
FINITE DIMENSIONAL ORDERED VECTOR SPACES
WITH RIESZ INTERPOLATION AND EFFROS-SHEN’S

UNIMODULARITY CONJECTURE

AARON TIKUISIS

Abstract. It is shown that, for any field F ⊆ R, any ordered
vector space structure of Fn with Riesz interpolation is given by
an inductive limit of a sequence with finite stages (Fn,Fn

≥0) (where

n does not change). This relates to a conjecture of Effros and Shen,
since disproven, which is given by the same statement, except with
F replaced by the integers, Z. Indeed, it shows that although Effros
and Shen’s conjecture is false, it is true after tensoring with Q.

1. Introduction

In this article we prove the following.

Theorem 1.1. Let F be a subfield of the real numbers, let n be a natural
number, and suppose that (V, V +) is a ordered directed n-dimensional
vector space over F with Riesz interpolation. Then there exists an in-
ductive system

(Fn,Fn≥0)
φ2i−→ (Fn,Fn≥0)

φ32−→ · · ·

of ordered vector spaces over F whose inductive limit is (V, V +).

The inductive limit may be taken either in the category of ordered
abelian groups (with positivity-preserving homomorphisms as the ar-
rows) or of ordered vector spaces over F (with positivity-preserving
linear transformations as the arrows). Here, F≥0 := F∩ [0,∞), so that
the ordering on (Fn,Fn≥0) is simply given by coordinatewise comparison.

In [3], Effros and Shen conjectured that every ordered, directed, un-
perforated, rank n free abelian group (G,G+) with Riesz interpolation
can be realized as an inductive system of ordered groups (Zn,Zn≥0).
This was called the “unimodularity conjecture,” as the connecting maps
would necessarily (eventually) be unimodular. This conjecture was dis-
proven by Riedel in [8]. Theorem 1.1 shows that, nonetheless, upon
tensoring with the rational numbers (or any other field contained in
R), the conjecture is true. As a consequence, Corollary 5.1 says that if
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(G,G+) is an ordered n-dimensional Q-vector space with Riesz inter-
polation then it is an inductive limit of (Zn,Zn≥0) (where the maps are,
of course, not unimodular).

In [6], David Handelman shows that every vector space with Riesz in-
terpolation can be realized as an inductive limit of ordered vector spaces
(Fn,Fn≥0), though of course the number n isn’t assumed to be constant
among the finite stages. The focus of [6] is on the infinite-dimensional
case, and indeed, an interesting example is given of a countable dimen-
sional ordered vector space that can’t be expressed as an inductive limit
of a sequence of ordered vector spaces (Fn,Fn≥0). Combined with this
article, this gives a dichotomy between the behaviour of infinite- versus
finite-dimensional ordered vector spaces with Riesz interpolation.
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2. Preliminaries

We shall say a little here about the theory of ordered vector spaces
with Riesz interpolation. Although the focus is on vector spaces, much
of the interesting theory holds in the more general setting of ordered
abelian groups (particularly when the group is unperforated, as ordered
vector spaces are automatically). An excellent account of this theory
can be found in the book [4] by Ken Goodearl.

Definition 2.1. An ordered vector space consists of a vector space
V together with a subset V + ⊆ V called the positive cone, giving an
ordering compatible with the vector space structure; that is to say:

(OV1) V + ∩ (−V +) = 0 (V + gives an order, not just a preorder);
(OV2) V + + V + ⊆ V +; and
(OV3) λV + ⊆ V + for all λ ∈ F≥0.

The ordering on V is of course given by x ≤ y if y − x ∈ V +.
The ordered vector space (V, V +) is directed if for all x, y ∈ V , there

exists z ∈ V such that
x
y
≤ z.

The ordered vector space (V, V +) has Riesz interpolation if for
any a1, a2, c1, c2 ∈ V such that

a1
a2
≤ c1

c2
,

there exists b ∈ V such that

a1
a2
≤ b ≤ c1

c2
.
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Note that (V, V +) being directed is an extremely natural condition,
as it is equivalent to saying that V +−V + = V . Riesz interpolation for
an ordered vector space (V, V +) is equivalent to Riesz decomposition,
which says that for any x1, x2, y ∈ V +, if y ≤ x1 + x2 then there exist
y1, y2 ∈ V + such that y = y1+y2 and yi ≤ xi for i = 1, 2 [1, Section 23].

The category of ordered vector spaces (over a fixed field F) has as
arrows linear transformations which are positivity-preserving, meaning
that they map the positive cone of the domain into the positive cone
of the codomain. This category admits inductive limits, and for an in-
ductive system ((Vα, V

+
α )α∈A, (φ

β
α)α≤β), the inductive limit is given con-

cretely as (V, V +) where V is the inductive limit of ((Vα)α∈A, (φ
β
α)α≤β)

in the category of vector spaces, and if φ∞α : Vα → V denotes the
canonical map then

V + =
⋃
α∈A

φ∞α (Vα).

If (Vα, V
+
α ) has Riesz interpolation for every α then so does the induc-

tive limit (V, V +).
Theorem 1 of [6] states that every ordered F-vector space with Riesz

interpolation can be realized as an inductive limit of a net of ordered
vector spaces of the form (Fn,Fn≥0). The proof uses the techniques of [2],
where it was shown that every ordered directed unperforated abelian
group with Riesz interpolation is an inductive limit of a net of ordered
groups of the form (Z,Z≥0). In the case that F = Q, [6, Theorem 1]
follows from [2] and the theory of ordered group tensor product found
in [5]. Certainly, if (V, V +) is an ordered directed Q-vector space with
Riesz interpolation then it can be written as an inductive limit of Gα =
(Znα ,Znα≥0), and then we have

(V, V +) ∼= (Q,Q≥0)⊗Z (V, V +)
∼= lim(Q,Q≥0)⊗Z (Znα ,Znα≥0)
∼= lim(Qnα ,Qnα

≥0).

But in the case of other fields, we no longer have (V, V +) ∼= (V, V +)⊗Z
(F,F≥0) (indeed, F⊗Z F 6∼= F). Indeed, although in the countable case,
the net of groups in [2] can be chosen to be a sequence, not every
countable dimensional ordered vector space with Riesz interpolation is
the limit of a sequence of ordered vector spaces (Fn,Fn≥0). Theorem 2
of [6] characterizes when the net from [6, Theorem 1] can be chosen to
be a sequence: exactly when the positive cone is countably generated.

Using [2], one sees that an obviously sufficient condition for (V, V +)
to be the limit of a sequence of ordered vector spaces of the form
(Fn,Fn≥0) is that

(2.1) (V, V +) ∼= (G,G+)⊗Z (F,F≥0).
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This is the case whenever F = Q. Proposition 5 of [6] also shows that
(2.1) holds when (V, V +) is simple, since in this case, we can in fact take
(G,G+) to be a rational vector space. Also, (2.1) holds in the finite
rank case, as [7, Theorem 3.2 and Corollary 6.2] likewise show that we
can take (G,G+) to be a rational vector space. However, Theorem 1.1
improves on this result in the finite rank case, by showing that the
finite stages have an even more special form – their dimension does not
exceed the dimension of the limit.

3. Outline of the proof

In light of the concrete description above of the inductive limit of
ordered vector spaces, saying that (V, V +) (where dimF V = n) can be
realized as an inductive limit of a system

(Fn,Fn≥0)
φ2i−→ (Fn,Fn≥0)

φ32−→ · · ·

is equivalent to saying that there exist linear transformations φ∞i :
Fn → V such that:

(i) φ∞i is invertible for all i;
(ii) V + =

⋃
φ∞i (Fn≥0); and

(iii) For all i, φ∞i (Fn≥0) ⊆ φ∞i+1(Fn≥0).
This idea is used in the proof of Theorem 1.1, which we outline now.

We rely on [7] for a combinatorial description of the ordered vector
space (V, V +). Using this description, linear tranformations αε, βR :
Fn → Fn are defined for all ε, R ∈ F>0 := F ∩ (0,∞). It is shown in
Lemma 4.4 that both αε and βR are invertible. In (4.5), we associate
to (V, V +) another ordered vector space (Fn, U+) whose cone is like V +

but such that the positive functionals on (Fn, U+) separate the points.
We show in Lemma 4.7 (i) and Lemma 4.8 (i), that

U+ =
⋃
ε∈F>0

αε(Fn≥0),

and in Lemma 4.7 (ii) and Lemma 4.8 (ii), that

V + =
⋃

R∈F>0

βR(U+).

Although we don’t have

βR1(αε1(Fn≥0)) ⊆ βR2(αε2(Fn≥0))

when R1 < R2 and ε1 > ε2, Lemma 4.9 does allow us to extract an
increasing sequence from among all the images βR(αε(F≥0)), such that
their union is still all of V +.
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4. The proof in detail

We begin with a useful matrix inversion formula.

Lemma 4.1. Let Jn ∈ Mn denote the matrix all of whose entries are
1. Then for λ 6= −1/n, In + λJn is invertible and

(In + λJn)−1 = In −
λ

λn+ 1
Jn.

Proof. Using the fact that J2 = nJ , we can easily verify

(I + λJ)

(
I − λ

λn+ 1
J

)
= I.

�

The main result of [7] shows that every finite dimensional ordered
directed F-vector space with Riesz interpolation looks like Fn with a
positive cone given by unions of products of F,F>0 and {0}. To fully
describe the result, the following notation for such products is quite
useful.

Notation 4.2. For a partition {1, . . . , n} = S1 q · · · q Sk and subsets
A1, . . . , Ak of a set A, define

AS1
1 · · ·A

Sk
k = {(a1, . . . , an) ∈ An : ai ∈ Aj ∀i ∈ Sj, j = 1, . . . , k}.

Theorem 4.3. Let F be a subfield of the real numbers, let n be a
natural number, and suppose that (W,W+) is an ordered F-vector space
of dimension n with Riesz interpolation. Then there exists

(i) a sublattice S of 2{1,...,n} containing both ∅ and {1, . . . , n}, and
(ii) for each S ∈ S, a partition

{1, . . . , n} = E0
S q E>

S q E∗S,
such that E0

S = Sc for each S and, writing E≥S := E0
S q E>

S for each
S ∈ S, we have

(RV1) E≥S1∪S2
= E≥S1

∩ E≥S2
,

(RV2) E>
S2
6⊆ S1 whenever S1, S2 ∈ S satisfy S2 6⊆ S1, and

writing

(4.1) V + =
⋃
S∈S

0E
0
S FE

>
S

>0 FE∗S ,

we have (W,W+) ∼= (Fn, V +).

Remark. Corollaries 5.2 and 6.2 of [7] says that, in the cases F = R
and F = Q, every V + given as in the above theorem does actually have
Riesz interpolation. Moreover, the proof of [7, Corollary 5.2] works for
any other field F ⊆ R. However, the proof of Theorem 1.1 only uses
that V + has the form described in the above theorem, and therefore
it gives an entirely different proof of [7, Corollary 5.2], that V + has
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Riesz interpolation (since Riesz interpolation is preserved under taking
inductive limits).

Proof. This is simply a special case of [7, Theorem 3.2]. Note that
(RV2) appears in [7, Theorem 3.2] as: if S1 ( S2 then E>

S2
\S1 6= ∅.

This is equivalent, to (RV2), since if S2 6⊆ S1 then S1 ∩S2 ( S2, while
if S1 ( S2 then of course S2 6⊆ S1. �

To set up for the proof of Theorem 1.1, we now fix a subfield F
of the real numbers, a natural number n, and an ordered directed n-
dimensional vector space (V, V +) over F with Riesz interpolation. In
light of the previous theorem, we may assume that (V, V +) has the
structure described there. We therefore fix, for the remainder of this
section, data S, E0

S, E
>
S , E

∗
S and E≥S as described by Theorem 4.3 such

that V = Fn and V + is defined by (4.1).
For each i = 1, . . . , n, define

Zi :=
⋃
{S ∈ S : i ∈ Sc}, and

Pi :=
⋃
{S ∈ S : i ∈ E≥S }.

Note that i 6∈ Zi and i ∈ E≥Pi .
For ε ∈ F>0, define functionals αεi : Fn → F by

(4.2) αεi(z1, . . . , zn) := zi + ε
∑
j 6∈Zi

zj;

and for R ∈ F>0, define functionals βRi : Fn → F by

(4.3) βRi (y1, . . . , yn) := yi −R
∑

j 6∈Pi,Pi 6=Pj

yj.

Let us denote αε := (αε1, . . . , α
ε
n) : Fn → Fn and βR := (βR1 , . . . , β

R
n ) :

Fn → Fn. Then αε is block-triangular, and βR is triangular, as we shall
now explain.

For indices i and j, we have j 6∈ Zi if and only if Zi ⊆ Zj. We
therefore label the blocks of (αε11 , . . . , α

εn
n ) by sets Z ∈ S, where the

Zth block consists of indices i such that Zi = Z; we shall use BZ to
denote this set of indices, i.e.

BZ := {i = 1, . . . , n : Zi = Z}.
For βR, note that if j 6∈ Pi then Pi ⊆ Pj, and from this it follows

that βR is triangular.

Lemma 4.4. For all ε, R ∈ F>0, α
ε and βR are invertible.

Proof. That βR is invertible follows from the fact that it is triangular
with 1’s on the diagonal. To show that αε is invertible, as we already
noted that it is block-triangular, we need to check that each block is
invertible. In matrix form, the Zth block of αR is equal to

I|BZ | + εJ|BZ |,
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and by Lemma 4.1, this block is invertible. �

Notation 4.5. For x ∈ Fn, let us use Sx to denote the smallest set
S ∈ S such that S contains

{i = 1, . . . , n : xi 6= 0}.

In upcoming proofs, induction arguments will often involve induc-
tion over a collection of subsets. Here, a “nonincreasing order” means
taking a sequence which contains no increasing subsequence (and “non-
decreasing order” is defined analogously).

Lemma 4.6. Let ε, R ∈ F>0 be scalars and let z ∈ Fn. Then

Sz = Sαε(z) = SβR(αε(z)).

Proof. To show that Sαε(z) ⊆ Sz, it suffices to show that αεi(z) = 0 for
all i 6∈ Sz, which we show in (a). Likewise we show in (b) that zi = 0
for all i 6∈ Sαε(z), in (c) that βRi (αε(z)) = 0 for all i 6∈ Sαε(z), and in (d)
that αεi(z) = 0 for all i 6∈ SβR(αε(z)).

(a) If i 6∈ Sz then Sz ⊆ Zi and therefore, for every j 6∈ Zi we
have j 6∈ Sz and so zj = 0. Since αRi (z) is a linear combination of
{zj : j 6∈ Zi}, it follows that αRi (z) = 0.

(b) We shall prove this by induction on the blocks BZ , iterating
Z ∈ S in a nonincreasing order. The base case is Z = ∅, where the
result is trivial. Since i 6∈ Sαε(z) if and only if Zi ⊇ Sαε(z), we only need
to consider Z ⊇ Sαε(z).

For a block Z ⊇ SαR(z) and an index i ∈ BZ , we have

(4.4) 0 = αεi(z) = zi + ε
∑
j∈BZ

zj + ε
∑

j:Zj)Z

zj.

By induction, we have that zj = 0 for all j satisfying Zj ( Z; that is to
say, the last term in (4.4) vanishes. Hence, the system (4.4) becomes

0 = (I|BZ | + εJ|BZ |)(zi)i∈BZ ;

and by Lemma 4.1, it follows that zi = 0 for all i ∈ BZ , as required.
(c) For (c) and (d), let us set y := αε(z). If i 6∈ Sy then again,

Sy ⊆ Zi and so yj = 0 for all j 6∈ Zi ⊆ Pi. Since βRi (y) is a linear
combination of {yi} ∪ {yj : j 6∈ Pi}, βRi (y) = 0.

(d) If i 6∈ SβR(y) then we have

0 = βRi (y) = yi −R
∑

j 6∈Pi,Pi)Pj

yj.

As above, j 6∈ Pi implies that j 6∈ SβR(y). Hence, if we iterate the indices
i ∈ ScβR(y) in a nondecreasing order of the sets Pi then induction proves

yi = 0 for all i 6∈ SβR(y). �
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Our proof makes use of the following positive cone:

(4.5) U+ :=
⋃
S∈S

FS> 0S
c

.

Lemma 4.7. Let R, ε ∈ F>0 be scalars. Then:

(i) αε(Fn≥0) ⊆ U+, and

(ii) βR(U+) ⊆ V+.

Proof. (i) Let z ∈ Fn≥0. By Lemma 4.6, we know that αεi(z) = 0 for
i 6∈ Sz. Let us show that αεi(z) > 0 for i ∈ Sz, from which it follows
that αε(z) ∈ U+.

For i ∈ Sz, we have

αεi(z) = zi + ε
∑
j 6∈Zi

zj;

so evidently αεi(z) ≥ 0 and αεi(z) = 0 would imply that zj = 0 for all
j 6∈ Zi. But if that were the case, then we would have Sz ⊆ Zi, and in
particular, i 6∈ Sz, which is a contradiction. Hence αεi(z) > 0.

(ii) Let y ∈ U+. Then we must have yi > 0 for all i ∈ Sy. By
Lemma 4.6, we already know that βRi (y) = 0 for all i ∈ Scy = E0

Sy
.

Thus, we need only show that βRi (y) > 0 for i ∈ E>
Sy

. For such an i,
we have

βRi (y) = yi −R
∑

j 6∈Pi,Pj 6=Pi

yj.

Since i ∈ E>
Sy

, we have Pi ⊇ Sy. Therefore if j 6∈ Pi then j 6∈ Sy and so

yj = 0. Thus, we in fact have βRi (y) = yi > 0. �

Lemma 4.8. Let U+ be as defined in (4.5). Then:

(i) U+ =
⋃
ε∈F>0

⋂
ε′∈F>0,ε′<ε

αε
′
(Fn≥0).

(ii) V + =
⋃
R∈F>0

⋂
R′∈F,R′>R β

R′(U+).

Proof. (i) Let y ∈ U+. Define m := min{yi : i ∈ Sy} > 0 and M :=
max{yi : i ∈ Sy}, and suppose that ε ∈ F>0 is such that

ε <
m

2nM
,

for all Z ∈ S. Let us show that z = (αε)−1(y) satisfies zi ≥ 0 for all i.
We will show, by induction on the blocks BZ (iterating Z ∈ S in a

nonincreasing order), that

0 ≤ zi ≤M

for all i ∈ BZ . By Lemma 4.6 we already know that this holds for
Z ⊇ Sy (since this implies that i 6∈ Sy, which means that zi = 0).

For i ∈ BZ ∩ Sy, set

Ci := zi + ε
∑
j∈BZ

zj = yi − ε
∑

j 6∈Z,Zj)Z

zj.
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Then we have

Ci ≥ m− εnM > m−m/2 = m/2

and

Ci ≤M.

By Lemma 4.1, we have

zi = Ci −
ε

nε+ 1

∑
j∈BZ

Cj.

On the one hand, this gives

zi > m/2− εnM = m/2−m/2 = 0,

and on the other, it gives

zi ≤ Ci ≤M,

as required.
(ii) Let x ∈ V +. For R ∈ F>0 let us denote yR = (yR1 , . . . , y

R
n ) :=

(βR)−1(x). For all i 6∈ Sx we already know that yRi = 0. Moreover, for
all i ∈ E>

Sx
and all R, we have

xi = yRi −R
∑

j 6∈Pi,Pj 6=Pi

yRi ;

but note that if j 6∈ Pi ⊇ Sx then j 6∈ Sx, and therefore we have
yRi = xi > 0.

We will show by induction that, for each i ∈ E∗Sx there exists Ri ∈
F>0 such that for all R′′ ≥ R′ ≥ Ri, we have

yR
′′

i > yR
′

i > 0.

We iterate the indices i in a nonincreasing order of Pi. The base case
can be proven by the same argument as for the inductive step.

For the index i, we have

(4.6) yRi = xi +R
∑

j 6∈Pi,Pj)Pi

yRj .

If we require that R ≥ max{Rj : Pj ) Pi} then, by induction, we know

that yRj ≥ 0 for all j 6∈ Pi. Moreover, since i 6∈ E≤Sx , this means that
Sx 6⊆ Pi and therefore by (RV2) in Theorem 4.3, there exists some
j0 ∈ E>

Sx
\Pi. Notice that Pj0 ⊇ Sx whereas Sx 6⊆ Pi, whence Pj0 6= Pi;

combined with the fact that j0 6∈ Pi, this shows that yRj0 does appear
as a summand in the right-hand side of (4.6). Thus, we have

yRi = xi +R
∑

j 6∈Pi,Pj 6=Pi

yRj ≥ xi +RyRj0 = xi +Rxj0 .

Since xj0 > 0, there exists R = Ri for which the right-hand side is
positive, and so yRi > 0.
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Since yRj is a nondecreasing function of R for all j for which Pj ) Pi,

it is clear from (4.6) that so is yRi . �

Lemma 4.9. Let R1, ε1 ∈ F>0 be scalars. For any R′ > R1, there exist
R2, ε2 ∈ F>0 with R2 > R′ and ε2 < ε1 such that

βR1(αε1(Fn≥0)) ⊆ βR2(αε2(Fn≥0)).

Proof. Let e1, . . . , en be the canonical basis for Fn, so that Fn≥0 is the
cone generated by e1, . . . , en. Then for each of i = 1, . . . , n, we have by
Lemma 4.7 that

βR1(αε1(ei)) ∈ V+;

and thus by Lemma 4.8 (ii), there exists R2 > R′ such that

(βR2)−1(βR1(αε1(ei))) ∈ U+

for all i = 1, . . . , n. By Lemma 4.8 (i), there then exists ε2 < ε1 such
that

(αε1)−1((βR2)−1(βR1(αε1(ei)))) ∈ Fn≥0
for all i = 1, . . . , n, which is to say,

βR1(αε1(ei)) ∈ βR2(αε2(Fn≥0)).

Since Fn≥0 is the cone generated by e1, . . . , en, it follows that

βR1(αε1(Fn≥0)) ⊆ βR2(αε2(Fn≥0)),

as required. �

Proof of Theorem 1.1. Let R1, ε1 ∈ F>0, and, using Lemma 4.9, induc-
tively construct sequences (Ri), (εi) ⊂ F>0, such that Ri → ∞, εi → 0
and for each i,

βRi(αεi(Fn≥0)) ⊆ βRi+1(αεi+1(Fn≥0)).

Set φi = βRi ◦ αεi : Fn → Fn. By Lemma 4.8, we have V + =⋃∞
i=1 φi(Fn≥0).
Our inductive system is thus

(Fn,Fn≥0)
φ−1
2 ◦φ1−→ (Fn,Fn≥0)

φ−1
3 ◦φ2−→ · · · ;

as explained in Section 2, the inductive limit is

(Fn,
∞⋃
i=1

φi(Fn≥0)) = (V, V +),

as required. �
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5. Consequences

Corollary 5.1. Let (V, V +) be an n-dimensional ordered directed Q-
vector space with Riesz interpolation. Then there exists an inductive
system of ordered groups

(Zn,Zn≥0)
φ21−→ (Zn,Zn≥0)

φ32−→ · · ·

whose inductive limit is (V, V +).

Proof. By Theorem 1.1, let

(Qn,Qn
≥0)

φ21−→ (Qn,Qn
≥0)

φ32−→ · · ·

be an inductive system whose limit is (V, V +). Since positive scalar
multiplication gives an isomorphism of any ordered vector space, we
may replace any of the connecting maps with a positive scalar multiples,
and still get (V, V +) in the limit. Hence, we may assume without loss

of generality that φi+1
i (Zn) ⊆ Zn. Then, letting φ

i+1

i = φi+1
i |Zn , we

have an inductive system

(Zn,Zn≥0)
φ
2
1−→ (Zn,Zn≥0)

φ
3
2−→ · · · ,

whose limit (G,G+) satisfies (G,G+)⊗Z (Q,Q≥0) ∼= (V, V +).
Now, we may easily find an inductive system

(Z,Z≥0)
ψ2
1−→ (Z,Z≥0)

ψ3
2−→ · · ·

whose limit is (Q,Q≥0). (Such an inductive system necessarily has
ψi+1
i given by multiplication by a positive scalar Ni; and the limit is

(Q,Q≥0) as long as every prime occurs as a divisor of infinitely many
Ni.)

Thus, by [5, Lemma 2.2], (V, V +) is the inductive limit of

(Zn,Zn≥0)⊗Z (Z,Z≥0)
φ
2
1⊗Zψ

2
1−→ (Zn,Zn≥0)⊗Z (Z,Z≥0)

φ
3
2⊗Zψ

3
2−→ · · · ,

which is what we require, since (G,G+)⊗Z (Z,Z≥0) = (G,G+) for any
ordered abelian group (G,G+). �

Corollary 5.2. Let (G,G+) be a rank n ordered directed free abelian
group with Riesz interpolation. Then there exists an inductive system
of ordered groups

(Zn,Zn≥0)
φ21−→ (Zn,Zn≥0)

φ32−→ · · ·

whose inductive limit is (G,G+)⊗Z (Q,Q≥0).

Proof. This follows immediately, as (G,G+)⊗Z(Q,Q≥0) is an n-dimensional
ordered directed Q-vector space with Riesz interpolation. �
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