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Abstract. Norms specify ideal behaviour. Agents, however, are auto-
nomous, and may fail to comply with the ideal. Contrary to Duty obli-
gations can be used to specify reparational behaviour that mitigates the
effects of a violation. In addition to specifying reparational behaviours,
it is important to understand how robust a system is against possible
violations. Depending on what kind of system property we want to pre-
serve, non-compliance with different norms may be of varying severity.
We propose a method for analysing robustness of normative systems,
with support for Contrary to Duty obligations. We introduce violation
severity as a concept orthogonal to reparational behaviour and specify it
by means of a partial order over norms. We use this severity partial or-
der, together with normative specifications, to rank the possible worlds
from the most to the least compliant. In this way, we are able to use
model checking to analyse robustness to a certain severity, or whether
it is possible to achieve a certain goal, without violating any norm of a
given severity.

1 Introduction

In multi-agent systems (MAS), a normative system specification consists of a set
of constraints (norms) that specify the ideal behaviour of agents. Norms declare
how agents should behave within a social context, what they should refrain from
doing or what undesirable outcomes to avoid. Sub-ideal behaviour may, however,
vary in severity. For example, the consequences of revealing restricted informa-
tion is undesirable, but less severe than revealing secret information (“restricted”
and “secret” being common information security classifications). Implicit in this
example is the idea that severity is viewed as a series of levels, or, more accu-
rately, represents a partial ordering over norm violations. This is, we believe,
the best way to think of the notion of severity from the perspective of system
robustness. We are interested in reasoning about how robust a system may be
to some level of severity, given some situation, often in which some kind of norm
violation is inevitable. The common alternative is to view violation severity in
terms of penalties (i.e. anticipated loss of utility). This, however, leaves the way
open to significant fallacies in reasoning. Consider, for example, prison terms
imposed on individuals in a jurisdiction for certain crimes. Suppose that a typi-
cal term for a robbery is 6 months, and a murder 25 years. Should we infer that
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committing a murder (gently or not!) is equivalent to a series of 50 robberies?
Penalties for norm violation are imposed post hoc, typically by authorities. Vio-
lations may even be excused if the alternative would have been less desirable; e.g.
an under-cover policeman choosing between engaging in robberies or commiting
a murder to gain trust.

Where norms capture the ideal, agents operate autonomously and, hence,
their actual behaviour may violate norms. Norm violations may be accidental,
due to unanticipated consequences of activities, or deliberate, for example, in
order to achieve a goal that would not be possible otherwise. It is, therefore,
important to account for and consider the consequences of violations. One way
of addressing this issue is to define Contrary To Duty (CTD) obligations. These
are structures that describe what an agent should do when a violation occurs.
CTD obligations can be used to define a behaviour that mitigates the effects of
a violation. In traditional deontic logic frameworks, CTD obligations often lead
to inconsistencies [2]. For this reason, a number of logics have been proposed to
capture and correctly reason about CTD obligations [12, 13].

In addition to specifying behaviours that may mitigate the effects of a vi-
olation through CTD obligations, it is important to understand how robust a
normative system is to potential future violations. For example, we may want to
determine if certain desired properties are preserved even if a subset of agents
in the system fail to comply with the ideal. Ågotnes et al. [1] introduced the
idea of verifying robustness of normative systems. They developed a logic, Norm
Compliance CTL (NCCTL), for the definition of robustness-related properties.
In their model the transitions between possible worlds of a Kripke structure
are divided into those allowed (green) and forbidden (red), according to a nor-
mative specification. Using NCCTL it is possible to specify properties such as
“if a subset of agents comply with the normative system (i.e. do not activate
any forbidden transition), it is guaranteed that a certain (un)desired property
will (not) hold”. In a related work, Kazmierczak et al. [10] developed a model
checking tool (NorMC) that enables the verification of a NCCTL property for a
specified model. Model checking [3] is a formal verification technique that, given
a model specification, and some properties, determines whether these properties
hold. Properties can be specified using various temporal logic formalisms, such
as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) (or its
extension CTL∗).

One open question in robustness analysis of normative systems, however, is
how to reason about (non) compliance of CTD obligations. Moreover, we believe
that, when analysing the robustness of normative systems, it is important to
take into account the severity of violations. Our idea is based on the observation
that, if our objective is to preserve certain safety properties of a system, some
norms are more important than others. In fact, while a system could accept a
number of violations of a certain kind, some properties might cease to hold even
with only one (more severe) violation of another kind.

Our aim is to develop methods to reason about the robustness of normative
systems, taking into consideration both violation severity and CTD obligations.



We apply model checking to analyse robustness, under different compliance stan-
dards. We build upon a preference-based approach to define obligations proposed
by van der Torre and Tan [13] and use the preference relation to derive a ranking
of the worlds according to their “ideality level”; i.e. according to how compliant
these worlds are with the enforced normative system. Moreover we introduce a
preference relation between obligations that specifies, for each obligation, how
severe its violation would be. The preference relation between worlds is com-
puted in such a way that worlds that violate less severe obligations or fewer
obligations of the same severity are preferred. Different ranges of ranking levels
are then computed according to the severity of the obligations that are violated
in such worlds. This results in a partition of the world-space that is encoded
in a model suitable for an off-the-shelf model checker. Further, we discuss how
severity ranges are used to query the model checker about robustness-related
properties and the feasibility of a given plan if we constrain ourselves to a cer-
tain severity range. Before presenting our model, however, we present an intel-
ligence, surveillance and reconnaissance (ISR) scenario that helps illustrate the
motivations behind our research.

2 ISR Scenario

We consider as an example a coalition of three agents that includes a patrol boat,
an unmanned aerial vehicle (UAV) and a helicopter of the sea-guard conducting
surveillance of a restricted area. In order for the coalition to achieve its mission,
either the helicopter or the UAV needs to monitor the restricted area. If an
unauthorized boat is discovered in the restricted area, one of the three agents
must intercept the vehicle. The behaviour of the three agents is guided by the
normative system specified in Example 1.

Example 1. Sea-Guard.

1. The UAV must monitor the area.
2. If the UAV does not monitor the area, the helicopter must monitor the area.
3. If an unauthorized vehicle is in the area, one of the three agents must inter-

cept the vehicle.
4. If no agent intercepts the vehicle, one of the three agents must send a report

to the head-quarters.
5. The UAV must not reveal its location.

There are, in addition to normative constraints, practical constraints that
restrict possible solutions to achieve the mission goals. Neither the helicopter
nor the UAV can monitor and intercept at the same time, and, by deploying
the UAV to intercept the unauthorized vehicle, its position is revealed. It is
easy to see that norms 2 and 4 are CTD obligations, describing behaviours
that should be performed in order to mitigate the effect of violations of norms
1 and 3 respectively. As discussed before, another way of addressing the issue
of non-compliance could be to develop a normative system that is robust to



violations. Considering our example, we assume that the objective is to preserve
the security property: “no unauthorized vehicle is to enter the restricted area,
without being reported”. However it is preferred that unauthorized vehicles be
intercepted. We want to be able to specify that, if our main concern is to preserve
these two properties, obligation 3 or at least 4 must be always complied with,
while we could accept some violations of norm 1 or 5. Moreover, in order for
the coalition to be operative, we want to specify that it is more important to
guarantee that there is at least one agent monitoring (either the UAV or the
helicopter) rather than to avoid revealing the location of the UAV. We address
this problem by defining a partial order between norms that specifies for each
norm, how severe its violation is. We then want to use the normative and severity
specifications to compute a ranking of the possible worlds, according to their
level of compliance with the set of norms, giving more importance to violations
of more severe obligations. In other words, keeping at the first level the worlds
that are fully compliant, we want to give higher ranking values to the possible
worlds that violate more severe obligations, or more obligations of the same (or
incomparable) severity. Our aim is to apply model checking to ask questions
such as: is it possible to always intercept or report a boat without going through
states that are above a certain severity level; i.e. without violating any norm
that is as severe as a given level?

3 Formalization

Given a normative specification, our aim is to compute a preference relation be-
tween the possible worlds that reflects the level of compliance of the worlds with
a set of norms. We then use this preference relation to build a ranking of possi-
ble worlds. Such a ranking can be used to partition the world-space in different
severity ranges, and encode them into a model suitable for a model-checker. By
doing so, we can verify different properties of a system, taking different assump-
tions about its level of compliance; i.e. verify how robust our system is against
failures to comply with norms.

Our semantics is based on Prohairetic Deontic Logic (PDL)[13], where dyadic
(conditional) obligations are represented through a preference relation between
worlds. As claimed by van der Torre and Tan, this formalization allows us to
correctly represent most of the scenarios involving CTD norms. Note that, like
PDL, this is not a conflict-tolerant deontic logic and it requires a conflict-free
normative specification. We do not address the problem of checking whether
a normative specification might result in some conflicts between two or more
norms, but see Vasconcelos et al. [14] for an example of an approach to addressing
this problem. Together with a set of norms, we declare a strict partial order
relation between norms that specifies the relative severity of their violation. A
preference relation over possible worlds is computed using both normative and
severity specifications.

We define a model M = 〈W,B, V,OS,R, Po〉 where:

– W = {w1, . . . , wi, . . . , wn} is a set of n possible worlds.



– B is a set of boolean atoms. The set of well formed boolean formulae f is
defined as f ::= b | (¬f) | (f ∧ f) | (f ∨ f) | (f → f), where b ∈ B.

– V : W → 2B is a valuation function that assigns to each world w the set of
boolean atoms that hold in w.

– OS = {O1 = O(α1 | β1)), . . . , Om = O(αm | βm)} is a normative specifi-
cation, where αi and βi are two boolean formulae. O(αi | βi) represents an
obligation to achieve (or maintain) αi that applies to the worlds where βi

holds.
– R ⊆W ×W is an accessibility relation, where (wi, wj) ∈ R, or alternatively
wj ∈ R(wi), if it is possible, from world wi, to access wj through a transition.
A transition is an event that could lead to a change on the environment; e.g.
actions performed by one or more agent, or non-deterministic events. While
transitions are not used to compute the ranking of the possible worlds, we
need to encode them in the model.

– Po ⊆ OS × OS is a partial order over obligations that reflects the relative
severity of their violation. Given two obligations Oi and Oj , (Oi, Oj) ∈ Po

means that a violation of Oi is considered more severe than one of Oj . Po is a
transitive relation, thus, if we consider a graph G, where each node represents
an obligation, and each edge a member of Po, we say that violating Oa is
more severe than violating Ob (alternatively Oa �o Ob) if and only if the
node representing Ob is reachable from Oa through the edges of G.

As typical in such models, prohibitions are defined in terms of obligations. Saying
that a world that satisfies a is prohibited whenever b holds (F(a | b)) is equivalent
to saying that there is an obligation to achieve or maintain ¬a whenever b holds
(O(¬a | b)). Moreover, we assume that all the worlds that are not explicitly
prohibited are permitted. Let α and β be two boolean atoms in B, boolean
formulae satisfaction is defined as:
– wi |= α iff α ∈ V (wi).
– wi |= ¬α iff ¬(α ∈ V (wi)).
– wi |= α ∧ β iff (wi |= α) and (wi |= β).

The other boolean operators are defined as usual.
The choice of using a partial order to specify the severity of obligations, rather

than defining a fully ordered sequence of obligations, is motivated by the fact that
we might have sets of obligations that are not comparable in terms of severity.
We believe that our approach represents many real world scenarios, where the
violation of a certain norm is less desirable than several other violations, and
provides the necessary flexibility to define complex structures.

In the following we define compliance of a world with an obligation, and
coherence of an ordered pair of worlds with an obligation. These two concepts
will be used to compute a preference relation between possible worlds, where a
world wi is preferred to wj (wi �w wj) if and only if it is more compliant with
the normative specification.
Definition 1. A world wi is compliant with an obligation Oj = O(αj | βj) if
wi |= ¬βj ∨αj: i.e. if the obligation does not apply to wi or it is already satisfied.
We denote this by compliant(wi, Oj).



Definition 2. Given an ordered pair of worlds (wi, wj) where wi, wj ∈ W and
an obligation Ok ∈ OS, we define the following:

coherent((wi, wj), Ok) ≡ compliant(wi, Ok) ∧ ¬compliant(wj , Ok)
incoherent((wi, wj), Ok) ≡ compliant(wj , Ok) ∧ ¬compliant(wi, Ok)

We define Pw ⊆ W ×W as a strict partial order that defines a preference
relation between worlds. We write (wi, wj) ∈ Pw or alternatively wi �w wj if
wi is preferred to wj according to the normative system specification. Pw is
computed from M according to the following rule:

wi �w wj ↔ ∃ Ok ∈ OS s.t. (coherent((wi, wj), Ok)∧
(@ Ol ∈ OS s.t. ¬(Ok �o Ol) ∧ incoherent((wi, wj), Ol)))

(1)

Informally, we say that wi is preferable to wj if wi complies with an obligation
Ok that is violated by wj , and all the obligations Ol (if any) that are violated
by wi and for which wj is compliant, are less severe than Ok. If we assume that
all obligations are incomparable in terms of severity, the statement ¬(Ok �o Ol)
holds for any pair of obligations and Pw becomes equivalent to the preference
relation between worlds defined by van der Torre and Tan [13]. Note, however,
that while the preference relation of PDL semantics is reflexive, Pw is a strict
one; thus, whenever α �w β holds, we can say that α is preferred to β. Formally,
if we denote by �P DL the preference relation used to define the semantics for
PDL, we have w1 �w w2 ≡ (w1 �P DL w2) ∧ ¬(w2 �P DL w1).

The second condition of (1) is needed to avoid the so called “strong preference
problem” [13]: considering the two worlds w1 |= a∧¬b and w2 |= ¬a∧ b, without
such conditions, a normative system with two obligations O1 = O(a | true) and
O2 = O(b | true) would result in two conflicting preference relations w1 �w w2
(according to O1) and w2 �w w1 (according to O2). Introducing our second
condition, and assuming that the two obligations are incomparable according
to Pw, we have no preference between these worlds. When we specify Oa �o

Ob we want to say that a violation of Oa is more severe than a violation of
Ob, thus we want to obtain a ranking where w1 is preferred to w2. We obtain
this by restricting the second part of the equation, introducing the condition
¬(Ok �o Ol). Doing so, we have a preference relation (wi, wj) only if it is
incoherent with obligations Ol that are less severe than the obligation Ok such
that coherent((wi, wj), Ok). Considering the previous example, since Oa �o Ob,
we have only w1 �w w2.

Definition 3. Given a set of possible worlds W and a strict partial order re-
lation Pw on W , we define the ranking of the set as a function ranking(Pw) :
W → N where:

– ranking(Pw)(wi) = 1 if there is no (wj , wi) ∈ Pw.
– ranking(Pw)(wi) = max[ranking(Pw)(wj) : (wj , wi) ∈ Pw] + 1, otherwise.

Dividing the worlds by their ranking, we obtain a partition of the set W , in
which states in the same subset can be considered equally compliant. We call



the ranking of a possible world wi according to Pw the ideality level of wi. When
verifying robustness properties, we want to reason about what properties hold
when we consider only violations of a certain severity. Let ranking(Pw)(Oi) be the
world with minimum (more compliant) ranking such that we have a violation of
Oi. We can state that all the worlds with ranking lower than ranking(Pw)(Oi) can
be considered more compliant than a world that violates Oi, while all the worlds
with higher ranking violate obligations that are at least as severe as Oi. We define
for each obligation Oi the severity range of Oi, alternatively severity_Oi, as the
set of worlds that have ranking lower than ranking(Pw)(Oi). Severity ranges can
be used to verify how robust a system is to violations of a certain severity, or to
verify the feasibility of a certain workflow/plan, restricting ourselves to worlds
that violate only obligations that are less severe than a given one.

In the following section, we detail how we compute the strict partial order
relation Pw for a model M and, given that, the ranking(Pw) of the possible
worlds in W .

4 Normative Ranking of Possible Worlds

In this section, we introduce two algorithms. The first uses the set of possible
worlds, the set of obligations enforced and the severity relation to compute the
partial order relation between worlds Pw. The second computes a ranking of the
possible worlds into ideality levels, from the best (most compliant) world to the
worst (least compliant).

4.1 Computing Pw

Algorithm 1 computes a preference relation Pw that satisfies (1). In lines 1-6,
for each enforced obligation O1, we loop through all the possible worlds w1 that
are compliant with O1, and for each of them we create preference relations to
all non-compliant worlds w2. From line 8 to 22 we loop again through all the
obligations and remove all the preference relations (w1, w2) that are incoherent
with the current obligation O1. Note that, we delete a relation (w1, w2) only
if we can find no other obligation O2 that is more severe than the current one
(O2 �o O1) and such that coherent((wi, wj), O2) (variable to_delete in lines 11-
16). In other words the relation is not removed if it is imposed by a more severe
obligation. Recall from the definition of Po that, checking whether O2 �o O1
reduces to checking graph reachability inG, with complexity linear in the number
of obligations. Since, in the worst case, we have to perform the reachability
test n2m2 times, where n is the number of obligations and m the number of
worlds, it is convenient to pre-compute the transitive closure of G (e.g. using
the Floyd-Warshall algorithm [6] with complexity O(n3)) so that we can test
reachability in O(1) time. Applying Algorithm 1 to a set of worlds W , a set of
obligations OS and a severity relation Po, we obtain as output a partial order
relation Pw that respects (1). For all the (wi, wj) ∈ Pw we can say that wi is
preferable to wj according to the normative specification enforced: if we consider



Algorithm 1 Algorithm for computation of preference relation
1: for all O1 = O(a | b) ∈ OS do
2: for all worlds w1 such that compliant(w1, O1) do
3: for all worlds w2 such that ¬compliant(w2, O1) do
4: add the relation (w1, w2) to Pw.
5: end for
6: end for
7: end for
8: for all O1 = O(a | b) ∈ OS do
9: for all worlds w1 such that ¬compliant(w1, O1) do
10: for all worlds w2 such that compliant(w2, O1) do
11: boolean to_delete = true
12: for all O2 = O(c | d) ∈ OS do
13: if (O2 �o O1) ∧ compliant(w1, O2) ∧ ¬compliant(w2, O2) then
14: to_delete = false
15: end if
16: end for
17: if to_delete then
18: delete (w1, w2) from Pw

19: end if
20: end for
21: end for
22: end for

the obligations violated in the two worlds, there is at least one obligation violated
in wj that is more severe than all the obligations violated in wi, or wj violates
more obligations at the highest severity level for which the number of violations
is not equal between the two worlds.

4.2 Computing the Ranking

Once we have computed Pw, we can rank the worlds according to Definition 3,
obtaining a ranking where the more compliant worlds are in a higher position; i.e.
are associated with a lower ranking number. To do so, we extend the topological
sorting algorithm developed by Kahn [9], computing the ranking while sorting
the worlds in a linear extension of the partial order. The original topological
sorting algorithm performs, at each iteration, the following steps: firstly, it takes
all the nodes with indegree equal to 0 (i.e. no incoming edges) and inserts these
nodes at the end of an ordered list (no_incoming; then it takes the first element of
the no_incoming list, inserts it at the end of the list ordered_list), and deletes
all its outgoing edges from the relations list. We observe that a node wi is
inserted into the no_incoming list when the last node wl such that (wl, wi) ∈ Pw

has been deleted. Since topological sorting deletes nodes in an order that respects
the partial order (and thus the ranking), all the previously deleted nodes have
ranking lower than or equal to that of wl. It follows that ranking(Pw)(wi) must
be equal to ranking(Pw)(wl) + 1. Every time we add a node to the no_incoming



Table 1. Norms formalization.

Id Norm
O1 O(mu | >)
O2 O(mh | ¬mu)
O3 O(iu ∨ ib ∨ ih | >)
O4 O(rep | ¬(iu ∨ ib ∨ ih))
O5 O(¬ru | >)

list, we assign to the node a ranking equal to the ranking of the last node we
removed from the graph incremented by 1.

We now apply the algorithms proposed in Sect. 4.1 and 4.2 to our ISR ex-
ample, firstly assuming all the obligations to be equivalent in terms of severity,
and after that, specifying the severity relations between obligations.

5 Detailed Example

The norms summarized in Example 1 can be formalized as in Table 1, where
the proposition mu stands for “The UAV is monitoring the restricted area”,
mh for “the helicopter is monitoring the restricted area”, rep stands for “the
unauthorized vehicle has been reported” and ru for “the location of the UAV
has been revealed”. We use a single variable rep instead one variable for each
agent who might send a report in order to limit the space of possible worlds and
make our presentation more compact. Variables iu, ib and ih represent the UAV,
the boat and the helicopter respectively intercepting the unauthorised boat. In
formalizing the normative system, we assume that an unauthorized vehicle has
entered the restricted area. This is the reason why norm O3 is unconditionally
active. We do this in order to simplify the example. It is possible, however, to add
a variable boat to the model and modify the normative specification accordingly.
Norm 3, for example, would become O(iu ∨ ib ∨ ih | boat).

Table 2. Sea guard scenario: possible worlds constraints

Id Constraint
1 ¬mu ∨ ¬mh

2 (¬ib ∧ (¬iu ∨ ¬ih)) ∨ (¬iu ∧ ¬ih)
3 iu → ru

4 ¬mu ∨ ¬iu

5 ¬mh ∨ ¬ih

6 ¬rep ∨ ¬(iu ∨ ib ∨ ih)

Considering all the possible values for the boolean variables mu, mh, rep,
ru, iu, ib and ih, we compute the list of possible worlds (Table 3). In listing
these, we do not consider all those that do not satisfy the constraints in Table 2.



While constraints 3, 4 and 5 are causal constraints that allow us to capture
only the subset of worlds that are meaningful, constraints 1, 2 and 6 should be
encoded as norms; these are standard operating procedures in the scenario that
guide an optimal allocation of resources. We declared them as causal constraints,
again to simplify our scenario. Constraint 1 says that either the UAV or the
helicopter, but not both, can monitor the area at a certain instant of time. In
the same way, constraint 2 says that no more than one agent will be deployed
to intercept at each instant of time. Constraint 3 states that if the UAV is
deployed for interception, then its position will be revealed. Constraints 4 and
5 state that both UAV and helicopter are not able to monitor the area while
intercepting targets. Constraint 6 allows us not to consider the worlds in which
an unauthorized boat is both reported and intercepted.

Table 3. Possible worlds for the sea guard example.

Id World
. . .

w3 ¬ih rep ¬ib ¬mh ¬ru mu ¬iu

w9 ¬ih ¬rep ib ¬mh ¬ru mu ¬iu

w13 ih ¬rep ¬ib ¬mh ¬ru mu ¬iu

w16 ¬ih ¬rep ¬ib mh ru ¬mu iu

w22 ¬ih ¬rep ¬ib ¬mh ru ¬mu ¬iu

. . .

Using Algorithm 1, we compute the preference relation Pw. For example,
we have w3 �w w22 because coherent((w3, w22), O4) (same for O5) and there
is no obligation Oi such that incoherent((w3, w22), Oi). We apply Algorithm 1
(Sect. 4.2) to the preference relation in order to compute a ranking that satisfies
Definition 3. As a result, we obtain an ordered sequence of worlds, with a numeric
value that represents their ranking. Part of this ranking is shown in Table 4.
Worlds w9 and w13, with ranking(Pw)(w9) = ranking(Pw)(w13) = 1, are the
only two possible worlds that are compliant with all the obligations, while world
w22, with ranking(Pw)(w22) = 6 is the only world that violates all 5 obligations.
Since all the violations are considered equally severe, the ranking depends only
on the number of possible violations. For example, w3 has ranking equal to 2
because it violates only norm O3, while w16 has ranking equal to 3 because the
UAV is intercepting, and thus both norms O1 and O5 are violated.

As stated in Sect. 2, since our main objective is to preserve the properties
iu ∨ ih ∨ ib and, whenever iu ∨ ih ∨ ib does not hold, to preserve rep, we want
to be able to specify that violations of O3 or O4 are more severe than other
violations. Moreover, since we want to specify that having someone monitoring
the area is more important than not revealing the UAV location, we want to
say that violations of O2 are more severe than violations of O1 and O5. In other
words, observing again worlds w3 and w16, we want to specify that w3 is to be
considered worse than w16, even if fewer obligations are violated, because the



unauthorized boat is not intercepted. To obtain a ranking that respects these two
properties, we need to specify a partial order between violations and compute
Pw and ranking(Pw) accordingly. Figure 1 represents the severity relation in
our example. The graph G is built according to the definition of Po. Each node
represents an obligation, while an arrow from Oi to Oj represents the relation
Oi �o Oj . Note that, from the transitivity property of the partial order, since
O3 and O4 are both preferred to O2, and O2 is preferred to O1 and O5, we also
have that O3 and O4 are preferred to O1 and O5.

Fig. 1. Sea-guard example: severity partial order between norms

The resulting partial order Pw is just a refinement of the previous one; i.e.
all the relations computed without considering obligation severity are still valid
when considering any severity specifications. Compared to the preference relation
obtained without considering the severity specification, we have, for example,
that w16 �w w3. This is because coherent((w16, w3), O3) and there is no obliga-
tion Oi more severe than O3 such that incoherent((w16, w3), Oi) (violations of
O1 and O5 are both considered less severe than violations of O3).

The resulting ranking, computed according to Pw, is shown in Table 5. Even
considering the severity of obligations, the most and least compliant worlds re-
main the same as in Table 4; i.e. the ones that comply with all the norms and
the ones that violate all of them. Our purpose is to query the model checker
in order to check what properties hold under different severity ranges; i.e. if

Table 4. Ranking without considering severity specification

R Id World
1 w9 ¬ih ¬rep ib ¬mh ¬ru mu ¬iu

1 w13 ih ¬rep ¬ib ¬mh ¬ru mu ¬iu

2 w3 ¬ih rep ¬ib ¬mh ¬ru mu ¬iu

. . .
3 w16 ¬ih ¬rep ¬ib mh ru ¬mu iu

. . .
6 w22 ¬ih ¬rep ¬ib ¬mh ru ¬mu ¬iu



Table 5. Ranking considering severity of norms

R Id World
1 w9 ¬ih ¬rep ib ¬mh ¬ru mu ¬iu

1 w13 ih ¬rep ¬ib ¬mh ¬ru mu ¬iu

. . .
3 w16 ¬ih ¬rep ¬ib mh ru ¬mu iu

. . .
6 w3 ¬ih rep ¬ib ¬mh ¬ru mu ¬iu

. . .
15 w22 ¬ih ¬rep ¬ib ¬mh ru ¬mu ¬iu

we restrict the set of reachable worlds to the ones that violate obligations with
severity lower than a certain threshold. Recall that Pw is calculated such that
worlds that violate more severe obligations have a lower ranking. Looking at our
example, with ranking(Pw) ≥ 6, we have all the worlds for which O3 is violated,
and with ranking(Pw) ≥ 10 all those that violate O4. At first sight it would
seem that O3 is preferred to O4, but this happens because O4 is a CTD obliga-
tion, active only in the case of violation of O3. With ranking(Pw) ≥ 4 we have
worlds that violate O2 or more severe obligations. With ranking(Pw) ≥ 2 we
have worlds that violate O1, O5, or more severe obligations. Our approach for
severity-sensitive robustness verification is to use these values to label different
severity ranges, each of them associated with an obligation, and use these labels
to write queries for the model checker.

In the following section, we show how we can do so by using the PRISM [11]
model checker. We encode the ranking in a PRISM model and show what kind
of properties we can check using Computation Tree Logic (CTL) [3].

6 Checking Robustness

By ranking the worlds according to their ideality level we obtain a partition
of the set of possible worlds. In order to verify properties about the system under
different ideality levels, we can encode this partition into a model suitable for a
model checker. This enables us to use model checking to ask questions such as
what properties hold in each ideality level or what behaviours are feasible if we
constrain ourselves to a subset of the ideality levels. In Fig. 2, we encoded the
ranking of Table 5 into a model suitable for PRISM.

In Lines 14-16, we define all the variables of our model. From line 3, we
write a formula for each level L1 to L15. These are boolean formulae that return
true if and only if the model is in the given ideality level. In lines 7-8, we use
the if-else construct of the PRISM modelling language to write a formula that
returns an integer value corresponding, at each instant of time, to the current
ideality_level. In lines 10-11, we define, for each obligationOi, a boolean formula
that is true if the system is currently in the severity range of Oi. Lines 13-24
describe the PRISM module, with its variables and transitions. When defining



1 ...
2 formula L1 = (!i_h & !rep & i_b & !m_h & !r_u & m_u & !i_u) |
3 (i_h & !rep & !i_b & !m_h & !r_u & m_u & !i_u );
4 ...
5 formula ideality_level = (L1)?(1):((L2)?(2):((L3)?(3):((L4)?(4)
6 :((L5)?(5):((L6)?(6):((L7)?(7): ... )))))))))))))))));
7 ...
8 formula severity_O3 = ideality_level < 6;
9 ...

10 module M1
11 i_h: bool init false; i_b: bool init true; i_u: bool init false;
12 ...
13 true -> (1.0):(r_u’= !r_u)&(i_u’=(r_u)?(false):(i_u));
14

15 true -> (1.0):(i_h’=!i_h)&(i_u’=(!i_h)?(false):(i_u))
16 &(i_b’=(!i_h)?(false):(i_b))&(m_h’=(!i_h)?(false):
17 (m_h))&(rep’=(!i_h)?(false):(rep));
18 ...

Fig. 2. PRISM model for boat example

the possible transition, we can specify a probability p of occurrence and a guard.
Each transition is fired with probability p when the guard holds. In this model
we assume that all transitions have the same probability and we define the
transitions so that only the possible worlds in Table 3 are reachable.

By encoding the ideality levels and severity ranges as PRISM formulae, we
can use them to specify CTL properties as we do with standard variables. For
example, we can ask whether it is possible to reach a world where an unautho-
rized boat is neither intercepted nor reported, if we restrict the world-space to
the severity range defined by O5 (2). The operator E φ asks whether there exists
a path (execution) such that the property φ holds. α U β (α until β) is a path
formula that is true for a path where we can find a world t such that β holds in
t and α holds in all the preceding worlds.

E [severity_O5 U (¬(i_u ∨ i_h ∨ i_b ∨ rep) ∧ severity_O5)] (2)

Considering a slightly extended model for our scenario where we can have
more than one unauthorized vehicle to intercept at the same time, we could ask
whether it is possible to intercept four vehicles avoiding a state where no vehicles
are monitoring the area. In a similar way, if we are modelling a scenario involving
collaborating workflows and some normative constraints, we could ask the model
checker if it is possible to complete a specified workflow without reaching a state
that is above a certain severity range:



E [(severity_O5) U (goal_state ∧ (severity_O5))] (3)

7 Discussion

Compared to the approach by Ågotnes et al. [1], where the set of transitions
is divided into allowed and forbidden, we use a more fine-grained partitioning,
dividing states into different levels of ideality. In the field of fault tolerant sys-
tems, deontic logic is used to distinguish between correct and faulty behaviours
of a system. CTD-like obligations represent behaviours that are meant to re-
pair a fault in the system. French et al. [7] proposed RoCTL∗, a logic for the
specification and verification of robustness properties. RoCTL∗ enables quantifi-
cation over the number of failures and the verification of properties such as “it
is guaranteed that, with fewer than n violations, a property φ will hold”. How-
ever there is no distinction between different kinds of violation and no means to
specify different severity levels for them.

The reader might argue that the introduction of violation severity does not
increase the expressiveness of our model. In fact, given a desired ranking of
worlds RA, it is always possible to define a normative system that uses only
CTD norms, and that would result in the desired ranking RA. Denoting by
Li the boolean expression that identifies all the worlds at the i-th level, in the
following we show how it is possible to define such a normative system.

– O(L1 | true)
– O(L2 | ¬L1)
– O(L3 | ¬L1 ∧ ¬L2)
– . . .
– O(Ln | ∧n−1

i=1 ¬Li)

However, in order to do so, it would be necessary to know in advance the desired
ranking of worlds and this is not always trivial. Moreover our approach enables a
more straightforward and natural formalization for the same normative system.

The PRISM model checker supports Probabilistic CTL (PCTL), an extension
of CTL that enables the expression of properties involving probabilities about
events. In our model (Fig. 2) we assumed that all the transitions occur with the
same probability (lines 19-27). By introducing probability values for violations
of norms, we could ask the PRISM model checker to compute the likelihood that
some undesired situations will happen. An interesting application of our model,
together with the probabilistic features of PRISM, would be to compute the
conditional probability that a certain (un)-desired property will hold, given that
we restrict our model to be inside a certain severity range. A method to evaluate
the risk of violating a certain norm in the context of electronic contracts has
been proposed by Fagundes et al. [5].

Currently, we are only able to analyse static scenarios with a well defined
configuration and there is no support for the representation of complex workflows
where the goal of the coalition, or some environmental constraints could change



at run-time. We can start to address this problem by verifying the robustness of
the system in some representative worst case scenarios. Another way to improve
our model would be to allow the expression of obligations that must be fulfilled
before a certain deadline occurs. Such obligations would be violated only when
the deadline has expired. Both these limitations have been addressed in related
research [8], where we introduced còir1, a normative language that supports
the definition of CTD obligations, collective and event-driven imperatives with
deadlines. We give an operational syntax and semantics for còir, and implement
a còir monitoring component using the Maude [4] rewriting logic framework. We
then discuss how the Maude LTL model checker allows us to verify robustness
and correctness-related properties of a scenario governed by a set of còir norms.

Another limitation of our model is given by the fact that we define the severity
preference between elements of the set of norms, OS, rather than subsets of
OS. There may be situations in which the violation of two or more norms taken
individually would have moderate severity but, when combined, would have more
severe consequences. We plan to generalise our model in this manner and explore
the consequences of using a relation Po ⊆ 2OS × 2OS computationally and in
modelling real-world scenarios.

We are also exploring the possibility of specifying different compliance as-
sumptions for different autonomous agents in a system, in the same way that
Ågotnes et al. do in NCCTL [1]. It would be interesting, for example, to be able
to ask the model checker about properties of the system in the event of different
subsets of agents remaining in different severity ranges.

8 Conclusions

In this paper, we have proposed a method for verifying the robustness of a
normative system. This is done by partitioning the set of predictable possible
worlds according to their level of compliance. We encode the partition in a model
suitable for the PRISM model checker so that a world satisfies the property Li

(Lines 3-5 of Fig. 2) if it is in the ith level of the ranking. In this way, we are
able to use model checking to verify what properties of interest hold at each
level. We derive our ranking by computing a preference relation Pw between
possible worlds that reflects the given normative specification. We then divide
the worlds into different compliance levels so that if wi �w wj , wj will be in a
higher level than wi. To do so, we propose an algorithm inspired by the topo-
logical sorting algorithm [9]. Computing the preference relation is based on the
semantics of Prohairetic Deontic Logic which captures most of the traditional
contrary to duty benchmarks. In order to represent different levels of severity
for obligation violations, we introduce a partial order over obligations. We say
that an obligation Ok �o Ol if a violation of Ok is considered more severe than
a violation of Ol. The preference relation between possible worlds is computed
so that wi �w wj holds if and only if wj violates more severe obligations or

1 còir is the Scottish Gaelic for obligation.



more obligations at the same level of severity. This allows us to verify proper-
ties of worlds that are compliant only with some norms and to represent CTD
obligations.
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