in the High Arctic have limited oppor-

tunities to migrate further north. To survive, they will have to depend on their ability to adapt

where they are. Therefore they are under particular risk. This necessitates having proper man-

agement plans with an emphasis on conserving genetic variability for indigenous archipelagic

reindeer.

This study has established certain strong genetic similarities found between wild reindeer

populations on Svalbard, Novaia Zemlia and Franz Josef Land implying that the maternal

genetic structure of these archipelagic reindeer populations is indigenous and unique. The

study lends considerable weight to the hypothesis that these islands may have colonized from

the Eurasian mainland via an eastern route. Moreover the study strongly disproves the sugges-

tion that populations for example on Novaia Zemlia are feral populations of introduced

domestic reindeer. It is our hope that these important results will help clarify existing conser-

vation plans for wild reindeer on Novaia Zemlia in the Russian Arctic Strict Nature Reserve

and its aim at conserving this important and unique population.
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S1 Fig. Bayesian phylogeny based on the 400 bp long fragment, excluding the ancient sam-

ples from Franz Josef Land. The Bayesian phylogeny shows 30 control region haplotypes and

support for sub-cluster Ic, Id, Ie and II (posterior probability values�70 is shown at each

node).
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mismatch distribution (red bars) under the sudden expansion model among individuals in

sub-cluster Ic. The mismatch analyses show a unimodal distribution, which is characteristic

for a recently expanded population [63].
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S1 Table. 14C and calibrated radiocarbon dates on antler samples from Franz Josef Land.

The 14C dates were calibrated using CALIB 6.1.1 [53], based on the data set IntCal13 [54] with

2σ ranges.
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