
Bootstrapping Relational Affordances of Object Pairs using Transfer

Severin Fichtl1,2, Dirk Kraft2, Norbert Krüger2 and Frank Guerin1

Abstract—Robots acting in everyday environments need a good
knowledge of how a manipulation action can affect pairs of
objects in a relationship, such as ‘inside’ or ‘behind’ or ‘on
top’. These relationships afford certain means-end actions such
as pulling a container to retrieve the contents, or pulling a tool
to retrieve a desired object. We investigate how these relational
affordances could be learnt by a robot from its own action experi-
ence. A major challenge in this approach is to reduce the number
of training samples needed to achieve accuracy, and hence we
investigate an approach which can leverage past knowledge to
accelerate current learning (which we call bootstrapping). We
learn Random Forest based affordance predictors from visual
inputs and demonstrate two approaches to knowledge transfer for
bootstrapping. In the first approach (direct bootstrapping), the
state-space for a new affordance predictor is augmented with the
output of previously learnt affordance. In the second approach
(category based bootstrapping), we form categories that capture
underlying commonalities of a pair of existing affordances and
augment the state-space with this category classifier’s output. In
addition, we introduce a novel heuristic, which suggests how a
large set of potential affordance categories can be pruned to leave
only those categories which are most promising for bootstrapping
future affordances. Our results show that both bootstrapping
approaches outperform learning without bootstrapping. We also
show that there is no significant difference in performance
between direct and category based bootstrapping.

I. INTRODUCTION

We are interested in grounding knowledge in a robot’s own
sensorimotor experience, an accepted principle of develop-
mental robotics, justified e.g. in [1]. A major problem with
this approach is that it takes a long time to learn through
robot experience. The state of the art in artificial development
and learning methods does not permit a robot to learn from
experience as rapidly as an infant. This mirrors problems in
other areas of artificial intelligence such as speech recognition,
where systems need orders of magnitude more data to learn
from than a small child is exposed to [2]. The added difficulty
in robotics is that we do not have a large data set to run
the learning algorithm on, a robot must first go through the
slow process of trying actions out in the world. This problem
of slow learning has generated interest in methods that can
bootstrap learning [3], [4], [5]. The basic idea is that if we
have some prior knowledge, we should be able to learn similar
things faster, i.e. bootstrap the learning.

In this paper, we focus on bootstrapping the learning of one
part of a robot’s knowledge that is important for manipulation
with pairs of objects, that is the knowledge about how the spa-
tial relationship of a pair of objects affords certain outcomes.

*This work was supported by UK EPSRC and the EU Cognitive Systems
project XPERIENCE (FP7-ICT-270273)

1University of Aberdeen, Aberdeen, United Kingdom
(f.guerin@abdn.ac.uk)

2University of Southern Denmark, Odense, Denmark
(fichtl@mmmi.sdu.dk, kraft@mmmi.sdu.dk, norbert@mmmi.sdu.dk)

DIFFERENTIATION

INITIAL SCHEMA NEW SCHEMA

Pulling the cloth/tray toexamine/touch/feel it. Pulling the cloth/tray inorder to get the keys
SENSORIMOTOR

Fig. 1. Illustration of the Robot Simulation environment with the robot
attempting to pull a tray-like object with a cup on top of it.

However, the general approach described here is also relevant
for other bootstrapping tasks where there is prior knowledge,
and rapid learning from few samples is desired.

Spatial relationships are extremely important for robotic
manipulation e.g. in service robots, to determine the outcome
of actions in everyday home environments; for example, trying
to reach an object that is partly obstructed by another object,
or pulling or lifting an object when another object is on top or
inside of it (see Fig. 1). These are the kinds of situations that
children are competent with, and in looking at how infants
first acquire this knowledge, we see the close connection
with means-end behaviours involving more than one object
(i.e. when one action is used as a means to achieve some
other end goal). Infants start to appreciate the importance
of spatial relationships when they begin exploring means-end
actions at around eight months [6], [7], [8], and means-end
behaviour is the start of planning: how to use one action as
a step to achieve some more distant goal. Hence learning
how spatial relationships determine the outcome of actions
(i.e. ‘relational affordances’) is a crucial part of the problem
of robots learning planning operators for manipulation. To
demonstrate our bootstrapping approach, we therefore use this
particular problem.

The key technique which we explored for bootstrapping
of this learning is inspired by works in cognitive science,
where some unit of knowledge is abstracted from sensorimotor
interaction and can then be reused where it benefits subsequent
learning, for example the ‘synthetic item’ of Drescher and
Chaput [9], [10]. These techniques have not been applied to
high dimensional robot manipulation scenarios to the best of
our knowledge (Ugur et al. [4] being a very recent exception).
In our work, we learn individual affordances, and also affor-
dance categories from early experience, where these implicitly
capture spatial relationships like ‘on top’ and/or ‘inside’. Note
that the categories we learn are not imposed by the human
designer, but rather are learnt by a classifier with the task
to discriminate situations from visual input, where a certain

action will have one outcome or another. These individual
affordances, or affordance categories, can then be used as
binary inputs to subsequent learning, resulting in a speed up
where they have discriminative power. The approach using
individual affordances we call ‘direct bootstrapping’ (DB),
while using affordance categories is called ‘category based
bootstrapping’ (CB). We learn from simulated robot actions as
this was the only feasible way to generate the ten–thousands
of examples we needed to compare different approaches.

Bootstrapping (in the sense used here) is a kind of transfer
learning [11], and while transfer can give a massive perfor-
mance boost, it is also well known that it can equally well
reduce performance via negative transfer [11]. For this reason
we believe that it is important to evaluate a bootstrapping
technique on a reasonable range of examples, in order to
develop an understanding of where it is likely to work best
and where it will not. Therefore we have attempted to learn
a variety of affordance categories (36) and used them to
bootstrap the learning of a range of relational affordances (9).
In this, our work stands out from related work on bootstrapping
like [3], [4] because we evaluate with a wider range of
examples.

Our exhaustive approach to creating affordance categories
from action pairs leads to a large amount of category clas-
sifiers, some of which may be good for bootstrapping and
some not (a problem which would be worse in, e.g. a realistic
service robot system with even more actions). Rather than
trying out all categories for bootstrapping there is a need for a
method to prune possible categories and arrive at a small set
which is most promising for bootstrapping. To achieve this, we
introduce a novel heuristic based on how correlated existing
affordance predictions are. This is based on the intuition that
there exist some underlying physical relationships in the world
which are implicitly captured by some affordance predictors,
and are common for some actions; these relationships are
important to physical causality and are likely to be useful to
determine the success of future actions. Our heuristic enables
us to prune away 3/4 of the candidate categories without
significantly harming bootstrapping performance.

As a representation for learning, we use Random Forests.
This allows us to compare category based bootstrapping (CB)
with the simpler direct bootstrapping (DB). We show that
direct bootstrapping achieves comparable performance to the
category based approach, which indicates that category for-
mation – although required for higher level transfer learning
involving, e.g., language – might not be necessary for transfer
on such a low sensorimotor level as dealt with in this paper.
To summarise the contributions of this work:

• We demonstrate a ‘direct bootstrapping’ approach that
accelerates the learning of relational affordances in a
basic state-space, and brings performance comparable
with learning in a state-space with features tailored to
the learning task.

• We realise a system in which autonomous category
formation on relational affordances is performed during
robot exploration.

• We show that by exploiting these categories, we can
efficiently bootstrap the learning of new relational affor-
dances leading to a significant speed up.

• We show that by applying a heuristic for selecting, we
can circumvent the inherent problem of accumulating a
large number of highly correlated categories.

• We compare the category based bootstrapping with the
‘direct bootstrapping’ approach, which leads to similar
bootstrapping performance.

The remainder of this paper is structured as follows: Sec-
tion II reviews the literature. Sections III and IV describe
in more details the methods and experimental setups used.
Section V presents the results of this work. Section VII
discusses our work in a broader context.

II. LITERATURE REVIEW

In this section we first sketch the big picture of cognitive
development and describe where our work fits within this.
We then focus on the specific problem we tackled and review
closely related approaches.

This work has been inspired by the cognitive development
of human infants. Infants undergo rapid development from
simple action schemas such as sucking or banging objects at
six months, to solving relatively complex problems such as
simple tool use at two years of age [6], [12]. Two-year-olds
are clearly capable of reasoning about objects, spatial relations
and actions’ effects and are able to come up with plans to
effectively reach their goals. Their knowledge is at a relatively
high level of abstraction because they easily generalise across
a wide variety of everyday situations. Psychologists have
described their knowledge structures as ‘schemas’ (or various
similar terms, see [8]) which are roughly analogous to the
‘planning operators’ of Artificial Intelligence, because there
are specific situations which make them executable (like the
precondition of a planning operator) and likely to cause cer-
tain effects (postcondition). Two-year-olds seem to possess a
sizable repertoire of schemas whereas six-month-olds seem to
have a relatively impoverished repertoire. One of the essential
mysteries of cognitive development is how to account for
the acquisition of this large repertoire of relatively abstract
knowledge, based on concrete action experiences.

Within this development a particularly interesting stage con-
cerns the acquisition of means-end behaviours which begins
about 8 months (i.e. where one action is used in order to
facilitate another [13]), because it is through learning means-
end behaviours that infants begin to learn about relationships
between objects [14]. For example in pulling a supporting
object (e.g. cloth) to retrieve a more distant object (e.g. toy)
that is on top, the precondition that determines success of the
action must capture the relationship between the objects.

Much of the child’s learning up to this point is related to
relationships with its own body (subjective), such as something
being reachable, or suckable. However the relationship ‘on
top’ marks a beginning of learning more objective properties
of the world. Probably this is initially learnt in quite a context-
bound manner, but gradually it will be generalised.

According to Mandler’s analysis [15] infants begin with
‘perceptual knowledge’, which is implicit in individual
schemas, and develop towards more abstract ‘conceptual
knowledge’. Conceptual knowledge is essential for more ad-
vanced problem solving. The mechanism may also be the same
as, or at least closely related to, ‘representational redescription’
[16]. As infants make this transition, they begin to see things
at a higher level of abstraction, realizing precisely those
relationships which are important in determining what object
manipulations are possible (by the infant or other agents).
For this reason we have explored the acquisition of chunks
of knowledge that are locked in the context of a particular
manipulation, as well as more abstract chunks of knowledge
that begin to capture a category like ‘on top’. We explore the
use of both for bootstrapping subsequent acquisitions.

Although there are works which learn planning operators
[17], [18], [19], [20], in this paper we focus only on learning
the precondition for a new behaviour (i.e. learn to determine
the affordance in a given state). This is quite close to some
existing work on learning relational affordances. There is
rather a lot of work on affordances, but it has been noted
by Moldovan et al. [21] that there is very little work on
relational affordances (i.e. the actions afforded by a pair of
objects in a particular spatial relationship). In their work, the
relational features considered are relative distance between two
objects, the relative orientation of one with respect to the other,
and whether or not they are touching. We go for a richer
description, and have tried two alternative descriptions, one
which has much finer grained details of the objects, which can
for example capture such things as one object having elements
surrounding another, or in front of another.

Ugur et al. [4] learn ‘paired object affordances’ for the
action of stacking. The features input to the learner are
histograms of normal vectors for various points on an object’s
surface. They learnt to predict the effect of a stacking action,
given the visual features of the pair of objects being stacked.
A related affordance learning approach is that of Griffith et al.
[22] which focused on learning features which could predict
if an object could serve as a container, based on the effect of
exploratory actions. There is a significant difference with our
work in that we are looking at objects already in a relationship,
in order to determine the effect of an action, whereas Ugur
et al. or Griffith et al. are looking at the features of objects
before they are put in a relationship, in order to determine
what relationship they might end up in after an action.

Rosman and Ramamoorthy [23] learn spatial relationships
between objects using a support vector machine based ap-
proach, where support vectors are picked for their ability to
differentiate the point cloud into two objects. This has the
effect that the subset of points considered by the classifier
are on the edges of the object. Relations are then learnt
based upon the relative positions of clusters of the support
vectors. Rosman et al.’s [23] approach makes sense for the
relationships they considered like ‘on’ and ‘adjacent’, whereas
we sought a more generic approach. Our perception approach
preserves more information about the objects themselves,

focusing not only on the interface between them. For example
we capture elongation of the objects, or histograms of surface
patches. This could be important for example when a small
object is near to one edge of a large one, in a containment
relationship.

A further work on support relations is by Panda et al. [24].
The work exploits a number of visually derived features
regarding the relationship between the objects: proximity,
boundary overlap, depth boundary, containment, relative sta-
bility. In addition, a rule based method is employed to infer
what supports what, when multiple objects are stacked or
leaning on each other. In contrast to this work, we have
approached the problem more from a developmental robotics
perspective; we are attempting to see what the system can
learn without significant prior knowledge, and learning from
the effects of its actions. The reasons for our preferring the
developmental approach have been discussed elsewhere [25],
[8].

All of these works which can recognise containment or sup-
port relationships (and implied affordances) have importance
beyond the task of informing a robot of action possibilities.
Affordance work is beginning to be used to help solve classic
computer vision problems such as object categorisation [26]
which take the approach of imagining an actor exploiting the
affordance defining the object. Also it is highly relevant to
learning about human activities from observations, for the
purposes of imitation or understanding [27], [28]. These works
use semantic scene graphs and can benefit from accurate
descriptions of spatial relationships between objects within
these graphs.

The main aspect of our work which deserves comparison
with others is bootstrapping. As stated in Sec. 1, what we
mean by ‘bootstrapping’ is a type of transfer learning: ‘transfer
learning aims to extract the knowledge from one or more
source tasks and applies the knowledge to a target task’ [11].
In our work our feature space is the same for our source and
target domains, but the source and target tasks are different,
making this an example of ‘inductive transfer’ [11]. In terms
of the detailed taxonomy on transfer learning by Lazaric
[29], ours is ‘learning speed improvement’; i.e. a reduction
in the amount of experience required to learn the solution,
which is distinct from transfer approaches which improve the
asymptotic performance, or which ‘jumpstart’ to give better
performance at the first attempt on the new (target) task; i.e.
before training.

There are also closely related bootstrapping approaches in
the developmental robotics literature. Do et al. [3] present
a case study of learning to wipe a table, where they show
that ‘mixing’ experience (e.g. a cake mix) can be reused to
bootstrap the learning of ‘wiping’. They use sequences of
objects getting in contact and losing contact to assess action
similarity. While the demonstrated example shows strong
positive transfer, we believe it is important to extend such
studies to a larger variety of actions, to gain knowledge of
where transfer works and where it may not bring any benefit
or even reduce performance. In our work we demonstrate both

positive and negative bootstrapping effects on a variety of nine
different actions.

In another recent ‘bootstrapping’ approach, Ugur et al. [4]
bootstrap the learning of a ‘stacking’ affordance by first
learning a ‘rolling’ affordance They first learn for a set of
individual objects if the object has the ‘rollable’ affordance
by executing preprogrammed ‘poking’ actions. This affordance
knowledge helps the robot to quickly learn whether two objects
are stackable. Two ‘rollable’ objects are less likely to stand
on top of each other, than two objects that are not ‘rollable’.
However, there are also affordances where knowledge of one
is unlikely to bootstrap the learning of the other, e.g. ‘rollable’
and ‘graspable’ where the former depends mainly on the shape
of the object (e.g. sphere versus cube) and the latter mainly on
the size (e.g. fits in gripper versus does not fit in gripper). Ugur
et al.’s work is in the same spirit as our approach; where they
have ‘rollable’ as an input to the second stage of learning, we
have several categories. We have attempted to learn a variety of
categories because the robot does not know in advance which,
if any, might be useful in later stages of learning.

In fact the work of Ugur et al. [4] above is attempting
something of much broader scope than what we tackle in
this paper; they attempt a staged development where there are
successive developments which build on each other. This is
an area of great interest to developmental robotics, and there
are several more examples [30], [31], [32], [33]. One area
of interest within this is whether the stages need to be pre-
scripted [30], or could emerge naturally, e.g. as a consequence
of some relatively simple intrinsic motivation mechanism [34].
We see our work as contributing to this area, because we
believe spatial relationship categories learnt could influence
subsequent behaviour and the experiences generated (e.g. the
robot creates ‘on top’ and ‘inside’ situations), however this
has not been pursued yet.

We do not feel that our work is particularly close to com-
puter vision work in scene understanding (e.g. [35]) because
those works typically recognise all objects, and then can use
higher level knowledge to assist in understanding. Our work
in contrast is at a lower level, and is more concerned with
the physical relationships among surfaces without regard for
object knowledge. We think of it more like how an infant might
recognise simple physical relationships between household
objects without any idea of what their names are or what their
typical purposes are.

III. METHODS

In this section, we describe our methods for using addi-
tional knowledge for bootstrapping the learning of a classifier
(Section III-A), the particular classifiers used (Section III-B),
how to generate categories used as additional knowledge
(Section III-C) and how we measure the effect of additional
knowledge on learning performance (Section III-D).

A. Learning Affordance Classifiers

The goal of the Affordance classifiers trained in this work
is to accurately predict whether the action associated with

Vision
System

Affordance
Classifier

Success
Prediction

Visual
Input

Other Affordance
Predictor(s)

State Space
 Object positions, orientations, and

optionally: relational histograms

NB

DB

CBAffordance
Category

Predictor(s)

Fig. 2. Illustration of the inputs for learning affordance classifiers. The solid
lines represent learning with no additional information (NB=No Bootstrap-
ping). The blue ellipse illustrates the addition of other previously learned af-
fordance predictions (DB=Direct Bootstrapping). The green ellipse illustrates
the addition of other previously learned category predictions (CB=Category
based Bootstrapping).

the classifier can be executed successfully in a given scene.
The actions are (with one exception) means-end actions where
one action (means) is executed on one object in order to
facilitate the successful execution of another action (end) on
another object. It is the spatial relationship between the objects
involved that determines whether the means action can succeed
to facilitate the end action, and if the means will succeed we
say the relational affordance is present. To learn the mapping
between the current state of the environment and the affor-
dance, the classifiers are trained using a state-space description
including the positions of both objects relative to the robot
and information describing the spatial relationship between the
objects. In this paper, we investigate how additional knowledge
can be used to speed up the learning of affordance classifiers.

Throughout the paper, we will refer to the different classi-
fiers with the following terminology:
Affordance Classifier: The classifier that is currently being
learned with the goal of predicting the success of a new action.
Affordance Predictor: Already existing classifiers that predict
the success of other existing actions. Their output is used to
bootstrap the learning of a new affordance classifier.
Category Predictor: Classifiers that recognise specific cate-
gorical patterns in the environment. The category predictor’s
output is used to bootstrap the learning of a new affordance
classifier.

Fig. 2 illustrates our general structure of learning. We
investigate the following approaches to learning affordance
classifiers:

NB) Learning with no additional information - No Boot-
strapping (represented by the solid line in Fig. 2).

DB) Using previously learned affordance predictor(s), for
other affordances, as additional input - Direct Boot-
strapping.

CB) Using previously learned category predictor(s) as an
additional input - Category based Bootstrapping.

In the following subsections we describe in more detail
these different approaches to bootstrapping.

1) Learning Without Bootstrapping (NB): Learning without
bootstrapping corresponds to the typical isolated learning of
an individual affordance classifier. An affordance classifier

receives as input a set of visually derived descriptors of a
scene before an action execution trial and a success label
differentiating successful trials from unsuccessful ones. The
classifier learns a mapping from these visual inputs to success
labels. The combination of all the inputs that go into the
classifier, apart from the success label, define the state-space
(see Fig. 2).

2) Direct Bootstrapping With Already Learnt Affordance
Predictors As Knowledge Source (DB): Our approach to
bootstrapping is based on extending the state-space of a new
affordance classifier with the output of one or multiple af-
fordance predictors already learnt for other affordances. If the
new affordance is related to an already existing affordance, the
state-space extension can carry relevant information and hence
bootstrap the learning. For example if we already have an
affordance predictor for ‘pull’ then the learning of ‘lift’ could
be effectively bootstrapped by having the ‘pull’ affordance
predictor as input (because the situations where pulling moves
two objects are very similar to the situations where lifting lifts
two objects).

We investigate direct bootstrapping by extending the state-
space with the output of:

DB1 A single already existing affordance predictor,
DBn All already existing affordance predictors,

().
3) Category Based Bootstrapping: Automatically Created

Categories As Knowledge Source (CB): This approach extends
the state-space of a new affordance classifier with the output
of a category predictor. A category is an abstraction from the
state-space that describes properties of the environment. E.g.,
the abstract notion of one object being ‘on top’ of another
could be captured by a category predictor. Further examples
are one object ‘inside’ another or an object being ‘in reach’
of the robot’s arm.

The main difference between category predictors and af-
fordance predictors is the degree of abstraction, which can
have important consequences in a cognitive architecture. While
affordance predictors only represent the preconditions for one
specific action (e.g. ‘pull’), category predictors generalise
across similar affordances (e.g. ‘pull’ and ‘lift’) to capture
an abstract relationship between objects such as ‘on top’. In
section III-C we investigate the correlation (pairwise) between
our different affordances. We found one set of affordance
predictors that is strongly correlated and which corresponds
to the ‘on top’ relation between objects. In addition, there is
one more weakly correlated set of relational affordances that
roughly corresponds to a ‘beside’ relation.

The condensation of such correlated affordance predictors
to an abstract category predictor has two advantages:

1) It reduces the input to a new affordance predictor to
one binary value instead of a set of predictors. This is
important since the combination of all possible affordance
predictors would lead to a combinatorial load once large
sets of action types are performed that would lead to
larger memory and computational requirements.

2) In a larger cognitive architecture, such category predictors
can constitute symbolic representations that could be
used for high-level planning; the idea of developing such
symbols autonomously rather than having them provided
by a human designer is increasingly being recognised as
important [36], [37]. As one of the main achievements of
our approach, we suggest a way for creating categories
automatically.

We investigate two different variations of category based
bootstrapping:

CB1) Adding the output of a single existing category
predictor,

CBn) Adding the output of all existing category predictors.
If a category encoded by the added category predictor(s) is

relevant for the new affordance, then adding the output of this
category predictor to the new affordances’ state-space can be
used by the new predictor to bootstrap its learning.

To create a category predictor, we combine the training data
that was used to train two individual affordance predictors.
This combined training set is then used to train a new classifier
that captures properties of the state-space, that are required for
both of the two different affordances. In this initial approach,
we limit ourselves to creating categories from two affordances
while the concept could be extended to combine more affor-
dances, e.g., by finding clusters of correlated affordances (i.e.,
affordances that are often present in the same states).

B. Classifiers

To predict the affordances in a particular scene, we use
ensemble classifiers based on the Random Forest [38] al-
gorithm. In the following sections, we will first describe
Random Forests in general and then give details about the
parametrisation of the Random Forests used in this work.

1) Random Forest Classifiers: The idea of ensemble clas-
sification methods is to turn a set of ‘weak’ classifiers into
one ‘strong’ classifier, where the final classification is based
on some form of voting scheme. In Random Forests, these
‘weak’ classifiers are standard Classification and Regres-
sion Trees (CART) [39], which iteratively split the dataset into
more and more subsets where each split maximises the class
purity of the created subsets. The number of trees used can
vary from ten up to hundreds or even thousands of trees per
forest. The final prediction of the Random Forest is the class
that is returned by most of the individual trees.

Random Forests (RFs) have a series of advantageous prop-
erties compared to other types of classifiers, e.g. support vector
machines or artificial neural networks, some of which they in-
herit from classification trees. We focus on just two advantages
here which make RFs particularly well suited for our use case.
Firstly they can handle both numerical and categorical data.
Numerical data comes from our perception (see Section IV-B
on feature spaces used), while categorical data is used as our
bootstrapping input. The learner needs to find which data is
most useful, and again RFs are advantageous: they inherently
do feature selection and hence identify the relevant features

Affordance
Predictor i

Success
Prediction

Check for correlation here to
create category if appropriate

Success
Prediction

Visual
Input

Vision
System Affordance

Predictor j

State Space
Object positions, orientations,

and optionally: relational
histograms

Fig. 3. Searching for correlations between affordance predictions.

from the (potentially) large amount of state-space variables
(see Section IV-B).

2) Random Forest Parameterisation: The amount of
trees (T) in our Random Forests is dependent on the amount
of samples available for training (N), where T = 95 +N/20
up to a maximum size of 115 trees (the maximum forest
size is reached with 400 samples). To parametrise the trees in
our Random Forests, we followed the guidelines of Breiman
et al. [38], [40]. For each tree in the forest, we use 2/3
of the samples in the training set to train the tree. We use
standard CART trees as base classifiers using the Gini impurity
criterion [39] to split nodes and allow a minimum size of 1
sample for a partition created by a split. We do not prune the
trees, but we do limit growth to a maximum depth of 200
splits. For every split, each tree uses all samples available to
it (2/3 of the samples available to the forest), but at each
node, out of M dimensions, only m =

√
M dimensions are

randomly picked, and the best split on these is used to split
the node.

C. Heuristic For Category Formation

The number of category predictors potentially created in
our approach increases polynomially with the number of
affordances available; therefore a heuristic for pruning out cat-
egory candidates before creating and trying category predictors
would be useful. The aim of a heuristic would be to remove the
candidates that are unlikely to capture meaningful properties
of the agent’s environment.

We hypothesise that strong correlations between affordance
predictions indicate that a meaningful category predictor can
be learnt. Hence, as a heuristic we use the correlation between
pairs of affordance predictor outputs. To compute this corre-
lation, two affordance predictors are presented with the same
scenes. The agent then records their predictions and calculates
the correlation between them (see Fig. 3). A category predictor
is created only if the correlation exceeds a certain threshold.

D. Bootstrap Factor

To analyse the effect of our approaches to bootstrapping,
we calculate a bootstrap factor as

bf =
Pbl − Pc

Psl − Pc

where Pbl is the performance of bootstrapped learning (e.g.,
Fig. 8), Psl is the performance of standard learning (e.g.,
Fig. 7), Pc is the performance of chance and bf is the bootstrap
factor as illustrated in Fig. 9.

This gives a value above one if bootstrapping assists learn-
ing and a value between zero and one if bootstrapping impedes
learning. Note that a small bootstrap factor can stand for
significant improvements in learning speed. E.g., jumps from
76.7% to 90% performance correspond to a bootstrap factor
of 1.5.

IV. EXPERIMENTAL SETUP

The majority of our experiments are done using a physically
realistic simulated robotics setup (Section IV-A). To learn an
affordance predictor for a particular action, say ‘lift’, a large
set of training examples is gathered. Each example places
a pair of objects in positions determined by a probability
distribution to give about 50% probability that one object is
on top of the other, then the visual scene is captured. Next the
robotic manipulator attempts the action on one of the objects,
and the outcome is recorded. A positive action outcome (i.e.,
the pair of objects moves together, in the case of ‘lift’) is
used to automatically label the vision data as indicating that
the affordance is present.

Subsequent to learning individual affordance predictors we
run bootstrapping experiments which use the same labelled
training data, but have additional bootstrapping inputs as
described in Secs. III-A1 and III-A2.

The specifics of the experimental setup are described in
the next subsections: Section IV-B describes the perception
system. Section IV-C describes the objects used. Section IV-D
describes the actions of the manipulator.

A. Simulation Environment

To collect data we used a simulator designed for robot
simulations [41]; this also simulates a Kinect sensor [42] with
an appropriate noise model [43] to produce data that resembles
the depth map results from real Kinect camera setups.1 We
simulated a robot arm with six degrees of freedom (DOF),
mounted on a table with a two finger gripper attached as tool
(see Fig. 1).

Our experiments are based on ca. 1.5M action simulations,
which in total took approximately 900 hours (ca. 35 days)
of processing in total (on a computer cluster running 32
simulations in parallel with approximately 1 minute runtime
per action simulation). Processing of all the point cloud
data into both, PCA and RHF features took approximately
1 day. The learning of all classifiers for all affordances and
categories, with and without bootstrapping, with the different
bootstrapping inputs, using different state spaces, their 25 and

1The noise model used in this work adds noise on the z-coordinate of
the points in the point-cloud based on depth and location in the projected
image. This is a reasonable and close approximation of the real sensor [43].
(By now newer models have appeared that use relative surface angle as
an additional factor [44]). Our simulated sensor does not account for the
following phenomena: depth data is smoothed and step depth discontinuities
are not represented faithfully by the physical device, the real sensor is not able
to deal with strong foreign light nor strong specular reflections. The later two
are typically avoided in real setups by careful selection of recording location
and object choice. The former should only introduce small deviations in z-
direction of a limited set of points and we anticipate that our process is robust
to these.

50 repetitions, lead to an overall Random Forest learning
runtime of approximately 1.5 weeks on the same computer
cluster.

B. The Robotic Perception System

The Kinect camera is positioned in the workspace on the
opposite side of the robot, looking down on the workspace
area in front of the robot. The Kinect records images with
VGA resolution (640x480 pixels) and provides one 3D point
per pixel (307200 points per scene). For performance reasons,
we subsampled this point cloud via voxel grid subsampling
with a resolution of 0.0125 m which resulted in point cloud
sizes between 40k and 50k points.

We use simple colour based segmentation in this work. All
objects are coloured in one of a set of known colours, and
every object in the scene has a different colour selected from
this set. All points that have the same colour are assigned
to a new point cloud, representing one object. This is a
common simplification also used in real vision set ups, e.g., by
Rosman and Ramamoorthy [23]2. We acknowledge that highly
sophisticated object segmentation algorithms exist, e.g., [45],
[46] and we assume they could be employed to work in a
more complex environment, e.g. with real objects and clutter.

Using Eigen decomposition (as used for PCA) over the seg-
mented point clouds, our vision system extracts nine variables
as approximations of an object’s position, orientation and size.
The nine variables that describe the segmented object point
clouds are:

• X, Y and Z position of the centre of the segmented object
point cloud (the Euclidean average of all point positions
in the robots coordinate frame).

• Three angles (Roll, Pitch and Yaw) describing the ori-
entation of the segmented object point cloud. Based on
the orthogonal set of Eigenvectors of the point cloud, we
derive a segmented object point cloud coordinate system
(x-axis is in the direction of the biggest Eigenvector, z-
axis is in the direction of the smallest Eigenvector). The
three angles describe the relative orientation between the
segmented object point-cloud coordinate system and the
robot coordinate system.

• Three size values for the elongation along the object’s
three axes (the Eigenvalues are used to indicate elonga-
tion along each Eigenvector axis).

This gives reasonable results for most objects in practice, find-
ing sensible directions for non-spherical or non-symmetrical
objects. For symmetrical objects such as spheres and cylinders,
the resulting direction is partly arbitrary and a product of
noise (i.e. due to noise in the camera sensor the point cloud
would not be perfectly symmetrical or spherical), but the
‘direction’ of a sphere is irrelevant for manipulation and
therefore this poses no issue. Likewise for a cylinder the
important orientation of the cylinders’ main axis is captured

2The mentioned approach uses stereo but this is equally applicable to the
Kinect sensor since for Kinect the necessary registration between point-clouds
and colour is straightforward.

Toys

Bases

Obstacles

Rakes

Fig. 4. Illustration of the Objects used for the experiments of this work

correctly. These nine variables per object make up the 18
variable baseline vision state-space representation, where the
first nine variables belong to the object that is subject to
manipulation by the action.

Independently from the Eigen decomposition based object
representation, the segmented point clouds are also used to
create relational histogram features (RHF) [47] to capture
the spatial relationships between objects. These RHFs form a
relational space into which the absolute geometric information
(3D position and orientation) of the segmented object point
clouds is transferred. For this, every point of the first object is
compared with each point of the second object to calculate a
set of distance and angle features. These relational features
encode the spatial relationship of the two objects and are
captured in form of a histogram with 300 bins. This RHF
extraction process is described in more detail in [48], [49]
and we use the RHFs described there as 1D histograms as
these were found to show the best performance in [48].

The final state-space is then made up from the 9 + 9 = 18
values of the PCA state-space representation for the two
objects on their own, or combined with the RHF to
18 + 300 = 318 values. In the remainder of this paper, we
will refer to these as the PCA or RHF state-spaces respectively.

C. Objects

In our experiments, we used an overall set of 29 objects,
which can be split into four different groups (see Fig. 4)3:

3One Object (Cup) is member of two Groups (Toys and Bases)

TABLE I
LIST OF ACTIONS

Action Motor Program Affordance (affordance is present if this goal is achieved)
Lift Grasp base object and lift it. Base and Toy objects are lifted.

Move Reach to toy object and move it aside. Toy & base objects have moved aside.
Pull Grasp base object and pull it. Base and Toy objects are pulled closer.
Push Grasp base object and push it. Base and Toy objects are pushed further away
Rake Put rake head behind toy object and pull. Toy object has been brought closer.
Take Grasp toy object and lift it. Toy object is lifted.
Pour Grasp base object and lift and tilt it. Base and Toy object are lifted.
Slide Grasp base object and lift and tilt it. Base object is lifted, Toy object has moved but not been lifted.

Unobstruct Grasp base/obstacle object and push aside. The toy object that wasn’t reachable before, is now reachable.

Lift Move Pull

Push Rake Take

Pour Slide UnOb
Fig. 5. Action execution effect snapshots of the nine actions. The left figures show a scene before action execution. The right figures show the state afterwards.
(UnOb is short for Unobstruct.)

1. Toys (5 Objects)
2. Bases (15 Objects)
3. Obstacles (5 Objects)
4. Rakes (5 Objects)

For every experiment exactly one toy object and one object of
a different group is used. The objects are randomly distributed
within a workspace area that approximately forms a semi-
circle with a radius of 1.8 m. The robot arm is placed in the
centre of the semi-circle and no object is placed closer than
20 cm away from the robot. The rake objects are an exception
as they are attached to the robot arm as a tool. The maximum
reach of the robot is approximately 1.2 m.

D. Actions
The robot is equipped with nine pre-defined actions it can

perform. Depending on the two objects in the workspace (one
of which is always a toy object) different actions are available

for execution. Table I briefly describes the actions, their motor
programs, and the objects involved and the affordance being
tested. Fig. 5 illustrates the actions’ motor programs. The
‘pour’ action does not actually attempt to pour out contents,
instead it does a partial pouring action, to check if the
container has the affordance of retaining the object despite a
tilt. It is closely related to slide, with an opposite goal, however
it is not completely the inverse as both pour and slide fail when
objects are ‘beside’.

Note that some actions have identical goals but different
motor programs, while other actions have identical motor
programs but different goals. The set of actions was contrived
to cover an extensive set of both different requirements for
success and also similar/duplicated requirements. With this
set of closely-, partly- and un-related preconditions between
actions, we can demonstrate both successful and unsuccessful

PCA - Non-Bootstrapped (NB)

Fig. 6. Illustration of affordance classifier learning for nine affordances
using the PCA state-space without bootstrapping. The X-axis is log-scaled
to highlight that the learning continues even after several thousand training
samples.

bootstrapping results.
The simulated actions used inverse kinematics without path

planning, which leads to occasional failures due to impossible
paths. We collected approximately 10,000 samples per action,
with 50% positive and 50% negative samples. The positive
samples are selected uniformly. The negative samples are
selected with a bias such that the distribution of distances
between the centres of gravity (COG) of the two objects is
similar within the groups of positive and negative samples. If
we do not select negative examples with smaller distance then
a classifier can achieve very high accuracy by simply using the
distance between COGs, and not capturing the ‘on top’/‘inside’
relation at all.

V. RESULTS

In the following subsections, we present the results of learn-
ing affordance classifiers based on the different approaches
introduced in Section III. The results presented here show the
average of 50 repetitions in the PCA case and 25 repetitions in
the RHF case. For each repetition, from the overall available
data n samples with 2 < n < 100 have been randomly selected
for training and 4000 different samples have been randomly
selected for evaluation. The first four plots also show the
standard error of the mean (SEM), in form of shaded regions
around the repetitions’ average.

The results of learning without bootstrapping (NB) are
presented in Subsec. V-A. The results of direct bootstrapping
following the approaches (DB1) and (DBn) are shown in
Subsecs. V-B and V-D respectively. In Subsec. V-E the results
of bootstrapping from a single category (CB1) are presented.
The outcome of using the heuristic for category formation is
shown in Subsec. V-F and the result of learning affordance
classifiers from all created categories (CBn) is presented in
Subsec. V-G. In section V-H we describe an approach to select
appropriate inputs for bootstrapping.

A. Non-Bootstrapped Learning of Affordance Classifiers (NB)

Following the non-bootstrapping approach (NB) for learning
of classifiers as described in Sec. III-A1, we trained a set of

affordance classifiers for nine affordances based on the PCA
and RHF state-spaces as described in Sec. IV-B.

The long term learning rate for the different affordance
classifiers using the PCA state-space representation is illus-
trated in Fig. 6. We can see that learning continues after
learning from several thousand training samples. It is also
notable that some affordance classifiers are harder to learn
than others, which warrants explanation: The success of the
actions depends not only on the spatial relationship between
the objects in the scene but also on the stability of the pre-
defined motor programs. Some of the motor programs had
a relatively high fail rate, e.g., the take motor program often
failed to grasp the toy object, even if it was in reach and in the
spatial relation that would afford the take action to succeed.
This acts like a kind of noise that makes learning difficult.

The early stage of learning affordance classifiers for the
same affordances using different state-space representations
are highlighted in Fig. 7. We can see that the state represen-
tation using RHFs in general massively outperforms learning
without histograms (PCA). This is not surprising as the RHFs
were specifically designed with this use case in mind. We show
in Section V-B that we can achieve similar performance in the
PCA state-space via bootstrapping.

Nevertheless, the ‘Take’ affordance serves as a good ex-
ample of the potential shortcomings of such specialised state-
spaces as RHF. The ‘Take’ affordance has a weak negative
correlation with an aspect the RHF is able to represent (i.e.,
‘inside’) but has a much stronger correlation with aspects of
PCA space (e.g., object orientation). Even though our RHF
space includes all PCA variables, the increased amount of
input variables in the RHF case swamps the RF and causes a
decrease of learning speed (curse of dimensionality).

The non-bootstrapping affordance classifier results pre-
sented in this section serve three purposes: Firstly, they il-
lustrate the ‘standard’ learning rate for learning affordance
classifiers when learning without bootstrapping and will be
used as a baseline for comparison in the following sections.
Secondly, they constitute part of the ‘knowledge’ that will be
used for bootstrapping in the following sections. Thirdly, the
RHF based results serve as performance ‘benchmark’. Using
bootstrapping in the PCA state-space, we attempt to achieve
similar learning speeds and accuracy as with the specially
designed RHF state-space.

B. Direct Bootstrapping With a Single Already Learnt Affor-
dance Predictor as Knowledge Source (DB1)

Here we present the results of using a single already learnt
affordance predictor as a knowledge source for transfer, as
described in Section III-A2. In practice, this means that the
output of an existing affordance predictor is used to extend
the state-space of the new affordance classifier, by adding its
prediction to the 18 PCA or 318 RHF state-space variables.
These additional inputs in the state-space might make the
mapping from state-space to affordance easier to learn, if the
added inputs carry relevant information.

PCA - Non-Bootstrapped (NB) RHF - Non-Bootstrapped (NB)

Fig. 7. Illustration of the early stage of affordance classifier learning for nine affordances in different state-spaces without bootstrapping. Note that the RHF
space generally outperforms PCA space, but some affordances like ‘take’ are learnt better in PCA space.

PCA - Direct Bootstrapping (DB1) RHF - Direct Bootstrapping (DB1)

Fig. 8. Illustration of the affordance classifier learning speed for nine affordances in different state-spaces using another affordance predictor for direct
bootstrapping. For each affordance we illustrate only the best result (i.e. augmenting its state-space with the affordance predictor which gives the best
bootstrapping). The notation X<-(Y) means Y was used to bootstrap the learning of X. We see that direct bootstrapping in the simple PCA state-space can
achieve similar performance to learning in the RHF state-space (Fig. 7).

We found that bootstrapping works best if the bootstrapping
input gets promoted by being added more than once, because
by that the likelihood of being chosen in the Random Forest
algorithm increases. For that reason, we added the prediction
of the already existing affordance predictor six times to the
PCA state-space and 30 times to the RHF state-space. These
numbers were empirically chosen and led to optimal results.
This creates an extended PCA state-space of 24 variables or
an extended RHF state-space of 348 variables.

Fig. 8 demonstrates the direct bootstrapping on all nine
affordances. For each of the nine affordances we tried all
8 other affordances as input; in Fig. 8 only the input giv-
ing the best bootstrapping result is presented, highlighting
the potential of bootstrapping. This ‘best’ result is the one
with the highest average accuracy from two to 100 samples.
Comparing the PCA cases from Fig. 8 and Fig. 7, the increase
in learning speed achievable through bootstrapping becomes
evident. Fig. 8 also demonstrates that bootstrapping can bring
the performance in simple state spaces (PCA) to parity with
the specifically designed state-spaces (RHF).

Fig. 9 emphasises the bootstrapping effect of the results
demonstrated in Fig. 8, by presenting the corresponding boot-
strap factors (as defined in section III-D). Two observations
can be made here: a) The bootstrap factors are quite large with
values between three and eight in the PCA case, especially

when learning from few samples. In the RHF case, however,
an approximate bootstrap factor of one indicates that there
is no or only little bootstrapping effect. The bootstrap factors
then decrease until they asymptotically approach a value of 1.0
as the performance of the unbootstrapped learner catches up
with the bootstrapped learner. b) Fig. 9 also highlights the fact
that bootstrapping in simple state-spaces like the PCA case is
multiple times more effective than in specialised state-spaces
where learning is already efficient without bootstrapping like
in the RHF case.

It is evident that, in order to achieve these bootstrapping
effects, the single best candidate from a group of available
affordance predictors has to be selected for bootstrapping.
This is also the case when using single categories (CB1) for
bootstrapping. How this selection can be achieved in practice
is described in Sec. V-H.

We demonstrated here that bootstrapping in PCA state-
spaces can lead to similar performance as the RHF state-
space (which is specially designed for the task) and that there
is no significant bootstrapping achievable in the RHF state-
space, we will therefore, in the following, only present the
bootstrapping results of the PCA state-space.

PCA - Direct Bootstrapping (DB1) RHF - Direct Bootstrapping (DB1)

Fig. 9. Illustration of the bootstrap factors of nine affordance classifiers in different state-spaces using another affordance predictor for direct bootstrapping.
For each affordance we illustrate only the best result (i.e. augmenting its state-space with the affordance predictor which gives the best bootstrapping).

TABLE II
AVERAGE BOOTSTRAP FACTORS RESULTS INDICATIVE OF OVERALL

PERFORMANCE FOR PCA.

avg min max
NB 1 1 1
DB1 average 1.356 0.8055 1.582
DB1 best 2.819 0.9760 3.657
DB1 best after ten 2.751 0.8756 3.657
DBn 2.357 1.064 3.090
CB1 average 1.548 0.7860 1.913
CB1 best 2.889 0.8503 3.701
CB1 best after ten 2.802 0.7702 3.752
CBn 2.895 0.9072 3.888

C. A Single Measure for Bootstrap Factor

Looking at Fig. 9 we can see that bootstrapping happens in
early learning (if it happens at all), roughly from samples 4 to
25 (and this holds true for a large number of bootstrap plots
that we looked at). For this reason we will now reduce the
Bootstrap Factor time-series for various bootstrap methods to
a single number. This also makes it easier to compare various
bootstrap methods side-by-side. We call this the ‘average
bootstrap factor’. It averages the individual bootstrap factor
over the interval of 4 to 25 training examples. Fig. 10 shows
a bar chart which allows comparison of the bootstrap methods,
including DB1 already discussed as well as the other methods
to be discussed below.

Note that the ‘DB1 best’ values in Fig. 10 are the average
bootstrap factors from Fig. 9. In addition we include in Fig. 10
a ‘DB1 average’ which is the average of using the eight
available other affordance predictors as an input to bootstrap
a particular affordance. This ‘DB1 average’ corresponds to
the expected value of the average bootstrap factor if a random
affordance predictor is used for bootstrapping. This is interest-
ing e.g. in the case of sequential learning of affordances where
there is only one action available to bootstrap the second.

To further compact the data and to be able to compare the
different bootstrapping approaches we in addition average the
average bootstrap factors of the nine affordances used in this
work. This is shown in Fig. 10 (rightmost bars). Table II shows
this number for the different bootstrapping strategies (column
labelled avg), as well as the highest and the lowest average
bootstrap factor out of the nine affordances.

D. Direct Bootstrapping With All Affordance Predictors As
Knowledge Source At Once (DBn)

Figure 10 shows DBn, the results when using the affordance
predictions of all eight other affordances as knowledge source,
as described in Section III-A2. The bootstrapping effect in
this case is lower than with the single best other affordance
prediction, ‘DB1 best’. This is because not every affordance
prediction is helpful as an input for bootstrapping; some hinder
learning by adding noise to the state-space and increasing the
size of the state-space (the curse of dimensionality [50]). The
DBn approach, however, is the most straightforward one, as
it relieves the agent from searching for the best bootstrapping
input from a set of candidate affordance predictions and also
does not require the learning of category predictors.

E. Category Based Bootstrapping With a Single Automatically
Created Category Predictor (CB1)

Figure 10 shows the results when using the output of a
single automatically created category predictor as knowledge
source (CB1), as described in Section III-A3. We show ‘CB1
average’ which is the expected value of picking a random
category for bootstrapping, and ‘CB1 best’ using the best
category for bootstrapping. As before, we added the inputs
six times to the PCA state-space. Following the binomial
combinatorics rule there are 36 distinct category predictors
we create by choosing two out of our nine affordances.

We see that CB1 category based bootstrapping is com-
parable to DB1 direct bootstrapping from single affordance
predictions.

F. Using a Heuristic For Creating Category Predictors

In order to avoid the combinatorial increase of the number
of categories created by our approach, we limit the creation
of categories to those that are based on strongly correlating
pairs of affordance predictors (see Sec. III-C). This is based
on the hypothesis that strong correlations between affordance
predictions indicate a precondition that is meaningful for a
variety of affordances. The correlations between the nine
affordance predictors are shown in Fig. 11 (after learning from
2000 samples).

Two clusters can be noted in Fig 11. The first cluster
contains primarily ‘Lift’, ‘Pull’ and ‘Push’, with ‘Pour’ and

Fig. 10. Average bootstrap factors for the different bootstrapping types and actions using PCA.

Correlation

Fig. 11. Correlations between the affordance predictions for nine different
affordances after training with 2000 samples.

‘Slide’ being more weakly related. The three affordances
‘Lift’, ‘Pull’ and ‘Push’ have in common that they are fairly
likely to be present when the toy object is ‘on top’ or ‘inside’
of the base object, while they never work otherwise (i.e.,
when the objects are only beside each other on the table).
The affordances ‘Pour’ and ‘Slide’ are related in the sense
that they share these properties with ‘Lift’, ‘Pull’ and ‘Push’,
and differ only slightly with ‘Pour’ being unsuccessful in the
‘on top’ case and ‘Slide’ being unsuccessful in the ‘inside’
case.

The Second cluster is weaker and separated from the first
cluster as the affordances ‘Move’, ‘Take’, ‘UnOb’ and ‘Rake’
are more likely to be present when the two objects are ‘beside’
each other on the table than if they are ‘on top’ or ‘inside’
each other. At the same time, no two affordances in the second
cluster have identical cases where they work and where not
(unlike ‘Lift’, ‘Pull’ and ‘Push’ in the first cluster), hence there
is a generally weaker correlations between them.

The heuristic we use requires only one free parameter: the
correlation threshold T , specifying the minimum correlation
required between two affordance predictors, for a category
predictor to be created. A high threshold will lead to fewer

PCA - Category Based Bootstrapping (CB1)

Fig. 12. Illustration of the bootstrap factor of different category predictors,
averaged across all nine affordances. The plot shows the bootstrap factor of
the best category created above the following correlation thresholds: 1) 0.0
(i.e., no heuristic used), 2) 0.125 (only approximately 1/2 of the possible
category predictors are created) and 3) 0.5 (only approximately 1/4 of the
possible category predictors are created). The plot also shows the overall
average bootstrap factor using all categories, which corresponds to expected
performance from bootstrapping with a random knowledge source.

category predictors, but the resulting category predictors are
more likely to be useful for bootstrapping. A low threshold
instead will lead to more category predictors, but not all of
them might be useful for bootstrapping a new affordance
classifier.

We experimented with three values for the correlation
threshold T :
1) T = 0.0 (i.e., the heuristic is not used)
2) T = 0.125 (approx. 1/2 of the category predictors created)
3) T = 0.5 (approx. 1/4 of the category predictors created)

For a given T value we create category predictors for all the
categories with correlation C exceeding T . We then analysed
the bootstrap factor of each category C > T , and only the
best is illustrated in Fig. 12.

We can see in Fig. 12 that the drop in performance through
increased thresholds is small. The average performance of the
full set of category predictors (threshold T = 0.0) and the 1/2
set of category predictors (threshold T = 0.125) are almost
identical. Even when using the threshold T = 0.5, where
only 1/4 of the category predictors are created, the bootstrap
factor only drops slightly. Not surprisingly, the bootstrap

factor for each of the three sets is significantly better than
the bootstrapping when using an arbitrary pick of available
affordance predictors as knowledge source (Overall Average).

We can conclude that it is in general possible to neglect
a significant proportion of category predictors without signifi-
cant loss of performance. This is because even a small number
of category predictors based on highly correlated affordances
are sufficient to give good bootstrapping effects for most
affordance classifiers.

G. Category Based Bootstrapping With All Available Category
Predictor Outputs As Knowledge Source at Once (CBn)

The last section showed that an elimination of categories
by means of a correlation threshold of 0.5 does not lead to
any visible loss of performance. We discuss in this section the
results when using all category predictors using this correlation
threshold. This is CBn in Figure 10.

When bootstrapping from all available affordance predic-
tions, DBn, we noticed that the performance was not as
high as when bootstrapping from the single best affordance
prediction DB1 (see Section V-D). We argued that this was due
to the curse of dimensionality. However, when bootstrapping
from all available category predictions, CBn, the learning
and bootstrapping performance remains high and sometimes
surpasses the results of learning with the single best affordance
prediction DB1 or single best category prediction CB1 as
input for bootstrapping (apart from the ‘Take’ affordance that
does degrade in performance). this may be due to the more
generic and hence transferable spatial relationship knowledge
captured by category predictors, compared to the knowledge
made available by affordance predictors.

H. Candidate Selection For Bootstrapping
Figure 10 shows the results for bootstrapping each affor-

dance classifier with the input that is ‘best’, however we
did not yet address the issue of how to the select the best
input. An exhaustive method is to select the best input after
all alternatives have been tested and compared. This is not
viable in an online system where the input has to be selected
automatically and rapidly. We expect that the suitability of
a candidate input becomes clear after a small number of
samples are processed. If this was not the case, bootstrapping
of learning a new affordance classifier and reaching high
accuracy after few training samples (i.e., bootstrapping as
presented in this paper) would not be possible.

Therefore, here we start by learning multiple affordance
classifiers in parallel – one for each knowledge source can-
didate. After ten samples have been processed we can decide
which input to retain, and to stop the other parallel processes.
Figure 10 shows this as ‘best after ten’. The bootstrap factors
of this automatic selection approach are similar to when using
the best input. This shows that this simple selection approach
is effective.

VI. ON THE VALIDITY OF SIMULATION BASED RESULTS

In this section we investigate how our simulated results can
be transferred to the real world. For this we present work

that involves data collected from both simulation and real
world setups. We believe that our result would match real
world results due to a) the realistic noise model used for the
simulated Kinect camera [43] and b) the relatively robust-to-
noise way in which our vision features are created [48].

The following subsections are structured as follows: Subsec-
tion VI-A describes the approach, Subsection VI-B presents
the results, and Subsection VI-C concludes.

A. Approach

The major difference between the real world work reported
in this section and the simulations in the rest of this paper is
that here we learn to recognise spatial relationships between
objects, rather than affordances (predicting action success).
In this section training examples (scenes) are set up much
as before, but we manually label the data with the spatial
relationship between the pair of objects rather than executing
an action. In [49] we have shown that affordances strongly
correlate with spatial relationships between objects. Hence, we
have reason to expect that our simulation results on affordance
recognition should translate well to the real world.

Fig. 13 illustrates the learning approach of this real world
comparison work.

Vision
System

Spatial
Relationship

Classifier
Relationship
Classification

Visual
Input

Simulation
Trained Spatial

Relationship
Classifier

State Space
 Object positions, orientations, and

optionally: relational histogramsSimulated
Kinect
Sensor

Real
Carmine
Sensor

Fig. 13. Illustration of the inputs for learning spatial relationship recognising
classifiers.

The following training and testing approaches were used:
1) Learning from simulation and testing in simulation.
2) Learning from the real world and testing in the real world.
3) Learning from simulation and testing in the real world.
4) Using a classifier learnt in simulation to bootstrap learn-

ing in the real world.
All four approaches use identical features for training

Random Forest classifiers to recognise the spatial relationship
between a pair of objects.

For collecting real world data, a Carmine 1.09 sensor (both
Carmine and Kinect use the same PrimeSense technology
internally) was used and positioned above a workspace similar
to the Kinect in the simulation, looking diagonally down
onto the workspace area. On the workspace objects were
randomly placed to be a) both on the workspace surface, b)
on top of each other, or c) inside one another; which reflects
the labels that the simulator provided for a pair of objects.
The spatial relationship labels where manually assigned. The
objects used in the real world setup were of different colours.
After removing the background with RANSAC plane removal,
k-means clustering was used to find three clusters; the two

biggest clusters belong to one object each and the third cluster
to the background.

The PCA features are created using the same approach
as described above (see Section IV-B). The Random Forest
classifiers are also the same except that there are always 100
trees in a forest.

For the real vision based classifiers, at each repetition, from
a pool of 160 (80 positive and 80 negative) samples, 100
(50 positive and 50 negative) samples have been randomly
selected for training, and the remaining 60 samples have been
used for testing. Since we had 6500 simulation based training
samples available it would not be a fair to compare with
the real world trained on 100 samples. Therefore we made
two sets of simulation based classifiers, one SIM full that
was trained from 6500 simulation based training samples, and
one SIM fair that was trained from 100 simulation based
training samples. Both sets of simulation based classifiers
where tested on the same amount of samples as they were
trained from (6500 and 100), which were different from the
training samples. All Training and Test sets have been 50%
positive and 50% negative samples.

B. Results

PCA

S
IM

_f
ul

l

S
IM

_f
ai

r

R
E

A
L

S
IM

_f
ul

l−
>

R
E

A
L

S
IM

_f
ai

r−
>

R
E

A
L

S
IM

_f
ul

l

S
IM

_f
ai

r

R
E

A
L

S
IM

_f
ul

l−
>

R
E

A
L

S
IM

_f
ai

r−
>

R
E

A
L

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Beside Relationship On top Relationship

Fig. 14. Illustration of the classifier performance in different train/test
configurations for the PCA state space. The blue boxes labelled SIM show the
results when learning and testing in the simulation environment. The green
boxes labelled REAL show the results when learning and testing in the real
world environment. The blue boxes labelled SIM . . . ->REAL show the results
when a classifier trained in simulation is tested on real world data.

The results presented in this section are based on the average
of 50 repetitions. Fig. 14 shows the achieved results of the first
three approaches (see Sec. VI-A for approaches) in the PCA
state space, using both the spatial relationships ‘beside’ and
‘on top’.

We can see that learning and testing purely in simulation
works very well. The real world classifiers have lower perfor-
mance and higher variance than the purely simulation based
results, but still show good performance. We can make a
similar observation for classifiers trained in simulation and
tested on real world data: while there is a significant drop
in performance and increase of variance compared to purely

simulation based results, the simulation trained classifier does
still show good performance when evaluated in real world
settings and can compete with real world trained classifiers.

Fig. 15. Top Graph: Illustration of Bootstrapping in the real world when
using the prediction of a simulation trained classifier as bootstrapping input
(REAL<-SIM), and also non-bootstrapped learners for comparison. Bottom
Graph: The bootstrap factors of the same two bootstrapped curves above.

The results regarding the fourth approach described above
are shown in Fig. 15. Here the simulation trained classifier
(SIM full) is used to provide a prediction for a real world
scene. This prediction is provided as additional input to the
classifier trained on the real world data. It can be seen in
Fig. 15 that also in this setting the benefit from bootstrapping
at the early stage of learning is significant.

C. Conclusion

With these results we demonstrated four outcomes: a) The
PCA based state space representation gives good results when
using the more noisy real world data instead of simulation
based data. b) The achievable performance does not differ by
a large margin between simulation and real world data based
classifiers. c) The applicability of simulation trained classifiers
in real world settings, which can help to avoid expensive real
world data collection. d) Bootstrapping works not only in
simulation but also in real world settings.

VII. DISCUSSION AND CONCLUSION

In this paper we demonstrated the learning of affordance
classifiers for means-end actions and investigated how this
learning process can be accelerated via bootstrapping. We
have presented a method to capture meaningful categorical
features of the environment like one object being ‘on top’
and/or ‘inside’ another. We have showcased a heuristic to
limit this extraction of categories to the ones most likely to be
useful to the robot for bootstrapping the learning of affordance
predictors. To quantify the bootstrapping performance we have
introduced a bootstrap factor. And finally, we have presented

results for bootstrapping the learning of affordance classifiers
for nine means-end actions using a variety of existing affor-
dance predictors and category predictors as knowledge sources
for bootstrapping.

Our results show that there is no significant difference
between bootstrapping with the PCA based feature space ver-
sus not bootstrapping with the Relational Histogram Features
(RHF). By generating sufficiently sophisticated features (as in
case of RHF), the learning problem can be made simple, so
that Random Forests can solve the task with very few learning
cycles. However, if the feature space is more basic (as in case
of the PCA based features), then bootstrapping results in a
significant speed up.

Designing a good feature space can be difficult; one needs
to have an intuition about the relationships among elements of
low level sensor data which discriminate the relevant classes.
Furthermore one would ideally like a robot to be able to extend
its affordance knowledge during lifelong learning, where there
might be no human available to design a feature space. In
many applications in computer vision, the approach of learning
features works (e.g. via deep learning), because there are large
sets of data available. In robot affordance applications such
data is not readily available and costly (in time) to acquire.
Additionally the PCA feature approach has an advantage over
the RHF approach in implementation. The space requirements
for processing are reduced.

The recommendations that emerge from our study are as
follows. If one cannot design a good feature space and learning
is slow, then direct bootstrapping (DB) is preferred in general.
For example Figs. 6 and 8 show that bootstrapping in the
PCA space can achieve accuracies after 25 samples that take
1000 samples without bootstrapping. In our case, and most
conceivable cases, the time taken to train a single classifier is
very small relative to the time to generate action experience;
therefore it is feasible to train in parallel with different boot-
strapping inputs, and then after a small number of samples are
processed, to make a decision about which input to continue
with, as in Sec. V-H. We have shown (Fig. 10) that this
approach is superior to bootstrapping with all inputs and letting
the random forest do the selection (see Sec. V-D). Although in
our case category based bootstrapping (CB) was not faster than
direct bootstrapping (DB), we see the ability to extract such
categories autonomously as an important achievement since in
a larger cognitive system such categorical knowledge can be
exploited in different reasoning contexts (as outlined below).

We believe that bootstrapping is very important for affor-
dance learning because there is a great deal to be learnt in
order to achieve a basic level of manipulation competence
in everyday environments, such as a child has. Spatial rela-
tionships are only one small segment of the common sense
knowledge that is required (see [8]). Also, it typically takes a
large amount of data to ground knowledge in a robot’s own
actions, and this data is usually hard to generate (i.e. through
time consuming real world experiments). Techniques that can
reduce the requirement for data are therefore beneficial.

With our category predictors, e.g., the category of being

‘on top’, or ‘beside’, we have also presented a simple form
of extracting more symbolic descriptions of the environment.
We avoid calling these concepts because a concept suggests a
complex package of information, e.g. knowledge of situations
or associated actions (see Barsalou [51], [52]), whereas we
are talking about something more restricted: a classifier deter-
mining the presence of a critical aspect of a scene, e.g. spatial
relationship category. The next logical step would be to use
these categories within a larger cognitive architecture, where
this symbolic knowledge is not only used for bootstrapping of
new affordances, but also to guide future interactions and for
the development of higher cognitive competences. Categories
form a first step on the path to high level concepts and a robot
which has recently acquired an ‘on top’ or ‘inside’ category
symbol, for example, may be motivated to generate further
experience around these categories, which could lead to a new
phase of development that facilitates to the formation of higher
level concepts like ‘carrying’ or ‘stacking’ or ‘containment’.

REFERENCES

[1] A. Stoytchev, “Some Basic Principles of Developmental Robotics,” IEEE
Trans. on Auton. Ment. Dev., vol. 1, no. 2, pp. 122–130, aug 2009.

[2] R. Moore, “Spoken Language Processing: Where Do We Go from
Here?” in Your Virtual Butler, ser. LNCS, R. Trappl, Ed. Springer
Berlin Heidelberg, 2013, vol. 7407, pp. 119–133.

[3] M. Do, J. Schill, J. Ernesti, and T. Asfour, “Learn to wipe: A case study
of structural bootstrapping from sensorimotor experience,” in Robotics
and Automation (ICRA), 2014 IEEE International Conference on, may
2014, pp. 1858–1864.

[4] E. Ugur, S. Szedmak, and J. Piater, “Bootstrapping paired-object affor-
dance learning with learned single-affordance features,” in The Fourth
Joint IEEE Intl. Conf. on Development and Learning and on Epigenetic
Robotics (ICDL-Epirob), Genoa, Italy, 2014, pp. 468–473.

[5] F. Wörgötter, C. Geib, M. Tamosiunaite, E. Aksoy, J. Piater, H. Xiong,
A. Ude, B. Nemec, D. Kraft, N. Krüger, M. Wächter, and T. Asfour,
“Structural bootstrapping - A novel, generative mechanism for the faster
and more efficient acquisition of action-knowledge,” IEEE Transactions
on Autonomous Mental Development (accepted), vol. PP, no. 99, 2015.

[6] J. Piaget, The Origins of Intelligence in Children. London: Routledge
& Kegan Paul, 1936, (French version 1936, translation 1952).

[7] P. Willatts, “Pulling a support to retrieve a distant object,” Developmental
Psychology, vol. 35, no. 3, pp. 651–667, 1999.

[8] F. Guerin, N. Krüger, and D. Kraft, “A Survey of the Ontogeny of Tool
Use : from Sensorimotor Experience to Planning,” IEEE Transactions
on Autonomous Mental Development, pp. 1–26, 2012.

[9] G. Drescher, Made-Up Minds: A Constructivist Approach to Artificial
Intelligence. MIT Press, 1991.

[10] H. Chaput, “The Constructivist Learning Architecture: A Model of
Cognitive Development for Robust Autonomous Robots,” PhD Thesis,
University of Texas at Austin, Artificial Intelligence Laboratory, 2004.

[11] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 22, no. 10, pp. 1345–
1359, oct 2010.

[12] J. J. Lockman, “A perception-action perspective on tool use develop-
ment,” Child Development, vol. 71, no. 1, pp. 137–144, 2000.

[13] P. Willatts, “Development of problem-solving strategies in infancy,” in
Children’s Strategies: Contemporary Views of Cognitive Development,
D. Bjorklund, Ed. Lawrence Erlbaum, 1990, pp. 23–66.

[14] J. Piaget, The Construction of Reality in the Child. London: Routledge
& Kegan Paul, 1937, (French version 1937, translation 1955).

[15] J. M. Mandler, “How to Build a Baby: II. Conceptual Primitives,”
Psychological Review, vol. 99, no. 4, pp. 587–604, 1992.

[16] A. Clark and A. Karmiloff-Smith, “The cognizer’s innards: A psycho-
logical and philosophical perspective on the development of thought,”
Mind & Language, vol. 8, no. 4, pp. 487–519, 1993.

[17] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning symbolic
models of stochastic domains,” J. Artif. Int. Res., vol. 29, no. 1, pp. 309–
352, Jul. 2007.

[18] T. Zimmerman and S. Kambhampati, “Learning-assisted automated
planning: Looking back, taking stock, going forward,” AI MAGAZINE,
vol. 24, p. 2003, 2003.

[19] G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Symbol acquisition
for probabilistic high-level planning,” in Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2015.

[20] J. Mugan and B. Kuipers, “Autonomous learning of high-level states and
actions in continuous environments,” IEEE Trans. Autonomous Mental
Development, vol. 4, no. 1, pp. 70–86, 2012.

[21] B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De
Raedt, “Learning relational affordance models for robots in multi-object
manipulation tasks,” in IEEE Intl. Conf. on Robotics and Automation,
2012, pp. 4373–4378.

[22] S. Griffith, J. Sinapov, V. Sukhoy, and A. Stoytchev, “A behavior-
grounded approach to forming object categories: Separating containers
from noncontainers,” Autonomous Mental Development, IEEE Transac-
tions on, vol. 4, no. 1, pp. 54–69, March 2012.

[23] B. Rosman and S. Ramamoorthy, “Learning spatial relationships be-
tween objects,” The International Journal of Robotics Research, vol. 30,
no. 11, pp. 1328–1342, sep 2011.

[24] S. Panda, A. H. A. Hafez, and C. V. Jawahar, “Learning support order
for manipulation in clutter,” in Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, nov 2013, pp. 809–815.

[25] S. Fichtl, J. Alexander, D. Kraft, J. Jorgensen, N. Krüger, and F. Guerin,
“Learning object relationships which determine the outcome of actions,”
Paladyn, vol. 3, no. 4, pp. 188–199, 2012.

[26] H. Grabner, J. Gall, and L. Van Gool, “What makes a chair a chair?”
in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, June 2011, pp. 1529–1536.

[27] E. Aksoy, A. Abramov, F. Worgotter, and B. Dellen, “Categorizing
object-action relations from semantic scene graphs,” in IEEE Interna-
tional Conference on Robotics and Automation, May 2010, pp. 398–405.

[28] H. S. Koppula, R. Gupta, and A. Saxena, “Learning human activities
and object affordances from rgb-d videos,” The International Journal of
Robotics Research, vol. 32, no. 8, pp. 951–970, 2013.

[29] A. Lazaric, “Transfer in reinforcement learning: A framework and a
survey,” in Reinforcement Learning: State of the Art, ser. Adaptation,
Learning, and Optimization, M. Wiering and M. van Otterlo, Eds.
Springer Berlin Heidelberg, 2012, pp. 143–173.

[30] M. H. Lee, Q. Meng, and F. Chao, “Staged competence learning in
developmental robotics,” Adaptive Behavior, vol. 15, no. 3, pp. 241–
255, 2007.

[31] S. Hart and R. Grupen, “Learning generalizable control programs,” IEEE
Trans. Autonomous Mental Development, vol. 3, no. 3, pp. 216–231,
sept. 2011.

[32] P.-Y. Oudeyer, F. Kaplan, and V. Hafner, “Intrinsic motivation systems
for autonomous mental development,” IEEE Transactions on Evolution-
ary Computation, vol. 11, no. 6, pp. 265–286, 2007.

[33] P.-Y. Oudeyer, A. Baranes, and F. Kaplan, “Intrinsically motivated learn-
ing of real-world sensorimotor skills with developmental constraints,”
in Intrinsically Motivated Learning in Natural and Artificial Systems,
G. Baldassarre and M. Mirolli, Eds. Springer Berlin Heidelberg, 2013,
pp. 303–365.

[34] E. Ugur and J. Piater, “Emergent structuring of interdependent affor-
dance learning tasks,” in Development and Learning and Epigenetic
Robotics (ICDL-Epirob), 2014 Joint IEEE International Conferences on,
Oct 2014, pp. 489–494.

[35] W. Choi, Y.-W. Chao, C. Pantofaru, and S. Savarese, “Understanding
indoor scenes using 3d geometric phrases,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2011.

[36] G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Constructing sym-
bolic representations for high-level planning,” 2014.

[37] G. Konidaris, “Constructing abstraction hierarchies using a skill-symbol
loop,” 2016.

[38] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[39] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[40] L. Breiman and A. Cutler, “Random Forests,” https://www.stat.berkeley.
edu/˜breiman/RandomForests/cc home.htm, 2004.

[41] J. A. Jørgensen, L.-P. Ellekilde, and H. G. Petersen, “RobWorkSim -
an Open Simulator for Sensor based Grasping,” in ISR/ROBOTIK 2010
(41st International Symposium). VDE-Verlag, Jun. 2010.

[42] K. Khoshelham and S. O. Elberink, “Accuracy and Resolution of Kinect
Depth Data for Indoor Mapping Applications,” Sensors, vol. 12, no. 2,
pp. 1437–1454, 2012.

[43] S. Olesen, S. Lyder, D. Kraft, N. Krüger, and J. Jessen, “Real-time
extraction of surface patches with associated uncertainties by means of
Kinect cameras,” Journal of Real-Time Image Processing, vol. 10, no. 1,
pp. 105–118, 2012.

[44] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise
for improved 3d reconstruction and tracking,” in 2012 Second Interna-
tional Conference on 3D Imaging, Modeling, Processing, Visualization
Transmission, Oct 2012, pp. 524–530.

[45] K. M. Varadarajan and M. Vincze, “Object part segmentation and
classification in range images for grasping,” in Advanced Robotics
(ICAR), 2011 15th International Conference on, jun 2011, pp. 21–27.

[46] M. Schoeler, J. Papon, and F. Wörgötter, “Constrained Planar Cuts-
Object Partitioning for Point Clouds,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
5207–5215.

[47] W. Mustafa, N. Pugeault, and N. Krüger, “Multi-View Object Recog-
nition using View-Point Invariant Shape Relations and Appearance
Information,” in IEEE Conf. on Robotics & Automation, 2013.

[48] S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Kruger, and F. Guerin,
“Learning spatial relationships from 3D vision using histograms,” in
Robotics and Automation (ICRA), 2014 IEEE International Conference
on, may 2014, pp. 501–508.

[49] S. Fichtl, D. Kraft, N. Krüger, and F. Guerin, “Using Relational
Histogram Features and Action Labelled Data to Learn Preconditions
for Means-End Actions,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (Workshop on Sensorimotor Contingencies
for Robotics), Hamburg, 2015.

[50] R. E. Bellman, “Adaptive control processes: a guided tour,” Princeton
University, 1961.

[51] W. Yeh and L. W. Barsalou, “The Situated Nature of Concepts,” The
American Journal of Psychology, vol. 119, no. 3, pp. pp. 349–384, 2006.

[52] L. W. Barsalou, “Simulation, situated conceptualization, and prediction,”
Philosophical Transactions of the Royal Society of London B: Biological
Sciences, vol. 364, no. 1521, pp. 1281–1289, 2009.

Severin Fichtl holds a M.Sc degree in Computer
Science (Artificial Intelligence) from the University
of Aberdeen, UK and has recently received his
Ph.D. degree at the University of Aberdeen. He
is currently working as research assistant at the
University of Southern Denmark and is interested
in General Artificial Intelligence and Developing
Cognitive systems.

Dirk Kraft is an assistant Professor at the Maersk
McKinney Moller Institute, University of Southern
Denmark. He holds a diploma degree in computer
science from the University of Karlsruhe, Germany
and a Ph.D. degree from the University of Southern
Denmark. His Research interests lie within cognitive
systems, robotics and computer vision.

Norbert Krüger is a professor at the Mærsk McK-
inney Møller Institute, University of Southern Den-
mark. He holds a M.Sc. degree from the Ruhr-
Universität Bochum, Germany and his Ph.D. degree
from the University of Bielefeld, Germany. His
research covers computer vision, cognitive systems
and applied robotics.

Frank Guerin obtained his Ph.D. degree from
Imperial College, London, in 2002. Since August
2003, he has been a Lecturer in Computing Science
at the University of Aberdeen. He is interested in
Artificial Intelligence and Cognitive Systems, es-
pecially developmental approaches, and transferable
knowledge.

