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Homological stability for families of Coxeter groups

RICHARD HEPWORTH

We prove that certain families of Coxeter groups and inclusions W1 ,!W2 ,! � � �

satisfy homological stability, meaning that in each degree the homology H�.BWn/ is
eventually independent of n . This gives a uniform treatment of homological stability
for the families of Coxeter groups of type A , B and D , recovering existing results
in the first two cases, and giving a new result in the third. The key step in our proof is
to show that a certain simplicial complex with Wn –action is highly connected. To do
this we show that the barycentric subdivision is an instance of the “basic construction”,
and then use Davis’s description of the basic construction as an increasing union of
chambers to deduce the required connectivity.

20F55; 20J06

1 Introduction

1.1 Overview

A family of groups G1 ,!G2 ,!G3 ,! � � � is said to satisfy homological stability if
the induced maps Hi .BGn�1/!Hi .BGn/ are isomorphisms when n is sufficiently
large relative to i . Homological stability is known for many families of groups,
including symmetric groups (see Nakaoka [23]), general linear groups (see Quillen [24]),
mapping class groups of surfaces (see Harer [11]) and 3–manifolds (see Hatcher and
Wahl [15]), diffeomorphism groups of highly connected manifolds (see Galatius and
Randal-Williams [10]), and automorphism groups of free groups (see Hatcher [12] and
Hatcher and Vogtmann [14]). Coxeter groups are abstract reflection groups, appearing in
many areas of mathematics, such as root systems and Lie theory, geometric group theory,
and combinatorics. See the books of Bourbaki [3], Davis [8] and Björner and Brenti [1]
for introductions to Coxeter groups from each of these three viewpoints. In this paper
we will show that homological stability holds for certain families of Coxeter groups.

Recall that a Coxeter matrix on a set S is an S �S symmetric matrix M , with values
in N [f1g, satisfying mst D 1 if s D t and mst > 2 otherwise. The corresponding
Coxeter group is the group generated by the elements of S , subject to the relations
.st/mst D e for s; t 2 S . (When mst D1 no relation is imposed.) It is common to
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represent a Coxeter matrix by the equivalent Coxeter diagram. This is the graph with
vertices S and edges fs; tg for mst > 3. The edge fs; tg is labelled mst if mst > 4.

Now consider a sequence of finite Coxeter diagrams .�n/n>1 of the form

�1 �2 �3

where every diagram has a preferred vertex, and each diagram is obtained from its
predecessor by attaching a new preferred vertex to the old one by an unlabelled edge.
Writing Wn for the Coxeter group determined by �n , the inclusion �n�1 ,!�n induces
an inclusion Wn�1 ,!Wn , and our main result states that the family

W1 ,!W2 ,!W3 ,!W4 ,! � � �

satisfies homological stability.

Main Theorem The map H�.BWn�1/!H�.BWn/ is an isomorphism in degrees
satisfying 2�6 n. Here homology is taken with arbitrary constant coefficients.

Observe that while the diagrams �n are assumed to be finite, it is not necessary for the
groups Wn to be finite.

1.2 Homological stability for Coxeter groups of type A , B and D

The Main Theorem gives a uniform treatment of homological stability for the families
of Coxeter groups of type An , Bn and Dn . Recall that these are the Coxeter groups
corresponding to the following diagrams, in which n always denotes the total number
of vertices:

An

4

Bn Dn

These families have an important place in the theory of Coxeter groups, since the
classification of finite Coxeter groups states that a finite irreducible Coxeter group
has type An , Bn or Dn , or is dihedral, or is one of six exceptional examples. (See
Appendix C of [8].) The sequences .An/n>1 , .BnC1/n>1 and .DnC2/n>1 all have
the form .�n/n>1 described above, with the rightmost vertex taken as the preferred
vertex, and therefore we may apply the main theorem to each one. In what follows we
will use concrete descriptions of the groups of type An , Bn and Dn that can be found
in Section 6.7 of [8].
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1.2.1 Coxeter groups of type A For the sequence of diagrams .An/n>1 , the corre-
sponding sequence of Coxeter groups is

†2 ,!†3 ,!†4 ,!†5 ,! � � �

where †n is the symmetric group on n letters and the inclusions are given by extending
permutations by the identity. Applying the Main Theorem, we recover the following
classical result.

Corollary (Nakaoka) The map H�.B†n/! H�.B†nC1/ is an isomorphism in
degrees 2�6 n. Here homology is taken with arbitrary constant coefficients.

In fact, Nakaoka computed H�.B†nIFp/ for all primes p in Theorem 6.3 of [23].
From this he deduced stability with Fp coefficients in Corollary 6.7 of [23]. The
case of arbitrary coefficients follows. Nakaoka’s computations can be used to show
that Hk.B†2k�1IF2/ ! Hk.B†2kIF2/ is not surjective for k > 1, so that the
bound 2� 6 n appearing in the corollary is sharp. Alternative proofs of Nakaoka
stability, that do not rely on complete computations of H�.B†nIFp/, can be found in
the Ph D thesis of Maazen [21] and the papers of Kerz [19] and Randal-Williams [25].

1.2.2 Coxeter groups of type B For the sequence of diagrams .BnC1/n>1 , the
corresponding sequence of Coxeter groups

C2 o†2 ,! C2 o†3 ,! C2 o†4 ,! C2 o†5 ,! � � �

consists of the wreath products of the symmetric groups with the group C2 of order 2,
and the inclusions are again given by extending permutations by the identity. Applying
the Main Theorem gives the following result.

Corollary The map H�.B.C2 o†n//! H�.B.C2 o†nC1// is an isomorphism in
degrees 2�6 n. Here homology is taken with arbitrary constant coefficients.

This result can be found in a number of places in the literature. In particular, May
computed H�.B.C2 o†n/IFp/ for all n> 1 and all primes p . (See Cohen, Lada and
May [7, Chapter I, Theorem 4.1] in the case X D BC2 t f�g.) From this computation
one obtains the corollary above in the case of Fp coefficients, and the case of arbitrary
coefficients follows. The corollary also follows from existing stability results such as
Theorem A of [25] and Proposition 1.6 of Hatcher and Wahl’s paper [15]. Observe that
the bound 2�6 n is again sharp, since C2 o†n is a split extension of †n .
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1.2.3 Coxeter groups of type D For the sequence of diagrams .DnC2/n>1 , the
corresponding sequence of Coxeter groups is

H3 ,!H4 ,!H5 ,!H6 ,! � � �

where Hn denotes the kernel of the homomorphism C2 o†n ! C2 that takes the
product of the C2 –components. (We regard C2 as the set f˙1g under multiplication.)
The Main Theorem gives the following result.

Corollary Let Hn denote the Coxeter group of type Dn . Then the inclusion map
HnC1 ,! HnC2 induces an isomorphism H�.BHnC1/! H�.BHnC2/ in degrees
where 2�6 n. Here homology is taken with arbitrary constant coefficients.

We believe that the result is new in the stated generality. However, Swenson [27] gave a
generating set for the ringH�.BHnIF2/, and deduced that the mapHk.BH2kC1IF2/!

Hk.BH2kIF2/ is not surjective. (See Theorem 6.4.1 and the paragraph that follows it
in [27].) It follows that Hk.BH2kIF2/!Hk.BH2kC1IF2/ is not injective, so that
the bound 2�6 n in the corollary is sharp.

1.3 The superideal simplex reflection groups

The Main Theorem applies to interesting families besides those of type An , Bn and Dn

already considered. For example, if we fix an integer m> 7, then the main theorem
shows that homological stability holds for the family of Coxeter groups associated to
the sequence of diagrams .�n/n>1

m

�n

in which �n has a total of .nC 1/ vertices, the rightmost one preferred. These are the
superideal simplex reflection groups that appear in recent work of Calegari [6]. The
first group is finite, while the rest are all infinite hyperbolic.

It is not difficult to construct other sequences of hyperbolic groups to which our main
theorem applies. For example, we can construct sequences .Wn/n>1 in which the Wn

are all hyperbolic and have the same, arbitrary, virtual cohomological dimension (vcd).
To do this we choose for W1 an arbitrary hyperbolic right-angled Coxeter group with the
desired vcd (see Januszkiewicz and Świątkowski [18]). Then by choosing a preferred
element of the generating set of W1 we extend to a sequence .Wn/n>1 of the kind
appearing in the main theorem. By Moussong’s condition [22, Theorem 17.1] (or see
[8, Corollary 12.6.3]), the Wn are all hyperbolic. By construction, the nerves Ln of
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the Wn satisfy LnC1 Š CLn . (See [8, Section 7.1] for the definition of the nerve.)
Then by Davis’s computation of the vcd of Coxeter groups [8, Corollary 8.5.5] they all
have the same vcd.

1.4 Homology of Coxeter groups in low degrees

The Main Theorem was to some extent inspired by existing results on the homology of
Coxeter groups in degree 1 and 2, as we now explain.

In degree 1 our main theorem states that the map H1.BWn�1/! H1.BWn/ is an
isomorphism for n > 2. This result has a simple proof. Let W be a Coxeter group
corresponding to Coxeter diagram � . Then one sees from the presentation of W that
the abelianization Wab is naturally isomorphic to the elementary abelian 2–group on
the path-components of the graph obtained from � by deleting the edges with even
or infinite label. In our situation �n is obtained from �n�1 by attaching a single new
vertex using an edge with label 3, so that .Wn�1/ab! .Wn/ab is an isomorphism, and
our stability result in degree 1 follows.

In degree 2 our main theorem states that the map H2.BWn�1/! H2.BWn/ is an
isomorphism for n>4. The second homology groups H2.BW IZ/ of the finite Coxeter
groups were computed by Ihara and Yokonuma in [17]. They showed that the result is
an elementary abelian 2–group, and computed its rank. In particular, they observed
that for the groups of type A, B and C the rank of H2.BW IZ/ stabilizes, and the
stability range exactly corresponds to our result. Howlett [16] extended the work of
Ihara and Yokonuma to arbitrary Coxeter groups. In our situation, his result shows
that H2.BWnIZ/ is an elementary abelian 2–group whose rank is constant for n> 3,
so that the isomorphism type of H2.BWn/ (now with arbitrary coefficients) is constant
for n> 3. Thus Howlett’s result almost implies our stability result in degree 2, since it
shows that the domain and range of the map in question are isomorphic.

1.5 Outline of the proof of the main theorem

The proof of the Main Theorem is modelled closely on existing techniques for prov-
ing Nakaoka’s stability result for symmetric groups, which is the statement that the
map H�.B†n/ ! H�.B†nC1/ is an isomorphism for 2� 6 n. So we begin by
explaining an approach to Nakaoka stability.

The proof of Nakaoka stability is by induction on n, the initial case n D 0 being
trivial. The inductive step uses the “complex of injective words”, which we denote
by X . This is the semisimplicial set whose k–simplices are ordered .kC1/–tuples
in f1; : : : ; nC 1g, with each element appearing at most once. It admits an action
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of †nC1 , and this action is transitive on k–simplices with stabilizer †n�k�1 . Moreover,
the realization kXk is .n�1/–connected. We now consider the spectral sequence arising
from the filtration of EWn �Wn

kXk induced by the skeleta of kXk. Properties of the
action of †nC1 on X allow us to identify the E1 –page of this spectral sequence in
terms of the H�.B†n�k�1/ and the stabilization maps between them. The inductive
hypothesis then allows us to compute the remaining pages of the spectral sequence in
a range of degrees. The connectivity of kXk guarantees that the sequence converges
to H�.B†n/ in a range of degrees. From that point the result follows easily.

The hardest step here is the proof that kXk is .n�1/–connected. There are several
proofs of this in the literature; see Remark 39. The approach relevant to us is the
following. Observe that X is isomorphic to .�n/ord , the semisimplicial set of simplices
of �n equipped with an ordering of their vertices. Now �n is weakly Cohen–Macaulay
of dimension n, meaning that it and the links of simplices within it satisfy certain
connectivity bounds. A result of Randal-Williams [28, Proposition 7.9] states that if a
complex C is weakly Cohen–Macaulay of dimension n, then the realization kC ordk

is .n�1/–connected. Applying this to �n , we obtain the connectivity of kXk.

Now here is a sketch of the proof of the main theorem. It follows the sketch proof
of Nakaoka stability given above, and reduces to it in the case of Coxeter groups of
type A.

(1) We construct a simplicial complex Cn with an action of Wn . For Coxeter groups
of type A, the complex Cn is the n–simplex �n . We prove that Cn is weakly
Cohen–Macaulay of dimension n.

(2) We form a semisimplicial set Dn with an action of Wn . For Coxeter groups
of type A, this is the complex of injective words X . We show that Dn is the
semisimplicial set of ordered simplices in Cn and conclude that it is .n�1/–
connected.

(3) Third, we use the spectral sequence associated to the filtration of EWn�Wn
kDnk

induced by the skeleta of kDnk to prove the theorem.

For Coxeter groups of type A, the proof that Cn is weakly Cohen–Macaulay of
dimension n is trivial. In general, we prove it as follows. We first prove that links
of simplices in Cn are copies of Cm for appropriate m < n, so that the required
connectivity bounds all follow if we can show that Cn is .n�1/–connected. To prove
the latter, we make use of the “basic construction”, a technique for constructing spaces
with actions of Coxeter groups. (See [8, Chapters 5 and 8] and Section 2.5 below.) We
identify the barycentric subdivision of Cn as an instance of the basic construction, and
then use results of Davis on the topology of the basic construction (see Section 2.6) to
conclude that it is .n�1/–connected.
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Outline of the paper In Section 2 we recall background material on Coxeter groups,
then in Section 3 we establish some notation and discuss the groups of type A, B
and D in detail. In Section 4 we study the subgroups Wi of Wn , establishing important
properties that will be used in the rest of the paper. Next, we move on to the simplicial
complex Cn : in Section 5 we define it, in Section 6 we study the links of its simplices,
and in Section 7 we show that jsd Cnj is .n�1/–connected. Then we define Dn in
Section 8, we show that it is isomorphic to the semisimplicial set of ordered simplices
in Cn , and conclude that it is .n�1/–connected. The proof of the Main Theorem is
completed in Section 9.

Acknowledgements My thanks to Jarek Kędra, Ian Leary and Oscar Randal-Williams
for helpful conversations as this work was being carried out, to Rachael Boyd for a
careful reading of the paper, and to the referee for numerous helpful comments.

2 Background on Coxeter groups

Here we will recall some of the basic facts about the theory of Coxeter groups, giving
references to [8] where possible. Hopefully this covers all of the material we will use
in the rest of the paper. Alternative introductions to Coxeter groups are [3; 1].

2.1 Coxeter systems

In Section 1.1 we defined Coxeter matrices, Coxeter diagrams, and the Coxeter group
associated to a Coxeter matrix or diagram. A Coxeter system is a pair .W; S/ consisting
of a group W and a collection of involutions S �W satisfying the following property:
Let zW denote the Coxeter group associated to the Coxeter matrix M on S defined by

mst D order of st:

Then the homomorphism zW !W extending the identity S ! S is an isomorphism.
See Section 3.3 of [8].

2.2 Words

Let .W; S/ be a Coxeter system. A word in S is an ordered tuple .t1; : : : ; tr/ of
elements of S . The word .t1; : : : ; tr/ has length r and it represents the element
wD t1 � � � tr of W . Every element w 2W is represented by some word, and its length
`.w/ is the minimum length of a word representing it. A word is reduced if it has
minimum length for the element of W it represents.
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2.3 The word problem

An M –operation on a word in S is a composite of the following elementary M –
operations:

� Delete a subword .s; s/.

� Replace an alternating subword .s; t; : : :/ of length m.s; t/ with the subword
.t; s; : : :/ of the same length.

Observe that these operations do not alter the element of W represented by the word,
since all elements of S are involutions, and since the relation .st/m.s;t/ D e can be
rewritten as .st � � � /D .ts � � � /, where each side is an alternating word of length m.s; t/.
Observe also that these operations either preserve or reduce the length of a word. Tits’
solution to the word problem in Coxeter groups states that a word is reduced if and only
if it cannot be shortened by an M –operation, and that two reduced words represent the
same element if and only if they are related by a sequence of elementary M –operations
of the second kind. See Section 3.4 of [8].

2.4 Special subgroups

Let .W; S/ be a Coxeter system. Given T � S , we denote by WT the subgroup of W
generated by T , and we refer to WT as a special subgroup of W . Then .WT ; T / is
again a Coxeter system. (This is why our sequence of homomorphisms W1!W2!� � �

is in fact a sequence of inclusions.) See Section 4.1 of [8].

Given T;U �S we say that w2W is .T; U / reduced if it cannot be represented by a re-
duced word starting with an element of T or ending with an element of U . If x is .T; U /
reduced then a result of Kilmoyer, Solomon and Tits shows that WT \ xWUx

�1DWV ,
where V DT \xUx�1 . See Lemma 2 of [26]. In particular, this shows that if T;U �S
then WT \WU DWT\U . See Theorem 4.1.6 of [8] for a proof of this special case.

2.5 The basic construction

The “basic construction” is a method for building spaces with an action of a Coxeter
group. It can be used, for example, to study the topology of the Coxeter complex and
Davis complex of a Coxeter group. (Our discussion is tailored to the case of Coxeter
groups. For an approach to the basic construction that applies to more general groups
see Chapter II.12 of [5].)

Let .W; S/ be a Coxeter system. A mirrored space over S is a space X together
with subspaces Xs � X , called mirrors, one for each s 2 S . We assume that X is
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a CW–complex and that the mirrors are subcomplexes. The basic construction is the
space

U.W;X/D .W �X/=�;

where .v; x/� .w; y/ if and only if xDy and v�1w belongs to the subgroup generated
by the s 2 S for which x 2 Xs . The basic construction is equipped with the action
of W by left translation, and we identify X with the image of feg �X in U.W;X/.
Observe that U.W;X/ has the structure of a CW–complex in which each translate wX
is a subcomplex. See Section 5.1 of [8].

2.6 The increasing union of chambers

For us the most important feature of the basic construction is that it can be described
as an increasing union of chambers, meaning copies of X , as we now recall from
Section 8.1 of [8]. Given w 2W , let

In.w/D fs 2 S j `.ws/ < `.w/g

denote the set of letters with which a reduced expression for w can end, and let

X In.w/
D

[
s2In.w/

Xs

denote the corresponding union of mirrors. Order the elements of W as w0; w1; w2; : : : ,
where w0 D e and `.wm/6 `.wmC1/ for m> 0. Define

Pm D

m[
iD0

wiX;

so that U.W;X/ is the increasing union of the subcomplexes Pm . Then

Pm D Pm�1[wmX and Pm�1\wmX D wmX
In.wm/:

The latter equation is by Lemma 8.1.1 of [8]. It will be useful to us since it specifies
exactly how each chamber is attached to its predecessor, so that we can study the
topology of U.W;X/ inductively by adding one chamber at a time.

3 Notation and examples

In this section we establish some notation that will be used throughout the rest of the
paper. We also establish in more detail the Coxeter groups of type A, B and D , which
will be used for illustration throughout the rest of the paper. Fix a sequence .�n/n>1

of the kind described in the introduction.

Algebraic & Geometric Topology, Volume 16 (2016)



2788 Richard Hepworth

Definition 1 (the elements s1; : : : ; sn ) For n > 1 we define sn to be the preferred
vertex of �n , as in the following diagram:

s1 s2 sn�1 sn

Thus the special subgroup of Wn generated by s1; : : : ; sn is a copy of the Coxeter
group of type An , and so is isomorphic to †nC1 . See Example 2 below.

Example 2 (groups of type A) Consider the sequence of diagrams .An/n>1 :

An s1 s2 sn�1 sn

In this case the group Wn may be identified with †nC1 , the symmetric group on
letters 1; : : : ; .nC1/, where si is the adjacent transposition .i iC1/. See Example 6.7.1
of [8].

Example 3 (groups of type B ) Consider the sequence of diagrams .BnC1/n>1 :

BnC1
t

4

s1 s2 sn�1 sn

The group Wn may be identified with the wreath product C2 o †nC1 , where t is
identified with the generator of C2 and si is again identified with the adjacent trans-
position .i i C 1/. For concreteness, we further identify C2 o†nC1 with the set of
permutations � of f˙1; : : : ;˙.nC 1/g that satisfy �.�i/D��.i/ for all i . In this
setting t is the permutation that sends ˙1 to �1 and fixes all other elements, while si
is the permutation that sends ˙i to ˙.iC1/ and vice versa and fixes all other elements.
See Example 6.7.2 of [8].

Example 4 (groups of type D ) Consider the sequence of diagrams .DnC2/n>1 :

DnC2

t

u

s1 s2 sn�1 sn

The group Wn may be identified as the kernel of the homomorphism C2 o†nC2! C2

that takes the product of the C2 –components. Regarding C2 o†nC2 as a group of
permutations of f˙1; : : : ;˙.nC2/g, this kernel consists of the permutations that send
an even number of the positive elements to negative ones. Under this identification,
t corresponds to the element that negates ˙1 and ˙2 and fixes all other elements;
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u transposes 1 and 2, �1 and �2, and fixes all other elements; and si sends ˙.iC1/
to ˙.i C 2/ and vice versa and fixes all other elements. See Example 6.7.3 of [8].

Definition 5 (the additional diagrams �0 and ��1 ) We extend the sequence .�n/n>1

to the left by two terms as follows. Define �0 to be the diagram obtained from �1 by
deleting the preferred vertex, and define ��1 to be the diagram obtained from �1 by
deleting the preferred vertex and all vertices that shared an edge with it.

Example 6 (�0 and ��1 for Coxeter groups of type A, B and D ) For the se-
quence .An/n>1 , the diagrams A0 and A�1 are both empty. For .BnC1/n>1 , the
diagram B0C1 consists of the single vertex t and B�1C1 is empty. For .DnC2/n>1 ,
the diagram D0C2 consists of the two vertices t and u with no edge, and D�1C2 is
empty.

Definition 7 (the generating sets Sn ) Let .�n/n>1 be a sequence of the kind de-
scribed in the introduction, and let .�n/n>�1 be the extension just described. Then
for n> �1 we define Sn to be the set of vertices of �n . Thus .Wn; Sn/ is a Coxeter
system for each n> �1.

4 The subgroups W�1 � W0 � W1 � � � � � Wn

From this point onwards, unless stated otherwise, we fix a sequence .�n/n>1 and an
integer n> 1.

This section will study the sequence of subgroups W�1 � W0 � � � � � Wn , and in
particular the cosets of Wk in Wn for k < n. We do this now because the geometric
objects that will appear later in the paper are constructed by considering these cosets.
Throughout the section we will illustrate the results using the sequences .An/n>1 ,
.BnC1/n>1 and .DnC2/n>1 that were explained in Examples 2, 3 and 4. The key idea
to bear in mind is that Wn=Wn�1 is “the natural set for Wn to act on”. For example,
for groups of type A, where Wn D†nC1 , we will see that Wn=Wn�1 is isomorphic
to f1; : : : ; nC 1g with the permutation action.

Proposition 8 (left cosets of Wn�1 ) (1) Let i lie in the range 1 6 i 6 n. Then
left-multiplication by the element si fixes the set

fs1 � � � snWn�1; s2 � � � snWn�1; : : : ; snWn�1; Wn�1g:

It acts on the set by transposing si � � � snWn�1 and siC1 � � � snWn�1 , and fixing
the remaining elements. Here the product .siC1 � � � sn/ is omitted when i D n.
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(2) For c 2Wn the cosets

c.s1 � � � sn/Wn�1; : : : ; csnWn�1; cWn�1

are pairwise distinct.

Proof One can verify the identities

si .sj � � � sn/D .sj � � � sn/si for i < j � 1;

si .siC1 � � � sn/D si � � � sn;

si .si � � � sn/D siC1 � � � sn;

si .sj � � � sn/D .sj � � � sn/si�1 for i > j;

and then the first part follows immediately. (The product siC1 � � � sn is omitted
when i D n.) For the second part, if csj � � � snWn�1 D csk � � � snWn�1 with j < k ,
then .sn � � � sj /.sk � � � sn/ 2Wn�1 . But

.sn � � � sj /.sk � � � sn/D .sk�1 � � � sn � � � sk�1/.sk�2 � � � sj /;

where the second factor on the right is omitted in the case j D k � 1. This implies
that sn 2Wn�1 , which is a contradiction.

Example 9 (Wn=Wn�1 for groups of type A, B and D ) We illustrate Proposition 8
for the sequence .An/n>1 here. As explained in Example 2, we may regard Wn

as the group †nC1 of permutations of the set f1; : : : ; n C 1g. This allows us to
identify Wn=Wn�1 via the isomorphism

Wn=Wn�1
Š
��! f1; : : : ; nC 1g; �Wn�1 7�! �.nC 1/;

which respects the Wn action on each side, and which maps the coset si � � � snWn�1 to
the letter i . (When i D nC1 the product si � � � sn is omitted.) So for these groups, the
first part of the proposition above amounts to the fact that si transposes the elements i
and i C 1. For � 2Wn , the cosets

�.s1 � � � sn/Wn�1; : : : ; �snWn�1; �Wn�1

correspond under the isomorphism above to the elements �.1/; : : : ; �.nC 1/. So the
second part of the proposition amounts to the fact that these elements are distinct since
� is a permutation.

A similar account can be given for the sequences .BnC1/n>1 and .DnC2/n>1 , this
time using Examples 3 and 4. For .BnC1/n>1 the account is identical after replac-
ing f1; : : : ; nC 1g with f˙1; : : : ;˙.nC 1/g. For .DnC2/n>1 the set being acted on
is now f˙1; : : : ;˙.nC 2/g, and the isomorphism sends �Wn to �.nC 2/.
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Proposition 10 Wi�1\ .si � � � snWn�1sn � � � si /DWi�2 for 16 i 6 n.

Proof The element si � � � sn is .Wi�1; Wn�1/–reduced, meaning that it does not
have a reduced representative beginning with an element of Wi�1 or ending with a
representative of Wn�1 . Thus, as we recalled in Section 2.4, the intersection

Wi�1\ si � � � snWn�1sn � � � si

is the subgroup generated by T D Si�1\ .si � � � snSn�1sn � � � si /. So it will be enough
to show that T D Si�2 . If j 6 i � 2 then sn � � � sisj si � � � sn D sj , and consequently
Si�2 � T . So suppose that t 2 T nSi�2 . Thus t 2 Si�1 nSi�2 and sn � � � si tsi � � � sn 2
Sn�1 . By the first condition we have msi t > 3. By the second condition the word
.sn; : : : ; si ; t; si ; : : : ; sn/ represents an element of Sn�1 , so is not reduced. By the
solution to the word problem recalled in Section 2.3, we must therefore be able to
apply an M –operation to this word, but by inspection this is only possible if msi t is
exactly 3. But in that case .sn; : : : ; si ; t; si ; : : : ; sn/ is already reduced, contradicting
the second condition (see Sections 2.2 and 2.3).

Example 11 In the case of the sequence .An/n>1 , the previous proposition can be
explained as follows. The group Wn is identified with the symmetric group †nC1 on
the set f1; : : : ; nC1g, and Wk�1 is the subgroup that fixes .kC1/; : : : ; .nC1/. Thus:

� Wi�1 is the subgroup that fixes .i C 1/; : : : ; .nC 1/.

� si � � � snWn�1sn � � � si is the subgroup that fixes i .

� Wi�2 is the subgroup that fixes i; : : : ; .nC 1/.

This makes the proposition’s claim that Wi�1\ .si � � � snWn�1sn � � � si /DWi�1 imme-
diate. For the sequences .BnC1/n>1 and .DnC2/n>1 one can give a similar account.

Proposition 12 Let i lie in the range 16 i 6 n. If �; � 2Wn satisfy

�sj : : : snWn�1 D �sj : : : snWn�1 for j D i; : : : ; nC 1;

then ��1� 2Wi�2 . Here the product .sj � � � sn/ is omitted when j D nC 1.

Proof The proposition is equivalent to the claim that

Wn�1\ .snWn�1sn/\ � � � \ .si � � � snWn�1sn � � � si /DWi�2;

which is proved by downward induction on i . The initial case i D nC 1 is immediate,
and the induction step follows from Proposition 10.
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5 The simplicial complex Cn

Now we introduce the simplicial complex Cn that will be central to our proof of the
Main Theorem. The definition of Cn is motivated by the case of Coxeter groups of
type A, where Wn is the symmetric group †nC1 , and Cn is nothing other than the
n–simplex. As explained in Section 1.5, this is relevant since the semisimplicial set of
ordered simplices in the n–simplex is the “complex of injective words”, which appears
in several existing proofs of homological stability for the symmetric groups. In the
general case, Cn is designed so that its semisimplicial set of ordered simplices can play
the role of the complex of injective words in a proof of homological stability for the
sequence .Wn/n>1 .

The main result of this section is that Cn is weakly Cohen–Macaulay of dimension n.
The proof relies on propositions that will be established in the following two sections.

Definition 13 (the simplicial complex Cn ) Given n > 0, we define Cn to be the
n–dimensional simplicial complex with vertex set Wn=Wn�1 and with k–simplices
given by the subsets

C D fc.sn�kC1 � � � sn/Wn�1; : : : ; csnWn�1; cWn�1g

for 06 k 6 n and c 2Wn . Proposition 8 shows that C does indeed have cardinality
.kC 1/. In this situation we call c a lift of the simplex C .

Remark 14 We chose the name “lift” to emphasize the formal similarity with the
concept of the same name that appears in Definition 2.1 of Wahl [28].

A given simplex can have many lifts. Choosing a lift for a simplex induces an ordering
of its vertices, and all orderings occur in this way. For if c lifts a k–simplex C

then so does csn�kCiC1 , and the induced orderings differ by transposition of the i th

and .iC1/st vertices (see Proposition 8). This makes it simple to verify that Cn is
indeed a simplicial complex, for if C is a simplex of Cn and D � C is a nonempty
subset, then we may choose a lift c of C such that D is a terminal segment in the
induced ordering. Then c is also a lift of D .

The natural action of Wn on Wn=Wn�1 extends to an action on Cn . For if C is a
simplex of Cn with lift c , and if w 2Wn , then wC is a simplex of Cn with lift wc .

We now give a concrete description of Cn for the families of Coxeter groups of type A,
B and D . See Examples 2, 3 and 4 for the description of these groups, and Example 9
for a description of Wn=Wn�1 in each case.
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Example 15 (Cn for groups of type A) For the sequence of diagrams .An/n>1 we
saw in Example 2 that WnD†nC1 is the symmetric group on .nC1/ letters. Then Cn

is the n–dimensional simplex �n with the action of †nC1 that permutes the vertices.
For as in Example 9 the vertex set Wn=Wn�1 of Cn is isomorphic to f1; : : : ; nC1g via
the map that sends �Wn�1 to �.nC 1/. Under this isomorphism, an element � 2Wn

is a lift of the k–simplex

C D f�.n� kC 1/; : : : ; �.nC 1/g;

and every subset of f1; : : : ; nC 1g arises in this way.

Example 16 (Cn for groups of type B ) For the sequence of diagrams .BnC1/n>1 we
saw in Example 3 that Wn is the group of permutations � of the set f˙1; : : : ;˙.nC1/g
satisfying the rule �.�i/ D ��.i/ for all i . In this case Cn is isomorphic to the
hyperoctahedron of dimension n, which is the simplicial complex whose vertex set
is f˙1; : : : ;˙.nC 1/g and whose simplices are the subsets containing at most one
element from each pair fi;�ig. In particular, its realization is homeomorphic to
the n–sphere. To obtain this description, we use the isomorphism Wn=Wn�1 !

f˙1; : : : ;˙.n C 1/g sending �Wn�1 to �.n C 1/, as in Example 9. Under this
isomorphism an element � lifts the k–simplex

C D f�.n� kC 1/; : : : ; �.nC 1/g;

so that a subset of f˙1; : : : ;˙.nC 1/g spans a simplex of Cn if and only if it does
not contain any element and its negative.

Example 17 (Cn for groups of type D ) For the sequence of diagrams .DnC2/n>1

we saw in Example 4 that Wn is the group of permutations of f˙1; : : : ;˙.nC2/g that
satisfy the rule �.�i/D��.i/ and that send an even number of the positive elements to
negative ones. In this case Cn is the n–skeleton of the .nC1/–dimensional hyperocta-
hedron. In other words, it is the simplicial complex with vertex set f˙1; : : : ;˙.nC2/g,
and whose simplices are the subsets of size at most nC1 containing at most one element
from each pair fi;�ig. (Compare with Example 16.) In particular, the realization
of Cn has the homotopy type of the wedge of .2n� 1/ copies of the n–dimensional
sphere. To obtain this description recall from Example 9 that the vertex set Wn=Wn�1

is identified with f˙1; : : : ;˙.nC2/g via the map sending �Wn�1 to �.nC2/. Under
this identification the k–simplex with lift � is

C D f�.n� kC 2/; : : : ; �.nC 2/g;

so that a subset of f˙1; : : : ;˙.nC2/g spans a simplex if and only if it does not contain
any element and its negative and has size at most n.
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Recall from Definition 3.4 of [15] that a simplicial complex is called weakly Cohen–
Macaulay of dimension n if it is .n�1/–connected and the link of each p–simplex
is .n�p�2/–connected. In each of the three examples above, Cn has the homotopy
type of a wedge of n–dimensional spheres, and so is .n�1/–connected. In fact, it is
not hard to see that in these examples Cn is weakly Cohen–Macaulay of dimension n.
This is an instance of the following general fact.

Theorem 18 Cn is weakly Cohen–Macaulay of dimension n.

The proof of this theorem relies on Propositions 19, 26 and 27, which are proved over
the course of the next two sections.

Proof By Proposition 19, if C is a p–simplex of Cn then lkCn.C / Š Cn�p�1 . It
therefore suffices to show that Cn is .n�1/–connected for all n, or equivalently that
the barycentric subdivision sd Cn is .n�1/–connected for all n. Now Proposition 26
shows that jsd Cnj is homeomorphic to the basic construction U.Wn; j�j/, while
Proposition 27 shows that U.Wn; j�j/ is .n�1/–connected.

6 Links of simplices of Cn

The aim of this section is to prove the following proposition, which was used in the
proof of Theorem 18 above.

Proposition 19 Let C be a p–simplex of Cn . Then lkCn.C /Š Cn�p�1 .

In the next section we prove that Cn is .n�1/–connected. This, combined with the
proposition above, shows that the links of p–simplices in Cn are .n�p�2/–connected,
and consequently that Cn is weakly Cohen–Macaulay of dimension n.

Example 20 (links in Cn for groups of type A, B and D ) In Examples 15, 16 and 17
we gave concrete descriptions of Cn for each of the sequences .An/n>1 , .BnC1/n>1

and .DnC2/n>1 . These descriptions can be used to illustrate Proposition 19. For
example, if we take the sequence .BnC1/n>1 , then Cn is the hyperoctahedron of
dimension n, ie, the simplicial complex with vertices f˙1; : : : ;˙.nC 1/g in which a
subset of the vertices spans a simplex if and only if it does not contain any element and
its negative. Thus C2 , C1 and C0 are as shown in Figure 1 (in C1 and C0 the dashed
parts are not included). We see that in C2 the link of the vertex f3g is a copy of C1 ,
while the link of the edge f2; 3g is a copy of C0 .
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C1

1

�1

C0

Figure 1: The hyperoctohedra C2; C1; C0

Proof of Proposition 19 Choose a lift c of C . Define

�W Wn�p�1=Wn�p�2!Wn=Wn�1

by �.dWn�p�2/D cdsn�p � � � snWn�1 for d 2Wn�p�1 . This is well defined since
every generator of Wn�p�2 commutes with sn�p; : : : ; sn . Observe that the domain
and range of � are the vertex sets of Cn�p�1 and Cn respectively.

Claim 1 The map � is an injection.

To prove this claim, let d; d 0 2Wn�p�1 satisfy

cd.sn�p � � � sn/Wn�1 D cd
0sn�p � � � snWn�1:

Then
d�1d 0 2Wn�p�1\ .sn�p � � � sn/Wn�1.sn � � � sn�p/DWn�p�2;

the latter equation by Proposition 10. Thus d 0Wn�p�2 D dWn�p�2 .

Claim 2 The map � sends simplices of Cn�p�1 to simplices of lkCn.C /.

To prove this, suppose that D is an i –simplex of Cn�p�1 . Let d 2Wn�p�1 be a lift
of D . Then

�D D fcdsn�p�i � � � snWn�1; : : : ; cdsn�p � � � snWn�1g

while

C D fcsn�pC1 � � � snWn�1; : : : ; csnWn�1; cWn�1g;

D fcdsn�pC1 � � � snWn�1; : : : ; cdsnWn�1; cdWn�1g:

Thus �D\C D∅ by Proposition 8, and �D[C is a simplex of Cn with lift cd , so
that �D is a simplex of lkCn.C / as claimed.
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Claim 3 Every simplex of lkCn.C / has the form �D for some simplex D of Cn�p�1 .

To prove this, suppose that D is an i –simplex of lkCn.C /. Then D\C D∅ and D[C
is a simplex of Cn . Let c0 be a lift of D[C , and assume without loss that the ordering
it induces on D[C contains D as an initial segment and C as a terminal segment
with the ordering induced by c . Thus

D D fc0.sn�p�i � � � sn/Wn�1; : : : ; c
0.sn�p � � � sn/Wn�1g

and

c0.sn�pCk � � � sn/Wn�1 D c.sn�pCk � � � sn/Wn�1

for kD 1; : : : ; pC1, where the product .sn�pCk � � � sn/ is omitted for kDpC1. The
latter gives c�1c0 2Wn�p�1 by Proposition 12, so that c0D cd for some d 2Wn�p�1 .
Then D D �D , where D is the i –simplex of Cn�p�1 with lift d .

We can now prove the proposition. Combining the first claim with the third in the case
of 0–simplices, we see that � is an isomorphism between the vertex sets of Cn�p�1

and lkCn.C /. The second and third claims then show that � induces an isomorphism
of simplicial complexes from Cn�p�1 to lkCn.C /.

7 The barycentric subdivision of Cn and the basic
construction

Our aim now is to complete the proof of Theorem 18 by proving Propositions 26
and 27 below. These results make use of the basic construction, whose definition
we now recall from Section 2.5. Let .W; S/ be a Coxeter system. A mirrored space
over S is a space X equipped with a mirror Xs � X for each s 2 S . Given such
a mirrored space, the basic construction U.W;X/ is then the quotient .W �X/=�,
where .w; x/� .v; y/ if and only if x D y and w�1v lies in the subgroup generated
by those s 2 S for which x 2Xs .

We will show in Proposition 26 that jsd Cnj is the basic construction U.Wn; X/ for
an appropriate choice of mirrored space X . Then in Proposition 27 we will show
that U.Wn; X/ is .n�1/–connected. Together these show that the barycentric subdivi-
sion sd Cn is .n�1/–connected, completing the proof of Theorem 18.

We begin by defining the required mirrored space X over Sn . To do this we will
identify a simplex � of sd Cn and make its realization j�j into a mirrored space.
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Definition 21 (the simplex �) For i D 0; : : : ; n, let ai denote the .n�i/–simplex
of Cn defined by

ai D f.siC1 � � � sn/Wn�1; : : : ; snWn�1; eWn�1g:

Each ai has lift e 2Wn . Now let � denote the n–simplex of sd Cn defined by

�D fa0; : : : ; ang:

It is a simplex of sd Cn since a0 � � � � � an .

Definition 22 (the subcomplexes �s ) For each s 2 Sn , we define a subcomplex �s

of � as follows. If s D si for i D 1; : : : ; n, then �si
is the face

�si
D fa0; : : : ; bai ; : : : ; ang

of �. If s 2 S0 nS�1 then �s is the face

�s D fa1; : : : ; ang

of �. And finally, if s 2 S�1 then

�s D�:

Definition 23 (the mirrored space j�j) We make j�j into a mirrored space over Sn

by defining j�js D j�sj � j�j for s 2 Sn .

Example 24 (� and �s for Coxeter groups of type A) For the sequence .An/n>1 ,
we saw in Example 2 that Wn is the symmetric group †nC1 , and in Example 15
that Cn can be identified with the n–simplex �n . Under this identification the ver-
tex siC1 � � � snWn�1 is identified with i . Thus

ai D fsiC1 � � � snWn�1; : : : ; snWn�1; Wn�1g D fi C 1; : : : ; ng:

Consequently � is the n–simplex of sd�n with vertices

f1; : : : ; nC 1g; : : : ; fn; nC 1g; fnC 1g:

This is illustrated in Figure 2 in the case n D 2. Observe that in this case every
2–simplex of sd�2 is a translate of � by an element of †3 , and that every simplex
of sd�2 is a face of such a translate.

The subcomplex �si
of � is simply the face opposite the vertex ai D fi C 1; : : : ; ng.

This is illustrated in Figure 3 in the case nD 2. Observe that s1 fixes �s1
vertexwise,

and that s2 fixes �s2
vertexwise.
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f2; 3gf1; 3g
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Figure 2: The simplex �2 (left), its subdivision sd�2 (middle) and the
simplex � (right)

a2

a1

a0

a2

a1

a0

Figure 3: The faces �s1
(left) and �s2

(right)

The inclusion j�j ,! jsd Cnj extends uniquely to a Wn –equivariant map Wn � j�j !

jsd Cnj. We want this to reduce to a map

U.Wn; j�j/! jsd Cn
j;

and so we must check that it respects the equivalence relation � on Wn � j�j that
defines U.Wn; j�j/. This is an immediate consequence of the following lemma.

Lemma 25 Under the action of Wn on jsd Cnj, the mirror j�js � j�j � jsd Cnj is
fixed pointwise by s .

Proof Let i > 0. If s 2 Si nSi�1 , then s fixes aj for j ¤ i . For i > 1 this follows
from Proposition 8, and for i D 0 it follows because s commutes with sk for k > 2.
Similarly, if s 2 S�1 then s fixes aj for all j . In all cases it follows that s fixes every
vertex of �s , so that s fixes j�js D j�sj pointwise.

We can now state the main results of this section.

Proposition 26 The map U.Wn; j�j/! jsd Cnj is a homeomorphism.

Proposition 27 U.Wn; j�j/ is .n�1/–connected.
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Example 28 (the map U.W1; j�j/! jsd C1j for groups of type B ) Let us illustrate
Proposition 26 in the case of the sequence .BnC1/n>1 and nD 1. As in Example 3,
the Coxeter diagram of W1 is as follows:

B2
t

4

s1

In this case � is the simplex with vertex set fa0; a1g, while �s1
and �t are the faces

with vertices a0 and a1 respectively. Thus j�j is an interval and j�js1
and j�t j are

its endpoints. We draw j�j as follows, with j�js1
represented by a hollow vertex

and j�jt represented by a solid vertex:

j�j

j�js1
j�jt

Then by definition U.W1; j�j/ is the union of the translates of j�j by elements of W1 ,
where for each w 2W1 , the solid vertices of wj�j and wt j�j are identified, as are
the hollow vertices of wj�j and ws1j�j. Thus U.W1; j�j/ is as shown on the left of
Figure 4.

ej�j

s1j�js1t j�j

s1ts1j�j

ts1ts1j�j

ts1t j�j ts1j�j

t j�j

f1g

f�1g

f2gf�2g

f1; 2g

f�1; 2gf�1;�2g

f1;�2g

j�j

Figure 4: The spaces U.W1; j�j/ and jsd C1j

Recall from Example 16 that C1 is the square with vertices f˙1;˙2g, with each
vertex being opposite to its negative, where t and s1 act as the permutations .1;�1/
and .1; 2/.�1;�2/ respectively. Thus jsd C1j is as shown on the right of Figure 4
with the subspace j�j labelled. Now the map U.W1; j�j/! jsd C1j is the one that is
evident from the drawings. It is the identity on the copy of j�j within each space, it is
equivariant with respect to the W1 –actions, and it is clearly a homeomorphism.

We now work towards the proof of Proposition 26. It relies on the following two
lemmas. Roughly speaking, these correspond to surjectivity and injectivity of the
map U.Wn; j�j/! jsd Cnj respectively.
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Lemma 29 Every n–simplex of sd Cn is a translate of �, and every simplex of sd Cn

is a face of such a translate.

Proof Let C DfC0; : : : ; Cng be an n–simplex of sd Cn with C0� � � � �Cn . Then C

induces a natural ordering of the vertices of Cn by declaring that each Ci consists of
an initial segment. Let c be a lift of Cn that induces this ordering. Then, by inspecting
the definition of the induced order, one sees that C D c �� as required. This proves
the first part. Now observe that every simplex of Cn is a face of an n–simplex, since
a simplex with a given lift is a face of the n–simplex with that lift. The second part
follows.

Lemma 30 Let F be a face of �. Then the stabilizer of F under the action of Wn is
the subgroup generated by those s 2 Sn for which F ��s .

Proof The stabilizer of a simplex of sd Cn coincides with the intersection of the
stabilizers of its vertices. To see this, let w 2 Wn and let C D fC0; : : : ; Ckg be a
simplex of sd Cn that is fixed by w . Then each Ci is a simplex of Cn itself, and without
loss C0 � � � � � Ck . The assumption w �C D C means that w permutes the Ci . But
since each Ci has a different cardinality, this means that w must in fact fix each Ci .
So the stabilizer of C is contained in the intersection of the stabilizers of its vertices.
The converse is immediate. See [4, page 115].

For the purposes of this proof, given i > 0 we write SDi for the difference Si nSi�1 .
So for i > 1 we have SDi D fsig, while SD0 is the set of elements of S0 that do not
commute with s1 .

Fix i > 0, and consider the vertex ai of sd Cn . We will show that the stabilizer of ai

is the subgroup of Wn generated by

Sn nSDi D Si�1[fsiC1; : : : ; sng:

To see this, recall that the vertices of ai (when ai is regarded as a simplex of Cn ) are

siC1 � � � snWn�1; : : : ; snWn�1; Wn�1:

Observe that if s 2 Si�1 then s commutes with siC1; : : : ; sn , and so fixes the vertices
of ai , and so fixes ai itself. And if s2fsiC1; : : : ; sng, then by Proposition 8, s permutes
the vertices of ai , and so fixes ai itself. So the subgroup generated by SnnSDi fixes ai .
Conversely, suppose that w 2Wn fixes ai . Proposition 8 shows that any permutation
of the vertices of ai can be achieved using the subgroup generated by siC1; : : : ; sn .
So after left-multiplying w by an element of the subgroup generated by siC1; : : : ; sn ,
we may assume that w fixes every vertex of ai . Proposition 12 now shows that w lies
in the subgroup generated by Si�1 , as required.
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Let F Dfai1
; : : : ; air

g. Then according to the first paragraph, the stabilizer of F is the
intersection of the stabilizers of the aij . By the last paragraph this is the intersection
of the subgroups generated by the sets Sn nSDij , and by the general results described
in Section 2.4, this is the subgroup generated by

T
.Sn nSDij /D Sn n

S
SDij .

It remains to show that Sn n
S
SDij is the set of s such that F � �s . Now by the

definition of �s , we see that F ��s for all s 2 S�1 , and that F ��s for s 2 SDi if
and only if ai … F . Thus the set of s such that F ��s is S n

S
SDij as required.

Example 31 Let us illustrate the proof of Lemma 30 for the sequence .An/n>1

and nD 2. We described C2 , sd C2 , � and the �s for this case in Example 24. The
following points correspond to the paragraphs of the proof.

� First observe that the action of W2D†3 on the vertices of sd C2 has three orbits,
namely the three vertices of the triangle (which are the 0–simplices of C2 ), the
midpoints of the edges of the triangle (which are the 1–simplices of C2 ), and the
barycentre of the triangle (which is the single 2–simplex of C2 ). Each simplex of
sd C2 contains at most one vertex from each orbit. So the stabilizer of a simplex
is the intersection of the stabilizers of its orbits.

� We have S2D fs1; s2g, S1D fs1g and S0D∅. Thus SD2D fs2g, SD1D fs1g

and SD0 D∅.

� Next, observe that the stabilizers of a0 , a1 and a2 are hs1; s2i, hs2i and hs1i
respectively, and these are indeed the subgroups generated by the sets S2 nSD0 ,
S2 nSD1 and S2 nSD2 respectively. So si stabilizes aj if and only if i ¤ j .

� By the first point, the stabilizer of a face F of � is the intersection of the
stabilizers of its vertices, and by the previous point this is the subgroup generated
by the si for which ai is not contained in F .

� On the other hand, F ��si
if and only if F does not contain ai . This, combined

with the previous point, shows that the stabilizer of F is generated by the s for
which F ��s .

Proof of Proposition 26 The map is surjective because any point of jsd Cnj is in
a translate of j�j. This follows from Lemma 29, which shows that every simplex
of sd Cn is a face of a translate of �.

To show that the map is injective, suppose that Œw; x�; Œv; y� 2 U.Wn; j�j/ have the
same image in jsd Cnj, or in other words that w � x D v � y . We will show that
.w; x/� .v; y/ so that Œw; x�D Œv; y�. First we show that xD y . There is a canonical
map sd Cn ! �n that sends a vertex C of sd Cn , or in other words a simplex C
of Cn , to the vertex jC j of �n . By construction this is Wn –invariant and restricts
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to an isomorphism � ! �n . Taking realizations, we obtain a Wn –invariant map
jsd Cnj !�n that restricts to a homeomorphism j�j !�n . Since w � x D v �y , we
therefore have x D y . Next we show that w�1v lies in the subgroup generated by
those s 2 Sn for which x 2 j�js . Write F for the unique face of � for which x
lies in the interior of F . Then x 2 j�js D j�sj if and only if F � �s . Moreover,
since w � x D v �y and x D y , we see that w�1v lies in the stabilizer of x , which is
exactly the stabilizer of F . Then w�1v lies in the claimed subgroup by Lemma 30.
Consequently .w; x/� .v; y/ as required.

The map is a homeomorphism because jsd Cnj has the weak topology with respect
to the realizations of its simplices. By Lemma 29 this coincides with the weak topol-
ogy with respect to the realizations of its n–simplices. This is exactly the topology
of U.Wn; j�j/.

We now work towards the proof of Proposition 27. We will make use of the increasing
union of chambers, which we described in Section 2.6. Recall in particular that
if w 2 Wn then In.w/ D fs 2 S j `.ws/ < `.w/g is the set of letters with which a
reduced expression for w can end. We begin with two lemmas.

Lemma 32 For w 2Wn , w ¤ e , the space j�jIn.w/ is .n�2/–connected.

Proof The set In.w/ is nonempty since w ¤ e . Thus j�jIn.w/ is either j�j, or it is a
nonempty union of facets of j�j. In the first case it is contractible, and in the second
case it is either contractible (if not all facets are in the union) or it is @j�j Š Sn�1 (if
all facets are in the union). In all cases it is .n�2/–connected.

Lemma 33 Let n> 1. Suppose that .X IA;B/ is a CW–triad in which A and B are
.n�1/–connected and C D A\B is .n�2/–connected. Then X is .n�1/–connected.

Proof For nD 1 this is immediate since the union of two path-connected spaces with
nonempty intersection is path-connected. So we assume that n> 2. The pairs .A; C /
and .B; C / are .n�1/–connected, and C is path-connected, so Theorem 4.23 of [13]
can be applied to show that �i .A; C /! �i .X;B/ is an isomorphism for i < 2n� 2,
and in particular for i 6 .n�1/. Thus .X;B/ is .n�1/–connected, and the same then
follows for X itself.

Proof of Proposition 27 If n D 0 then the claim is that U.Wn; j�j/ is nonempty,
which holds vacuously. So we may assume that n> 1.

Algebraic & Geometric Topology, Volume 16 (2016)



Homological stability for families of Coxeter groups 2803

As in Section 2.6, order the elements of Wn as w0; w1; w2; : : : starting with the
identity and respecting the length. Then U.Wn; j�j/ is the union of subcomplexes
P0 � P1 � P2 � � � � , where P0 D j�j and

Pm D Pm�1[wmj�j with Pm�1\wmj�j D wmj�j
In.wm/:

It will suffice to show that each Pm is .n�1/–connected. We do this by induction
on m.

In the initial case mD0 we have P0Dej�j, which is contractible and so the claim holds.
For the induction step we take m>1 and assume that Pm�1 is .n�1/–connected. Then
PmDPm�1[wmj�j is the union of the subcomplexes Pm�1 and wmj�j, and their in-
tersection wmj�j

In.wm/ is .n�2/–connected by Lemma 32. Thus .PmIPm�1; wmj�j/

is a CW–triad in which the subspaces Pm�1 and wmj�j are .n�1/–connected and their
intersection is .n�2/–connected. It now follows from Lemma 33 that Pm is .n�1/–
connected as required.

8 The semisimplicial set Dn

In this section we introduce a semisimplicial set Dn with an action of Wn . It will be used
in the next section to give the proof of the Main Theorem. As explained in Section 1.5,
the definition of Dn is inspired by the “complex of injective words” (see Example 35)
which is used in existing proofs of homological stability for symmetric groups, for
example [21; 19; 25]. Indeed, we first obtained Dn by writing every aspect of the
complex of injective words in terms of the symmetric groups and adjacent transpositions,
and then abstracting this definition to our sequences of Coxeter groups .Wn/n>1 . This
may leave the definition of Dn a little unmotivated, but we hope that it will become
apparent over this section and the next that Dn is precisely the object required to
complete the proof of the main theorem.

The main result of the section is that the realization kDnk is .n�1/–connected. This
is proved by identifying Dn as the semisimplicial set of ordered simplices in Cn , and
then using the fact that Cn is weakly Cohen–Macaulay of dimension n to deduce that
the geometric realization kDnk is .n�1/–connected. We learned this approach from
Wahl’s paper[28], in particular Proposition 7.9, which is due to Randal-Williams.

In this section and the next we will use semisimplicial spaces and their realizations.
The background material we require can be found in Section 2 of [25].

Definition 34 Let Dn denote the semisimplicial set with k–simplices

Dn
k D

�
Wn=Wn�k�1 for k 6 n;

∅ for k > n;
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and with face maps

di W Wn=Wn�k�1!Wn=Wn�k;

defined by

di .cWn�k�1/D c.sn�kCi � � � sn�kC1/Wn�k

for i D 0; : : : ; k . Here the product .sn�kCi � � � sn�kC1/ is omitted when i D 0.

One can verify directly that the face maps di satisfy the relations di ı dj D dj�1 ı di

for i < j . Alternatively, it is a consequence of the proof of Proposition 37 below.

Example 35 (Dn for groups of type A, B and D ) In order to illustrate the definition
above, we recall the definition of the complex of injective words. Let L be a set. An
injective word in L is a finite sequence of distinct elements of L. The complex
of injective words in L is the semisimplicial set whose k–simplices are injective
words in L of length .k C 1/, and in which the face map di sends .x0; : : : ; xk/

to .x0; : : : ; bxi ; : : : ; xk/.

For the family .An/n>1 , the semisimplicial set Dn is the complex of injective words
in f1; : : : ; n C 1g. Recall from Example 2 that Wn is the group of permutations
of f1; : : : ; nC 1g. Thus Wn=Wn�k�1 can be identified with the set of injective words
of length .kC 1/ in f1; : : : ; nC 1g via the isomorphism

�Wn�k�1 7�! .�.n� kC 1/; : : : ; �.nC 1//:

To see that the face map di corresponds to the map that deletes the i th letter, we must
show that�
�sn�kCi � � � sn�kC1.n� kC 2/; : : : ;�sn�kCi � � � sn�kC1.nC 1/

�
D
�
�.n� kC 1/; : : : ; 5�.n� kC i/; : : : ; �.nC 1/�:

This follows because sn�kCi � � � sn�kC1 decreases each of .n�kC2/; : : : ; .n�kC i/
by one, sends .n� kC i/ to .n� kC 1/, and fixes .n� kC i C 1/; : : : ; .nC 1/.

For the family .BnC1/n>1 , Dn is the subset of the complex of injective words
in f˙1; : : : ;˙.nC 1/g in which each word features at most one entry from each
pair fi;�ig. For the family .DnC2/n>1 , we have that Dn is the subset of the complex
of injective words in f˙1; : : : ;˙.nC 2/g in which each word again features at most
one entry from each pair fi;�ig. These two facts can be proved by the method of the
previous example, this time making use of Examples 3 and 4.
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Definition 36 Let X be a simplicial complex. By an ordered simplex of X , we mean
a simplex of X equipped with an ordering of its vertices. The semisimplicial set of
ordered simplices in X , denoted Xord , has for its k–simplices the ordered k–simplices
in X , with face maps di given by forgetting the i th vertex of an ordered simplex.

Proposition 37 Dn is isomorphic to Cn;ord .

Proof We define �k W Dn
k
! Cn;ord

k
by

�k.cWn�k�1/D fc.sn�kC1 � � � sn/Wn�1; : : : ; csnWn�1; cWn�1g

for cWn�k�1 2Wn=Wn�k�1 . In other words, �k.cWn�k�1/ is the k–simplex with
lift c , equipped with the ordering induced by c . The map �k is well defined be-
cause the generators of Wn�k�1 all commute with sn�kC1; : : : ; sn . It is surjective
because by definition every simplex admits a lift, and any ordering of a simplex is
afforded by some lift (see the paragraph following Definition 13). It is injective
because if �k.cWn�k�1/D �k.c

0Wn�k�1/ then csi � � � snWn�1D c
0si � � � snWn�1 for

i D n� kC 1; : : : ; nC 1, so that cWn�k�1 D c
0Wn�k�1 by Proposition 12.

To complete the proof we must show that the face maps in Cn;ord and Dn are compatible
under the �k . In other words, given 06 i 6 k 6 n, we must show that

�k�1 ı di D di ı�k :

Observe from the definition of di in Dn that di .cWn�k�1/D di�1.csn�kCiWn�kC1/

for i > 1. Proposition 8 shows that �k.cWn�k�1/ and �k.csn�kCiWn�k�1/ differ
only by the transposition of their .i�1/st and i th vertices, so that di .�k.cWn�k�1//D

di�1.�k.csn�kCiWn�k�1//. Thus the claim will follow by induction on i so long as
we can show that

�k�1 ı d0 D d0 ı�k :

This follows by inspection.

Corollary 38 kDnk is .n�1/–connected.

Proof Theorem 18 shows that Cn is weakly Cohen–Macaulay of dimension n. It
was shown in Proposition 7.9 of [28] that if a simplicial complex X is weakly Cohen–
Macaulay of dimension n, then kXordk is .n�1/–connected. Consequently kCn;ordk

is .n�1/–connected, and by Proposition 37 the same holds for kDnk.

Remark 39 In the case of the sequence .An/n>1 , when Dn is the complex of injective
words in f1; : : : ; nC 1g, the connectivity of kDnk is well-known: see [9; 2; 19; 25].
(Strictly speaking, the first and third references deal with the homology of kDnk, rather
than its homotopy type.)
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9 Completion of the proof

We now complete the proof of the Main Theorem. This section is modelled closely on
Section 5 of [25], from which there is little essential difference. It is also similar to the
proof of Theorem 2 of [19].

We regard Dn as a simplicial space by equipping its constituent sets with the discrete
topology. Then we form a semisimplicial space

EWn �Wn
Dn

by setting .EWn �Wn
Dn/k DEWn �Wn

Dn
k

and using the face maps obtained from
those of Dn .

Lemma 40 The projection EWn �Wn
Dn

0 ! BWn makes EWn �Wn
Dn into an

augmented simplicial space over BWn , and the induced map kEWn�Wn
Dnk!BWn

is .n�1/–connected.

Proof The composites of the projection with d0 and d1 coincide, so that the projection
is indeed an augmentation. Since the map EWn! BWn is a locally trivial principal
Wn –bundle, it follows that kEWn �Wn

Dnk ! BWn is a locally trivial bundle with
fibre kWn �Wn

Dnk Š kDnk, which is .n�1/–connected by Corollary 38, so that the
map itself is .n�1/–connected.

Lemma 41 There are homotopy equivalences EWn �Wn
Dn

k
' BWn�k�1 under

which the face maps di W EWn �Wn
Dn

k
! EWn �Wn

Dn
k�1

are all homotopic to the
stabilization map BWn�k�1! BWn�k , and under which the composite

EWn �Wn
Dn

0 !kEWn �Wn
Dn
k! BWn

is homotopic to the stabilization map BWn�1! BWn .

Proof There is an isomorphism

EWn �Wn
Dn

k DEWn �Wn
.Wn=Wn�k�1/

Š
��!EWn=Wn�k�1

sending the orbit of .x; cWn�k�1/ to the orbit of c�1x . This identifies di with the
map

EWn=Wn�k�1!EWn=Wn�k

sending the Wn�k�1 –orbit of x to the Wn�k –orbit of .sn�kC1 � � � sn�kCi /x . We claim
that this map is homotopic to the one sending the Wn�k�1 –orbit of x to the Wn�k –orbit
of x . Indeed, EWn is contractible, and Wn�k�1 acts on it freely. Moreover, when we
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equip EWn with its natural CW–structure as the realization of a simplicial set, then this
action is cellular. It follows that any two Wn�k�1 –equivariant maps from EWn to itself
are Wn�k�1 –equivariantly homotopic. (This can be proved by induction on the cells.
Alternatively, see [20, Definition 1.8 and Theorem 1.9] in the case where GDWn�k�1

and F consists of the trivial subgroup.) Since .sn�kC1 � � � sn�kCi / commutes with
every element of Wn�k�1 , the map EWn ! EWn given by left-multiplication by
.sn�kC1 � � � sn�kCi / is Wn�k�1 –equivariant, and is therefore Wn�k�1 –equivariantly
homotopic to the identity map. The claim now follows by taking Wn�k�1 –orbits in
the domain and Wn�k –orbits in the codomain.

Now the equivariant homotopy equivalences

EWn�k�1!EWn and EWn�k!EWn

induce homotopy equivalences

BWn�k�1!EWn=Wn�k�1 and BWn�k!EWn=Wn�k

under which the map EWn=Wn�k�1 ! EWn=Wn�k just described becomes the
stabilization map.

The skeletal filtration of kEWn �Wn
Dnk leads to a first-quadrant spectral sequence

E1
k; l DHl.EWn �Wn

Dn
k/ H) HkCl.kEWn �Wn

Dn
k/;

in which the differential d1 is given by the alternating sum
Pk

iD0.�1/
i .di /� of

the maps induced by the face maps. Lemma 41 allows us to identify the E1 –term
of this spectral sequence: E1

k; l
D Hl.BWn�k�1/, and d1W E1

k; l
! E1

k�1; l
is the

map Hl.BWn�k�1/!Hl.BWn�k/ induced by stabilization if k is even, and is zero
if k is odd.

Lemma 42 For allm<n, assume that the stabilization mapHl.BWm�1/!Hl.BWm/

is an isomorphism in degrees 2l 6 m. Then the spectral sequence has the following
properties:

(1) E1
0; l
D � � � DE2

0; l
DE1

0; l
for 2l 6 n.

(2) E1
k; l
D 0 for k > 0 and 2.kC l/6 n.

Proof The assumption allows us to deduce that E2
k; l
D 0 when k > 1 is odd and

2l C kC 1 6 n, and that E2
k; l
D 0 when k > 2 is even and 2l C k 6 n. For in the

first case
d1
W E1

kC1; l !E1
k; l
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is the stabilization map

Hl.BWn�k�2/!Hl.BWn�k�1/;

and in the second case
d1
W E1

k; l !E1
k�1; l

is the stabilization map

Hl.BWn�k�1/!Hl.BWn�k/;

and our assumption means that both are isomorphisms in the given range. Figure 5
shows the E1 –page, where the left-hand shaded region consists of terms with total
degree satisfying 2�6 n and the right-hand shaded region consists of terms that vanish
on the E2 -page.

� �� ��

� �� ��

� �� ���

�

�b
n
2
c

b
n�2

2
c

b
n�4

2
c

b
n
2
c 2bn

2
c

Figure 5: The spectral sequence .Er
s;t /

To prove the first claim, observe that, since d1W E1
1; l ! E1

0; l
is zero, E2

0; l
D E1

0; l
.

The remaining differentials with target in bidegree .0; l/ are

dk
W Ek

k; l�kC1!Ek
0; l

with k > 2, and these have domain zero since

2.l � kC 1/C k 6 2.l � kC 1/C kC 1D 2l � kC 26 2l 6 n

so that E2
k; l�kC1

D 0. To prove the second claim, observe that if 2.k C l/ 6 n

and k > 0, then certainly

2l C k < 2l C kC 16 2.l C k/6 n;
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so that E2
k; l
D 0.

We can now complete the proof of the main theorem, showing by induction on n> 0

that Hl.BWn�1/!Hl.BWn/ is an isomorphism for 2l 6 n. (In the main theorem
this claim was made only for n > 2, but the proof by induction relies on the cases
obtained by extending to the left.) For nD 0 the claim is that H0.BW�1/!H0.BW0/

is an isomorphism, which is trivial since BW�1 and BW0 are both path connected.
Take n > 1 and suppose that the theorem holds for all smaller integers. Lemma 41
shows that the composite

Hl.BWn�1/DE
1
0; l !E10; l !Hl.kEWn �Wn

Dn
k/!Hl.BWn/;

is the stabilization map, and we must show that this is an isomorphism for 2l 6 n.
Lemma 42 shows that the first two arrows are isomorphisms in this range, while
Lemma 40 shows that the last map is an isomorphism for l 6 n � 1, which holds
since 2l 6 n and n> 2.
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